Skip to main content
Erschienen in: Brain Topography 6/2014

01.11.2014 | Original Paper

A Reliability Study on Brain Activation During Active and Passive Arm Movements Supported by an MRI-Compatible Robot

verfasst von: Natalia Estévez, Ningbo Yu, Mike Brügger, Michael Villiger, Marie-Claude Hepp-Reymond, Robert Riener, Spyros Kollias

Erschienen in: Brain Topography | Ausgabe 6/2014

Einloggen, um Zugang zu erhalten

Abstract

In neurorehabilitation, longitudinal assessment of arm movement related brain function in patients with motor disability is challenging due to variability in task performance. MRI-compatible robots monitor and control task performance, yielding more reliable evaluation of brain function over time. The main goals of the present study were first to define the brain network activated while performing active and passive elbow movements with an MRI-compatible arm robot (MaRIA) in healthy subjects, and second to test the reproducibility of this activation over time. For the fMRI analysis two models were compared. In model 1 movement onset and duration were included, whereas in model 2 force and range of motion were added to the analysis. Reliability of brain activation was tested with several statistical approaches applied on individual and group activation maps and on summary statistics. The activated network included mainly the primary motor cortex, primary and secondary somatosensory cortex, superior and inferior parietal cortex, medial and lateral premotor regions, and subcortical structures. Reliability analyses revealed robust activation for active movements with both fMRI models and all the statistical methods used. Imposed passive movements also elicited mainly robust brain activation for individual and group activation maps, and reliability was improved by including additional force and range of motion using model 2. These findings demonstrate that the use of robotic devices, such as MaRIA, can be useful to reliably assess arm movement related brain activation in longitudinal studies and may contribute in studies evaluating therapies and brain plasticity following injury in the nervous system.
Literatur
Zurück zum Zitat Alkadhi H, Crelier GR, Boendermaker SH, Golay X, Hepp-Reymond M-C, Kollias SS (2002) Reproducibility of primary motor cortex somatotopy under controlled conditions. Am J Neuroradiol 23(9):1524–1532PubMed Alkadhi H, Crelier GR, Boendermaker SH, Golay X, Hepp-Reymond M-C, Kollias SS (2002) Reproducibility of primary motor cortex somatotopy under controlled conditions. Am J Neuroradiol 23(9):1524–1532PubMed
Zurück zum Zitat Annett M (1970) A classification of hand preference by association analysis. Brit J Psychol 61(3):303–321PubMedCrossRef Annett M (1970) A classification of hand preference by association analysis. Brit J Psychol 61(3):303–321PubMedCrossRef
Zurück zum Zitat Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113PubMedCrossRef Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38(1):95–113PubMedCrossRef
Zurück zum Zitat Bennett CM, Miller MB (2010) How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci 1191(1):133–155PubMedCrossRef Bennett CM, Miller MB (2010) How reliable are the results from functional magnetic resonance imaging? Ann N Y Acad Sci 1191(1):133–155PubMedCrossRef
Zurück zum Zitat Birn RM, Bandettini PA, Cox RW, Shaker R (1999) Event-related fMRI of tasks involving brief motion. Hum Brain Mapp 7(2):106–114PubMedCrossRef Birn RM, Bandettini PA, Cox RW, Shaker R (1999) Event-related fMRI of tasks involving brief motion. Hum Brain Mapp 7(2):106–114PubMedCrossRef
Zurück zum Zitat Caceres A, Hall DL, Zelaya FO, Williams SCR, Mehta MA (2009) Measuring fMRI reliability with the intra-class correlation coefficient. Neuroimage 45(3):758–768PubMedCrossRef Caceres A, Hall DL, Zelaya FO, Williams SCR, Mehta MA (2009) Measuring fMRI reliability with the intra-class correlation coefficient. Neuroimage 45(3):758–768PubMedCrossRef
Zurück zum Zitat Carey LM, Abbott DF, Egan GF, Tochon-Danguy HJ, Donnan GA (2000) The functional neuroanatomy and long-term reproducibility of brain activation associated with a simple finger tapping task in older healthy volunteers: a serial PET study. Neuroimage 11(2):124–144PubMedCrossRef Carey LM, Abbott DF, Egan GF, Tochon-Danguy HJ, Donnan GA (2000) The functional neuroanatomy and long-term reproducibility of brain activation associated with a simple finger tapping task in older healthy volunteers: a serial PET study. Neuroimage 11(2):124–144PubMedCrossRef
Zurück zum Zitat Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33(2):430–448PubMedCrossRef Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33(2):430–448PubMedCrossRef
Zurück zum Zitat Caspers S, Eickhoff SB, Geyer S, Scheperjans F, Mohlberg H, Zilles K, Amunts K (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212(6):481–495PubMedCrossRef Caspers S, Eickhoff SB, Geyer S, Scheperjans F, Mohlberg H, Zilles K, Amunts K (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212(6):481–495PubMedCrossRef
Zurück zum Zitat Cicchetti DV, Sparrow SA (1981) Developing criteria for establishing interrater reliability of specific items: applications to assessment of adaptive behavior. Am J Ment Defic 86(2):127–137PubMed Cicchetti DV, Sparrow SA (1981) Developing criteria for establishing interrater reliability of specific items: applications to assessment of adaptive behavior. Am J Ment Defic 86(2):127–137PubMed
Zurück zum Zitat Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46(1):39–46PubMedCrossRef Diedrichsen J, Balsters JH, Flavell J, Cussans E, Ramnani N (2009) A probabilistic MR atlas of the human cerebellum. Neuroimage 46(1):39–46PubMedCrossRef
Zurück zum Zitat Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335PubMedCrossRef Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335PubMedCrossRef
Zurück zum Zitat Eickhoff SB, Schleicher A, Zilles K, Amunts K (2006a) The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb Cortex 16(2):254–267PubMedCrossRef Eickhoff SB, Schleicher A, Zilles K, Amunts K (2006a) The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb Cortex 16(2):254–267PubMedCrossRef
Zurück zum Zitat Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006b) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16(2):268–279PubMedCrossRef Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006b) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16(2):268–279PubMedCrossRef
Zurück zum Zitat Eickhoff SB, Paus T, Caspers S, Grosbras M-H, Evans AC, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36(3):511–521PubMedCrossRef Eickhoff SB, Paus T, Caspers S, Grosbras M-H, Evans AC, Zilles K, Amunts K (2007) Assignment of functional activations to probabilistic cytoarchitectonic areas revisited. Neuroimage 36(3):511–521PubMedCrossRef
Zurück zum Zitat Friedman L, Stern H, Brown GG, Mathalon DH, Turner J, Glover GH, Gollub RL, Lauriello J, Lim KO, Cannon T, Greve DN, Bockholt HJ, Belger A, Mueller B, Doty MJ, He J, Wells W, Smyth P, Pieper S, Kim S, Kubicki M, Vangel M, Potkin SG (2008) Test-retest and between-site reliability in a multicenter fMRI study. Hum Brain Mapp 29(8):958–972PubMedCrossRefPubMedCentral Friedman L, Stern H, Brown GG, Mathalon DH, Turner J, Glover GH, Gollub RL, Lauriello J, Lim KO, Cannon T, Greve DN, Bockholt HJ, Belger A, Mueller B, Doty MJ, He J, Wells W, Smyth P, Pieper S, Kim S, Kubicki M, Vangel M, Potkin SG (2008) Test-retest and between-site reliability in a multicenter fMRI study. Hum Brain Mapp 29(8):958–972PubMedCrossRefPubMedCentral
Zurück zum Zitat Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cell Biol 174(I-VIII):1–89CrossRef Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cell Biol 174(I-VIII):1–89CrossRef
Zurück zum Zitat Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Bürgel U, Klingberg T, Larsson J, Zilles K, Roland PE (1996) Two different areas within the primary motor cortex of man. Nature 382(6594):805–807PubMedCrossRef Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Bürgel U, Klingberg T, Larsson J, Zilles K, Roland PE (1996) Two different areas within the primary motor cortex of man. Nature 382(6594):805–807PubMedCrossRef
Zurück zum Zitat Geyer S, Schleicher A, Zilles K (1999) Areas 3a, 3b, and 1 of human primary somatosensory cortex. Neuroimage 10(1):63–83PubMedCrossRef Geyer S, Schleicher A, Zilles K (1999) Areas 3a, 3b, and 1 of human primary somatosensory cortex. Neuroimage 10(1):63–83PubMedCrossRef
Zurück zum Zitat Geyer S, Schormann T, Mohlberg H, Zilles K (2000) Areas 3a, 3b, and 1 of human primary somatosensory cortex. Neuroimage 11(6):684–696PubMedCrossRef Geyer S, Schormann T, Mohlberg H, Zilles K (2000) Areas 3a, 3b, and 1 of human primary somatosensory cortex. Neuroimage 11(6):684–696PubMedCrossRef
Zurück zum Zitat Gountouna V-E, Job DE, McIntosh AM, Moorhead TWJ, Lymer GKL, Whalley HC, Hall J, Waiter GD, Brennan D, McGonigle DJ, Ahearn TS, Cavanagh J, Condon B, Hadley DM, Marshall I, Murray AD, Steele JD, Wardlaw JM, Lawrie SM (2010) Functional magnetic resonance imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task. Neuroimage 49(1):552–560PubMedCrossRef Gountouna V-E, Job DE, McIntosh AM, Moorhead TWJ, Lymer GKL, Whalley HC, Hall J, Waiter GD, Brennan D, McGonigle DJ, Ahearn TS, Cavanagh J, Condon B, Hadley DM, Marshall I, Murray AD, Steele JD, Wardlaw JM, Lawrie SM (2010) Functional magnetic resonance imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task. Neuroimage 49(1):552–560PubMedCrossRef
Zurück zum Zitat Grefkes C, Geyer S, Schormann T, Roland P, Zilles K (2001) Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map. Neuroimage 14(3):617–631PubMedCrossRef Grefkes C, Geyer S, Schormann T, Roland P, Zilles K (2001) Human somatosensory area 2: observer-independent cytoarchitectonic mapping, interindividual variability, and population map. Neuroimage 14(3):617–631PubMedCrossRef
Zurück zum Zitat Hollnagel C, Brugger M, Vallery H, Wolf P, Dietz V, Kollias S, Riener R (2011) Brain activity during stepping: a novel MRI-compatible device. J Neurosci Meth 201(1):124–130CrossRef Hollnagel C, Brugger M, Vallery H, Wolf P, Dietz V, Kollias S, Riener R (2011) Brain activity during stepping: a novel MRI-compatible device. J Neurosci Meth 201(1):124–130CrossRef
Zurück zum Zitat Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR (2006) Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 27(10):779–788PubMedCrossRef Johnstone T, Ores Walsh KS, Greischar LL, Alexander AL, Fox AS, Davidson RJ, Oakes TR (2006) Motion correction and the use of motion covariates in multiple-subject fMRI analysis. Hum Brain Mapp 27(10):779–788PubMedCrossRef
Zurück zum Zitat Kimberley TJ, Birkholz DD, Hancock RA, VonBank SM, Werth TN (2008a) Reliability of fMRI during a continuous motor task: assessment of analysis techniques. J Neuroimaging 18(1):18–27PubMedCrossRef Kimberley TJ, Birkholz DD, Hancock RA, VonBank SM, Werth TN (2008a) Reliability of fMRI during a continuous motor task: assessment of analysis techniques. J Neuroimaging 18(1):18–27PubMedCrossRef
Zurück zum Zitat Kimberley TJ, Khandekar G, Borich M (2008b) fMRI Reliability in subjects with stroke. Exp Brain Res 186(1):183–190PubMedCrossRef Kimberley TJ, Khandekar G, Borich M (2008b) fMRI Reliability in subjects with stroke. Exp Brain Res 186(1):183–190PubMedCrossRef
Zurück zum Zitat Kocak M, Ulmer JL, Sahin Ugurel M, Gaggl W, Prost RW (2009) Motor homunculus: passive mapping in healthy volunteers by using functional MR imaging–initial results. Radiology 251(2):485–492PubMedCrossRef Kocak M, Ulmer JL, Sahin Ugurel M, Gaggl W, Prost RW (2009) Motor homunculus: passive mapping in healthy volunteers by using functional MR imaging–initial results. Radiology 251(2):485–492PubMedCrossRef
Zurück zum Zitat Kong J, Gollub RL, Webb JM, Kong J-T, Vangel MG, Kwong K (2007) Test-retest study of fMRI signal change evoked by electroacupuncture stimulation. Neuroimage 34(3):1171–1181PubMedCrossRefPubMedCentral Kong J, Gollub RL, Webb JM, Kong J-T, Vangel MG, Kwong K (2007) Test-retest study of fMRI signal change evoked by electroacupuncture stimulation. Neuroimage 34(3):1171–1181PubMedCrossRefPubMedCentral
Zurück zum Zitat Lee JN, Hsu EW, Rashkin E, Thatcher JW, Kreitschitz S, Gale P, Healy L, Marchand WR (2010) Reliability of fMRI motor tasks in structures of the corticostriatal circuitry: implications for future studies and circuit function. Neuromage 49(2):1282–1288CrossRef Lee JN, Hsu EW, Rashkin E, Thatcher JW, Kreitschitz S, Gale P, Healy L, Marchand WR (2010) Reliability of fMRI motor tasks in structures of the corticostriatal circuitry: implications for future studies and circuit function. Neuromage 49(2):1282–1288CrossRef
Zurück zum Zitat Loubinoux I, Carel C, Alary F, Boulanouar K, Viallard G, Manelfe C, Rascol O, Celsis P, Chollet F (2001) Within-session and between-session reproducibility of cerebral sensorimotor activation: a test–retest effect evidenced with functional magnetic resonance imaging. J Cereb Blood Flow Metab 21(5):592–607PubMedCrossRef Loubinoux I, Carel C, Alary F, Boulanouar K, Viallard G, Manelfe C, Rascol O, Celsis P, Chollet F (2001) Within-session and between-session reproducibility of cerebral sensorimotor activation: a test–retest effect evidenced with functional magnetic resonance imaging. J Cereb Blood Flow Metab 21(5):592–607PubMedCrossRef
Zurück zum Zitat Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239PubMedCrossRef Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239PubMedCrossRef
Zurück zum Zitat Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE (2006) Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage 31(4):1453–1474PubMedCrossRefPubMedCentral Mayka MA, Corcos DM, Leurgans SE, Vaillancourt DE (2006) Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage 31(4):1453–1474PubMedCrossRefPubMedCentral
Zurück zum Zitat McGonigle DJ, Howseman AM, Athwal BS, Friston KJ, Frackowiak RS, Holmes AP (2000) Variability in fMRI: an examination of intersession differences. Neuroimage 11(6 Pt 1):708–734PubMedCrossRef McGonigle DJ, Howseman AM, Athwal BS, Friston KJ, Frackowiak RS, Holmes AP (2000) Variability in fMRI: an examination of intersession differences. Neuroimage 11(6 Pt 1):708–734PubMedCrossRef
Zurück zum Zitat McGregor KM, Carpenter H, Kleim E, Sudhyadhom A, White KD, Butler AJ, Kleim J, Crosson B (2012) Motor map reliability and aging: a TMS/fMRI study. Exp Brain Res 219(1):97–106PubMedCrossRef McGregor KM, Carpenter H, Kleim E, Sudhyadhom A, White KD, Butler AJ, Kleim J, Crosson B (2012) Motor map reliability and aging: a TMS/fMRI study. Exp Brain Res 219(1):97–106PubMedCrossRef
Zurück zum Zitat Raemaekers M, Vink M, Zandbelt B, van Wezel RJA, Kahn RS, Ramsey NF (2007) Test–retest reliability of fMRI activation during prosaccades and antisaccades. Neuroimage 36(3):532–542PubMedCrossRef Raemaekers M, Vink M, Zandbelt B, van Wezel RJA, Kahn RS, Ramsey NF (2007) Test–retest reliability of fMRI activation during prosaccades and antisaccades. Neuroimage 36(3):532–542PubMedCrossRef
Zurück zum Zitat Rombouts SA, Barkhof F, Hoogenraad FG, Sprenger M, Scheltens P (1998) Within-subject reproducibility of visual activation patterns with functional magnetic resonance imaging using multislice echo planar imaging. Magn Reson Imaging 16(2):105–113PubMedCrossRef Rombouts SA, Barkhof F, Hoogenraad FG, Sprenger M, Scheltens P (1998) Within-subject reproducibility of visual activation patterns with functional magnetic resonance imaging using multislice echo planar imaging. Magn Reson Imaging 16(2):105–113PubMedCrossRef
Zurück zum Zitat Scheperjans F, Eickhoff SB, Hömke L, Mohlberg H, Hermann K, Amunts K, Zilles K (2008a) Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex 18(9):2141–2157PubMedCrossRefPubMedCentral Scheperjans F, Eickhoff SB, Hömke L, Mohlberg H, Hermann K, Amunts K, Zilles K (2008a) Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex 18(9):2141–2157PubMedCrossRefPubMedCentral
Zurück zum Zitat Scheperjans F, Hermann K, Eickhoff SB, Amunts K, Schleicher A, Zilles K (2008b) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18(4):846–867PubMedCrossRef Scheperjans F, Hermann K, Eickhoff SB, Amunts K, Schleicher A, Zilles K (2008b) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18(4):846–867PubMedCrossRef
Zurück zum Zitat Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428PubMedCrossRef Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86(2):420–428PubMedCrossRef
Zurück zum Zitat Specht K, Willmes K, Shah NJ, Jäncke L (2003) Assessment of reliability in functional imaging studies. J Magn Reson Imaging 17(4):463–471PubMedCrossRef Specht K, Willmes K, Shah NJ, Jäncke L (2003) Assessment of reliability in functional imaging studies. J Magn Reson Imaging 17(4):463–471PubMedCrossRef
Zurück zum Zitat Tsekos NV, Khanicheh A, Christoforou E, Mavroidis C (2007) Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Ann Rev Biomed Eng 9:351–387CrossRef Tsekos NV, Khanicheh A, Christoforou E, Mavroidis C (2007) Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Ann Rev Biomed Eng 9:351–387CrossRef
Zurück zum Zitat Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Étard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Étard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRef
Zurück zum Zitat Weiller C, Jüptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S, Müller S, Diener HC, Thilmann AF (1996) Brain representation of active and passive movements. Neuroimage 4(2):105–110PubMedCrossRef Weiller C, Jüptner M, Fellows S, Rijntjes M, Leonhardt G, Kiebel S, Müller S, Diener HC, Thilmann AF (1996) Brain representation of active and passive movements. Neuroimage 4(2):105–110PubMedCrossRef
Zurück zum Zitat Yoo S–S, O’Leary HM, Lee J-H, Chen N-K, Panych LP, Jolesz FA (2007) Reproducibility of trial-based functional MRI on motor imagery. Int J Neurosci 117(2):215–227PubMedCrossRef Yoo S–S, O’Leary HM, Lee J-H, Chen N-K, Panych LP, Jolesz FA (2007) Reproducibility of trial-based functional MRI on motor imagery. Int J Neurosci 117(2):215–227PubMedCrossRef
Zurück zum Zitat Yu N, Hollnagel C, Blickenstorfer A, Kollias SS, Riener R (2008) Comparison of MRI-compatible mechatronic systems with hydrodynamic and pneumatic actuation. IEEE Asme T Mech 13(3):268–277CrossRef Yu N, Hollnagel C, Blickenstorfer A, Kollias SS, Riener R (2008) Comparison of MRI-compatible mechatronic systems with hydrodynamic and pneumatic actuation. IEEE Asme T Mech 13(3):268–277CrossRef
Zurück zum Zitat Yu N, Hollnagel C, Wolf P, Murr W, Blickenstorfer A, Kollias S, Riener R (2009) Tracking and analysis of human head motion during guided fMRI motor tasks. IEEE ICORR 2009:588–593 Yu N, Hollnagel C, Wolf P, Murr W, Blickenstorfer A, Kollias S, Riener R (2009) Tracking and analysis of human head motion during guided fMRI motor tasks. IEEE ICORR 2009:588–593
Zurück zum Zitat Yu N, Estévez N, Hepp-Reymond M-C, Kollias SS, Riener R (2011) fMRI Assessment of upper extremity related brain activation with an MRI-compatible manipulandum. Int J Comput Assist Radiol Surg 6(3):447–455PubMedCrossRef Yu N, Estévez N, Hepp-Reymond M-C, Kollias SS, Riener R (2011) fMRI Assessment of upper extremity related brain activation with an MRI-compatible manipulandum. Int J Comput Assist Radiol Surg 6(3):447–455PubMedCrossRef
Metadaten
Titel
A Reliability Study on Brain Activation During Active and Passive Arm Movements Supported by an MRI-Compatible Robot
verfasst von
Natalia Estévez
Ningbo Yu
Mike Brügger
Michael Villiger
Marie-Claude Hepp-Reymond
Robert Riener
Spyros Kollias
Publikationsdatum
01.11.2014
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 6/2014
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-014-0355-9

Weitere Artikel der Ausgabe 6/2014

Brain Topography 6/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.