Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1-2/2012

01.06.2012 | NON-THEMATIC REVIEW

Role of the ubiquitin ligase Fbw7 in cancer progression

verfasst von: Yabin Cheng, Gang Li

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1-2/2012

Einloggen, um Zugang zu erhalten

Abstract

Fbw7 is a member of F-box family proteins, which constitute one subunit of Skp1, Cul1, and F-box protein (SCF) ubiquitin ligase complex. SCFFbw7 targets a set of well-known oncoproteins, including c-Myc, cyclin E, Notch, c-Jun, and Mcl-1, for ubiquitylation and degradation. Fbw7 provides specificity of the ubiquitylation of these substrate proteins via recognition of a consensus phosphorylated degron. Through regulation of several important proteins, Fbw7 controls diverse cellular processes, including cell-cycle progression, cell proliferation, differentiation, DNA damage response, maintenance of genomic stability, and neural cell stemness. As reduced Fbw7 expression level and loss-of-function mutations are found in a wide range of human cancers, Fbw7 is generally considered as a tumor suppressor. However, the exact mechanisms underlying Fbw7-induced tumor suppression is unclear. This review focuses on regulation network, biological functions, and genetic alteration of Fbw7 in connection with its role in cancer development.
Literatur
1.
Zurück zum Zitat Crusio, K. M., King, B., Reavie, L. B., & Aifantis, I. (2010). The ubiquitous nature of cancer: the role of the SCF(Fbw7) complex in development and transformation. Oncogene, 29, 4865–4873.PubMedCrossRef Crusio, K. M., King, B., Reavie, L. B., & Aifantis, I. (2010). The ubiquitous nature of cancer: the role of the SCF(Fbw7) complex in development and transformation. Oncogene, 29, 4865–4873.PubMedCrossRef
2.
Zurück zum Zitat Hershko, A. (1983). Ubiquitin: roles in protein modification and breakdown. Cell, 34, 11–12.PubMedCrossRef Hershko, A. (1983). Ubiquitin: roles in protein modification and breakdown. Cell, 34, 11–12.PubMedCrossRef
3.
Zurück zum Zitat Schwartz, A. L., & Ciechanover, A. (2009). Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annual Review of Pharmacology and Toxicology, 49, 73–96.PubMedCrossRef Schwartz, A. L., & Ciechanover, A. (2009). Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annual Review of Pharmacology and Toxicology, 49, 73–96.PubMedCrossRef
4.
Zurück zum Zitat Welcker, M., & Clurman, B. E. (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Reviews. Cancer, 8, 83–93.PubMedCrossRef Welcker, M., & Clurman, B. E. (2008). FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Reviews. Cancer, 8, 83–93.PubMedCrossRef
5.
Zurück zum Zitat Yada, M., Hatakeyama, S., Kamura, T., et al. (2004). Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. The EMBO Journal, 23, 2116–2125.PubMedCrossRef Yada, M., Hatakeyama, S., Kamura, T., et al. (2004). Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. The EMBO Journal, 23, 2116–2125.PubMedCrossRef
6.
Zurück zum Zitat Strohmaier, H., Spruck, C. H., Kaiser, P., et al. (2001). Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature, 413, 316–322.PubMedCrossRef Strohmaier, H., Spruck, C. H., Kaiser, P., et al. (2001). Human F-box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature, 413, 316–322.PubMedCrossRef
7.
Zurück zum Zitat Nateri, A. S., Riera-Sans, L., Da Costa, C., & Behrens, A. (2004). The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science, 303, 1374–1378.PubMedCrossRef Nateri, A. S., Riera-Sans, L., Da Costa, C., & Behrens, A. (2004). The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science, 303, 1374–1378.PubMedCrossRef
8.
Zurück zum Zitat Oberg, C., Li, J., Pauley, A., et al. (2001). The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. Journal of Biological Chemistry, 276, 35847–35853.PubMedCrossRef Oberg, C., Li, J., Pauley, A., et al. (2001). The Notch intracellular domain is ubiquitinated and negatively regulated by the mammalian Sel-10 homolog. Journal of Biological Chemistry, 276, 35847–35853.PubMedCrossRef
9.
Zurück zum Zitat Inuzuka, H., Shaik, S., Onoyama, I., et al. (2011). SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature, 471, 104–109.PubMedCrossRef Inuzuka, H., Shaik, S., Onoyama, I., et al. (2011). SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature, 471, 104–109.PubMedCrossRef
10.
Zurück zum Zitat Mao, J. H., Kim, I. J., Wu, D., et al. (2008). FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science, 321, 1499–1502.PubMedCrossRef Mao, J. H., Kim, I. J., Wu, D., et al. (2008). FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science, 321, 1499–1502.PubMedCrossRef
11.
Zurück zum Zitat Tan, Y., Sangfelt, O., & Spruck, C. (2008). The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Letters, 271, 1–12.PubMedCrossRef Tan, Y., Sangfelt, O., & Spruck, C. (2008). The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Letters, 271, 1–12.PubMedCrossRef
12.
Zurück zum Zitat Maser, R. S., Choudhury, B., Campbell, P. J., et al. (2007). Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature, 447, 966–971.PubMedCrossRef Maser, R. S., Choudhury, B., Campbell, P. J., et al. (2007). Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature, 447, 966–971.PubMedCrossRef
13.
Zurück zum Zitat Mao, J. H., Perez-Losada, J., Wu, D., et al. (2004). Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature, 432, 775–779.PubMedCrossRef Mao, J. H., Perez-Losada, J., Wu, D., et al. (2004). Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature, 432, 775–779.PubMedCrossRef
14.
Zurück zum Zitat Matsuoka, S., Oike, Y., Onoyama, I., et al. (2008). Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes & Development, 22, 986–991.CrossRef Matsuoka, S., Oike, Y., Onoyama, I., et al. (2008). Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes & Development, 22, 986–991.CrossRef
15.
Zurück zum Zitat Moberg, K. H., Bell, D. W., Wahrer, D. C., Haber, D. A., & Hariharan, I. K. (2001). Archipelago regulates cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature, 413, 311–316.PubMedCrossRef Moberg, K. H., Bell, D. W., Wahrer, D. C., Haber, D. A., & Hariharan, I. K. (2001). Archipelago regulates cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature, 413, 311–316.PubMedCrossRef
16.
Zurück zum Zitat Kemp, Z., Rowan, A., Chambers, W., et al. (2005). CDC4 mutations occur in a subset of colorectal cancers but are not predicted to cause loss of function and are not associated with chromosomal instability. Cancer Research, 65, 11361–11366.PubMedCrossRef Kemp, Z., Rowan, A., Chambers, W., et al. (2005). CDC4 mutations occur in a subset of colorectal cancers but are not predicted to cause loss of function and are not associated with chromosomal instability. Cancer Research, 65, 11361–11366.PubMedCrossRef
17.
Zurück zum Zitat Calhoun, E. S., Jones, J. B., Ashfaq, R., et al. (2003). BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. American Journal of Pathology, 163, 1255–1260.PubMedCrossRef Calhoun, E. S., Jones, J. B., Ashfaq, R., et al. (2003). BRAF and FBXW7 (CDC4, FBW7, AGO, SEL10) mutations in distinct subsets of pancreatic cancer: potential therapeutic targets. American Journal of Pathology, 163, 1255–1260.PubMedCrossRef
18.
Zurück zum Zitat Akhoondi, S., Sun, D., von der Lehr, N., et al. (2007). FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Research, 67, 9006–9012.PubMedCrossRef Akhoondi, S., Sun, D., von der Lehr, N., et al. (2007). FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Research, 67, 9006–9012.PubMedCrossRef
19.
Zurück zum Zitat Skaar, J. R., Pagan, J. K., & Pagano, M. (2009). SnapShot: F box proteins I. Cell, 137(1160–1160), e1161. Skaar, J. R., Pagan, J. K., & Pagano, M. (2009). SnapShot: F box proteins I. Cell, 137(1160–1160), e1161.
20.
Zurück zum Zitat Skaar, J. R., D’Angiolella, V., Pagan, J. K., & Pagano, M. (2009). SnapShot: F box proteins II. Cell, 137, 1358. 1358.e1. Skaar, J. R., D’Angiolella, V., Pagan, J. K., & Pagano, M. (2009). SnapShot: F box proteins II. Cell, 137, 1358. 1358.e1.
21.
Zurück zum Zitat Ho, M. S., Tsai, P. I., & Chien, C. T. (2006). F-box proteins: the key to protein degradation. Journal of Biomedical Science, 13, 181–191.PubMedCrossRef Ho, M. S., Tsai, P. I., & Chien, C. T. (2006). F-box proteins: the key to protein degradation. Journal of Biomedical Science, 13, 181–191.PubMedCrossRef
22.
Zurück zum Zitat Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J., & Harper, J. W. (1997). F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin–ligase complex. Cell, 91, 209–219.PubMedCrossRef Skowyra, D., Craig, K. L., Tyers, M., Elledge, S. J., & Harper, J. W. (1997). F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin–ligase complex. Cell, 91, 209–219.PubMedCrossRef
23.
Zurück zum Zitat Spruck, C. H., Strohmaier, H., Sangfelt, O., et al. (2002). hCDC4 gene mutations in endometrial cancer. Cancer Research, 62, 4535–4539.PubMed Spruck, C. H., Strohmaier, H., Sangfelt, O., et al. (2002). hCDC4 gene mutations in endometrial cancer. Cancer Research, 62, 4535–4539.PubMed
24.
Zurück zum Zitat Grim, J. E., Gustafson, M. P., Hirata, R. K., et al. (2008). Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase. The Journal of Cell Biology, 181, 913–920.PubMedCrossRef Grim, J. E., Gustafson, M. P., Hirata, R. K., et al. (2008). Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase. The Journal of Cell Biology, 181, 913–920.PubMedCrossRef
25.
Zurück zum Zitat Matsumoto, A., Tateishi, Y., Onoyama, I., et al. (2011). Fbxw7beta resides in the endoplasmic reticulum membrane and protects cells from oxidative stress. Cancer Science, 102, 749–755.PubMedCrossRef Matsumoto, A., Tateishi, Y., Onoyama, I., et al. (2011). Fbxw7beta resides in the endoplasmic reticulum membrane and protects cells from oxidative stress. Cancer Science, 102, 749–755.PubMedCrossRef
26.
Zurück zum Zitat Welcker, M., Orian, A., Grim, J. E., Eisenman, R. N., & Clurman, B. E. (2004). A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Current Biology, 14, 1852–1857.PubMedCrossRef Welcker, M., Orian, A., Grim, J. E., Eisenman, R. N., & Clurman, B. E. (2004). A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Current Biology, 14, 1852–1857.PubMedCrossRef
27.
Zurück zum Zitat Zhang, W., & Koepp, D. M. (2006). Fbw7 isoform interaction contributes to cyclin E proteolysis. Molecular Cancer Research, 4, 935–943.PubMedCrossRef Zhang, W., & Koepp, D. M. (2006). Fbw7 isoform interaction contributes to cyclin E proteolysis. Molecular Cancer Research, 4, 935–943.PubMedCrossRef
28.
Zurück zum Zitat Bai, C., Sen, P., Hofmann, K., et al. (1996). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell, 86, 263–274.PubMedCrossRef Bai, C., Sen, P., Hofmann, K., et al. (1996). SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell, 86, 263–274.PubMedCrossRef
29.
Zurück zum Zitat Perkins, G., Drury, L. S., & Diffley, J. F. (2001). Separate SCF(CDC4) recognition elements target Cdc6 for proteolysis in S phase and mitosis. The EMBO Journal, 20, 4836–4845.PubMedCrossRef Perkins, G., Drury, L. S., & Diffley, J. F. (2001). Separate SCF(CDC4) recognition elements target Cdc6 for proteolysis in S phase and mitosis. The EMBO Journal, 20, 4836–4845.PubMedCrossRef
30.
Zurück zum Zitat Orlicky, S., Tang, X., Willems, A., Tyers, M., & Sicheri, F. (2003). Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell, 112, 243–256.PubMedCrossRef Orlicky, S., Tang, X., Willems, A., Tyers, M., & Sicheri, F. (2003). Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell, 112, 243–256.PubMedCrossRef
31.
Zurück zum Zitat Hao, B., Oehlmann, S., Sowa, M. E., Harper, J. W., & Pavletich, N. P. (2007). Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Molecular Cell, 26, 131–143.PubMedCrossRef Hao, B., Oehlmann, S., Sowa, M. E., Harper, J. W., & Pavletich, N. P. (2007). Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Molecular Cell, 26, 131–143.PubMedCrossRef
32.
Zurück zum Zitat Nash, P., Tang, X., Orlicky, S., et al. (2001). Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature, 414, 514–521.PubMedCrossRef Nash, P., Tang, X., Orlicky, S., et al. (2001). Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature, 414, 514–521.PubMedCrossRef
33.
Zurück zum Zitat Welcker, M., & Clurman, B. E. (2007). Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Div, 2, 7.PubMedCrossRef Welcker, M., & Clurman, B. E. (2007). Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Div, 2, 7.PubMedCrossRef
34.
Zurück zum Zitat Tang, X., Orlicky, S., Lin, Z., et al. (2007). Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell, 129, 1165–1176.PubMedCrossRef Tang, X., Orlicky, S., Lin, Z., et al. (2007). Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell, 129, 1165–1176.PubMedCrossRef
35.
Zurück zum Zitat Pawar, S. A., Sarkar, T. R., Balamurugan, K., et al. (2010). C/EBP{delta} targets cyclin D1 for proteasome-mediated degradation via induction of CDC27/APC3 expression. Proceedings of the National Academy of Sciences of the United States of America, 107, 9210–9215.PubMedCrossRef Pawar, S. A., Sarkar, T. R., Balamurugan, K., et al. (2010). C/EBP{delta} targets cyclin D1 for proteasome-mediated degradation via induction of CDC27/APC3 expression. Proceedings of the National Academy of Sciences of the United States of America, 107, 9210–9215.PubMedCrossRef
36.
Zurück zum Zitat Balamurugan, K., Wang, J. M., Tsai, H. H., et al. (2010). The tumour suppressor C/EBPdelta inhibits FBXW7 expression and promotes mammary tumour metastasis. The EMBO Journal, 29, 4106–4117.PubMedCrossRef Balamurugan, K., Wang, J. M., Tsai, H. H., et al. (2010). The tumour suppressor C/EBPdelta inhibits FBXW7 expression and promotes mammary tumour metastasis. The EMBO Journal, 29, 4106–4117.PubMedCrossRef
37.
Zurück zum Zitat Strimpakos, A. S., Karapanagiotou, E. M., Saif, M. W., & Syrigos, K. N. (2009). The role of mTOR in the management of solid tumors: an overview. Cancer Treatment Reviews, 35, 148–159.PubMedCrossRef Strimpakos, A. S., Karapanagiotou, E. M., Saif, M. W., & Syrigos, K. N. (2009). The role of mTOR in the management of solid tumors: an overview. Cancer Treatment Reviews, 35, 148–159.PubMedCrossRef
38.
Zurück zum Zitat Isobe, T., Hattori, T., Kitagawa, K., et al. (2009). Adenovirus E1A inhibits SCF(Fbw7) ubiquitin ligase. Journal of Biological Chemistry, 284, 27766–27779.PubMedCrossRef Isobe, T., Hattori, T., Kitagawa, K., et al. (2009). Adenovirus E1A inhibits SCF(Fbw7) ubiquitin ligase. Journal of Biological Chemistry, 284, 27766–27779.PubMedCrossRef
39.
Zurück zum Zitat Koo, E. H., & Kopan, R. (2004). Potential role of presenilin-regulated signaling pathways in sporadic neurodegeneration. Nature Medicine, 10(Suppl), S26–S33.PubMedCrossRef Koo, E. H., & Kopan, R. (2004). Potential role of presenilin-regulated signaling pathways in sporadic neurodegeneration. Nature Medicine, 10(Suppl), S26–S33.PubMedCrossRef
40.
Zurück zum Zitat De Strooper, B., Annaert, W., Cupers, P., et al. (1999). A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature, 398, 518–522.PubMedCrossRef De Strooper, B., Annaert, W., Cupers, P., et al. (1999). A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature, 398, 518–522.PubMedCrossRef
41.
Zurück zum Zitat Rocher-Ros, V., Marco, S., Mao, J. H., et al. (2010). Presenilin modulates EGFR signaling and cell transformation by regulating the ubiquitin ligase Fbw7. Oncogene, 29, 2950–2961.PubMedCrossRef Rocher-Ros, V., Marco, S., Mao, J. H., et al. (2010). Presenilin modulates EGFR signaling and cell transformation by regulating the ubiquitin ligase Fbw7. Oncogene, 29, 2950–2961.PubMedCrossRef
42.
Zurück zum Zitat Kim, J., & Bartel, D. P. (2009). Allelic imbalance sequencing reveals that single-nucleotide polymorphisms frequently alter microRNA-directed repression. Nature Biotechnology, 27, 472–477.PubMedCrossRef Kim, J., & Bartel, D. P. (2009). Allelic imbalance sequencing reveals that single-nucleotide polymorphisms frequently alter microRNA-directed repression. Nature Biotechnology, 27, 472–477.PubMedCrossRef
43.
Zurück zum Zitat Xu, Y., Sengupta, T., Kukreja, L., & Minella, A. C. (2010). MicroRNA-223 regulates cyclin E activity by modulating expression of F-box and WD-40 domain protein 7. Journal of Biological Chemistry, 285, 34439–34446.PubMedCrossRef Xu, Y., Sengupta, T., Kukreja, L., & Minella, A. C. (2010). MicroRNA-223 regulates cyclin E activity by modulating expression of F-box and WD-40 domain protein 7. Journal of Biological Chemistry, 285, 34439–34446.PubMedCrossRef
44.
Zurück zum Zitat Lerner, M., Lundgren, J., Akhoondi, S., et al. (2011). MiRNA-27a controls FBW7/hCDC4-dependent cyclin E degradation and cell cycle progression. Cell Cycle, 10, 2172–2183.PubMedCrossRef Lerner, M., Lundgren, J., Akhoondi, S., et al. (2011). MiRNA-27a controls FBW7/hCDC4-dependent cyclin E degradation and cell cycle progression. Cell Cycle, 10, 2172–2183.PubMedCrossRef
45.
Zurück zum Zitat Mo, J. S., Ann, E. J., Yoon, J. H., et al. (2011). Serum- and glucocorticoid-inducible kinase 1 (SGK1) controls Notch1 signaling by downregulation of protein stability through Fbw7 ubiquitin ligase. Journal of Cell Science, 124, 100–112.PubMedCrossRef Mo, J. S., Ann, E. J., Yoon, J. H., et al. (2011). Serum- and glucocorticoid-inducible kinase 1 (SGK1) controls Notch1 signaling by downregulation of protein stability through Fbw7 ubiquitin ligase. Journal of Cell Science, 124, 100–112.PubMedCrossRef
46.
Zurück zum Zitat BelAiba, R. S., Djordjevic, T., Bonello, S., et al. (2006). The serum- and glucocorticoid-inducible kinase Sgk-1 is involved in pulmonary vascular remodeling: role in redox-sensitive regulation of tissue factor by thrombin. Circulation Research, 98, 828–836.PubMedCrossRef BelAiba, R. S., Djordjevic, T., Bonello, S., et al. (2006). The serum- and glucocorticoid-inducible kinase Sgk-1 is involved in pulmonary vascular remodeling: role in redox-sensitive regulation of tissue factor by thrombin. Circulation Research, 98, 828–836.PubMedCrossRef
47.
Zurück zum Zitat Kinugawa, K., Yonekura, K., Ribeiro, R. C., et al. (2001). Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circulation Research, 89, 591–598.PubMedCrossRef Kinugawa, K., Yonekura, K., Ribeiro, R. C., et al. (2001). Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circulation Research, 89, 591–598.PubMedCrossRef
48.
Zurück zum Zitat Schulein, C., Eilers, M., & Popov, N. (2011). PI3K-dependent phosphorylation of Fbw7 modulates substrate degradation and activity. FEBS Letters, 585, 2151–2157.PubMedCrossRef Schulein, C., Eilers, M., & Popov, N. (2011). PI3K-dependent phosphorylation of Fbw7 modulates substrate degradation and activity. FEBS Letters, 585, 2151–2157.PubMedCrossRef
49.
Zurück zum Zitat Durgan, J., & Parker, P. J. (2010). Regulation of the tumour suppressor Fbw7alpha by PKC-dependent phosphorylation and cancer-associated mutations. Biochemistry Journal, 432, 77–87.CrossRef Durgan, J., & Parker, P. J. (2010). Regulation of the tumour suppressor Fbw7alpha by PKC-dependent phosphorylation and cancer-associated mutations. Biochemistry Journal, 432, 77–87.CrossRef
50.
Zurück zum Zitat Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D., & Hunt, T. (1983). Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell, 33, 389–396.PubMedCrossRef Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D., & Hunt, T. (1983). Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell, 33, 389–396.PubMedCrossRef
51.
Zurück zum Zitat Harper, J. W., Burton, J. L., & Solomon, M. J. (2002). The anaphase-promoting complex: it’s not just for mitosis any more. Genes & Development, 16, 2179–2206.CrossRef Harper, J. W., Burton, J. L., & Solomon, M. J. (2002). The anaphase-promoting complex: it’s not just for mitosis any more. Genes & Development, 16, 2179–2206.CrossRef
52.
Zurück zum Zitat Castro, A., Bernis, C., Vigneron, S., Labbe, J. C., & Lorca, T. (2005). The anaphase-promoting complex: a key factor in the regulation of cell cycle. Oncogene, 24, 314–325.PubMedCrossRef Castro, A., Bernis, C., Vigneron, S., Labbe, J. C., & Lorca, T. (2005). The anaphase-promoting complex: a key factor in the regulation of cell cycle. Oncogene, 24, 314–325.PubMedCrossRef
53.
Zurück zum Zitat Nakayama, K. I., & Nakayama, K. (2006). Ubiquitin ligases: cell-cycle control and cancer. Nature Reviews. Cancer, 6, 369–381.PubMedCrossRef Nakayama, K. I., & Nakayama, K. (2006). Ubiquitin ligases: cell-cycle control and cancer. Nature Reviews. Cancer, 6, 369–381.PubMedCrossRef
54.
Zurück zum Zitat Hartwell, L. H., Mortimer, R. K., Culotti, J., & Culotti, M. (1973). Genetic control of the cell division cycle in yeast: V. Genetic Analysis of cdc Mutants. Genetics, 74, 267–286. Hartwell, L. H., Mortimer, R. K., Culotti, J., & Culotti, M. (1973). Genetic control of the cell division cycle in yeast: V. Genetic Analysis of cdc Mutants. Genetics, 74, 267–286.
55.
Zurück zum Zitat Hubbard, E. J., Wu, G., Kitajewski, J., & Greenwald, I. (1997). sel-10, a negative regulator of lin-12 activity in Caenorhabditis elegans, encodes a member of the CDC4 family of proteins. Genes & Development, 11, 3182–3193.CrossRef Hubbard, E. J., Wu, G., Kitajewski, J., & Greenwald, I. (1997). sel-10, a negative regulator of lin-12 activity in Caenorhabditis elegans, encodes a member of the CDC4 family of proteins. Genes & Development, 11, 3182–3193.CrossRef
56.
Zurück zum Zitat Koepp, D. M., Schaefer, L. K., Ye, X., et al. (2001). Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science, 294, 173–177.PubMedCrossRef Koepp, D. M., Schaefer, L. K., Ye, X., et al. (2001). Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science, 294, 173–177.PubMedCrossRef
57.
Zurück zum Zitat Welcker, M., Orian, A., Jin, J., et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 101, 9085–9090.PubMedCrossRef Welcker, M., Orian, A., Jin, J., et al. (2004). The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proceedings of the National Academy of Sciences of the United States of America, 101, 9085–9090.PubMedCrossRef
58.
Zurück zum Zitat Wei, W., Jin, J., Schlisio, S., Harper, J. W., & Kaelin, W. G., Jr. (2005). The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell, 8, 25–33.PubMedCrossRef Wei, W., Jin, J., Schlisio, S., Harper, J. W., & Kaelin, W. G., Jr. (2005). The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell, 8, 25–33.PubMedCrossRef
59.
Zurück zum Zitat Ishikawa, Y., Onoyama, I., Nakayama, K. I., & Nakayama, K. (2008). Notch-dependent cell cycle arrest and apoptosis in mouse embryonic fibroblasts lacking Fbxw7. Oncogene, 27, 6164–6174.PubMedCrossRef Ishikawa, Y., Onoyama, I., Nakayama, K. I., & Nakayama, K. (2008). Notch-dependent cell cycle arrest and apoptosis in mouse embryonic fibroblasts lacking Fbxw7. Oncogene, 27, 6164–6174.PubMedCrossRef
60.
Zurück zum Zitat Zhao, D., Zheng, H. Q., Zhou, Z., & Chen, C. (2010). The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Research, 70, 4728–4738.PubMedCrossRef Zhao, D., Zheng, H. Q., Zhou, Z., & Chen, C. (2010). The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Research, 70, 4728–4738.PubMedCrossRef
61.
Zurück zum Zitat Clurman, B. E., Sheaff, R. J., Thress, K., Groudine, M., & Roberts, J. M. (1996). Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes & Development, 10, 1979–1990.CrossRef Clurman, B. E., Sheaff, R. J., Thress, K., Groudine, M., & Roberts, J. M. (1996). Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes & Development, 10, 1979–1990.CrossRef
62.
Zurück zum Zitat Won, K. A., & Reed, S. I. (1996). Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. The EMBO Journal, 15, 4182–4193.PubMed Won, K. A., & Reed, S. I. (1996). Activation of cyclin E/CDK2 is coupled to site-specific autophosphorylation and ubiquitin-dependent degradation of cyclin E. The EMBO Journal, 15, 4182–4193.PubMed
63.
Zurück zum Zitat Spruck, C. H., Won, K. A., & Reed, S. I. (1999). Deregulated cyclin E induces chromosome instability. Nature, 401, 297–300.PubMedCrossRef Spruck, C. H., Won, K. A., & Reed, S. I. (1999). Deregulated cyclin E induces chromosome instability. Nature, 401, 297–300.PubMedCrossRef
64.
Zurück zum Zitat Minella, A. C., Grim, J. E., Welcker, M., & Clurman, B. E. (2007). p53 and SCFFbw7 cooperatively restrain cyclin E-associated genome instability. Oncogene, 26, 6948–6953.PubMedCrossRef Minella, A. C., Grim, J. E., Welcker, M., & Clurman, B. E. (2007). p53 and SCFFbw7 cooperatively restrain cyclin E-associated genome instability. Oncogene, 26, 6948–6953.PubMedCrossRef
65.
Zurück zum Zitat Ye, X., Nalepa, G., Welcker, M., et al. (2004). Recognition of phosphodegron motifs in human cyclin E by the SCF(Fbw7) ubiquitin ligase. Journal of Biological Chemistry, 279, 50110–50119.PubMedCrossRef Ye, X., Nalepa, G., Welcker, M., et al. (2004). Recognition of phosphodegron motifs in human cyclin E by the SCF(Fbw7) ubiquitin ligase. Journal of Biological Chemistry, 279, 50110–50119.PubMedCrossRef
66.
Zurück zum Zitat Eilers, M., Schirm, S., & Bishop, J. M. (1991). The MYC protein activates transcription of the alpha-prothymosin gene. The EMBO Journal, 10, 133–141.PubMed Eilers, M., Schirm, S., & Bishop, J. M. (1991). The MYC protein activates transcription of the alpha-prothymosin gene. The EMBO Journal, 10, 133–141.PubMed
67.
Zurück zum Zitat Bahram, F., von der Lehr, N., Cetinkaya, C., & Larsson, L. G. (2000). c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood, 95, 2104–2110.PubMed Bahram, F., von der Lehr, N., Cetinkaya, C., & Larsson, L. G. (2000). c-Myc hot spot mutations in lymphomas result in inefficient ubiquitination and decreased proteasome-mediated turnover. Blood, 95, 2104–2110.PubMed
68.
Zurück zum Zitat Grandori, C., Cowley, S. M., James, L. P., & Eisenman, R. N. (2000). The Myc/Max/Mad network and the transcriptional control of cell behavior. Annual Review of Cell and Developmental Biology, 16, 653–699.PubMedCrossRef Grandori, C., Cowley, S. M., James, L. P., & Eisenman, R. N. (2000). The Myc/Max/Mad network and the transcriptional control of cell behavior. Annual Review of Cell and Developmental Biology, 16, 653–699.PubMedCrossRef
69.
Zurück zum Zitat Adhikary, S., & Eilers, M. (2005). Transcriptional regulation and transformation by Myc proteins. Nature Reviews Molecular Cell Biology, 6, 635–645.PubMedCrossRef Adhikary, S., & Eilers, M. (2005). Transcriptional regulation and transformation by Myc proteins. Nature Reviews Molecular Cell Biology, 6, 635–645.PubMedCrossRef
70.
Zurück zum Zitat Hann, S. R., & Eisenman, R. N. (1984). Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Molecular and Cellular Biology, 4, 2486–2497.PubMed Hann, S. R., & Eisenman, R. N. (1984). Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Molecular and Cellular Biology, 4, 2486–2497.PubMed
71.
Zurück zum Zitat Amati, B. (2004). Myc degradation: dancing with ubiquitin ligases. Proceedings of the National Academy of Sciences of the United States of America, 101, 8843–8844.PubMedCrossRef Amati, B. (2004). Myc degradation: dancing with ubiquitin ligases. Proceedings of the National Academy of Sciences of the United States of America, 101, 8843–8844.PubMedCrossRef
72.
Zurück zum Zitat Salghetti, S. E., Muratani, M., Wijnen, H., Futcher, B., & Tansey, W. P. (2000). Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 97, 3118–3123.PubMedCrossRef Salghetti, S. E., Muratani, M., Wijnen, H., Futcher, B., & Tansey, W. P. (2000). Functional overlap of sequences that activate transcription and signal ubiquitin-mediated proteolysis. Proceedings of the National Academy of Sciences of the United States of America, 97, 3118–3123.PubMedCrossRef
73.
Zurück zum Zitat Flinn, E. M., Busch, C. M., & Wright, A. P. (1998). myc boxes, which are conserved in myc family proteins, are signals for protein degradation via the proteasome. Molecular and Cellular Biology, 18, 5961–5969.PubMed Flinn, E. M., Busch, C. M., & Wright, A. P. (1998). myc boxes, which are conserved in myc family proteins, are signals for protein degradation via the proteasome. Molecular and Cellular Biology, 18, 5961–5969.PubMed
74.
Zurück zum Zitat Sears, R., Nuckolls, F., Haura, E., et al. (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes & Development, 14, 2501–2514.CrossRef Sears, R., Nuckolls, F., Haura, E., et al. (2000). Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes & Development, 14, 2501–2514.CrossRef
75.
Zurück zum Zitat Popov, N., Schulein, C., Jaenicke, L. A., & Eilers, M. (2010). Ubiquitylation of the amino terminus of Myc by SCF(beta-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nature Cell Biology, 12, 973–981.PubMedCrossRef Popov, N., Schulein, C., Jaenicke, L. A., & Eilers, M. (2010). Ubiquitylation of the amino terminus of Myc by SCF(beta-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nature Cell Biology, 12, 973–981.PubMedCrossRef
76.
Zurück zum Zitat Hartl, M., Bader, A. G., & Bister, K. (2003). Molecular targets of the oncogenic transcription factor jun. Current Cancer Drug Targets, 3, 41–55.PubMedCrossRef Hartl, M., Bader, A. G., & Bister, K. (2003). Molecular targets of the oncogenic transcription factor jun. Current Cancer Drug Targets, 3, 41–55.PubMedCrossRef
77.
Zurück zum Zitat Behrens, A., Sibilia, M., & Wagner, E. F. (1999). Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nature Genetics, 21, 326–329.PubMedCrossRef Behrens, A., Sibilia, M., & Wagner, E. F. (1999). Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nature Genetics, 21, 326–329.PubMedCrossRef
78.
Zurück zum Zitat Shaulian, E., Schreiber, M., Piu, F., et al. (2000). The mammalian UV response: c-Jun induction is required for exit from p53-imposed growth arrest. Cell, 103, 897–907.PubMedCrossRef Shaulian, E., Schreiber, M., Piu, F., et al. (2000). The mammalian UV response: c-Jun induction is required for exit from p53-imposed growth arrest. Cell, 103, 897–907.PubMedCrossRef
79.
Zurück zum Zitat Szabowski, A., Maas-Szabowski, N., Andrecht, S., et al. (2000). c-Jun and JunB antagonistically control cytokine-regulated mesenchymal–epidermal interaction in skin. Cell, 103, 745–755.PubMedCrossRef Szabowski, A., Maas-Szabowski, N., Andrecht, S., et al. (2000). c-Jun and JunB antagonistically control cytokine-regulated mesenchymal–epidermal interaction in skin. Cell, 103, 745–755.PubMedCrossRef
80.
Zurück zum Zitat Fuchs, S. Y., Xie, B., Adler, V., et al. (1997). c-Jun NH2-terminal kinases target the ubiquitination of their associated transcription factors. Journal of Biological Chemistry, 272, 32163–32168.PubMedCrossRef Fuchs, S. Y., Xie, B., Adler, V., et al. (1997). c-Jun NH2-terminal kinases target the ubiquitination of their associated transcription factors. Journal of Biological Chemistry, 272, 32163–32168.PubMedCrossRef
81.
Zurück zum Zitat Musti, A. M., Treier, M., & Bohmann, D. (1997). Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science, 275, 400–402.PubMedCrossRef Musti, A. M., Treier, M., & Bohmann, D. (1997). Reduced ubiquitin-dependent degradation of c-Jun after phosphorylation by MAP kinases. Science, 275, 400–402.PubMedCrossRef
82.
Zurück zum Zitat Radtke, F., Schweisguth, F., & Pear, W. (2005). The Notch ‘gospel’. EMBO Reports, 6, 1120–1125.PubMedCrossRef Radtke, F., Schweisguth, F., & Pear, W. (2005). The Notch ‘gospel’. EMBO Reports, 6, 1120–1125.PubMedCrossRef
83.
Zurück zum Zitat Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science, 284, 770–776.PubMedCrossRef Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science, 284, 770–776.PubMedCrossRef
84.
Zurück zum Zitat Demarest, R. M., Ratti, F., & Capobianco, A. J. (2008). It’s T-ALL about Notch. Oncogene, 27, 5082–5091.PubMedCrossRef Demarest, R. M., Ratti, F., & Capobianco, A. J. (2008). It’s T-ALL about Notch. Oncogene, 27, 5082–5091.PubMedCrossRef
85.
Zurück zum Zitat Radtke, F., Wilson, A., Mancini, S. J., & MacDonald, H. R. (2004). Notch regulation of lymphocyte development and function. Nature Immunology, 5, 247–253.PubMedCrossRef Radtke, F., Wilson, A., Mancini, S. J., & MacDonald, H. R. (2004). Notch regulation of lymphocyte development and function. Nature Immunology, 5, 247–253.PubMedCrossRef
86.
Zurück zum Zitat Gupta-Rossi, N., Le Bail, O., Gonen, H., et al. (2001). Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. Journal of Biological Chemistry, 276, 34371–34378.PubMedCrossRef Gupta-Rossi, N., Le Bail, O., Gonen, H., et al. (2001). Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. Journal of Biological Chemistry, 276, 34371–34378.PubMedCrossRef
87.
Zurück zum Zitat Wu, G., Lyapina, S., Das, I., et al. (2001). SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Molecular and Cellular Biology, 21, 7403–7415.PubMedCrossRef Wu, G., Lyapina, S., Das, I., et al. (2001). SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Molecular and Cellular Biology, 21, 7403–7415.PubMedCrossRef
88.
Zurück zum Zitat Wu, G., Hubbard, E. J., Kitajewski, J. K., & Greenwald, I. (1998). Evidence for functional and physical association between Caenorhabditis elegans SEL-10, a Cdc4p-related protein, and SEL-12 presenilin. Proceedings of the National Academy of Sciences of the United States of America, 95, 15787–15791.PubMedCrossRef Wu, G., Hubbard, E. J., Kitajewski, J. K., & Greenwald, I. (1998). Evidence for functional and physical association between Caenorhabditis elegans SEL-10, a Cdc4p-related protein, and SEL-12 presenilin. Proceedings of the National Academy of Sciences of the United States of America, 95, 15787–15791.PubMedCrossRef
89.
Zurück zum Zitat Fryer, C. J., White, J. B., & Jones, K. A. (2004). Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Molecular Cell, 16, 509–520.PubMedCrossRef Fryer, C. J., White, J. B., & Jones, K. A. (2004). Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Molecular Cell, 16, 509–520.PubMedCrossRef
90.
Zurück zum Zitat O’Neil, J., Grim, J., Strack, P., et al. (2007). FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. The Journal of Experimental Medicine, 204, 1813–1824.PubMedCrossRef O’Neil, J., Grim, J., Strack, P., et al. (2007). FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. The Journal of Experimental Medicine, 204, 1813–1824.PubMedCrossRef
91.
Zurück zum Zitat Thompson, B. J., Buonamici, S., Sulis, M. L., et al. (2007). The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. The Journal of Experimental Medicine, 204, 1825–1835.PubMedCrossRef Thompson, B. J., Buonamici, S., Sulis, M. L., et al. (2007). The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. The Journal of Experimental Medicine, 204, 1825–1835.PubMedCrossRef
92.
Zurück zum Zitat Weng, A. P., Ferrando, A. A., Lee, W., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306, 269–271.PubMedCrossRef Weng, A. P., Ferrando, A. A., Lee, W., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306, 269–271.PubMedCrossRef
93.
Zurück zum Zitat Girard, L., Hanna, Z., Beaulieu, N., et al. (1996). Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes & Development, 10, 1930–1944.CrossRef Girard, L., Hanna, Z., Beaulieu, N., et al. (1996). Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes & Development, 10, 1930–1944.CrossRef
94.
Zurück zum Zitat Feldman, B. J., Hampton, T., & Cleary, M. L. (2000). A carboxy-terminal deletion mutant of Notch1 accelerates lymphoid oncogenesis in E2A-PBX1 transgenic mice. Blood, 96, 1906–1913.PubMed Feldman, B. J., Hampton, T., & Cleary, M. L. (2000). A carboxy-terminal deletion mutant of Notch1 accelerates lymphoid oncogenesis in E2A-PBX1 transgenic mice. Blood, 96, 1906–1913.PubMed
95.
Zurück zum Zitat Beverly, L. J., & Capobianco, A. J. (2003). Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell, 3, 551–564.PubMedCrossRef Beverly, L. J., & Capobianco, A. J. (2003). Perturbation of Ikaros isoform selection by MLV integration is a cooperative event in Notch(IC)-induced T cell leukemogenesis. Cancer Cell, 3, 551–564.PubMedCrossRef
96.
Zurück zum Zitat Rohn, J. L., Lauring, A. S., Linenberger, M. L., & Overbaugh, J. (1996). Transduction of Notch2 in feline leukemia virus-induced thymic lymphoma. Journal of Virology, 70, 8071–8080.PubMed Rohn, J. L., Lauring, A. S., Linenberger, M. L., & Overbaugh, J. (1996). Transduction of Notch2 in feline leukemia virus-induced thymic lymphoma. Journal of Virology, 70, 8071–8080.PubMed
97.
Zurück zum Zitat Yan, X. Q., Sarmiento, U., Sun, Y., et al. (2001). A novel Notch ligand, Dll4, induces T-cell leukemia/lymphoma when overexpressed in mice by retroviral-mediated gene transfer. Blood, 98, 3793–3799.PubMedCrossRef Yan, X. Q., Sarmiento, U., Sun, Y., et al. (2001). A novel Notch ligand, Dll4, induces T-cell leukemia/lymphoma when overexpressed in mice by retroviral-mediated gene transfer. Blood, 98, 3793–3799.PubMedCrossRef
98.
Zurück zum Zitat Dorsch, M., Zheng, G., Yowe, D., et al. (2002). Ectopic expression of Delta4 impairs hematopoietic development and leads to lymphoproliferative disease. Blood, 100, 2046–2055.PubMed Dorsch, M., Zheng, G., Yowe, D., et al. (2002). Ectopic expression of Delta4 impairs hematopoietic development and leads to lymphoproliferative disease. Blood, 100, 2046–2055.PubMed
99.
Zurück zum Zitat Kuiperij, H. B., van der Horst, A., Raaijmakers, J., et al. (2005). Activation of FoxO transcription factors contributes to the antiproliferative effect of cAMP. Oncogene, 24, 2087–2095.PubMedCrossRef Kuiperij, H. B., van der Horst, A., Raaijmakers, J., et al. (2005). Activation of FoxO transcription factors contributes to the antiproliferative effect of cAMP. Oncogene, 24, 2087–2095.PubMedCrossRef
100.
Zurück zum Zitat Fan, X., Matsui, W., Khaki, L., et al. (2006). Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Research, 66, 7445–7452.PubMedCrossRef Fan, X., Matsui, W., Khaki, L., et al. (2006). Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Research, 66, 7445–7452.PubMedCrossRef
101.
Zurück zum Zitat Fernandez-Majada, V., Aguilera, C., Villanueva, A., et al. (2007). Nuclear IKK activity leads to dysregulated notch-dependent gene expression in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 104, 276–281.PubMedCrossRef Fernandez-Majada, V., Aguilera, C., Villanueva, A., et al. (2007). Nuclear IKK activity leads to dysregulated notch-dependent gene expression in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 104, 276–281.PubMedCrossRef
102.
Zurück zum Zitat Moriyama, M., Osawa, M., Mak, S. S., et al. (2006). Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. The Journal of Cell Biology, 173, 333–339.PubMedCrossRef Moriyama, M., Osawa, M., Mak, S. S., et al. (2006). Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. The Journal of Cell Biology, 173, 333–339.PubMedCrossRef
103.
Zurück zum Zitat Miyamoto, Y., Maitra, A., Ghosh, B., et al. (2003). Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell, 3, 565–576.PubMedCrossRef Miyamoto, Y., Maitra, A., Ghosh, B., et al. (2003). Notch mediates TGF alpha-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell, 3, 565–576.PubMedCrossRef
104.
Zurück zum Zitat Sriuranpong, V., Borges, M. W., Ravi, R. K., et al. (2001). Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Research, 61, 3200–3205.PubMed Sriuranpong, V., Borges, M. W., Ravi, R. K., et al. (2001). Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Research, 61, 3200–3205.PubMed
105.
Zurück zum Zitat Nicolas, M., Wolfer, A., Raj, K., et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nature Genetics, 33, 416–421.PubMedCrossRef Nicolas, M., Wolfer, A., Raj, K., et al. (2003). Notch1 functions as a tumor suppressor in mouse skin. Nature Genetics, 33, 416–421.PubMedCrossRef
106.
Zurück zum Zitat Qi, R., An, H., Yu, Y., et al. (2003). Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Research, 63, 8323–8329.PubMed Qi, R., An, H., Yu, Y., et al. (2003). Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Research, 63, 8323–8329.PubMed
107.
Zurück zum Zitat Nguyen, B. C., Lefort, K., Mandinova, A., et al. (2006). Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes & Development, 20, 1028–1042.CrossRef Nguyen, B. C., Lefort, K., Mandinova, A., et al. (2006). Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes & Development, 20, 1028–1042.CrossRef
108.
Zurück zum Zitat Onoyama, I., Tsunematsu, R., Matsumoto, A., et al. (2007). Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. The Journal of Experimental Medicine, 204, 2875–2888.PubMedCrossRef Onoyama, I., Tsunematsu, R., Matsumoto, A., et al. (2007). Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. The Journal of Experimental Medicine, 204, 2875–2888.PubMedCrossRef
109.
Zurück zum Zitat Liu, Y., Wen, J. K., Dong, L. H., Zheng, B., & Han, M. (2010). Kruppel-like factor (KLF) 5 mediates cyclin D1 expression and cell proliferation via interaction with c-Jun in Ang II-induced VSMCs. Acta Pharmacologica Sinica, 31, 10–18.PubMedCrossRef Liu, Y., Wen, J. K., Dong, L. H., Zheng, B., & Han, M. (2010). Kruppel-like factor (KLF) 5 mediates cyclin D1 expression and cell proliferation via interaction with c-Jun in Ang II-induced VSMCs. Acta Pharmacologica Sinica, 31, 10–18.PubMedCrossRef
110.
Zurück zum Zitat Nandan, M. O., Chanchevalap, S., Dalton, W. B., & Yang, V. W. (2005). Kruppel-like factor 5 promotes mitosis by activating the cyclin B1/Cdc2 complex during oncogenic Ras-mediated transformation. FEBS Letters, 579, 4757–4762.PubMedCrossRef Nandan, M. O., Chanchevalap, S., Dalton, W. B., & Yang, V. W. (2005). Kruppel-like factor 5 promotes mitosis by activating the cyclin B1/Cdc2 complex during oncogenic Ras-mediated transformation. FEBS Letters, 579, 4757–4762.PubMedCrossRef
111.
Zurück zum Zitat Chen, C., Benjamin, M. S., Sun, X., et al. (2006). KLF5 promotes cell proliferation and tumorigenesis through gene regulation and the TSU-Pr1 human bladder cancer cell line. International Journal of Cancer, 118, 1346–1355.CrossRef Chen, C., Benjamin, M. S., Sun, X., et al. (2006). KLF5 promotes cell proliferation and tumorigenesis through gene regulation and the TSU-Pr1 human bladder cancer cell line. International Journal of Cancer, 118, 1346–1355.CrossRef
112.
Zurück zum Zitat Zheng, H. Q., Zhou, Z., Huang, J., et al. (2009). Kruppel-like factor 5 promotes breast cell proliferation partially through upregulating the transcription of fibroblast growth factor binding protein 1. Oncogene, 28, 3702–3713.PubMedCrossRef Zheng, H. Q., Zhou, Z., Huang, J., et al. (2009). Kruppel-like factor 5 promotes breast cell proliferation partially through upregulating the transcription of fibroblast growth factor binding protein 1. Oncogene, 28, 3702–3713.PubMedCrossRef
113.
Zurück zum Zitat Yagi, N., Manabe, I., Tottori, T., et al. (2009). A nanoparticle system specifically designed to deliver short interfering RNA inhibits tumor growth in vivo. Cancer Research, 69, 6531–6538.PubMedCrossRef Yagi, N., Manabe, I., Tottori, T., et al. (2009). A nanoparticle system specifically designed to deliver short interfering RNA inhibits tumor growth in vivo. Cancer Research, 69, 6531–6538.PubMedCrossRef
114.
Zurück zum Zitat Chen, C., Zhou, Z., Guo, P., & Dong, J. T. (2007). Proteasomal degradation of the KLF5 transcription factor through a ubiquitin-independent pathway. FEBS Letters, 581, 1124–1130.PubMedCrossRef Chen, C., Zhou, Z., Guo, P., & Dong, J. T. (2007). Proteasomal degradation of the KLF5 transcription factor through a ubiquitin-independent pathway. FEBS Letters, 581, 1124–1130.PubMedCrossRef
115.
Zurück zum Zitat Oh, I. H., & Reddy, E. P. (1999). The myb gene family in cell growth, differentiation and apoptosis. Oncogene, 18, 3017–3033.PubMedCrossRef Oh, I. H., & Reddy, E. P. (1999). The myb gene family in cell growth, differentiation and apoptosis. Oncogene, 18, 3017–3033.PubMedCrossRef
116.
Zurück zum Zitat Slamon, D. J., Boone, T. C., Murdock, D. C., et al. (1986). Studies of the human c-myb gene and its product in human acute leukemias. Science, 233, 347–351.PubMedCrossRef Slamon, D. J., Boone, T. C., Murdock, D. C., et al. (1986). Studies of the human c-myb gene and its product in human acute leukemias. Science, 233, 347–351.PubMedCrossRef
117.
Zurück zum Zitat Siegert, W., Beutler, C., Langmach, K., Keitel, C., & Schmidt, C. A. (1990). Differential expression of the oncoproteins c-myc and c-myb in human lymphoproliferative disorders. European Journal of Cancer, 26, 733–737.PubMedCrossRef Siegert, W., Beutler, C., Langmach, K., Keitel, C., & Schmidt, C. A. (1990). Differential expression of the oncoproteins c-myc and c-myb in human lymphoproliferative disorders. European Journal of Cancer, 26, 733–737.PubMedCrossRef
118.
Zurück zum Zitat Kitagawa, K., Hiramatsu, Y., Uchida, C., et al. (2009). Fbw7 promotes ubiquitin-dependent degradation of c-Myb: involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myb. Oncogene, 28, 2393–2405.PubMedCrossRef Kitagawa, K., Hiramatsu, Y., Uchida, C., et al. (2009). Fbw7 promotes ubiquitin-dependent degradation of c-Myb: involvement of GSK3-mediated phosphorylation of Thr-572 in mouse c-Myb. Oncogene, 28, 2393–2405.PubMedCrossRef
119.
Zurück zum Zitat Kanei-Ishii, C., Nomura, T., Takagi, T., et al. (2008). Fbxw7 acts as an E3 ubiquitin ligase that targets c-Myb for nemo-like kinase (NLK)-induced degradation. Journal of Biological Chemistry, 283, 30540–30548.PubMedCrossRef Kanei-Ishii, C., Nomura, T., Takagi, T., et al. (2008). Fbxw7 acts as an E3 ubiquitin ligase that targets c-Myb for nemo-like kinase (NLK)-induced degradation. Journal of Biological Chemistry, 283, 30540–30548.PubMedCrossRef
120.
Zurück zum Zitat Kern, S. E., Kinzler, K. W., Bruskin, A., et al. (1991). Identification of p53 as a sequence-specific DNA-binding protein. Science, 252, 1708–1711.PubMedCrossRef Kern, S. E., Kinzler, K. W., Bruskin, A., et al. (1991). Identification of p53 as a sequence-specific DNA-binding protein. Science, 252, 1708–1711.PubMedCrossRef
121.
Zurück zum Zitat Kimura, T., Gotoh, M., Nakamura, Y., & Arakawa, H. (2003). hCDC4b, a regulator of cyclin E, as a direct transcriptional target of p53. Cancer Science, 94, 431–436.PubMedCrossRef Kimura, T., Gotoh, M., Nakamura, Y., & Arakawa, H. (2003). hCDC4b, a regulator of cyclin E, as a direct transcriptional target of p53. Cancer Science, 94, 431–436.PubMedCrossRef
122.
Zurück zum Zitat Finkin, S., Aylon, Y., Anzi, S., Oren, M., & Shaulian, E. (2008). Fbw7 regulates the activity of endoreduplication mediators and the p53 pathway to prevent drug-induced polyploidy. Oncogene, 27, 4411–4421.PubMedCrossRef Finkin, S., Aylon, Y., Anzi, S., Oren, M., & Shaulian, E. (2008). Fbw7 regulates the activity of endoreduplication mediators and the p53 pathway to prevent drug-induced polyploidy. Oncogene, 27, 4411–4421.PubMedCrossRef
123.
Zurück zum Zitat Flores, E. R., Sengupta, S., Miller, J. B., et al. (2005). Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell, 7, 363–373.PubMedCrossRef Flores, E. R., Sengupta, S., Miller, J. B., et al. (2005). Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell, 7, 363–373.PubMedCrossRef
124.
Zurück zum Zitat Yang, A., Schweitzer, R., Sun, D., et al. (1999). p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature, 398, 714–718.PubMedCrossRef Yang, A., Schweitzer, R., Sun, D., et al. (1999). p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature, 398, 714–718.PubMedCrossRef
125.
Zurück zum Zitat Mills, A. A., Zheng, B., Wang, X. J., et al. (1999). p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature, 398, 708–713.PubMedCrossRef Mills, A. A., Zheng, B., Wang, X. J., et al. (1999). p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature, 398, 708–713.PubMedCrossRef
126.
Zurück zum Zitat Thurfjell, N., Coates, P. J., Uusitalo, T., et al. (2004). Complex p63 mRNA isoform expression patterns in squamous cell carcinoma of the head and neck. International Journal of Oncology, 25, 27–35.PubMed Thurfjell, N., Coates, P. J., Uusitalo, T., et al. (2004). Complex p63 mRNA isoform expression patterns in squamous cell carcinoma of the head and neck. International Journal of Oncology, 25, 27–35.PubMed
127.
Zurück zum Zitat van Bokhoven, H., & McKeon, F. (2002). Mutations in the p53 homolog p63: allele-specific developmental syndromes in humans. Trends in Molecular Medicine, 8, 133–139.PubMedCrossRef van Bokhoven, H., & McKeon, F. (2002). Mutations in the p53 homolog p63: allele-specific developmental syndromes in humans. Trends in Molecular Medicine, 8, 133–139.PubMedCrossRef
128.
Zurück zum Zitat Laurikkala, J., Mikkola, M. L., James, M., et al. (2006). p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development, 133, 1553–1563.PubMedCrossRef Laurikkala, J., Mikkola, M. L., James, M., et al. (2006). p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development, 133, 1553–1563.PubMedCrossRef
129.
Zurück zum Zitat Rossi, M., De Simone, M., Pollice, A., et al. (2006). Itch/AIP4 associates with and promotes p63 protein degradation. Cell Cycle, 5, 1816–1822.PubMedCrossRef Rossi, M., De Simone, M., Pollice, A., et al. (2006). Itch/AIP4 associates with and promotes p63 protein degradation. Cell Cycle, 5, 1816–1822.PubMedCrossRef
130.
Zurück zum Zitat Rossi, M., Aqeilan, R. I., Neale, M., et al. (2006). The E3 ubiquitin ligase Itch controls the protein stability of p63. Proceedings of the National Academy of Sciences of the United States of America, 103, 12753–12758.PubMedCrossRef Rossi, M., Aqeilan, R. I., Neale, M., et al. (2006). The E3 ubiquitin ligase Itch controls the protein stability of p63. Proceedings of the National Academy of Sciences of the United States of America, 103, 12753–12758.PubMedCrossRef
131.
Zurück zum Zitat Galli, F., Rossi, M., D’Alessandra, Y., et al. (2010). MDM2 and Fbw7 cooperate to induce p63 protein degradation following DNA damage and cell differentiation. Journal of Cell Science, 123, 2423–2433.PubMedCrossRef Galli, F., Rossi, M., D’Alessandra, Y., et al. (2010). MDM2 and Fbw7 cooperate to induce p63 protein degradation following DNA damage and cell differentiation. Journal of Cell Science, 123, 2423–2433.PubMedCrossRef
132.
Zurück zum Zitat Massague, J., & Wotton, D. (2000). Transcriptional control by the TGF-beta/Smad signaling system. The EMBO Journal, 19, 1745–1754.PubMedCrossRef Massague, J., & Wotton, D. (2000). Transcriptional control by the TGF-beta/Smad signaling system. The EMBO Journal, 19, 1745–1754.PubMedCrossRef
133.
Zurück zum Zitat Miyazono, K., Suzuki, H., & Imamura, T. (2003). Regulation of TGF-beta signaling and its roles in progression of tumors. Cancer Science, 94, 230–234.PubMedCrossRef Miyazono, K., Suzuki, H., & Imamura, T. (2003). Regulation of TGF-beta signaling and its roles in progression of tumors. Cancer Science, 94, 230–234.PubMedCrossRef
134.
Zurück zum Zitat Bengoechea-Alonso, M. T., & Ericsson, J. (2010). Tumor suppressor Fbxw7 regulates TGFbeta signaling by targeting TGIF1 for degradation. Oncogene, 29, 5322–5328.PubMedCrossRef Bengoechea-Alonso, M. T., & Ericsson, J. (2010). Tumor suppressor Fbxw7 regulates TGFbeta signaling by targeting TGIF1 for degradation. Oncogene, 29, 5322–5328.PubMedCrossRef
135.
Zurück zum Zitat Besirli, C. G., Wagner, E. F., & Johnson, E. M., Jr. (2005). The limited role of NH2-terminal c-Jun phosphorylation in neuronal apoptosis: identification of the nuclear pore complex as a potential target of the JNK pathway. The Journal of Cell Biology, 170, 401–411.PubMedCrossRef Besirli, C. G., Wagner, E. F., & Johnson, E. M., Jr. (2005). The limited role of NH2-terminal c-Jun phosphorylation in neuronal apoptosis: identification of the nuclear pore complex as a potential target of the JNK pathway. The Journal of Cell Biology, 170, 401–411.PubMedCrossRef
136.
Zurück zum Zitat Hoeck, J. D., Jandke, A., Blake, S. M., et al. (2010). Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nature Neuroscience, 13, 1365–1372.PubMedCrossRef Hoeck, J. D., Jandke, A., Blake, S. M., et al. (2010). Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nature Neuroscience, 13, 1365–1372.PubMedCrossRef
137.
Zurück zum Zitat Matsumoto, A., Onoyama, I., Sunabori, T., et al. (2011). Fbxw7-dependent degradation of Notch is required for control of “stemness” and neuronal-glial differentiation in neural stem cells. Journal of Biological Chemistry, 286, 13754–13764.PubMedCrossRef Matsumoto, A., Onoyama, I., Sunabori, T., et al. (2011). Fbxw7-dependent degradation of Notch is required for control of “stemness” and neuronal-glial differentiation in neural stem cells. Journal of Biological Chemistry, 286, 13754–13764.PubMedCrossRef
138.
Zurück zum Zitat Willis, S. N., Fletcher, J. I., Kaufmann, T., et al. (2007). Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science, 315, 856–859.PubMedCrossRef Willis, S. N., Fletcher, J. I., Kaufmann, T., et al. (2007). Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science, 315, 856–859.PubMedCrossRef
139.
Zurück zum Zitat Wertz, I. E., Kusam, S., Lam, C., et al. (2011). Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature, 471, 110–114.PubMedCrossRef Wertz, I. E., Kusam, S., Lam, C., et al. (2011). Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature, 471, 110–114.PubMedCrossRef
141.
Zurück zum Zitat Howe, A., Aplin, A. E., Alahari, S. K., & Juliano, R. L. (1998). Integrin signaling and cell growth control. Current Opinion in Cell Biology, 10, 220–231.PubMedCrossRef Howe, A., Aplin, A. E., Alahari, S. K., & Juliano, R. L. (1998). Integrin signaling and cell growth control. Current Opinion in Cell Biology, 10, 220–231.PubMedCrossRef
142.
Zurück zum Zitat Coussens, L. M., & Werb, Z. (1996). Matrix metalloproteinases and the development of cancer. Chemistry & Biology, 3, 895–904.CrossRef Coussens, L. M., & Werb, Z. (1996). Matrix metalloproteinases and the development of cancer. Chemistry & Biology, 3, 895–904.CrossRef
143.
Zurück zum Zitat Chambers, A. F., & Matrisian, L. M. (1997). Changing views of the role of matrix metalloproteinases in metastasis. Journal of the National Cancer Institute, 89, 1260–1270.PubMedCrossRef Chambers, A. F., & Matrisian, L. M. (1997). Changing views of the role of matrix metalloproteinases in metastasis. Journal of the National Cancer Institute, 89, 1260–1270.PubMedCrossRef
144.
145.
Zurück zum Zitat Massague, J., Blain, S. W., & Lo, R. S. (2000). TGFbeta signaling in growth control, cancer, and heritable disorders. Cell, 103, 295–309.PubMedCrossRef Massague, J., Blain, S. W., & Lo, R. S. (2000). TGFbeta signaling in growth control, cancer, and heritable disorders. Cell, 103, 295–309.PubMedCrossRef
146.
Zurück zum Zitat Knuutila, S., Aalto, Y., Autio, K., et al. (1999). DNA copy number losses in human neoplasms. American Journal of Pathology, 155, 683–694.PubMedCrossRef Knuutila, S., Aalto, Y., Autio, K., et al. (1999). DNA copy number losses in human neoplasms. American Journal of Pathology, 155, 683–694.PubMedCrossRef
147.
Zurück zum Zitat Rajagopalan, H., Jallepalli, P. V., Rago, C., et al. (2004). Inactivation of hCDC4 can cause chromosomal instability. Nature, 428, 77–81.PubMedCrossRef Rajagopalan, H., Jallepalli, P. V., Rago, C., et al. (2004). Inactivation of hCDC4 can cause chromosomal instability. Nature, 428, 77–81.PubMedCrossRef
148.
Zurück zum Zitat Woo Lee, J., Hwa Soung, Y., Young Kim, S., et al. (2006). Somatic mutation of hCDC4 gene is rare in lung adenocarcinomas. Acta Oncologica, 45, 487–488.PubMedCrossRef Woo Lee, J., Hwa Soung, Y., Young Kim, S., et al. (2006). Somatic mutation of hCDC4 gene is rare in lung adenocarcinomas. Acta Oncologica, 45, 487–488.PubMedCrossRef
149.
Zurück zum Zitat Nowak, D., Mossner, M., Baldus, C. D., et al. (2006). Mutation analysis of hCDC4 in AML cells identifies a new intronic polymorphism. International Journal of Medical Sciences, 3, 148–151.PubMedCrossRef Nowak, D., Mossner, M., Baldus, C. D., et al. (2006). Mutation analysis of hCDC4 in AML cells identifies a new intronic polymorphism. International Journal of Medical Sciences, 3, 148–151.PubMedCrossRef
150.
Zurück zum Zitat Kwak, E. L., Moberg, K. H., Wahrer, D. C., et al. (2005). Infrequent mutations of Archipelago (hAGO, hCDC4, Fbw7) in primary ovarian cancer. Gynecologic Oncology, 98, 124–128.PubMedCrossRef Kwak, E. L., Moberg, K. H., Wahrer, D. C., et al. (2005). Infrequent mutations of Archipelago (hAGO, hCDC4, Fbw7) in primary ovarian cancer. Gynecologic Oncology, 98, 124–128.PubMedCrossRef
151.
Zurück zum Zitat Yan, T., Wunder, J. S., Gokgoz, N., et al. (2006). hCDC4 variation in osteosarcoma. Cancer Genetics and Cytogenetics, 169, 138–142.PubMedCrossRef Yan, T., Wunder, J. S., Gokgoz, N., et al. (2006). hCDC4 variation in osteosarcoma. Cancer Genetics and Cytogenetics, 169, 138–142.PubMedCrossRef
152.
Zurück zum Zitat Fresno Vara, J. A., Casado, E., de Castro, J., et al. (2004). PI3K/Akt signalling pathway and cancer. Cancer Treatment Reviews, 30, 193–204.PubMedCrossRef Fresno Vara, J. A., Casado, E., de Castro, J., et al. (2004). PI3K/Akt signalling pathway and cancer. Cancer Treatment Reviews, 30, 193–204.PubMedCrossRef
153.
Zurück zum Zitat Larson Gedman, A., Chen, Q., Kugel Desmoulin, S., et al. (2009). The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leukemia, 23, 1417–1425.PubMedCrossRef Larson Gedman, A., Chen, Q., Kugel Desmoulin, S., et al. (2009). The impact of NOTCH1, FBW7 and PTEN mutations on prognosis and downstream signaling in pediatric T-cell acute lymphoblastic leukemia: a report from the Children’s Oncology Group. Leukemia, 23, 1417–1425.PubMedCrossRef
Metadaten
Titel
Role of the ubiquitin ligase Fbw7 in cancer progression
verfasst von
Yabin Cheng
Gang Li
Publikationsdatum
01.06.2012
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1-2/2012
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9330-z

Weitere Artikel der Ausgabe 1-2/2012

Cancer and Metastasis Reviews 1-2/2012 Zur Ausgabe

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

Das sind die führenden Symptome junger Darmkrebspatienten

Darmkrebserkrankungen in jüngeren Jahren sind ein zunehmendes Problem, das häufig längere Zeit übersehen wird, gerade weil die Patienten noch nicht alt sind. Welche Anzeichen Ärzte stutzig machen sollten, hat eine Metaanalyse herausgearbeitet.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.