Skip to main content
Erschienen in: Cancer and Metastasis Reviews 3-4/2012

01.12.2012

MDM2 binding protein, a novel metastasis suppressor

verfasst von: Tomoo Iwakuma, Neeraj Agarwal

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 3-4/2012

Einloggen, um Zugang zu erhalten

Abstract

MDM2 binding protein (MTBP) is a protein that interacts with oncoprotein murine double minute (MDM2), a major inhibitor of the tumor suppressor p53. Overexpression of MTBP leads to p53-independent cell proliferation arrest, which is in turn blocked by simultaneous overexpression of MDM2. Importantly, reduced expression of MTBP in mice increases tumor metastasis and enhances migratory potential of mouse embryonic fibroblasts regardless of the presence of p53. Clinically, loss of MTBP expression in head and neck squamous cell carcinoma is associated with reduced patient survival, and is shown to serve as an independent prognostic factor when p53 is mutated in tumors. These results indicate the involvement of MTBP in suppressing tumor progression. Our recent findings demonstrate that overexpression of MTBP in human osteosarcoma cells lacking wild-type p53 inhibits metastasis, but not primary tumor growth, when cells are transplanted in femurs of immunocompromised mice. These data indicate that MTBP functions as a metastasis suppressor independent of p53 status. Furthermore, overexpression of MTBP suppresses cell migration and filopodia formation, in part, by inhibiting function of an actin crosslinking protein α-actinin-4. Thus, increasing evidence indicates the significance of MTBP in tumor progression. We summarize published results related to MTBP function and discuss caveats and future directions in this review article.
Literatur
1.
Zurück zum Zitat Eccles, S. A., & Welch, D. R. (2007). Metastasis: recent discoveries and novel treatment strategies. Lancet, 369, 1742–1757.PubMedCrossRef Eccles, S. A., & Welch, D. R. (2007). Metastasis: recent discoveries and novel treatment strategies. Lancet, 369, 1742–1757.PubMedCrossRef
2.
Zurück zum Zitat Hurst, D. R., & Welch, D. R. (2011). Metastasis suppressor genes at the interface between the environment and tumor cell growth. International Review of Cell and Molecular Biology, 286, 107–180.PubMedCrossRef Hurst, D. R., & Welch, D. R. (2011). Metastasis suppressor genes at the interface between the environment and tumor cell growth. International Review of Cell and Molecular Biology, 286, 107–180.PubMedCrossRef
3.
Zurück zum Zitat Mina, L. A., & Sledge, G. W., Jr. (2011). Rethinking the metastatic cascade as a therapeutic target. Nature Reviews. Clinical Oncology, 8(6), 325–332.PubMed Mina, L. A., & Sledge, G. W., Jr. (2011). Rethinking the metastatic cascade as a therapeutic target. Nature Reviews. Clinical Oncology, 8(6), 325–332.PubMed
4.
Zurück zum Zitat Chen, X., Xu, Z., & Wang, Y. (2011). Recent advances in breast cancer metastasis suppressor 1. The International Journal of Biological Markers, 26(1), 1–8.PubMedCrossRef Chen, X., Xu, Z., & Wang, Y. (2011). Recent advances in breast cancer metastasis suppressor 1. The International Journal of Biological Markers, 26(1), 1–8.PubMedCrossRef
5.
Zurück zum Zitat Steeg, P. S., Ouatas, T., Halverson, D., Palmieri, D., & Salerno, M. (2003). Metastasis suppressor genes: basic biology and potential clinical use. Clinical Breast Cancer, 4(1), 51–62.PubMedCrossRef Steeg, P. S., Ouatas, T., Halverson, D., Palmieri, D., & Salerno, M. (2003). Metastasis suppressor genes: basic biology and potential clinical use. Clinical Breast Cancer, 4(1), 51–62.PubMedCrossRef
6.
Zurück zum Zitat Harms, J. F., Welch, D. R., & Miele, M. E. (2003). KISS1 metastasis suppression and emergent pathways. Clinical & Experimental Metastasis, 20(1), 11–18.CrossRef Harms, J. F., Welch, D. R., & Miele, M. E. (2003). KISS1 metastasis suppression and emergent pathways. Clinical & Experimental Metastasis, 20(1), 11–18.CrossRef
7.
Zurück zum Zitat Gao, A. C., Lou, W., Dong, J. T., & Isaacs, J. T. (1997). CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer Research, 57(5), 846–849.PubMed Gao, A. C., Lou, W., Dong, J. T., & Isaacs, J. T. (1997). CD44 is a metastasis suppressor gene for prostatic cancer located on human chromosome 11p13. Cancer Research, 57(5), 846–849.PubMed
8.
Zurück zum Zitat Frixen, U. H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., et al. (1991). E-cadherin-mediated cell–cell adhesion prevents invasiveness of human carcinoma cells. The Journal of Cell Biology, 113(1), 173–185.PubMedCrossRef Frixen, U. H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., et al. (1991). E-cadherin-mediated cell–cell adhesion prevents invasiveness of human carcinoma cells. The Journal of Cell Biology, 113(1), 173–185.PubMedCrossRef
9.
Zurück zum Zitat Dong, J. T., Lamb, P. W., Rinker-Schaeffer, C. W., Vukanovic, J., Ichikawa, T., Isaacs, J. T., et al. (1995). KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science, 268(5212), 884–886.PubMedCrossRef Dong, J. T., Lamb, P. W., Rinker-Schaeffer, C. W., Vukanovic, J., Ichikawa, T., Isaacs, J. T., et al. (1995). KAI1, a metastasis suppressor gene for prostate cancer on human chromosome 11p11.2. Science, 268(5212), 884–886.PubMedCrossRef
10.
Zurück zum Zitat Gildea, J. J., Seraj, M. J., Oxford, G., Harding, M. A., Hampton, G. M., Moskaluk, C. A., et al. (2002). RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Research, 62(22), 6418–6423.PubMed Gildea, J. J., Seraj, M. J., Oxford, G., Harding, M. A., Hampton, G. M., Moskaluk, C. A., et al. (2002). RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Research, 62(22), 6418–6423.PubMed
11.
Zurück zum Zitat Fujita, H., Okada, F., Hamada, J., Hosokawa, M., Moriuchi, T., Koya, R. C., et al. (2001). Gelsolin functions as a metastasis suppressor in B16-BL6 mouse melanoma cells and requirement of the carboxyl-terminus for its effect. International Journal of Cancer, 93(6), 773–780.CrossRef Fujita, H., Okada, F., Hamada, J., Hosokawa, M., Moriuchi, T., Koya, R. C., et al. (2001). Gelsolin functions as a metastasis suppressor in B16-BL6 mouse melanoma cells and requirement of the carboxyl-terminus for its effect. International Journal of Cancer, 93(6), 773–780.CrossRef
12.
Zurück zum Zitat Vander Griend, D. J., Kocherginsky, M., Hickson, J. A., Stadler, W. M., Lin, A., & Rinker-Schaeffer, C. W. (2005). Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7. Cancer Research, 65(23), 10984–10991.PubMedCrossRef Vander Griend, D. J., Kocherginsky, M., Hickson, J. A., Stadler, W. M., Lin, A., & Rinker-Schaeffer, C. W. (2005). Suppression of metastatic colonization by the context-dependent activation of the c-Jun NH2-terminal kinase kinases JNKK1/MKK4 and MKK7. Cancer Research, 65(23), 10984–10991.PubMedCrossRef
13.
Zurück zum Zitat Steeg, P. S., de la Rosa, A., Flatow, U., MacDonald, N. J., Benedict, M., & Leone, A. (1993). Nm23 and breast cancer metastasis. Breast Cancer Research and Treatment, 25(2), 175–187.PubMedCrossRef Steeg, P. S., de la Rosa, A., Flatow, U., MacDonald, N. J., Benedict, M., & Leone, A. (1993). Nm23 and breast cancer metastasis. Breast Cancer Research and Treatment, 25(2), 175–187.PubMedCrossRef
14.
Zurück zum Zitat Fu, Z., Smith, P. C., Zhang, L., Rubin, M. A., Dunn, R. L., Yao, Z., et al. (2003). Effects of Raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. Journal of the National Cancer Institute, 95(12), 878–889.PubMedCrossRef Fu, Z., Smith, P. C., Zhang, L., Rubin, M. A., Dunn, R. L., Yao, Z., et al. (2003). Effects of Raf kinase inhibitor protein expression on suppression of prostate cancer metastasis. Journal of the National Cancer Institute, 95(12), 878–889.PubMedCrossRef
15.
Zurück zum Zitat Barbero, S., Mielgo, A., Torres, V., Teitz, T., Shields, D. J., Mikolon, D., et al. (2009). Caspase-8 association with the focal adhesion complex promotes tumor cell migration and metastasis. Cancer Research, 69(9), 3755–3763.PubMedCrossRef Barbero, S., Mielgo, A., Torres, V., Teitz, T., Shields, D. J., Mikolon, D., et al. (2009). Caspase-8 association with the focal adhesion complex promotes tumor cell migration and metastasis. Cancer Research, 69(9), 3755–3763.PubMedCrossRef
16.
Zurück zum Zitat Ohta, S., Lai, E. W., Pang, A. L., Brouwers, F. M., Chan, W. Y., Eisenhofer, G., et al. (2005). Downregulation of metastasis suppressor genes in malignant pheochromocytoma. International Journal of Cancer, 114(1), 139–143.CrossRef Ohta, S., Lai, E. W., Pang, A. L., Brouwers, F. M., Chan, W. Y., Eisenhofer, G., et al. (2005). Downregulation of metastasis suppressor genes in malignant pheochromocytoma. International Journal of Cancer, 114(1), 139–143.CrossRef
17.
Zurück zum Zitat Seraj, M. J., Samant, R. S., Verderame, M. F., & Welch, D. R. (2000). Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Research, 60(11), 2764–2769.PubMed Seraj, M. J., Samant, R. S., Verderame, M. F., & Welch, D. R. (2000). Functional evidence for a novel human breast carcinoma metastasis suppressor, BRMS1, encoded at chromosome 11q13. Cancer Research, 60(11), 2764–2769.PubMed
18.
Zurück zum Zitat Goldberg, S. F., Miele, M. E., Hatta, N., Takata, M., Paquette-Straub, C., Freedman, L. P., et al. (2003). Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Research, 63(2), 432–440.PubMed Goldberg, S. F., Miele, M. E., Hatta, N., Takata, M., Paquette-Straub, C., Freedman, L. P., et al. (2003). Melanoma metastasis suppression by chromosome 6: evidence for a pathway regulated by CRSP3 and TXNIP. Cancer Research, 63(2), 432–440.PubMed
19.
Zurück zum Zitat Rinker-Schaeffer, C. W., O’Keefe, J. P., Welch, D. R., & Theodorescu, D. (2006). Metastasis suppressor proteins: discovery, molecular mechanisms, and clinical application. Clinical Cancer Research, 12(13), 3882–3889.PubMedCrossRef Rinker-Schaeffer, C. W., O’Keefe, J. P., Welch, D. R., & Theodorescu, D. (2006). Metastasis suppressor proteins: discovery, molecular mechanisms, and clinical application. Clinical Cancer Research, 12(13), 3882–3889.PubMedCrossRef
20.
Zurück zum Zitat Iwakuma, T., & Lozano, G. (2003). MDM2, an introduction. Molecular Cancer Research, 1(14), 993–1000.PubMed Iwakuma, T., & Lozano, G. (2003). MDM2, an introduction. Molecular Cancer Research, 1(14), 993–1000.PubMed
21.
Zurück zum Zitat Lu, M. L., Wikman, F., Orntoft, T. F., Charytonowicz, E., Rabbani, F., Zhang, Z., et al. (2002). Impact of alterations affecting the p53 pathway in bladder cancer on clinical outcome, assessed by conventional and array-based methods. Clinical Cancer Research, 8(1), 171–179.PubMed Lu, M. L., Wikman, F., Orntoft, T. F., Charytonowicz, E., Rabbani, F., Zhang, Z., et al. (2002). Impact of alterations affecting the p53 pathway in bladder cancer on clinical outcome, assessed by conventional and array-based methods. Clinical Cancer Research, 8(1), 171–179.PubMed
22.
Zurück zum Zitat Bouska, A., & Eischen, C. M. (2009). Murine double minute 2: p53-independent roads lead to genome instability or death. Trends in Biochemical Sciences, 34(6), 279–286.PubMedCrossRef Bouska, A., & Eischen, C. M. (2009). Murine double minute 2: p53-independent roads lead to genome instability or death. Trends in Biochemical Sciences, 34(6), 279–286.PubMedCrossRef
23.
Zurück zum Zitat Cordon-Cardo, C., Latres, E., Drobnjak, M., Oliva, M. R., Pollack, D., Woodruff, J. M., et al. (1994). Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Research, 54(3), 794–799.PubMed Cordon-Cardo, C., Latres, E., Drobnjak, M., Oliva, M. R., Pollack, D., Woodruff, J. M., et al. (1994). Molecular abnormalities of mdm2 and p53 genes in adult soft tissue sarcomas. Cancer Research, 54(3), 794–799.PubMed
24.
Zurück zum Zitat Bouska, A., Lushnikova, T., Plaza, S., & Eischen, C. M. (2008). Mdm2 promotes genetic instability and transformation independent of p53. Molecular and Cellular Biology, 28(15), 4862–4874.PubMedCrossRef Bouska, A., Lushnikova, T., Plaza, S., & Eischen, C. M. (2008). Mdm2 promotes genetic instability and transformation independent of p53. Molecular and Cellular Biology, 28(15), 4862–4874.PubMedCrossRef
25.
Zurück zum Zitat Carroll, P. E., Okuda, M., Horn, H. F., Biddinger, P., Stambrook, P. J., Gleich, L. L., et al. (1999). Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene, 18(11), 1935–1944.PubMedCrossRef Carroll, P. E., Okuda, M., Horn, H. F., Biddinger, P., Stambrook, P. J., Gleich, L. L., et al. (1999). Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene, 18(11), 1935–1944.PubMedCrossRef
26.
Zurück zum Zitat Lundgren, K., de Oca, M., Luna, R., McNeill, Y. B., Emerick, E. P., Spencer, B., Barfield, C. R., et al. (1997). Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes & Development, 11(6), 714–725.CrossRef Lundgren, K., de Oca, M., Luna, R., McNeill, Y. B., Emerick, E. P., Spencer, B., Barfield, C. R., et al. (1997). Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes & Development, 11(6), 714–725.CrossRef
27.
Zurück zum Zitat Jones, S. N., Hancock, A. R., Vogel, H., Donehower, L. A., & Bradley, A. (1998). Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 95(26), 15608–15612.PubMedCrossRef Jones, S. N., Hancock, A. R., Vogel, H., Donehower, L. A., & Bradley, A. (1998). Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 95(26), 15608–15612.PubMedCrossRef
28.
Zurück zum Zitat Boyd, M. T., Vlatkovic, N., & Haines, D. S. (2000). A novel cellular protein (MTBP) binds to MDM2 and induces a G1 arrest that is suppressed by MDM2. Journal of Biological Chemistry, 275(41), 31883–31890.PubMedCrossRef Boyd, M. T., Vlatkovic, N., & Haines, D. S. (2000). A novel cellular protein (MTBP) binds to MDM2 and induces a G1 arrest that is suppressed by MDM2. Journal of Biological Chemistry, 275(41), 31883–31890.PubMedCrossRef
29.
Zurück zum Zitat Boyd, M. T., Zimonjic, D. B., Popescu, N. C., Athwal, R., & Haines, D. S. (2000). Assignment of the MDM2 binding protein gene (MTBP) to human chromosome band 8q24 by in situ hybridization. Cytogenetics and Cell Genetics, 90(1–2), 64–65.PubMed Boyd, M. T., Zimonjic, D. B., Popescu, N. C., Athwal, R., & Haines, D. S. (2000). Assignment of the MDM2 binding protein gene (MTBP) to human chromosome band 8q24 by in situ hybridization. Cytogenetics and Cell Genetics, 90(1–2), 64–65.PubMed
30.
Zurück zum Zitat Brady, M., Vlatkovic, N., & Boyd, M. T. (2005). Regulation of p53 and MDM2 activity by MTBP. Molecular and Cellular Biology, 25(2), 545–553.PubMedCrossRef Brady, M., Vlatkovic, N., & Boyd, M. T. (2005). Regulation of p53 and MDM2 activity by MTBP. Molecular and Cellular Biology, 25(2), 545–553.PubMedCrossRef
31.
Zurück zum Zitat Agarwal, N., Tochigi, Y., Adhikari, A. S., Cui, S., Cui, Y., & Iwakuma, T. (2011). MTBP plays a crucial role in mitotic progression and chromosome segregation. Cell Death and Differentiation, 18(7), 1208–1219.PubMedCrossRef Agarwal, N., Tochigi, Y., Adhikari, A. S., Cui, S., Cui, Y., & Iwakuma, T. (2011). MTBP plays a crucial role in mitotic progression and chromosome segregation. Cell Death and Differentiation, 18(7), 1208–1219.PubMedCrossRef
32.
Zurück zum Zitat Odvody, J., Vincent, T., Arrate, M. P., Grieb, B., Wang, S., Garriga, J., et al. (2010). A deficiency in Mdm2 binding protein inhibits Myc-induced B-cell proliferation and lymphomagenesis. Oncogene, 29(22), 3287–3296.PubMedCrossRef Odvody, J., Vincent, T., Arrate, M. P., Grieb, B., Wang, S., Garriga, J., et al. (2010). A deficiency in Mdm2 binding protein inhibits Myc-induced B-cell proliferation and lymphomagenesis. Oncogene, 29(22), 3287–3296.PubMedCrossRef
33.
Zurück zum Zitat Iwakuma, T., Tochigi, Y., Van Pelt, C. S., Caldwell, L. C., Terzian, T., Parant, J. M., et al. (2008). MTBP haploinsufficiency in mice increases tumor metastasis. Oncogene, 27(13), 1813–1820.PubMedCrossRef Iwakuma, T., Tochigi, Y., Van Pelt, C. S., Caldwell, L. C., Terzian, T., Parant, J. M., et al. (2008). MTBP haploinsufficiency in mice increases tumor metastasis. Oncogene, 27(13), 1813–1820.PubMedCrossRef
34.
Zurück zum Zitat Agarwal, N., Adhikari, A. S., Iyer, S. V., Hekmatdoost, K., Welch, D. R., & Iwakuma, T. (2012). MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene. doi:10.1038/onc.2012.69. Agarwal, N., Adhikari, A. S., Iyer, S. V., Hekmatdoost, K., Welch, D. R., & Iwakuma, T. (2012). MTBP suppresses cell migration and filopodia formation by inhibiting ACTN4. Oncogene. doi:10.​1038/​onc.​2012.​69.
35.
Zurück zum Zitat Yamaguchi, H., Wyckoff, J., & Condeelis, J. (2005). Cell migration in tumors. Current Opinion in Cell Biology, 17(5), 559–564.PubMedCrossRef Yamaguchi, H., Wyckoff, J., & Condeelis, J. (2005). Cell migration in tumors. Current Opinion in Cell Biology, 17(5), 559–564.PubMedCrossRef
36.
Zurück zum Zitat Mattila, P. K., & Lappalainen, P. (2008). Filopodia: molecular architecture and cellular functions. Nature Reviews Molecular Cell Biology, 9(6), 446–454.PubMedCrossRef Mattila, P. K., & Lappalainen, P. (2008). Filopodia: molecular architecture and cellular functions. Nature Reviews Molecular Cell Biology, 9(6), 446–454.PubMedCrossRef
37.
Zurück zum Zitat Lindberg, U., Karlsson, R., Lassing, I., Schutt, C. E., & Hoglund, A. S. (2008). The microfilament system and malignancy. Seminars in Cancer Biology, 18(1), 2–11.PubMedCrossRef Lindberg, U., Karlsson, R., Lassing, I., Schutt, C. E., & Hoglund, A. S. (2008). The microfilament system and malignancy. Seminars in Cancer Biology, 18(1), 2–11.PubMedCrossRef
38.
Zurück zum Zitat Kirfel, G., Rigort, A., Borm, B., & Herzog, V. (2004). Cell migration: mechanisms of rear detachment and the formation of migration tracks. European Journal of Cell Biology, 83(11–12), 717–724.PubMedCrossRef Kirfel, G., Rigort, A., Borm, B., & Herzog, V. (2004). Cell migration: mechanisms of rear detachment and the formation of migration tracks. European Journal of Cell Biology, 83(11–12), 717–724.PubMedCrossRef
39.
Zurück zum Zitat Ammer, A. G., & Weed, S. A. (2008). Cortactin branches out: roles in regulating protrusive actin dynamics. Cell Motility and the Cytoskeleton, 65(9), 687–707.PubMedCrossRef Ammer, A. G., & Weed, S. A. (2008). Cortactin branches out: roles in regulating protrusive actin dynamics. Cell Motility and the Cytoskeleton, 65(9), 687–707.PubMedCrossRef
40.
Zurück zum Zitat Barbolina, M. V., Adley, B. P., Kelly, D. L., Fought, A. J., Scholtens, D. M., Shea, L. D., et al. (2008). Motility-related actinin alpha-4 is associated with advanced and metastatic ovarian carcinoma. Laboratory Investigation, 88(6), 602–614.PubMedCrossRef Barbolina, M. V., Adley, B. P., Kelly, D. L., Fought, A. J., Scholtens, D. M., Shea, L. D., et al. (2008). Motility-related actinin alpha-4 is associated with advanced and metastatic ovarian carcinoma. Laboratory Investigation, 88(6), 602–614.PubMedCrossRef
41.
Zurück zum Zitat Hendrix, M. J., Seftor, E. A., Chu, Y. W., Trevor, K. T., & Seftor, R. E. (1996). Role of intermediate filaments in migration, invasion and metastasis. Cancer and Metastasis Reviews, 15(4), 507–525.PubMedCrossRef Hendrix, M. J., Seftor, E. A., Chu, Y. W., Trevor, K. T., & Seftor, R. E. (1996). Role of intermediate filaments in migration, invasion and metastasis. Cancer and Metastasis Reviews, 15(4), 507–525.PubMedCrossRef
42.
Zurück zum Zitat Vignjevic, D., & Montagnac, G. (2008). Reorganisation of the dendritic actin network during cancer cell migration and invasion. Seminars in Cancer Biology, 18(1), 12–22.PubMedCrossRef Vignjevic, D., & Montagnac, G. (2008). Reorganisation of the dendritic actin network during cancer cell migration and invasion. Seminars in Cancer Biology, 18(1), 12–22.PubMedCrossRef
43.
Zurück zum Zitat Choi, H. S., Yim, S. H., Xu, H. D., Jung, S. H., Shin, S. H., Hu, H. J., et al. (2010). Tropomyosin3 overexpression and a potential link to epithelial-mesenchymal transition in human hepatocellular carcinoma. BMC Cancer, 10, 122.PubMedCrossRef Choi, H. S., Yim, S. H., Xu, H. D., Jung, S. H., Shin, S. H., Hu, H. J., et al. (2010). Tropomyosin3 overexpression and a potential link to epithelial-mesenchymal transition in human hepatocellular carcinoma. BMC Cancer, 10, 122.PubMedCrossRef
44.
Zurück zum Zitat Mierke, C. T. (2009). The role of vinculin in the regulation of the mechanical properties of cells. Cell Biochemistry and Biophysics, 53(3), 115–126.PubMedCrossRef Mierke, C. T. (2009). The role of vinculin in the regulation of the mechanical properties of cells. Cell Biochemistry and Biophysics, 53(3), 115–126.PubMedCrossRef
45.
Zurück zum Zitat Honda, K., Yamada, T., Endo, R., Ino, Y., Gotoh, M., Tsuda, H., et al. (1998). Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. The Journal of Cell Biology, 140(6), 1383–1393.PubMedCrossRef Honda, K., Yamada, T., Endo, R., Ino, Y., Gotoh, M., Tsuda, H., et al. (1998). Actinin-4, a novel actin-bundling protein associated with cell motility and cancer invasion. The Journal of Cell Biology, 140(6), 1383–1393.PubMedCrossRef
46.
Zurück zum Zitat Quick, Q., & Skalli, O. (2010). Alpha-actinin 1 and alpha-actinin 4: contrasting roles in the survival, motility, and RhoA signaling of astrocytoma cells. Experimental Cell Research, 316(7), 1137–1147.PubMedCrossRef Quick, Q., & Skalli, O. (2010). Alpha-actinin 1 and alpha-actinin 4: contrasting roles in the survival, motility, and RhoA signaling of astrocytoma cells. Experimental Cell Research, 316(7), 1137–1147.PubMedCrossRef
47.
Zurück zum Zitat Honda, K., Yamada, T., Hayashida, Y., Idogawa, M., Sato, S., Hasegawa, F., et al. (2005). Actinin-4 increases cell motility and promotes lymph node metastasis of colorectal cancer. Gastroenterology, 128(1), 51–62.PubMedCrossRef Honda, K., Yamada, T., Hayashida, Y., Idogawa, M., Sato, S., Hasegawa, F., et al. (2005). Actinin-4 increases cell motility and promotes lymph node metastasis of colorectal cancer. Gastroenterology, 128(1), 51–62.PubMedCrossRef
48.
Zurück zum Zitat Kikuchi, S., Honda, K., Tsuda, H., Hiraoka, N., Imoto, I., Kosuge, T., et al. (2008). Expression and gene amplification of actinin-4 in invasive ductal carcinoma of the pancreas. Clinical Cancer Research, 14(17), 5348–5356.PubMedCrossRef Kikuchi, S., Honda, K., Tsuda, H., Hiraoka, N., Imoto, I., Kosuge, T., et al. (2008). Expression and gene amplification of actinin-4 in invasive ductal carcinoma of the pancreas. Clinical Cancer Research, 14(17), 5348–5356.PubMedCrossRef
49.
Zurück zum Zitat Yamamoto, S., Tsuda, H., Honda, K., Onozato, K., Takano, M., Tamai, S., et al. (2009). Actinin-4 gene amplification in ovarian cancer: a candidate oncogene associated with poor patient prognosis and tumor chemoresistance. Modern Pathology, 22(4), 499–507.PubMedCrossRef Yamamoto, S., Tsuda, H., Honda, K., Onozato, K., Takano, M., Tamai, S., et al. (2009). Actinin-4 gene amplification in ovarian cancer: a candidate oncogene associated with poor patient prognosis and tumor chemoresistance. Modern Pathology, 22(4), 499–507.PubMedCrossRef
50.
Zurück zum Zitat Sen, S., Dong, M., & Kumar, S. (2009). Isoform-specific contributions of alpha-actinin to glioma cell mechanobiology. PLoS One, 4(12), e8427.PubMedCrossRef Sen, S., Dong, M., & Kumar, S. (2009). Isoform-specific contributions of alpha-actinin to glioma cell mechanobiology. PLoS One, 4(12), e8427.PubMedCrossRef
51.
Zurück zum Zitat Weins, A., Schlondorff, J. S., Nakamura, F., Denker, B. M., Hartwig, J. H., Stossel, T. P., et al. (2007). Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16080–16085.PubMedCrossRef Weins, A., Schlondorff, J. S., Nakamura, F., Denker, B. M., Hartwig, J. H., Stossel, T. P., et al. (2007). Disease-associated mutant alpha-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16080–16085.PubMedCrossRef
52.
Zurück zum Zitat Vlatkovic, N., El-Fert, A., Devling, T., Ray-Sinha, A., Gore, D. M., Rubbi, C. P., et al. (2011). Loss of MTBP expression is associated with reduced survival in a biomarker-defined subset of patients with squamous cell carcinoma of the head and neck. Cancer, 117(13), 2939–2950.PubMedCrossRef Vlatkovic, N., El-Fert, A., Devling, T., Ray-Sinha, A., Gore, D. M., Rubbi, C. P., et al. (2011). Loss of MTBP expression is associated with reduced survival in a biomarker-defined subset of patients with squamous cell carcinoma of the head and neck. Cancer, 117(13), 2939–2950.PubMedCrossRef
53.
Zurück zum Zitat Carrasco, D. R., Tonon, G., Huang, Y., Zhang, Y., Sinha, R., Feng, B., et al. (2006). High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell, 9(4), 313–325.PubMedCrossRef Carrasco, D. R., Tonon, G., Huang, Y., Zhang, Y., Sinha, R., Feng, B., et al. (2006). High-resolution genomic profiles define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell, 9(4), 313–325.PubMedCrossRef
54.
Zurück zum Zitat Martin, E. S., Tonon, G., Sinha, R., Xiao, Y., Feng, B., Kimmelman, A. C., et al. (2007). Common and distinct genomic events in sporadic colorectal cancer and diverse cancer types. Cancer Research, 67(22), 10736–10743.PubMedCrossRef Martin, E. S., Tonon, G., Sinha, R., Xiao, Y., Feng, B., Kimmelman, A. C., et al. (2007). Common and distinct genomic events in sporadic colorectal cancer and diverse cancer types. Cancer Research, 67(22), 10736–10743.PubMedCrossRef
55.
Zurück zum Zitat Jonkers, Y. M., Claessen, S. M., Perren, A., Schmid, S., Komminoth, P., Verhofstad, A. A., et al. (2005). Chromosomal instability predicts metastatic disease in patients with insulinomas. Endocrine-Related Cancer, 12(2), 435–447.PubMedCrossRef Jonkers, Y. M., Claessen, S. M., Perren, A., Schmid, S., Komminoth, P., Verhofstad, A. A., et al. (2005). Chromosomal instability predicts metastatic disease in patients with insulinomas. Endocrine-Related Cancer, 12(2), 435–447.PubMedCrossRef
56.
Zurück zum Zitat Bhattacharya, A., Roy, R., Snijders, A. M., Hamilton, G., Paquette, J., Tokuyasu, T., et al. (2011). Two distinct routes to oral cancer differing in genome instability and risk for cervical node metastasis. Clinical Cancer Research, 17(22), 7024–7034.PubMedCrossRef Bhattacharya, A., Roy, R., Snijders, A. M., Hamilton, G., Paquette, J., Tokuyasu, T., et al. (2011). Two distinct routes to oral cancer differing in genome instability and risk for cervical node metastasis. Clinical Cancer Research, 17(22), 7024–7034.PubMedCrossRef
57.
Zurück zum Zitat Gutenberg, A., Gerdes, J. S., Jung, K., Sander, B., Gunawan, B., Bock, H. C., et al. (2010). High chromosomal instability in brain metastases of colorectal carcinoma. Cancer Genetics and Cytogenetics, 198(1), 47–51.PubMedCrossRef Gutenberg, A., Gerdes, J. S., Jung, K., Sander, B., Gunawan, B., Bock, H. C., et al. (2010). High chromosomal instability in brain metastases of colorectal carcinoma. Cancer Genetics and Cytogenetics, 198(1), 47–51.PubMedCrossRef
58.
Zurück zum Zitat Pinto, M., Vieira, J., Ribeiro, F. R., Soares, M. J., Henrique, R., Oliveira, J., et al. (2008). Overexpression of the mitotic checkpoint genes BUB1 and BUBR1 is associated with genomic complexity in clear cell kidney carcinomas. Cellular Oncology, 30(5), 389–395.PubMed Pinto, M., Vieira, J., Ribeiro, F. R., Soares, M. J., Henrique, R., Oliveira, J., et al. (2008). Overexpression of the mitotic checkpoint genes BUB1 and BUBR1 is associated with genomic complexity in clear cell kidney carcinomas. Cellular Oncology, 30(5), 389–395.PubMed
59.
Zurück zum Zitat Wang, X., Cheung, H. W., Chun, A. C., Jin, D. Y., & Wong, Y. C. (2008). Mitotic checkpoint defects in human cancers and their implications to chemotherapy. Frontiers in Bioscience, 13, 2103–2114.PubMedCrossRef Wang, X., Cheung, H. W., Chun, A. C., Jin, D. Y., & Wong, Y. C. (2008). Mitotic checkpoint defects in human cancers and their implications to chemotherapy. Frontiers in Bioscience, 13, 2103–2114.PubMedCrossRef
60.
Zurück zum Zitat Grabsch, H., Takeno, S., Parsons, W. J., Pomjanski, N., Boecking, A., Gabbert, H. E., et al. (2003). Overexpression of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 in gastric cancer—association with tumour cell proliferation. The Journal of Pathology, 200(1), 16–22.PubMedCrossRef Grabsch, H., Takeno, S., Parsons, W. J., Pomjanski, N., Boecking, A., Gabbert, H. E., et al. (2003). Overexpression of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 in gastric cancer—association with tumour cell proliferation. The Journal of Pathology, 200(1), 16–22.PubMedCrossRef
61.
Zurück zum Zitat Hisaoka, M., Matsuyama, A., & Hashimoto, H. (2008). Aberrant MAD2 expression in soft-tissue sarcoma. Pathology International, 58(6), 329–333.PubMedCrossRef Hisaoka, M., Matsuyama, A., & Hashimoto, H. (2008). Aberrant MAD2 expression in soft-tissue sarcoma. Pathology International, 58(6), 329–333.PubMedCrossRef
62.
Zurück zum Zitat Bakhoum, S. F., Danilova, O. V., Kaur, P., Levy, N. B., & Compton, D. A. (2011). Chromosomal instability substantiates poor prognosis in patients with diffuse large B-cell lymphoma. Clinical Cancer Research, 17(24), 7704–7711.PubMedCrossRef Bakhoum, S. F., Danilova, O. V., Kaur, P., Levy, N. B., & Compton, D. A. (2011). Chromosomal instability substantiates poor prognosis in patients with diffuse large B-cell lymphoma. Clinical Cancer Research, 17(24), 7704–7711.PubMedCrossRef
63.
Zurück zum Zitat Gjoerup, O. V., Wu, J., Chandler-Militello, D., Williams, G. L., Zhao, J., Schaffhausen, B., et al. (2007). Surveillance mechanism linking Bub1 loss to the p53 pathway. Proceedings of the National Academy of Sciences of the United States of America, 104(20), 8334–8339.PubMedCrossRef Gjoerup, O. V., Wu, J., Chandler-Militello, D., Williams, G. L., Zhao, J., Schaffhausen, B., et al. (2007). Surveillance mechanism linking Bub1 loss to the p53 pathway. Proceedings of the National Academy of Sciences of the United States of America, 104(20), 8334–8339.PubMedCrossRef
64.
Zurück zum Zitat Rao, C. V., Yamada, H. Y., Yao, Y., & Dai, W. (2009). Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis, 30(9), 1469–1474.PubMedCrossRef Rao, C. V., Yamada, H. Y., Yao, Y., & Dai, W. (2009). Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis, 30(9), 1469–1474.PubMedCrossRef
65.
Zurück zum Zitat Sotillo, R., Hernando, E., Diaz-Rodriguez, E., Teruya-Feldstein, J., Cordon-Cardo, C., Lowe, S. W., et al. (2007). MAD2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell, 11(1), 9–23.PubMedCrossRef Sotillo, R., Hernando, E., Diaz-Rodriguez, E., Teruya-Feldstein, J., Cordon-Cardo, C., Lowe, S. W., et al. (2007). MAD2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell, 11(1), 9–23.PubMedCrossRef
66.
Zurück zum Zitat Michel, L. S., Liberal, V., Chatterjee, A., Kirchwegger, R., Pasche, B., Gerald, W., et al. (2001). MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature, 409(6818), 355–359.PubMedCrossRef Michel, L. S., Liberal, V., Chatterjee, A., Kirchwegger, R., Pasche, B., Gerald, W., et al. (2001). MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature, 409(6818), 355–359.PubMedCrossRef
67.
Zurück zum Zitat Iwanaga, Y., Chi, Y. H., Miyazato, A., Sheleg, S., Haller, K., Peloponese, J. M., Jr., et al. (2007). Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Research, 67(1), 160–166.PubMedCrossRef Iwanaga, Y., Chi, Y. H., Miyazato, A., Sheleg, S., Haller, K., Peloponese, J. M., Jr., et al. (2007). Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Research, 67(1), 160–166.PubMedCrossRef
68.
Zurück zum Zitat Dobles, M., Liberal, V., Scott, M. L., Benezra, R., & Sorger, P. K. (2000). Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein MAD2. Cell, 101(6), 635–645.PubMedCrossRef Dobles, M., Liberal, V., Scott, M. L., Benezra, R., & Sorger, P. K. (2000). Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein MAD2. Cell, 101(6), 635–645.PubMedCrossRef
Metadaten
Titel
MDM2 binding protein, a novel metastasis suppressor
verfasst von
Tomoo Iwakuma
Neeraj Agarwal
Publikationsdatum
01.12.2012
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 3-4/2012
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9364-x

Weitere Artikel der Ausgabe 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Zur Ausgabe

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.