Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1-2/2019

07.02.2019

Acidosis promotes tumorigenesis by activating AKT/NF-κB signaling

verfasst von: Liu Yang, Xiaoge Hu, Yin-Yuan Mo

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1-2/2019

Einloggen, um Zugang zu erhalten

Abstract

The microenvironment of solid tumors is often acidic due to poor vascular perfusion, regional hypoxia, and increased glycolytic activity of tumor cells. Although acidosis is harmful to most types of cells, tumor cells seem well adapted to such harsh conditions. Moreover, overwhelming evidence indicates that tumor cells are more invasive and more aggressive in acidic conditions by a cascade of cell signaling and upregulation of oncogenic gene expression. Therefore, how extracellular acidic signals are transduced to the cytoplasm and then into the nucleus is an interesting topic to many cancer researchers. In this review, we update on the recent advances in acidosis-induced tumorigenesis through the acid-sensing ion channels (ASICs) and activation of cell signaling.
Literatur
5.
Zurück zum Zitat Singh, L. S., Berk, M., Oates, R., Zhao, Z., Tan, H., Jiang, Y., Zhou, A., Kirmani, K., Steinmetz, R., Lindner, D., & Xu, Y. (2007). Ovarian cancer G protein-coupled receptor 1, a new metastasis suppressor gene in prostate cancer. Journal of the National Cancer Institute, 99(17), 1313–1327. https://doi.org/10.1093/jnci/djm107.CrossRefPubMed Singh, L. S., Berk, M., Oates, R., Zhao, Z., Tan, H., Jiang, Y., Zhou, A., Kirmani, K., Steinmetz, R., Lindner, D., & Xu, Y. (2007). Ovarian cancer G protein-coupled receptor 1, a new metastasis suppressor gene in prostate cancer. Journal of the National Cancer Institute, 99(17), 1313–1327. https://​doi.​org/​10.​1093/​jnci/​djm107.CrossRefPubMed
7.
Zurück zum Zitat Tannock, I. F., & Rotin, D. (1989). Acid pH in tumors and its potential for therapeutic exploitation. [Research Support, Non-U.S. Gov’t]. Cancer Research, 49(16), 4373–4384.PubMed Tannock, I. F., & Rotin, D. (1989). Acid pH in tumors and its potential for therapeutic exploitation. [Research Support, Non-U.S. Gov’t]. Cancer Research, 49(16), 4373–4384.PubMed
15.
17.
Zurück zum Zitat Bourguignon, L. Y., Singleton, P. A., Diedrich, F., Stern, R., & Gilad, E. (2004). CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. [Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. The Journal of Biological Chemistry, 279(26), 26991–27007. https://doi.org/10.1074/jbc.M311838200.CrossRefPubMed Bourguignon, L. Y., Singleton, P. A., Diedrich, F., Stern, R., & Gilad, E. (2004). CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. [Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. The Journal of Biological Chemistry, 279(26), 26991–27007. https://​doi.​org/​10.​1074/​jbc.​M311838200.CrossRefPubMed
18.
Zurück zum Zitat He, B., Zhang, M., & Zhu, R. (2010). Na+/H+ exchanger blockade inhibits the expression of vascular endothelial growth factor in SGC7901 cells. [Research Support, Non-U.S. Gov’t]. Oncology Reports, 23(1), 79–87.PubMed He, B., Zhang, M., & Zhu, R. (2010). Na+/H+ exchanger blockade inhibits the expression of vascular endothelial growth factor in SGC7901 cells. [Research Support, Non-U.S. Gov’t]. Oncology Reports, 23(1), 79–87.PubMed
19.
Zurück zum Zitat Ryder, C., McColl, K., Zhong, F., & Distelhorst, C. W. (2012). Acidosis promotes Bcl-2 family-mediated evasion of apoptosis: involvement of acid-sensing G protein-coupled receptor Gpr65 signaling to Mek/Erk. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. The Journal of Biological Chemistry, 287(33), 27863–27875. https://doi.org/10.1074/jbc.M112.384685.CrossRefPubMedPubMedCentral Ryder, C., McColl, K., Zhong, F., & Distelhorst, C. W. (2012). Acidosis promotes Bcl-2 family-mediated evasion of apoptosis: involvement of acid-sensing G protein-coupled receptor Gpr65 signaling to Mek/Erk. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. The Journal of Biological Chemistry, 287(33), 27863–27875. https://​doi.​org/​10.​1074/​jbc.​M112.​384685.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Thews, O., Dillenburg, W., Fellner, M., Buchholz, H. G., Bausbacher, N., Schreckenberger, M., & Rösch, F. (2010). Activation of P-glycoprotein (Pgp)-mediated drug efflux by extracellular acidosis: in vivo imaging with 68Ga-labelled PET tracer. [Research Support, Non-U.S. Gov’t]. European Journal of Nuclear Medicine and Molecular Imaging, 37(10), 1935–1942. https://doi.org/10.1007/s00259-010-1504-3.CrossRefPubMed Thews, O., Dillenburg, W., Fellner, M., Buchholz, H. G., Bausbacher, N., Schreckenberger, M., & Rösch, F. (2010). Activation of P-glycoprotein (Pgp)-mediated drug efflux by extracellular acidosis: in vivo imaging with 68Ga-labelled PET tracer. [Research Support, Non-U.S. Gov’t]. European Journal of Nuclear Medicine and Molecular Imaging, 37(10), 1935–1942. https://​doi.​org/​10.​1007/​s00259-010-1504-3.CrossRefPubMed
22.
Zurück zum Zitat Bohn, T., Rapp, S., Luther, N., Klein, M., Bruehl, T. J., Kojima, N., Aranda Lopez, P., Hahlbrock, J., Muth, S., Endo, S., Pektor, S., Brand, A., Renner, K., Popp, V., Gerlach, K., Vogel, D., Lueckel, C., Arnold-Schild, D., Pouyssegur, J., Kreutz, M., Huber, M., Koenig, J., Weigmann, B., Probst, H. C., von Stebut, E., Becker, C., Schild, H., Schmitt, E., & Bopp, T. (2018). Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nature Immunology, 19, 1319–1329. https://doi.org/10.1038/s41590-018-0226-8.CrossRefPubMed Bohn, T., Rapp, S., Luther, N., Klein, M., Bruehl, T. J., Kojima, N., Aranda Lopez, P., Hahlbrock, J., Muth, S., Endo, S., Pektor, S., Brand, A., Renner, K., Popp, V., Gerlach, K., Vogel, D., Lueckel, C., Arnold-Schild, D., Pouyssegur, J., Kreutz, M., Huber, M., Koenig, J., Weigmann, B., Probst, H. C., von Stebut, E., Becker, C., Schild, H., Schmitt, E., & Bopp, T. (2018). Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nature Immunology, 19, 1319–1329. https://​doi.​org/​10.​1038/​s41590-018-0226-8.CrossRefPubMed
24.
Zurück zum Zitat Moellering, R. E., Black, K. C., Krishnamurty, C., Baggett, B. K., Stafford, P., Rain, M., et al. (2008). Acid treatment of melanoma cells selects for invasive phenotypes. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Clinical & Experimental Metastasis, 25(4), 411–425. https://doi.org/10.1007/s10585-008-9145-7.CrossRef Moellering, R. E., Black, K. C., Krishnamurty, C., Baggett, B. K., Stafford, P., Rain, M., et al. (2008). Acid treatment of melanoma cells selects for invasive phenotypes. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Clinical & Experimental Metastasis, 25(4), 411–425. https://​doi.​org/​10.​1007/​s10585-008-9145-7.CrossRef
28.
Zurück zum Zitat Xu, L., & Fidler, I. J. (2000). Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells. [Research Support, U.S. Gov’t, P.H.S.]. Cancer Research, 60(16), 4610–4616.PubMed Xu, L., & Fidler, I. J. (2000). Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells. [Research Support, U.S. Gov’t, P.H.S.]. Cancer Research, 60(16), 4610–4616.PubMed
29.
Zurück zum Zitat Shi, Q., Le, X., Wang, B., Xiong, Q., Abbruzzese, J. L., & Xie, K. (2000). Regulation of interleukin-8 expression by cellular pH in human pancreatic adenocarcinoma cells. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov't, P.H.S.]. Journal of Interferon & Cytokine Research, 20(11), 1023–1028. https://doi.org/10.1089/10799900050198471.CrossRef Shi, Q., Le, X., Wang, B., Xiong, Q., Abbruzzese, J. L., & Xie, K. (2000). Regulation of interleukin-8 expression by cellular pH in human pancreatic adenocarcinoma cells. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov't, P.H.S.]. Journal of Interferon & Cytokine Research, 20(11), 1023–1028. https://​doi.​org/​10.​1089/​1079990005019847​1.CrossRef
33.
Zurück zum Zitat Brown, N. S., & Bicknell, R. (2001). Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. [review]. Breast Cancer Research, 3(5), 323–327.CrossRef Brown, N. S., & Bicknell, R. (2001). Hypoxia and oxidative stress in breast cancer. Oxidative stress: its effects on the growth, metastatic potential and response to therapy of breast cancer. [review]. Breast Cancer Research, 3(5), 323–327.CrossRef
34.
Zurück zum Zitat Wang, X., Martindale, J. L., Liu, Y., & Holbrook, N. J. (1998). The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. The Biochemical Journal, 333(Pt 2), 291–300.CrossRef Wang, X., Martindale, J. L., Liu, Y., & Holbrook, N. J. (1998). The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. The Biochemical Journal, 333(Pt 2), 291–300.CrossRef
35.
Zurück zum Zitat Brown, N. S., Jones, A., Fujiyama, C., Harris, A. L., & Bicknell, R. (2000). Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. [Research Support, Non-U.S. Gov’t]. Cancer Research, 60(22), 6298–6302.PubMed Brown, N. S., Jones, A., Fujiyama, C., Harris, A. L., & Bicknell, R. (2000). Thymidine phosphorylase induces carcinoma cell oxidative stress and promotes secretion of angiogenic factors. [Research Support, Non-U.S. Gov’t]. Cancer Research, 60(22), 6298–6302.PubMed
41.
Zurück zum Zitat Wemmie, J. A., Chen, J., Askwith, C. C., Hruska-Hageman, A. M., Price, M. P., Nolan, B. C., Yoder, P. G., Lamani, E., Hoshi, T., Freeman, J. H., Jr., & Welsh, M. J. (2002). The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. [In Vitro Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. Neuron, 34(3), 463–477.CrossRef Wemmie, J. A., Chen, J., Askwith, C. C., Hruska-Hageman, A. M., Price, M. P., Nolan, B. C., Yoder, P. G., Lamani, E., Hoshi, T., Freeman, J. H., Jr., & Welsh, M. J. (2002). The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. [In Vitro Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. Neuron, 34(3), 463–477.CrossRef
43.
Zurück zum Zitat Mazzuca, M., Heurteaux, C., Alloui, A., Diochot, S., Baron, A., Voilley, N., Blondeau, N., Escoubas, P., Gélot, A., Cupo, A., Zimmer, A., Zimmer, A. M., Eschalier, A., & Lazdunski, M. (2007). A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. [Research Support, Non-U.S. Gov’t]. Nature Neuroscience, 10(8), 943–945. https://doi.org/10.1038/nn1940.CrossRefPubMed Mazzuca, M., Heurteaux, C., Alloui, A., Diochot, S., Baron, A., Voilley, N., Blondeau, N., Escoubas, P., Gélot, A., Cupo, A., Zimmer, A., Zimmer, A. M., Eschalier, A., & Lazdunski, M. (2007). A tarantula peptide against pain via ASIC1a channels and opioid mechanisms. [Research Support, Non-U.S. Gov’t]. Nature Neuroscience, 10(8), 943–945. https://​doi.​org/​10.​1038/​nn1940.CrossRefPubMed
44.
Zurück zum Zitat Wemmie, J. A., Askwith, C. C., Lamani, E., Cassell, M. D., Freeman, J. H., Jr., & Welsh, M. J. (2003). Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. The Journal of Neuroscience, 23(13), 5496–5502.CrossRef Wemmie, J. A., Askwith, C. C., Lamani, E., Cassell, M. D., Freeman, J. H., Jr., & Welsh, M. J. (2003). Acid-sensing ion channel 1 is localized in brain regions with high synaptic density and contributes to fear conditioning. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. The Journal of Neuroscience, 23(13), 5496–5502.CrossRef
45.
Zurück zum Zitat Schaefer, L., Sakai, H., Mattei, M., Lazdunski, M., & Lingueglia, E. (2000). Molecular cloning, functional expression and chromosomal localization of an amiloride-sensitive Na(+) channel from human small intestine. [Research Support, Non-U.S. Gov’t]. FEBS Letters, 471(2–3), 205–210.CrossRef Schaefer, L., Sakai, H., Mattei, M., Lazdunski, M., & Lingueglia, E. (2000). Molecular cloning, functional expression and chromosomal localization of an amiloride-sensitive Na(+) channel from human small intestine. [Research Support, Non-U.S. Gov’t]. FEBS Letters, 471(2–3), 205–210.CrossRef
46.
Zurück zum Zitat Chu, X. P., & Xiong, Z. G. (2012). Physiological and pathological functions of acid-sensing ion channels in the central nervous system. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Current Drug Targets, 13(2), 263–271.CrossRef Chu, X. P., & Xiong, Z. G. (2012). Physiological and pathological functions of acid-sensing ion channels in the central nervous system. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Current Drug Targets, 13(2), 263–271.CrossRef
52.
54.
Zurück zum Zitat Bohlen, C. J., Chesler, A. T., Sharif-Naeini, R., Medzihradszky, K. F., Zhou, S., King, D., Sánchez, E. E., Burlingame, A. L., Basbaum, A. I., & Julius, D. (2011). A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nature, 479(7373), 410–414. https://doi.org/10.1038/nature10607.CrossRefPubMedPubMedCentral Bohlen, C. J., Chesler, A. T., Sharif-Naeini, R., Medzihradszky, K. F., Zhou, S., King, D., Sánchez, E. E., Burlingame, A. L., Basbaum, A. I., & Julius, D. (2011). A heteromeric Texas coral snake toxin targets acid-sensing ion channels to produce pain. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nature, 479(7373), 410–414. https://​doi.​org/​10.​1038/​nature10607.CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Berdiev, B. K., Xia, J., McLean, L. A., Markert, J. M., Gillespie, G. Y., Mapstone, T. B., Naren, A. P., Jovov, B., Bubien, J. K., Ji, H. L., Fuller, C. M., Kirk, K. L., & Benos, D. J. (2003). Acid-sensing ion channels in malignant gliomas. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. The Journal of Biological Chemistry, 278(17), 15023–15034. https://doi.org/10.1074/jbc.M300991200.CrossRefPubMed Berdiev, B. K., Xia, J., McLean, L. A., Markert, J. M., Gillespie, G. Y., Mapstone, T. B., Naren, A. P., Jovov, B., Bubien, J. K., Ji, H. L., Fuller, C. M., Kirk, K. L., & Benos, D. J. (2003). Acid-sensing ion channels in malignant gliomas. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. The Journal of Biological Chemistry, 278(17), 15023–15034. https://​doi.​org/​10.​1074/​jbc.​M300991200.CrossRefPubMed
61.
Zurück zum Zitat Bubien, J. K., Keeton, D. A., Fuller, C. M., Gillespie, G. Y., Reddy, A. T., Mapstone, T. B., & Benos, D. J. (1999). Malignant human gliomas express an amiloride-sensitive Na+ conductance. [Research Support, U.S. Gov’t, P.H.S.]. The American Journal of Physiology, 276(6 Pt 1), C1405–C1410.CrossRef Bubien, J. K., Keeton, D. A., Fuller, C. M., Gillespie, G. Y., Reddy, A. T., Mapstone, T. B., & Benos, D. J. (1999). Malignant human gliomas express an amiloride-sensitive Na+ conductance. [Research Support, U.S. Gov’t, P.H.S.]. The American Journal of Physiology, 276(6 Pt 1), C1405–C1410.CrossRef
63.
Zurück zum Zitat Vila-Carriles, W. H., Kovacs, G. G., Jovov, B., Zhou, Z. H., Pahwa, A. K., Colby, G., Esimai, O., Gillespie, G. Y., Mapstone, T. B., Markert, J. M., Fuller, C. M., Bubien, J. K., & Benos, D. J. (2006). Surface expression of ASIC2 inhibits the amiloride-sensitive current and migration of glioma cells. [Research Support, N.I.H., Extramural]. The Journal of Biological Chemistry, 281(28), 19220–19232. https://doi.org/10.1074/jbc.M603100200.CrossRefPubMed Vila-Carriles, W. H., Kovacs, G. G., Jovov, B., Zhou, Z. H., Pahwa, A. K., Colby, G., Esimai, O., Gillespie, G. Y., Mapstone, T. B., Markert, J. M., Fuller, C. M., Bubien, J. K., & Benos, D. J. (2006). Surface expression of ASIC2 inhibits the amiloride-sensitive current and migration of glioma cells. [Research Support, N.I.H., Extramural]. The Journal of Biological Chemistry, 281(28), 19220–19232. https://​doi.​org/​10.​1074/​jbc.​M603100200.CrossRefPubMed
64.
Zurück zum Zitat Zhou, Z. H., Song, J. W., Li, W., Liu, X., Cao, L., Wan, L. M., Tan, Y. X., Ji, S. P., Liang, Y. M., & Gong, F. (2017). The acid-sensing ion channel, ASIC2, promotes invasion and metastasis of colorectal cancer under acidosis by activating the calcineurin/NFAT1 axis. Journal of Experimental & Clinical Cancer Research, 36(1), 130. https://doi.org/10.1186/s13046-017-0599-9.CrossRef Zhou, Z. H., Song, J. W., Li, W., Liu, X., Cao, L., Wan, L. M., Tan, Y. X., Ji, S. P., Liang, Y. M., & Gong, F. (2017). The acid-sensing ion channel, ASIC2, promotes invasion and metastasis of colorectal cancer under acidosis by activating the calcineurin/NFAT1 axis. Journal of Experimental & Clinical Cancer Research, 36(1), 130. https://​doi.​org/​10.​1186/​s13046-017-0599-9.CrossRef
65.
Zurück zum Zitat Jacobs, M. D., & Harrison, S. C. (1998). Structure of an IkappaBalpha/NF-kappaB complex. [Research Support, Non-U.S. Gov’t]. Cell, 95(6), 749–758.CrossRef Jacobs, M. D., & Harrison, S. C. (1998). Structure of an IkappaBalpha/NF-kappaB complex. [Research Support, Non-U.S. Gov’t]. Cell, 95(6), 749–758.CrossRef
71.
Zurück zum Zitat Cantley, L. C., & Neel, B. G. (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. [Review]. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4240–4245.CrossRef Cantley, L. C., & Neel, B. G. (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. [Review]. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4240–4245.CrossRef
72.
Zurück zum Zitat Papa, A., Wan, L., Bonora, M., Salmena, L., Song, M. S., Hobbs, R. M., Lunardi, A., Webster, K., Ng, C., Newton, R. H., Knoblauch, N., Guarnerio, J., Ito, K., Turka, L. A., Beck, A. H., Pinton, P., Bronson, R. T., Wei, W., & Pandolfi, P. P. (2014). Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cell, 157(3), 595–610. https://doi.org/10.1016/j.cell.2014.03.027.CrossRefPubMedPubMedCentral Papa, A., Wan, L., Bonora, M., Salmena, L., Song, M. S., Hobbs, R. M., Lunardi, A., Webster, K., Ng, C., Newton, R. H., Knoblauch, N., Guarnerio, J., Ito, K., Turka, L. A., Beck, A. H., Pinton, P., Bronson, R. T., Wei, W., & Pandolfi, P. P. (2014). Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cell, 157(3), 595–610. https://​doi.​org/​10.​1016/​j.​cell.​2014.​03.​027.CrossRefPubMedPubMedCentral
73.
Zurück zum Zitat Martinez, D., Vermeulen, M., Trevani, A., Ceballos, A., Sabatte, J., Gamberale, R., Alvarez, M. E., Salamone, G., Tanos, T., Coso, O. A., & Geffner, J. (2006). Extracellular acidosis induces neutrophil activation by a mechanism dependent on activation of phosphatidylinositol 3-kinase/Akt and ERK pathways. Journal of Immunology, 176(2), 1163–1171.CrossRef Martinez, D., Vermeulen, M., Trevani, A., Ceballos, A., Sabatte, J., Gamberale, R., Alvarez, M. E., Salamone, G., Tanos, T., Coso, O. A., & Geffner, J. (2006). Extracellular acidosis induces neutrophil activation by a mechanism dependent on activation of phosphatidylinositol 3-kinase/Akt and ERK pathways. Journal of Immunology, 176(2), 1163–1171.CrossRef
74.
Zurück zum Zitat Minn, A. J., Kang, Y., Serganova, I., Gupta, G. P., Giri, D. D., Doubrovin, M., Ponomarev, V., Gerald, W. L., Blasberg, R., & Massagué, J. (2005). Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. The Journal of Clinical Investigation, 115(1), 44–55.CrossRef Minn, A. J., Kang, Y., Serganova, I., Gupta, G. P., Giri, D. D., Doubrovin, M., Ponomarev, V., Gerald, W. L., Blasberg, R., & Massagué, J. (2005). Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. The Journal of Clinical Investigation, 115(1), 44–55.CrossRef
75.
Zurück zum Zitat Bianchi, L., & Driscoll, M. (2002). Protons at the gate: DEG/ENaC ion channels help us feel and remember. [Review]. Neuron, 34(3), 337–340.CrossRef Bianchi, L., & Driscoll, M. (2002). Protons at the gate: DEG/ENaC ion channels help us feel and remember. [Review]. Neuron, 34(3), 337–340.CrossRef
77.
Zurück zum Zitat Rodriguez-Escudero, I., Oliver, M. D., Andres-Pons, A., Molina, M., Cid, V. J., & Pulido, R. (2011). A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes. [Research Support, Non-U.S. Gov’t]. Human Molecular Genetics, 20(21), 4132–4142. https://doi.org/10.1093/hmg/ddr337.CrossRefPubMed Rodriguez-Escudero, I., Oliver, M. D., Andres-Pons, A., Molina, M., Cid, V. J., & Pulido, R. (2011). A comprehensive functional analysis of PTEN mutations: implications in tumor- and autism-related syndromes. [Research Support, Non-U.S. Gov’t]. Human Molecular Genetics, 20(21), 4132–4142. https://​doi.​org/​10.​1093/​hmg/​ddr337.CrossRefPubMed
79.
81.
Zurück zum Zitat Vassalli, J. D., & Belin, D. (1987). Amiloride selectively inhibits the urokinase-type plasminogen activator. [In Vitro Research Support, Non-U.S. Gov’t]. FEBS Letters, 214(1), 187–191.CrossRef Vassalli, J. D., & Belin, D. (1987). Amiloride selectively inhibits the urokinase-type plasminogen activator. [In Vitro Research Support, Non-U.S. Gov’t]. FEBS Letters, 214(1), 187–191.CrossRef
83.
Zurück zum Zitat Chao, M., Wu, H., Jin, K., Li, B., Wu, J., Zhang, G., Yang G., Hu X. (2016). A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis. Elife, 5, doi:https://doi.org/10.7554/eLife.15691, A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis, 5. Chao, M., Wu, H., Jin, K., Li, B., Wu, J., Zhang, G., Yang G., Hu X. (2016). A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis. Elife, 5, doi:https://​doi.​org/​10.​7554/​eLife.​15691, A nonrandomized cohort and a randomized study of local control of large hepatocarcinoma by targeting intratumoral lactic acidosis, 5.
Metadaten
Titel
Acidosis promotes tumorigenesis by activating AKT/NF-κB signaling
verfasst von
Liu Yang
Xiaoge Hu
Yin-Yuan Mo
Publikationsdatum
07.02.2019
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1-2/2019
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-019-09785-6

Weitere Artikel der Ausgabe 1-2/2019

Cancer and Metastasis Reviews 1-2/2019 Zur Ausgabe

„Überwältigende“ Evidenz für Tripeltherapie beim metastasierten Prostata-Ca.

22.05.2024 Prostatakarzinom Nachrichten

Patienten mit metastasiertem hormonsensitivem Prostatakarzinom sollten nicht mehr mit einer alleinigen Androgendeprivationstherapie (ADT) behandelt werden, mahnt ein US-Team nach Sichtung der aktuellen Datenlage. Mit einer Tripeltherapie haben die Betroffenen offenbar die besten Überlebenschancen.

So sicher sind Tattoos: Neue Daten zur Risikobewertung

22.05.2024 Melanom Nachrichten

Das größte medizinische Problem bei Tattoos bleiben allergische Reaktionen. Melanome werden dadurch offensichtlich nicht gefördert, die Farbpigmente könnten aber andere Tumoren begünstigen.

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.