Skip to main content
Erschienen in: Inflammation 6/2021

21.07.2021 | Review

Sepsis-Associated Encephalopathy and Blood-Brain Barrier Dysfunction

verfasst von: Qingzeng Gao, Marina Sorrentino Hernandes

Erschienen in: Inflammation | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten

Abstract

Sepsis is a life-threatening clinical condition caused by a dysregulated host response to infection. Sepsis-associated encephalopathy (SAE) is a common but poorly understood neurological complication of sepsis, which is associated with increased morbidity and mortality. SAE clinical presentation may range from mild confusion and delirium to severe cognitive impairment and deep coma. Important mechanisms associated with SAE include excessive microglial activation, impaired endothelial barrier function, and blood-brain barrier (BBB) dysfunction. Endotoxemia and pro-inflammatory cytokines produced systemically during sepsis lead to microglial and brain endothelial cell activation, tight junction downregulation, and increased leukocyte recruitment. The resulting neuroinflammation and BBB dysfunction exacerbate SAE pathology and aggravate sepsis-induced brain dysfunction. In this mini-review, recent literature surrounding some of the mediators of BBB dysfunction during sepsis is summarized. Modulation of microglial activation, endothelial cell dysfunction, and the consequent prevention of BBB permeability represent relevant therapeutic targets that may significantly impact SAE outcomes.
Literatur
1.
Zurück zum Zitat Abbott, N.J., L. Ronnback, and E. Hansson. 2006. Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews. Neuroscience 7: 41–53.PubMedCrossRef Abbott, N.J., L. Ronnback, and E. Hansson. 2006. Astrocyte-endothelial interactions at the blood-brain barrier. Nature Reviews. Neuroscience 7: 41–53.PubMedCrossRef
2.
Zurück zum Zitat Cao, C., M. Yu, and Y. Chai. 2019. Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death & Disease 10: 782.CrossRef Cao, C., M. Yu, and Y. Chai. 2019. Pathological alteration and therapeutic implications of sepsis-induced immune cell apoptosis. Cell Death & Disease 10: 782.CrossRef
3.
Zurück zum Zitat Chen, B., Q. Cheng, K. Yang, and P.D. Lyden. 2010. Thrombin mediates severe neurovascular injury during ischemia. Stroke 41: 2348–2352.PubMedCrossRef Chen, B., Q. Cheng, K. Yang, and P.D. Lyden. 2010. Thrombin mediates severe neurovascular injury during ischemia. Stroke 41: 2348–2352.PubMedCrossRef
5.
Zurück zum Zitat Delano, M.J., and P.A. Ward. 2016. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunological Reviews 274: 330–353.PubMedPubMedCentralCrossRef Delano, M.J., and P.A. Ward. 2016. The immune system’s role in sepsis progression, resolution, and long-term outcome. Immunological Reviews 274: 330–353.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Doll, D.N., H. Hu, J. Sun, S.E. Lewis, J.W. Simpkins, and X. Ren. 2015. Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier. Stroke 46: 1681–1689.PubMedPubMedCentralCrossRef Doll, D.N., H. Hu, J. Sun, S.E. Lewis, J.W. Simpkins, and X. Ren. 2015. Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier. Stroke 46: 1681–1689.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Eidelman, L.A., D. Putterman, C. Putterman, and C.L. Sprung. 1996. The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA 275: 470–473.PubMedCrossRef Eidelman, L.A., D. Putterman, C. Putterman, and C.L. Sprung. 1996. The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA 275: 470–473.PubMedCrossRef
8.
Zurück zum Zitat Erickson, M.A., and W.A. Banks. 2018. Neuroimmune axes of the blood-brain barriers and blood-brain interfaces: bases for physiological regulation, disease states, and pharmacological interventions. Pharmacological Reviews 70: 278–314.PubMedPubMedCentralCrossRef Erickson, M.A., and W.A. Banks. 2018. Neuroimmune axes of the blood-brain barriers and blood-brain interfaces: bases for physiological regulation, disease states, and pharmacological interventions. Pharmacological Reviews 70: 278–314.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Erikson, K., H. Tuominen, M. Vakkala, J.H. Liisanantti, T. Karttunen, H. Syrjala, and T.I. Ala-Kokko. 2020. Brain tight junction protein expression in sepsis in an autopsy series. Critical Care 24: 385.PubMedPubMedCentralCrossRef Erikson, K., H. Tuominen, M. Vakkala, J.H. Liisanantti, T. Karttunen, H. Syrjala, and T.I. Ala-Kokko. 2020. Brain tight junction protein expression in sepsis in an autopsy series. Critical Care 24: 385.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Evans, T. 2018. Diagnosis and management of sepsis. Clinical Medicine (London, England) 18: 146–149.CrossRef Evans, T. 2018. Diagnosis and management of sepsis. Clinical Medicine (London, England) 18: 146–149.CrossRef
12.
Zurück zum Zitat Gavins, F. N., E.L. Hughes, N.A.P.S. Buss, P.M. Holloway, S.J. Getting, and J.C. Buckingham. 2012. Leukocyte recruitment in the brain in sepsis: involvement of the annexin 1-FPR2/ALX anti-inflammatory system. The FASEB Journal 26: 4977–4989. Gavins, F. N., E.L. Hughes, N.A.P.S. Buss, P.M. Holloway, S.J. Getting, and J.C. Buckingham. 2012. Leukocyte recruitment in the brain in sepsis: involvement of the annexin 1-FPR2/ALX anti-inflammatory system. The FASEB Journal 26: 4977–4989.
13.
Zurück zum Zitat Gofton, T.E., and G.B. Young. 2012. Sepsis-associated encephalopathy. Nature Reviews. Neurology 8: 557–566.PubMedCrossRef Gofton, T.E., and G.B. Young. 2012. Sepsis-associated encephalopathy. Nature Reviews. Neurology 8: 557–566.PubMedCrossRef
14.
Zurück zum Zitat Gray, M.T., and J.M. Woulfe. 2015. Striatal blood-brain barrier permeability in Parkinson’s disease. Journal of Cerebral Blood Flow and Metabolism 35: 747–750.PubMedPubMedCentralCrossRef Gray, M.T., and J.M. Woulfe. 2015. Striatal blood-brain barrier permeability in Parkinson’s disease. Journal of Cerebral Blood Flow and Metabolism 35: 747–750.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Grin’kina, N.M., E.E. Karnabi, D. Damania, S. Wadgaonkar, I.A. Muslimov, and R. Wadgaonkar. 2012. Sphingosine kinase 1 deficiency exacerbates LPS-induced neuroinflammation. PLoS One 7: e36475.PubMedPubMedCentralCrossRef Grin’kina, N.M., E.E. Karnabi, D. Damania, S. Wadgaonkar, I.A. Muslimov, and R. Wadgaonkar. 2012. Sphingosine kinase 1 deficiency exacerbates LPS-induced neuroinflammation. PLoS One 7: e36475.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Haileselassie, B., A.U. Joshi, P.S. Minhas, R. Mukherjee, K.I. Andreasson, and D. Mochly-Rosen. 2020. Mitochondrial dysfunction mediated through dynamin-related protein 1 (Drp1) propagates impairment in blood brain barrier in septic encephalopathy. Journal of Neuroinflammation 17: 36.PubMedPubMedCentralCrossRef Haileselassie, B., A.U. Joshi, P.S. Minhas, R. Mukherjee, K.I. Andreasson, and D. Mochly-Rosen. 2020. Mitochondrial dysfunction mediated through dynamin-related protein 1 (Drp1) propagates impairment in blood brain barrier in septic encephalopathy. Journal of Neuroinflammation 17: 36.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Handa, O., J. Stephen, and G. Cepinskas. 2008. Role of endothelial nitric oxide synthase-derived nitric oxide in activation and dysfunction of cerebrovascular endothelial cells during early onsets of sepsis. American Journal of Physiology. Heart and Circulatory Physiology 295: H1712–H1719.PubMedPubMedCentralCrossRef Handa, O., J. Stephen, and G. Cepinskas. 2008. Role of endothelial nitric oxide synthase-derived nitric oxide in activation and dysfunction of cerebrovascular endothelial cells during early onsets of sepsis. American Journal of Physiology. Heart and Circulatory Physiology 295: H1712–H1719.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Harada, K., S. Ohira, K. Isse, S. Ozaki, Y. Zen, Y. Sato, and Y. Nakanuma. 2003. Lipopolysaccharide activates nuclear factor-kappaB through toll-like receptors and related molecules in cultured biliary epithelial cells. Laboratory Investigation 83: 1657–1667.PubMedCrossRef Harada, K., S. Ohira, K. Isse, S. Ozaki, Y. Zen, Y. Sato, and Y. Nakanuma. 2003. Lipopolysaccharide activates nuclear factor-kappaB through toll-like receptors and related molecules in cultured biliary epithelial cells. Laboratory Investigation 83: 1657–1667.PubMedCrossRef
19.
Zurück zum Zitat Haruwaka, K., A. Ikegami, Y. Tachibana, N. Ohno, H. Konishi, A. Hashimoto, M. Matsumoto, D. Kato, R. Ono, H. Kiyama, A.J. Moorhouse, J. Nabekura, and H. Wake. 2019. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nature Communications 10: 5816.PubMedPubMedCentralCrossRef Haruwaka, K., A. Ikegami, Y. Tachibana, N. Ohno, H. Konishi, A. Hashimoto, M. Matsumoto, D. Kato, R. Ono, H. Kiyama, A.J. Moorhouse, J. Nabekura, and H. Wake. 2019. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nature Communications 10: 5816.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Heming, N., A. Mazeraud, F. Verdonk, F.A. Bozza, F. Chretien, and T. Sharshar. 2017. Neuroanatomy of sepsis-associated encephalopathy. Critical Care 21: 65.PubMedPubMedCentralCrossRef Heming, N., A. Mazeraud, F. Verdonk, F.A. Bozza, F. Chretien, and T. Sharshar. 2017. Neuroanatomy of sepsis-associated encephalopathy. Critical Care 21: 65.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Hernandes, M.S., B. Lassegue, and K.K. Griendling. 2017. Polymerase delta-interacting protein 2: a multifunctional protein. Journal of Cardiovascular Pharmacology 69: 335–342.PubMedPubMedCentralCrossRef Hernandes, M.S., B. Lassegue, and K.K. Griendling. 2017. Polymerase delta-interacting protein 2: a multifunctional protein. Journal of Cardiovascular Pharmacology 69: 335–342.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Hotchkiss, R.S., G. Monneret, and D. Payen. 2013. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nature Reviews. Immunology 13: 862–874.PubMedPubMedCentralCrossRef Hotchkiss, R.S., G. Monneret, and D. Payen. 2013. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nature Reviews. Immunology 13: 862–874.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Iskander, K.N., M.F. Osuchowski, D.J. Stearns-Kurosawa, S. Kurosawa, D. Stepien, C. Valentine, and D.G. Remick. 2013. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding. Physiological Reviews 93: 1247–1288.PubMedPubMedCentralCrossRef Iskander, K.N., M.F. Osuchowski, D.J. Stearns-Kurosawa, S. Kurosawa, D. Stepien, C. Valentine, and D.G. Remick. 2013. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding. Physiological Reviews 93: 1247–1288.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Jarvis, G.E., B.T. Atkinson, J. Frampton, and S.P. Watson. 2003. Thrombin-induced conversion of fibrinogen to fibrin results in rapid platelet trapping which is not dependent on platelet activation or GPIb. British Journal of Pharmacology 138: 574–583.PubMedPubMedCentralCrossRef Jarvis, G.E., B.T. Atkinson, J. Frampton, and S.P. Watson. 2003. Thrombin-induced conversion of fibrinogen to fibrin results in rapid platelet trapping which is not dependent on platelet activation or GPIb. British Journal of Pharmacology 138: 574–583.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Joseph, L.C., M.V. Reyes, K.R. Lakkadi, B.H. Gowen, G. Hasko, K. Drosatos, and J.P. Morrow. 2020. PKCdelta causes sepsis-induced cardiomyopathy by inducing mitochondrial dysfunction. American Journal of Physiology. Heart and Circulatory Physiology 318: H778–H786.PubMedPubMedCentralCrossRef Joseph, L.C., M.V. Reyes, K.R. Lakkadi, B.H. Gowen, G. Hasko, K. Drosatos, and J.P. Morrow. 2020. PKCdelta causes sepsis-induced cardiomyopathy by inducing mitochondrial dysfunction. American Journal of Physiology. Heart and Circulatory Physiology 318: H778–H786.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Kang, C.I., J.H. Song, D.R. Chung, K.R. Peck, K.S. Ko, J.S. Yeom, H.K. Ki, J.S. Son, S.S. Lee, Y.S. Kim, S.I. Jung, S.W. Kim, H.H. Chang, S.Y. Ryu, K.T. Kwon, H. Lee, C. Moon, and Korean Network for Study of Infectious D. 2011. Risk factors and pathogenic significance of severe sepsis and septic shock in 2286 patients with gram-negative bacteremia. The Journal of Infection 62: 26–33.PubMedCrossRef Kang, C.I., J.H. Song, D.R. Chung, K.R. Peck, K.S. Ko, J.S. Yeom, H.K. Ki, J.S. Son, S.S. Lee, Y.S. Kim, S.I. Jung, S.W. Kim, H.H. Chang, S.Y. Ryu, K.T. Kwon, H. Lee, C. Moon, and Korean Network for Study of Infectious D. 2011. Risk factors and pathogenic significance of severe sepsis and septic shock in 2286 patients with gram-negative bacteremia. The Journal of Infection 62: 26–33.PubMedCrossRef
27.
Zurück zum Zitat Kikuchi, D.S., A.C.P. Campos, H. Qu, S.J. Forrester, R.L. Pagano, B. Lassegue, R.T. Sadikot, K.K. Griendling, and M.S. Hernandes. 2019. Poldip2 mediates blood-brain barrier disruption in a model of sepsis-associated encephalopathy. Journal of Neuroinflammation 16: 241.PubMedPubMedCentralCrossRef Kikuchi, D.S., A.C.P. Campos, H. Qu, S.J. Forrester, R.L. Pagano, B. Lassegue, R.T. Sadikot, K.K. Griendling, and M.S. Hernandes. 2019. Poldip2 mediates blood-brain barrier disruption in a model of sepsis-associated encephalopathy. Journal of Neuroinflammation 16: 241.PubMedPubMedCentralCrossRef
28.
29.
Zurück zum Zitat Lin, C.C., H.L. Hsieh, R.H. Shih, P.L. Chi, S.E. Cheng, and C.M. Yang. 2013. Up-regulation of COX-2/PGE2 by endothelin-1 via MAPK-dependent NF-kappaB pathway in mouse brain microvascular endothelial cells. Cell Communication and Signaling: CCS 11: 8.PubMedCentralCrossRef Lin, C.C., H.L. Hsieh, R.H. Shih, P.L. Chi, S.E. Cheng, and C.M. Yang. 2013. Up-regulation of COX-2/PGE2 by endothelin-1 via MAPK-dependent NF-kappaB pathway in mouse brain microvascular endothelial cells. Cell Communication and Signaling: CCS 11: 8.PubMedCentralCrossRef
30.
Zurück zum Zitat Lundblad, R.L., and G.C. White 2nd. 2005. The interaction of thrombin with blood platelets. Platelets 16: 373–385.PubMedCrossRef Lundblad, R.L., and G.C. White 2nd. 2005. The interaction of thrombin with blood platelets. Platelets 16: 373–385.PubMedCrossRef
31.
Zurück zum Zitat Mazeraud, A., C. Righy, E. Bouchereau, S. Benghanem, F.A. Bozza, and T. Sharshar. 2020. Septic-associated encephalopathy: a comprehensive review. Neurotherapeutics 17: 392–403.PubMedPubMedCentralCrossRef Mazeraud, A., C. Righy, E. Bouchereau, S. Benghanem, F.A. Bozza, and T. Sharshar. 2020. Septic-associated encephalopathy: a comprehensive review. Neurotherapeutics 17: 392–403.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Michels, M., L.G. Danieslki, A. Vieira, D. Florentino, D. Dall’Igna, L. Galant, B. Sonai, F. Vuolo, F. Mina, B. Pescador, D. Dominguini, T. Barichello, J. Quevedo, F. Dal-Pizzol, and F. Petronilho. 2015. CD40-CD40 ligand pathway is a major component of acute neuroinflammation and contributes to long-term cognitive dysfunction after sepsis. Molecular Medicine 21: 219–226.PubMedPubMedCentralCrossRef Michels, M., L.G. Danieslki, A. Vieira, D. Florentino, D. Dall’Igna, L. Galant, B. Sonai, F. Vuolo, F. Mina, B. Pescador, D. Dominguini, T. Barichello, J. Quevedo, F. Dal-Pizzol, and F. Petronilho. 2015. CD40-CD40 ligand pathway is a major component of acute neuroinflammation and contributes to long-term cognitive dysfunction after sepsis. Molecular Medicine 21: 219–226.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Nwafor, D.C., A.L. Brichacek, A.S. Mohammad, J. Griffith, B.P. Lucke-Wold, S.A. Benkovic, W.J. Geldenhuys, P.R. Lockman, and C.M. Brown. 2019. Targeting the blood-brain barrier to prevent sepsis-associated cognitive impairment. Journal of Central Nervous System Disease 11: 1179573519840652.PubMedPubMedCentralCrossRef Nwafor, D.C., A.L. Brichacek, A.S. Mohammad, J. Griffith, B.P. Lucke-Wold, S.A. Benkovic, W.J. Geldenhuys, P.R. Lockman, and C.M. Brown. 2019. Targeting the blood-brain barrier to prevent sepsis-associated cognitive impairment. Journal of Central Nervous System Disease 11: 1179573519840652.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Okada, T., T. Kajimoto, S. Jahangeer, and S. Nakamura. 2009. Sphingosine kinase/sphingosine 1-phosphate signalling in central nervous system. Cellular Signalling 21: 7–13.PubMedCrossRef Okada, T., T. Kajimoto, S. Jahangeer, and S. Nakamura. 2009. Sphingosine kinase/sphingosine 1-phosphate signalling in central nervous system. Cellular Signalling 21: 7–13.PubMedCrossRef
35.
Zurück zum Zitat Paredes, F., K. Sheldon, B. Lassegue, H.C. Williams, E.A. Faidley, G.A. Benavides, G. Torres, F. Sanhueza-Olivares, S.M. Yeligar, K.K. Griendling, V. Darley-Usmar, and Martin A. San. 2018. Poldip2 is an oxygen-sensitive protein that controls PDH and alphaKGDH lipoylation and activation to support metabolic adaptation in hypoxia and cancer. Proceedings of the National Academy of Sciences of the United States of America 115: 1789–1794.PubMedPubMedCentralCrossRef Paredes, F., K. Sheldon, B. Lassegue, H.C. Williams, E.A. Faidley, G.A. Benavides, G. Torres, F. Sanhueza-Olivares, S.M. Yeligar, K.K. Griendling, V. Darley-Usmar, and Martin A. San. 2018. Poldip2 is an oxygen-sensitive protein that controls PDH and alphaKGDH lipoylation and activation to support metabolic adaptation in hypoxia and cancer. Proceedings of the National Academy of Sciences of the United States of America 115: 1789–1794.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Piccinini, M., F. Scandroglio, S. Prioni, B. Buccinna, N. Loberto, M. Aureli, V. Chigorno, E. Lupino, G. DeMarco, A. Lomartire, M.T. Rinaudo, S. Sonnino, and A. Prinetti. 2010. Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Molecular Neurobiology 41: 314–340.PubMedCrossRef Piccinini, M., F. Scandroglio, S. Prioni, B. Buccinna, N. Loberto, M. Aureli, V. Chigorno, E. Lupino, G. DeMarco, A. Lomartire, M.T. Rinaudo, S. Sonnino, and A. Prinetti. 2010. Deregulated sphingolipid metabolism and membrane organization in neurodegenerative disorders. Molecular Neurobiology 41: 314–340.PubMedCrossRef
37.
Zurück zum Zitat Qi, X., N. Qvit, Y.C. Su, and D. Mochly-Rosen. 2013. A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. Journal of Cell Science 126: 789–802.PubMedPubMedCentral Qi, X., N. Qvit, Y.C. Su, and D. Mochly-Rosen. 2013. A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. Journal of Cell Science 126: 789–802.PubMedPubMedCentral
38.
Zurück zum Zitat Rabuel, C., and A. Mebazaa. 2006. Septic shock: a heart story since the 1960s. Intensive Care Medicine 32: 799–807.PubMedCrossRef Rabuel, C., and A. Mebazaa. 2006. Septic shock: a heart story since the 1960s. Intensive Care Medicine 32: 799–807.PubMedCrossRef
39.
Zurück zum Zitat Ren, C., R.Q. Yao, H. Zhang, Y.W. Feng, and Y.M. Yao. 2020. Sepsis-associated encephalopathy: a vicious cycle of immunosuppression. Journal of Neuroinflammation 17: 14.PubMedPubMedCentralCrossRef Ren, C., R.Q. Yao, H. Zhang, Y.W. Feng, and Y.M. Yao. 2020. Sepsis-associated encephalopathy: a vicious cycle of immunosuppression. Journal of Neuroinflammation 17: 14.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Rubenfeld, G.D., E. Caldwell, E. Peabody, J. Weaver, D.P. Martin, M. Neff, E.J. Stern, and L.D. Hudson. 2005. Incidence and outcomes of acute lung injury. The New England Journal of Medicine 353: 1685–1693.PubMedCrossRef Rubenfeld, G.D., E. Caldwell, E. Peabody, J. Weaver, D.P. Martin, M. Neff, E.J. Stern, and L.D. Hudson. 2005. Incidence and outcomes of acute lung injury. The New England Journal of Medicine 353: 1685–1693.PubMedCrossRef
41.
Zurück zum Zitat Rudd, K.E., S.C. Johnson, K.M. Agesa, K.A. Shackelford, D. Tsoi, D.R. Kievlan, D.V. Colombara, K.S. Ikuta, N. Kissoon, S. Finfer, C. Fleischmann-Struzek, F.R. Machado, K.K. Reinhart, K. Rowan, C.W. Seymour, R.S. Watson, T.E. West, F. Marinho, S.I. Hay, R. Lozano, A.D. Lopez, D.C. Angus, C.J.L. Murray, and M. Naghavi. 2020. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet 395: 200–211.PubMedPubMedCentralCrossRef Rudd, K.E., S.C. Johnson, K.M. Agesa, K.A. Shackelford, D. Tsoi, D.R. Kievlan, D.V. Colombara, K.S. Ikuta, N. Kissoon, S. Finfer, C. Fleischmann-Struzek, F.R. Machado, K.K. Reinhart, K. Rowan, C.W. Seymour, R.S. Watson, T.E. West, F. Marinho, S.I. Hay, R. Lozano, A.D. Lopez, D.C. Angus, C.J.L. Murray, and M. Naghavi. 2020. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study. Lancet 395: 200–211.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Sakr, Y., U. Jaschinski, X. Wittebole, T. Szakmany, J. Lipman, S.A. Namendys-Silva, I. Martin-Loeches, M. Leone, M.N. Lupu, J.L. Vincent, and Investigators I. 2018. Sepsis in intensive care unit patients: worldwide data from the Intensive Care over Nations audit. Open Forum Infectious Diseases 5: ofy313.PubMedPubMedCentralCrossRef Sakr, Y., U. Jaschinski, X. Wittebole, T. Szakmany, J. Lipman, S.A. Namendys-Silva, I. Martin-Loeches, M. Leone, M.N. Lupu, J.L. Vincent, and Investigators I. 2018. Sepsis in intensive care unit patients: worldwide data from the Intensive Care over Nations audit. Open Forum Infectious Diseases 5: ofy313.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Scicluna, B.P., L.A. van Vught, A.H. Zwinderman, M.A. Wiewel, E.E. Davenport, K.L. Burnham, P. Nurnberg, M.J. Schultz, J. Horn, O.L. Cremer, M.J. Bonten, C.J. Hinds, H.R. Wong, J.C. Knight, T. van der Poll, and consortium M. 2017. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. The Lancet Respiratory Medicine 5: 816–826.PubMedCrossRef Scicluna, B.P., L.A. van Vught, A.H. Zwinderman, M.A. Wiewel, E.E. Davenport, K.L. Burnham, P. Nurnberg, M.J. Schultz, J. Horn, O.L. Cremer, M.J. Bonten, C.J. Hinds, H.R. Wong, J.C. Knight, T. van der Poll, and consortium M. 2017. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. The Lancet Respiratory Medicine 5: 816–826.PubMedCrossRef
44.
Zurück zum Zitat Semmler, A., C.N. Widmann, T. Okulla, H. Urbach, M. Kaiser, G. Widman, F. Mormann, J. Weide, K. Fliessbach, A. Hoeft, F. Jessen, C. Putensen, and M.T. Heneka. 2013. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. Journal of Neurology, Neurosurgery, and Psychiatry 84: 62–69.PubMedCrossRef Semmler, A., C.N. Widmann, T. Okulla, H. Urbach, M. Kaiser, G. Widman, F. Mormann, J. Weide, K. Fliessbach, A. Hoeft, F. Jessen, C. Putensen, and M.T. Heneka. 2013. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. Journal of Neurology, Neurosurgery, and Psychiatry 84: 62–69.PubMedCrossRef
45.
Zurück zum Zitat Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315: 801–810.PubMedPubMedCentralCrossRef Singer, M., C.S. Deutschman, C.W. Seymour, M. Shankar-Hari, D. Annane, M. Bauer, R. Bellomo, G.R. Bernard, J.D. Chiche, C.M. Coopersmith, R.S. Hotchkiss, M.M. Levy, J.C. Marshall, G.S. Martin, S.M. Opal, G.D. Rubenfeld, T. van der Poll, J.L. Vincent, and D.C. Angus. 2016. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315: 801–810.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Sonneville, R., F. Verdonk, C. Rauturier, I.F. Klein, M. Wolff, D. Annane, F. Chretien, and T. Sharshar. 2013. Understanding brain dysfunction in sepsis. Annals of Intensive Care 3: 15.PubMedPubMedCentralCrossRef Sonneville, R., F. Verdonk, C. Rauturier, I.F. Klein, M. Wolff, D. Annane, F. Chretien, and T. Sharshar. 2013. Understanding brain dysfunction in sepsis. Annals of Intensive Care 3: 15.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Sweeney, M.D., A.P. Sagare, and B.V. Zlokovic. 2018. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews. Neurology 14: 133–150.PubMedPubMedCentralCrossRef Sweeney, M.D., A.P. Sagare, and B.V. Zlokovic. 2018. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nature Reviews. Neurology 14: 133–150.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Tang, Y., F. Soroush, S. Sun, E. Liverani, J.C. Langston, Q. Yang, L.E. Kilpatrick, and M.F. Kiani. 2018. Protein kinase C-delta inhibition protects blood-brain barrier from sepsis-induced vascular damage. Journal of Neuroinflammation 15: 309.PubMedPubMedCentralCrossRef Tang, Y., F. Soroush, S. Sun, E. Liverani, J.C. Langston, Q. Yang, L.E. Kilpatrick, and M.F. Kiani. 2018. Protein kinase C-delta inhibition protects blood-brain barrier from sepsis-induced vascular damage. Journal of Neuroinflammation 15: 309.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Towner, R.A., D. Saunders, N. Smith, W. Towler, M. Cruz, S. Do, J.E. Maher, K. Whitaker, M. Lerner, and K.A. Morton. 2018. Assessing long-term neuroinflammatory responses to encephalopathy using MRI approaches in a rat endotoxemia model. Geroscience 40: 49–60.PubMedPubMedCentralCrossRef Towner, R.A., D. Saunders, N. Smith, W. Towler, M. Cruz, S. Do, J.E. Maher, K. Whitaker, M. Lerner, and K.A. Morton. 2018. Assessing long-term neuroinflammatory responses to encephalopathy using MRI approaches in a rat endotoxemia model. Geroscience 40: 49–60.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat van der Poll, T., F.L. van de Veerdonk, B.P. Scicluna, and M.G. Netea. 2017. The immunopathology of sepsis and potential therapeutic targets. Nature Reviews. Immunology 17: 407–420.PubMedCrossRef van der Poll, T., F.L. van de Veerdonk, B.P. Scicluna, and M.G. Netea. 2017. The immunopathology of sepsis and potential therapeutic targets. Nature Reviews. Immunology 17: 407–420.PubMedCrossRef
51.
Zurück zum Zitat van Gool, W.A., D. van de Beek, and P. Eikelenboom. 2010. Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet 375: 773–775.PubMedCrossRef van Gool, W.A., D. van de Beek, and P. Eikelenboom. 2010. Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet 375: 773–775.PubMedCrossRef
52.
Zurück zum Zitat Vutukuri, R., R. Brunkhorst, R.I. Kestner, L. Hansen, N.F. Bouzas, J. Pfeilschifter, K. Devraj, and W. Pfeilschifter. 2018. Alteration of sphingolipid metabolism as a putative mechanism underlying LPS-induced BBB disruption. Journal of Neurochemistry 144: 172–185.PubMedCrossRef Vutukuri, R., R. Brunkhorst, R.I. Kestner, L. Hansen, N.F. Bouzas, J. Pfeilschifter, K. Devraj, and W. Pfeilschifter. 2018. Alteration of sphingolipid metabolism as a putative mechanism underlying LPS-induced BBB disruption. Journal of Neurochemistry 144: 172–185.PubMedCrossRef
53.
Zurück zum Zitat Wang, H., L.J. Hong, J.Y. Huang, Q. Jiang, R.R. Tao, C. Tan, N.N. Lu, C.K. Wang, M.M. Ahmed, Y.M. Lu, Z.R. Liu, W.X. Shi, E.Y. Lai, C.S. Wilcox, and F. Han. 2015. P2RX7 sensitizes Mac-1/ICAM-1-dependent leukocyte-endothelial adhesion and promotes neurovascular injury during septic encephalopathy. Cell Research 25: 674–690.PubMedPubMedCentralCrossRef Wang, H., L.J. Hong, J.Y. Huang, Q. Jiang, R.R. Tao, C. Tan, N.N. Lu, C.K. Wang, M.M. Ahmed, Y.M. Lu, Z.R. Liu, W.X. Shi, E.Y. Lai, C.S. Wilcox, and F. Han. 2015. P2RX7 sensitizes Mac-1/ICAM-1-dependent leukocyte-endothelial adhesion and promotes neurovascular injury during septic encephalopathy. Cell Research 25: 674–690.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Weigel, C., S.S. Huttner, K. Ludwig, N. Krieg, S. Hofmann, N.H. Schroder, L. Robbe, S. Kluge, A. Nierhaus, M.S. Winkler, I. Rubio, J. von Maltzahn, S. Spiegel, and M.H. Graler. 2020. S1P lyase inhibition protects against sepsis by promoting disease tolerance via the S1P/S1PR3 axis. EBioMedicine 58: 102898.PubMedPubMedCentralCrossRef Weigel, C., S.S. Huttner, K. Ludwig, N. Krieg, S. Hofmann, N.H. Schroder, L. Robbe, S. Kluge, A. Nierhaus, M.S. Winkler, I. Rubio, J. von Maltzahn, S. Spiegel, and M.H. Graler. 2020. S1P lyase inhibition protects against sepsis by promoting disease tolerance via the S1P/S1PR3 axis. EBioMedicine 58: 102898.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Wiltshire, R., V. Nelson, D.T. Kho, C.E. Angel, S.J. O’Carroll, and E.S. Graham. 2016. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors. Scientific Reports 6: 19814.PubMedPubMedCentralCrossRef Wiltshire, R., V. Nelson, D.T. Kho, C.E. Angel, S.J. O’Carroll, and E.S. Graham. 2016. Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors. Scientific Reports 6: 19814.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Winkler, M.S., A. Nierhaus, M. Holzmann, E. Mudersbach, A. Bauer, L. Robbe, C. Zahrte, M. Geffken, S. Peine, E. Schwedhelm, G. Daum, S. Kluge, and C. Zoellner. 2015. Decreased serum concentrations of sphingosine-1-phosphate in sepsis. Critical Care 19: 372.PubMedPubMedCentralCrossRef Winkler, M.S., A. Nierhaus, M. Holzmann, E. Mudersbach, A. Bauer, L. Robbe, C. Zahrte, M. Geffken, S. Peine, E. Schwedhelm, G. Daum, S. Kluge, and C. Zoellner. 2015. Decreased serum concentrations of sphingosine-1-phosphate in sepsis. Critical Care 19: 372.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Zhou, H., G. Andonegui, C.H. Wong, and P. Kubes. 2009. Role of endothelial TLR4 for neutrophil recruitment into central nervous system microvessels in systemic inflammation. Journal of Immunology 183: 5244–5250.CrossRef Zhou, H., G. Andonegui, C.H. Wong, and P. Kubes. 2009. Role of endothelial TLR4 for neutrophil recruitment into central nervous system microvessels in systemic inflammation. Journal of Immunology 183: 5244–5250.CrossRef
Metadaten
Titel
Sepsis-Associated Encephalopathy and Blood-Brain Barrier Dysfunction
verfasst von
Qingzeng Gao
Marina Sorrentino Hernandes
Publikationsdatum
21.07.2021
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2021
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-021-01501-3

Weitere Artikel der Ausgabe 6/2021

Inflammation 6/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

GLP-1-Agonisten können Fortschreiten diabetischer Retinopathie begünstigen

24.05.2024 Diabetische Retinopathie Nachrichten

Möglicherweise hängt es von der Art der Diabetesmedikamente ab, wie hoch das Risiko der Betroffenen ist, dass sich sehkraftgefährdende Komplikationen verschlimmern.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.