Skip to main content
Erschienen in: Current Neurology and Neuroscience Reports 12/2021

Open Access 01.12.2021 | Neuro-Oncology (P.Y. Wen, Section Editor)

Epidemiology of Brain and Other CNS Tumors

verfasst von: Quinn T. Ostrom, Stephen S. Francis, Jill S. Barnholtz-Sloan

Erschienen in: Current Neurology and Neuroscience Reports | Ausgabe 12/2021

Abstract

Purpose of Review

Brain and other central nervous system (CNS) tumors, while rare, cause significant morbidity and mortality across all ages. This article summarizes the current state of the knowledge on the epidemiology of brain and other CNS tumors.

Recent Findings

For childhood and adolescent brain and other CNS tumors, high birth weight, non-chromosomal structural birth defects and higher socioeconomic position were shown to be risk factors. For adults, increased leukocyte telomere length, proportion of European ancestry, higher socioeconomic position, and HLA haplotypes increase risk of malignant brain tumors, while immune factors decrease risk.

Summary

Although no risk factor accounting for a large proportion of brain and other CNS tumors has been discovered, the use of high throughput “omics” approaches and improved detection/measurement of environmental exposures will help us refine our current understanding of these factors and discover novel risk factors for this disease.
Hinweise
This article is part of the Topical Collection on Neuro-Oncology

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Brain and other CNS tumors, while rare, cause significant mortality and morbidity across all ages. Despite decades of research on the etiology of brain and other CNS tumors, no risk factor accounting for a large proportion of cases has been identified. Brain and other CNS tumors are unique in that they are histologically complex, with over 100 types as listed by the World Health Organization International Classification of Diseases Oncology [1] and they display many of the well know Hallmarks of Cancer [2, 3] with dysregulated cell growth, metabolism, etc. However, with the use of novel high throughput “omics” approaches our understanding of causes and risk factors for brain and other CNS tumor continues to be refined and grow. In this review, we describe current and up to date knowledge about causes and risk factors for brain and other CNS tumors in children/adolescents and adults.

Updates on Causes and Risk Factors for Brain and Other CNS Tumors in Children and Adolescents

Brain and other CNS tumors the most common cancer in children diagnosed at 0–14 years old and the second most common cancer in adolescents diagnosed at 15–19 years old [4••]. In particular, the incidence of brain and other CNS tumors is highest for those 5 and younger at diagnosis. In children and adolescents, the majority of brain and other CNS tumors are malignant tumors (age-adjusted incidence of 3.55 per 100,000) while non-malignant brain and other CNS tumors are less common in this age group (age-adjusted incidence 2.60 per 100,000) [4••]. The most common malignant histologies in this age group are glioma, embryonal tumors and germ cell tumors while the most common specific non-malignant histology is tumors of the pituitary (Fig. 1a). There have been no significant changes in incidence of these tumors in this age group over the last few decades [4••, 5]. In addition, brain and other CNS tumors are the number one cause of cancer related mortality in children diagnosed at 0–14 years old and overall survival for childhood and adolescent brain and other CNS tumors varies greatly by brain and other CNS tumor histology (Fig. 1c).
Many factors, both environmental and genetic, have been studied in order to identify a factor that accounted for a large proportion of childhood and adolescent brain and other CNS tumors (as reviewed in [6•]). Unfortunately, no such factor has been identified. There are two primary risk factors for brain and other CNS tumors in children, adolescents and adults that have been well validated: single gene inherited disorders (~ 4% of childhood cases) and ionizing radiation (as reviewed in [6•, 7]). In fact, carcinogenic effects of radiation seem to be stronger in children, particularly in younger children, and show a clear dose response relationship [8, 9]. Few genetic association studies have been performed in childhood brain and other CNS tumors and therefore our knowledge about genetic risk factors for these tumors in this age group is very limited. Some candidate gene studies have been performed and provide some evidence for shared genetic risk factors for brain and other CNS tumors between age groups (as reviewed in [6•]). Some recent work in childhood ependymoma suggests that European ancestry is associated with higher risk of a childhood ependymoma [10] and that genetic risk for longer telomere length was associated with a higher risk of ependymoma in children and adolescents aged 12–19 but not for those younger than 12 years old at diagnosis [11•].
Some of the newest environmental risk factors to be studied in relation to risk for childhood and adolescent brain and other CNS tumors are birth weight and non-chromosomal structural birth defects. There is reasonably consistent evidence that higher birth weight is associated with a higher risk of childhood brain and other CNS tumors as provided by 3 large meta-analyses [1214]. Georgakis et al. performed a systematic review and meta-analysis and showed that birth weight > 4000 g was associated with in increased risk of a childhood brain and other CNS tumor (Odds Ratio 1.14, 95% confidence interval (1.08–1.20); higher risk for astrocytoma and embryonal tumors and non-significant for ependymoma [12]. Dahlhaus et al. performed a meta-analysis and showed that high birth weight (> 4000 g) increased the risk of astrocytoma and medulloblastoma and not for ependymoma [13]. However, Bailey et al. pooled data from multiple population-based case–control studies in France and found no association between birth weight and childhood brain and other CNS tumor risk [14].
Non-chromosomal structural birth defects are a strong and consistent risk factor for childhood cancers in general [1517]; these findings were most pronounced in young children, aged 5 years or younger with cancer [18, 19]. For brain and other CNS tumors, ~ 7% of childhood brain and other CNS tumors are attributable to these defects [1517]. Previous studies had suggested ~ twofold increased risk of childhood brain and other CNS tumor associated with a birth defect [1821]. However, a very recent study using records from 10 million live births showed that particularly for children with a defect of the central nervous system or other neurological anomaly they are at a higher risk of development of a brain and other CNS tumor, with hazard ratios as high as 10 [17].

Updates on Causes and Risk Factors for Brain and Other CNS Tumors in Adults

Brain and other CNS tumors are the 8th most common cancer in adults 40 + [4••]. The majority of brain and other CNS tumors diagnosed in adults 20 + years old are non-malignant tumors (age-adjusted incidence of 22.38 per 100,000) while malignant brain and other CNS tumors are less common in this age group (age-adjusted incidence 8.5 per 100,000) [4••]. The most common malignant histology in adult is glioma, while the most common specific non-malignant histologies are meningioma and tumors of the pituitary (Fig. 1b). There have been no significant changes in incidence of glioma in this age group over the last few decades [4••, 5]. Malignant brain and other CNS tumors are the 6th most common cause of cancer death in adults 40 + years old in the USA [4••]. Overall, survival for adult brain and other CNS tumors varies greatly by brain and other CNS tumor histology (Fig. 1d).
Numerous environmental exposures have been evaluated as potential risk factors for brain and other CNS tumors in adults, but the only consistent risk factor that has been identified is exposure to high-dose ionizing radiation [22]. For meningioma, the excess relative risk (ERR) associated with one Gy of exposure to ionizing radiation was 4.63, while the ERR associated with glioma was 1.98. History of respiratory allergies has been consistently associated with decreased risk of glioma [23]. Due to the rarity of this level of radiation exposure, this does not account for the vast majority of brain tumor incidence.
Many environmental risk factors are still under investigation, though these have mixed or null results of association with brain and other CNS tumors. One of the most thoroughly investigated is cellular phones due to their frequent use globally. Cellular phones emit radiofrequency fields (RF), which were classified as a possible carcinogen by the International Agency for Research on Cancer (IARC) in 2011 [24]. The majority of epidemiological studies since the publication of the IARC report have found no significant associations between cellular phone use and risk of any type of brain and other CNS tumor. Extremely low frequency magnetic fields (ELFs) have also been studies extensively in relation to brain and other CNS tumor risk. The INTEROCC consortium was formed to evaluate the association between ELF and brain and other CNS tumors, and did not find an association with lifetime cumulative occupational exposure to ELF [25]. Power lines are another source of EMF exposure that have been investigated in relation to brain and other CNS tumor risk. A recent case–control study found a significant association between the highest level of estimated ELF from power lines and increased risk of brain and other CNS tumors, and glioma in particular [26]. More investigation is necessary to confirm this association. Other non-radiation occupational exposures have also been studied extensively in relation to risk for brain and other CNS tumors, and to date none have been consistently associated with risk of brain and other CNS tumors [6•].
While the vast majority of brain and other CNS tumors occur in individuals without a known cancer syndrome, ~ 5–10% have a family history of brain and CNS tumor [27]. There are numerous mendelian cancer syndromes that affect risk of brain and other CNS tumors, including neurofibromatosis types I and II, tuberous sclerosis, and Li Fraumeni syndrome (as reviewed [6•]; Table 1). Due to the lack of known environmental risk factors, investigations into common inherited genetic polymorphisms have been conducted to identify genetic risk factors in individuals with no family history. The majority of these studies have focused on glioma, which is responsible for the vast majority of deaths due to malignant brain and other CNS tumors. In total, these have identified 25 single nucleotide polymorphisms (SNPs) associated with risk for glioma. The risk conferred by these variants is histology specific. There are 11 risk SNPs for glioblastoma and 19 risk SNPs for non-glioblastoma, where 5 SNPs are shared between these two broad glioma types [28••] (Table 1). The function of many gliomas associated SNPs are currently unknown, though some are part of known oncogenic pathways. The most common pathway identified as conferring risk in glioma are those associated with telomere maintenance, including risk variants near TERT and RTEL1. Many of these SNPs have further molecular subtype associations ([29•]; Table 1). Several candidate SNP studies have been conducted in East Asian populations, which have found novel association loci for glioma as well as validated those discovered in European-ancestry populations, including loci in TERC, TERT, EGFR, and PHLDB1 [30, 31] (Table 1). The only GWAS of glioma in an East Asian population confirmed associations near TERT, PHLDB1 and RTEL1, and identified two new variants [32•] (Table 1).
Table 1
Genes implicated in inherited and sporadic brain tumor risk by chromosomal position (as reviewed in in [6•])
Chromosomal location
Gene
Associated tumor type
Mendelian associations disorder/syndrome (OMIM ID)
Single SNP associations from genome-wide association studies
2p16.3
MSH6
Medulloblastoma, glioma, glioblastoma,
Lynch syndrome (120435), Biallelic mismatch repair deficiency, constitutional MMR deficiency
Mismatch repair deficiency syndrome (276300)
None
2p21-p16.3
MSH2
Medulloblastoma, glioma, glioblastoma,
Lynch syndrome (120435), Biallelic mismatch repair deficiency, constitutional MMR deficiency
Mismatch repair deficiency syndrome (276300)
None
2q33.3
C2orf80
Lower grade glioma
None
rs7572263
2q33.3
IDH1
Glioma
Ollier disease
None
3p14.1
LRIG1
Lower grade glioma
None
rs11706832
3p21.1
BAP1
Meningioma
BAP1 tumor predisposition syndrome (614327)
None
3p22.2
MLH1
Medulloblastoma, glioma, glioblastoma,
Turcot’s syndrome type 1
Lynch syndrome (120435), Biallelic mismatch repair deficiency, constitutional MMR deficiency
Mismatch repair deficiency syndrome (276300)
None
3p25
VHL
Hemangioblastoma
Von Hippel-Lindau syndrome (193300)
None
3q26.2
TERC
All glioma
None
rs1920116
5p13.3
DROSHA
Pineoblastoma, pituitary blastoma
DICER1 syndrome
None
5p15.33
TERT
All glioma
None
rs10069690
Astrocytoma
None
rs2853676
5q21
APC
Medulloblastoma, glioma
Familial adenomatous polyposis (FAP, 175100), Turcot’s syndrome type 2
None
7p11.2
EGFR
All glioma
None
rs2252586
Glioblastoma
None
rs11979158; rs730437; rs1468727
7p22.1
PMS2
Medulloblastoma, glioma, glioblastoma,
Turcot’s syndrome type 1
Lynch syndrome (120435), Biallelic mismatch repair deficiency, constitutional MMR deficiency
Mismatch repair deficiency syndrome (276300)
None
8p12
RECQL2
Meningioma
Werner syndrome (277700)
None
8q24.21
CCDC26
Lower grade glioma, in particular IDH-mutant tumors
None
rs55705857
9p21.3
CDKN2A
Glioma
Melanoma-neural system tumor syndrome (155755)
None
CDKN2B-AS1
Lower grade glioma, in particular WHO grade II-IV astrocytic tumors
None
rs4977756
9q22.3
PTCH1
Medulloblastoma, meningioma
Gorlin’s syndrome (nevoid basal cell carcinoma)
None
9q34.14
TSC1
Giant cell astrocytoma
Tuberous sclerosis (TSC) (191100, 613254)
None
10p12.31
MIR4675, NEBL
Pituitary adenoma
None
rs2359536
MLLT10
Meningioma
None
rs11012732
10q21.1
PCDH15
Pituitary adenoma
None
rs10763170
10q23.31
PTEN
Cerebellar gangliocytoma, meningioma
Cowden syndrome 1 (158350)
None
10q24.32
SUFU
Meningioma
Familial meningiomatoses (607174)
None
10q24.33
OBFC1
Lower grade glioma
None
rs11598018
10q25.2
VTI1A
Lower grade glioma
None
rs11599775
11p15.5
RIC8A
Meningioma
None
rs2686876
11q13.1
MEN1
Pituitary prolactinoma, meningioma
Multiple endocrine neoplasia, type 1 (131100)
None
11q13.2
AIP
Pituitary adenomas
Pituitary adenoma predisposition (102200)
None
11q14.1
Intergenic
Glioblastoma
None
rs11233250
11q21
MAML2
Lower grade glioma
None
rs7107785
11q22.3
ATM
Astrocytoma and medulloblastoma
Ataxia-telangiectasia (208900)
None
11q23.2
PHLDB1
All glioma
None
rs648044; rs17748; rs2236661; rs494560
All glioma
None
rs494560
Lower grade glioma, in particular IDH-mutant gliomas
None
rs498872
12p11.23
STK38L
All glioma
None
rs10842893
12q21.2
Intergenic
Lower grade glioma
None
rs1275600
13q12.13
CDK8
Pituitary adenoma
None
rs17083838
13q14
RB1
Retinoblastoma, pineoblastoma, Malignant glioma
Retinoblastoma
None
14q12
AKAP6
Lower grade glioma
None
rs10131032
14q32.13
DICER1
Pineoblastoma, pituitary blastoma
DICER1 syndrome
None
15q21.3
RAB27A
All glioma
None
rs4774756
15q24.2
ETFA
Lower grade glioma
None
rs1801591
15q26.1
IDH2
Glioma
Ollier disease
None
16p13.3
CREBBP
Medulloblastoma, oligodendroglioma, and meningioma
Rubinstein-Taybi syndrome (180849)
None
16p13.3
RHBDF1
Glioblastoma
None
rs2562152
Lower grade glioma
None
rs3751667
TSC2
Giant cell astrocytoma
Tuberous sclerosis (TSC) (191100, 613254)
None
16q12.1
HEATR3
Glioblastoma
None
rs10852606
16q24.3
FANCA
Medulloblastoma
Fanconi anemia (227650)
None
17p13.1
TP53
All glioma
Li-Fraumeni syndrome (151623)
rs78378222
17q11.2
NF1
Astrocytoma, schwannomas, optic nerve glioma
Neurofibromatosis 1 (NF1) (162200)
None
17q21.2
SMARCE1
Meningioma
Familial meningiomatoses (607174)
None
17q24.2
PRKAR1A
Pituitary adenomas
Carney complex (160980)
None
1p31.3
RAVER2
Glioblastoma
None
rs12752552
1q32.1
MDM4
Lower grade glioma
None
rs4252707
1q44
AKT3
Lower grade glioma
None
rs12076373
20q13.33
RTEL1
All glioma
None
rs6010620
22q11.23
SMARCB1
Meningioma
Familial meningiomatoses (607174)
None
22q12.1
MN1
Meningioma
Familial meningiomatoses (607174)
None
22q12.2
NF2
Acoustic neuromas, meningiomas, Ependymoma
Neurofibromatosis 2 (NF2) (101000)
None
22q13.1
PDGFB
Meningioma
Familial meningiomatoses (607174)
None
SLC16A8
Glioblastoma
None
rs2235573
22q13.2
EP300
Medulloblastoma, oligodendroglioma, and meningioma
Rubinstein-Taybi syndrome (180849)
None

Ancestry and Brain Tumor Risk

Genetic studies have also been conducted in other brain and other CNS tumor types. In European ancestry populations, two SNPs have been identified as affecting risk for meningioma [33•] (Table 1), while two SNPs have been identified for primary CNS lymphomas [34•] (Table 1). In individuals of East Asian ancestry, three SNPs have been identified as increasing risk in pituitary adenoma [35]. Genetic factors other than specific SNPs have also been associated with risk of developing a brain tumor. Increased leukocyte telomere length (LTL) has been associated with increased risk of both glioma and meningioma [36, 37]. In addition to individual level variation in LTL, analysis of glioma samples has demonstrated that these tumors have significantly longer telomere length as compared to other cancers [38]. Malignant brain tumor incidence is highest in countries with primarily European-ancestry populations (such as Europe, the USA and Canada), and in white non-Hispanics in the USA [6•, 39]. Similar to associations identified with pediatric tumors, increased overall European-ancestry has been detected in African American and Hispanic glioma cases as compared to controls [40•].
Several infections have been epidemiologically evaluated in glioma. Members of the polyomavirus family including BK, JC, and SV40 have been inconsistently associated with glioma risk [41, 42]. Members of the family herpesviridae have been evaluated in multiple studies with inconsistent results. The herpesvirus’s Epstein-Barr virus, herpes-simplex 1/2, has been extensively evaluated in human cancers; yet, the evidence in central nervous system tumors is contradictory [43, 44]. Cytomegalovirus (CMV) was associated with glioma where serologic investigations into risk/survival and the presence of CMV within tumors have again provided inconsistent evidence of a causal link between CMV and glioma development [4548]. However, recently two anti-CMV therapeutics have provided evidence of increased patient survival after receiving valganciclovir or a pp65 based treatment [49, 50]. Those observations and mechanistic studies have bolstered a theory of CMV as an ‘oncomodulator’ in glioma, where CMV may not necessarily be involved in the initiation of glioma but may play a role in tumor growth and immune evasion [51•]. The most recently associated infection with glioma risk is not a virus but a protozoan, toxoplasma gondii (T. gondii). In a relatively small study of serum samples from two separate cohorts antibodies to T. gondii were significantly associated (OR: 2.70; 95% CI: 0.96–7.62; OR: 1.32, 95% CI: 0.85–2.07) with glioma risk before diagnosis, eliminating reverse causation biasing the association [52]. Further serologic studies examining T. gondii are needed.
The only consistently associated infection tied to glioma risk is the herpesvirus varicella zoster virus (VZV), the nearly ubiquitous virus that causes chickenpox and shingles [53]. Serologic studies of VZV antigens have also shown a similar reduction in glioma risk [54, 55]. In a large international meta-analysis of self-report VZV infection reported from 8704 cases included in the Glioma International Case Control Study, infection with VZV conferred a 20% reduced risk of glioma [56]. Although the mechanism remains a mystery, it has been hypothesized that interactions between the VZV and host immune response may be mediating glioma development. Parallel to the inverse association with VZV is the observation that allergic and ectopic conditions reduce glioma risk [23]. Allergies and other atopic conditions have consistently been shown to reduce risk of brain tumors, particularly glioma (as reviewed in [6•]).
Two large international meta-analyses have also concluded that allergy and ectopic conditions reduce the risk of glioma ~ 20% [23, 57]. Measurements of serum IgE in glioma cases and controls have mirrored the questionnaire based studies showing that increased serum IgE is associated with reduced glioma risk [58, 59]. To further investigate the underlying genetic architecture of allergy and its relation to glioma risk Mendelian randomization studies have been utilized to assess the genetic basis for this association [6062]. The results from these studies have been suggestive showing small effects of reduced risk when comparing genetically programmed allergy/atopy with glioma risk, but not conclusive and may be due to the difficulty of constructing a genetic instrument for allergy and ectopic conditions.
Studies have demonstrated a significant heritable component (32–48%) of antibody responses to many viruses and have identified multiple host genetic loci relating to immune response for a variety of viruses [63]. The hereditable component for allergic response is estimated at ~ 65% and genetic loci relating to T-cell and signal transduction [6466]. Genetic studies of both allergy and response to infections have highlighted the human leucocyte antigen (HLA) as a powerful genetic regulator. Specific HLA alleles have been associated with glioma, though the complexity of the HLA complicates studies based on SNP array data. One of the earliest studies to investigate this was the UCSF Adult Glioma Study, with risk-increasing effects observed for B*13 and B*07 ~ C*07 haplotype, and protective effects for C*01 allele [67]. In this same study, two class I HLA alleles, A*32 and B*55, were associated with longer survival in GBM AGS patients. A*32 was also inversely associated with GBM risk in a separate population [68]. The largest recent study of using SNPs1856 glioma cases and 4955 controls, observed a 50% greater risk of glioma in heterozygous compared to homozygous carriers of the DRB1*15:01 ~ DQA1*01:02 ~ DQB1*06:02 haplotype (p < 0.002), with significant non-additive/epistatic effects [69]. Intriguingly, this haplotype is associated with susceptibility to multiple autoimmune conditions, and antibody response to EBV and VZV antigens [70, 71], and a new analysis suggested that history of auto-immune disease may also decrease risk of developing a glioma [72•]. Recent analyses of expression of immune cell populations using LD score regression showed that the genomic architecture of T cells, NK cells, and myeloid cells is inversely correlated with glioma and may be mediating glioma predisposition [72•]. New approaches to categorizing immune cells in tumors include traditional immunohistochemistry-based approaches [73] and novel methylation based analyses to de-convolute cell types [74•]; both of these approaches seek to stratify tumor types based on tumor infiltrating immune cells. Recent studies show that methylation derived neutrophile to lymphocyte ratios less than 4.0 were associated with significantly decrease survival times (HR 2.02, 95% CI, 1.11–3.69) [75]. Further research examining the interaction between genetic loci, blood cell proportions and their relationship to allergy/infections are required to understand the complex involvement to glioma risk.

Socioeconomic Position

Mounting evidence from diverse studies suggests that higher socioeconomic position (SEP) is associated with an increased risk of adult CNS tumors when compared to individuals with a lower SEP [7679, 80••]. An analysis of SEER data showed a significant relationship between the first quartile versus the second third, and fourth quartiles of county level income revealing a 10%, 11%, and 14% higher risk of glioma respectively [77]. A recent analysis of SEER data showed that the increased risk associated with higher SEP is primarily in non-Hispanic whites [80••]. Additionally, two recent registry-based studies of childhood CNS malignancies suggest that this relationship appears to not only exist in adult CNS tumors but also in childhood CNS tumors, where studies in both California and Denmark show similar effects in various measures of SEP [81•, 82•]. Possible explanations include a diagnostic bias where tumors in patients with lower SEP may go unreported; yet, the accuracy of surveillance and the magnitude of the effect suggest that this bias alone does not alone account for the association. Another explanation is an unidentified risk factor that is associated with higher SEP, possibly related to the ‘hygiene hypothesis’ [83] where immune exposures relating to allergy and infection maybe altered according to SEP.

Conclusions

Although no risk factor accounting for a large proportion of brain and other CNS tumors has been discovered, there are multiple directions that can be taken to add to our understanding of risk for brain and other CNS tumors. Specifically, the use of high throughput “omics” approaches, improved detection/measurement of environmental exposures, expansion to more diverse populations, synergy between germline and somatic variants, and incorporation of all types of clinical data to comprehensively study this disease (such as imaging). These novel directions will help us refine our current understanding of these factors and discover novel risk factors for this disease.

Acknowledgements

The CBTRUS data were provided through an agreement with the Centers for Disease Control’s National Program of Cancer Registries. In addition, CBTRUS used data from the research data files of the National Cancer Institute’s Surveillance, Epidemiology, and End Results Program, and the National Center for Health Statistics National Vital Statistics System. CBTRUS acknowledges and appreciates these contributions to this report and to cancer surveillance in general. Funding for CBTRUS was provided by the Centers for Disease Control and Prevention (CDC) under Contract No. 75D30119C06056, the American Brain Tumor Association, The Sontag Foundation, Novocure, the Musella Foundation, National Brain Tumor Society, the Pediatric Brain Tumor Foundation, the Uncle Kory Foundation, the Zelda Dorin Tetenbaum Memorial Fund, as well as private and in-kind donations.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. The only human subject’s data included in this article was use of de-identified data from the Central Brain Tumor Registry of the United States (CBTRUS Incidence: Data provided by CDC’s National Program of Cancer Registries (NPCR) and NCI’s Surveillance, Epidemiology and End Results (SEER) Program, 2013–2017; NPCR Survival Analytic file (2001–2016), approved as exempt from the Duke University Institutional Review Board.

Disclaimer

Contents are solely the responsibility of the authors and do not necessarily represent the official views of the CDC or the NCI.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta neuropathologica. 2016;131(6):803–20. Epub 2016/05/10. https://doi.org/10.1007/s00401-016-1545-1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta neuropathologica. 2016;131(6):803–20. Epub 2016/05/10. https://​doi.​org/​10.​1007/​s00401-016-1545-1.
4.
Zurück zum Zitat •• Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro-oncology. 2020;22(12 Suppl 2):iv1-iv96. Epub 2020/10/31. https://doi.org/10.1093/neuonc/noaa200. •• Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neuro-oncology. 2020;22(12 Suppl 2):iv1-iv96. Epub 2020/10/31. https://​doi.​org/​10.​1093/​neuonc/​noaa200.
5.
Zurück zum Zitat Gittleman HR, Ostrom QT, Rouse CD, Dowling JA, de Blank PM, Kruchko CA, Elder JB, Rosenfeld SS, Selman WR, Sloan AE, Barnholtz-Sloan JS. Trends in central nervous system tumor incidence relative to other common cancers in adults, adolescents, and children in the United States, 2000 to 2010. Cancer. 2015;121(1):102–12. Epub 2014/08/27. https://doi.org/10.1002/cncr.29015. Gittleman HR, Ostrom QT, Rouse CD, Dowling JA, de Blank PM, Kruchko CA, Elder JB, Rosenfeld SS, Selman WR, Sloan AE, Barnholtz-Sloan JS. Trends in central nervous system tumor incidence relative to other common cancers in adults, adolescents, and children in the United States, 2000 to 2010. Cancer. 2015;121(1):102–12. Epub 2014/08/27. https://​doi.​org/​10.​1002/​cncr.​29015.
7.
Zurück zum Zitat Johnson KJ, Cullen J, Barnholtz-Sloan JS, Ostrom QT, Langer CE, Turner MC, McKean-Cowdin R, Fisher JL, Lupo PJ, Partap S, Schwartzbaum JA, Scheurer ME. Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2014;23(12):2716–36. Epub 2014/09/07. https://doi.org/10.1158/1055-9965.epi-14-0207. Johnson KJ, Cullen J, Barnholtz-Sloan JS, Ostrom QT, Langer CE, Turner MC, McKean-Cowdin R, Fisher JL, Lupo PJ, Partap S, Schwartzbaum JA, Scheurer ME. Childhood brain tumor epidemiology: a brain tumor epidemiology consortium review. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2014;23(12):2716–36. Epub 2014/09/07. https://​doi.​org/​10.​1158/​1055-9965.​epi-14-0207.
10.
Zurück zum Zitat Zhang C, Ostrom QT, Hansen HM, Gonzalez-Maya J, Hu D, Ziv E, Morimoto L, de Smith AJ, Muskens IS, Kline CN, Vaksman Z, Hakonarson H, Diskin SJ, Kruchko C, Barnholtz-Sloan JS, Ramaswamy V, Ali-Osman F, Bondy ML, Taylor MD, Metayer C, Wiemels JL, Walsh KM. European genetic ancestry associated with risk of childhood ependymoma. Neuro-oncology. 2020;22(11):1637–46. Epub 2020/07/02. https://doi.org/10.1093/neuonc/noaa130. Zhang C, Ostrom QT, Hansen HM, Gonzalez-Maya J, Hu D, Ziv E, Morimoto L, de Smith AJ, Muskens IS, Kline CN, Vaksman Z, Hakonarson H, Diskin SJ, Kruchko C, Barnholtz-Sloan JS, Ramaswamy V, Ali-Osman F, Bondy ML, Taylor MD, Metayer C, Wiemels JL, Walsh KM. European genetic ancestry associated with risk of childhood ependymoma. Neuro-oncology. 2020;22(11):1637–46. Epub 2020/07/02. https://​doi.​org/​10.​1093/​neuonc/​noaa130.
11.
Zurück zum Zitat • Zhang C, Ostrom QT, Semmes EC, Ramaswamy V, Hansen HM, Morimoto L, de Smith AJ, Pekmezci M, Vaksman Z, Hakonarson H, Diskin SJ, Metayer C, Taylor MD, Wiemels JL, Bondy ML, Walsh KM. Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset ependymoma. Acta neuropathologica communications. 2020;8(1):173. Epub 2020/10/30. https://doi.org/10.1186/s40478-020-01038-w. • Zhang C, Ostrom QT, Semmes EC, Ramaswamy V, Hansen HM, Morimoto L, de Smith AJ, Pekmezci M, Vaksman Z, Hakonarson H, Diskin SJ, Metayer C, Taylor MD, Wiemels JL, Bondy ML, Walsh KM. Genetic predisposition to longer telomere length and risk of childhood, adolescent and adult-onset ependymoma. Acta neuropathologica communications. 2020;8(1):173. Epub 2020/10/30. https://​doi.​org/​10.​1186/​s40478-020-01038-w.
12.
Zurück zum Zitat Georgakis MK, Kalogirou EI, Liaskas A, Karalexi MA, Papathoma P, Ladopoulou K, Kantzanou M, Tsivgoulis G, Petridou ET. Anthropometrics at birth and risk of a primary central nervous system tumour: a systematic review and meta-analysis. European journal of cancer (Oxford, England : 1990). 2017;75:117–31. Epub 2017/02/22. https://doi.org/10.1016/j.ejca.2016.12.033. Georgakis MK, Kalogirou EI, Liaskas A, Karalexi MA, Papathoma P, Ladopoulou K, Kantzanou M, Tsivgoulis G, Petridou ET. Anthropometrics at birth and risk of a primary central nervous system tumour: a systematic review and meta-analysis. European journal of cancer (Oxford, England : 1990). 2017;75:117–31. Epub 2017/02/22. https://​doi.​org/​10.​1016/​j.​ejca.​2016.​12.​033.
13.
14.
Zurück zum Zitat Bailey HD, Rios P, Lacour B, Guerrini-Rousseau L, Bertozzi AI, Leblond P, Faure-Conter C, Pellier I, Freycon C, Michon J, Puget S, Ducassou S, Orsi L, Clavel J. Factors related to pregnancy and birth and the risk of childhood brain tumours: The ESTELLE and ESCALE studies (SFCE, France). International journal of cancer. 2017;140(8):1757–69. Epub 2017/01/06. https://doi.org/10.1002/ijc.30597. Bailey HD, Rios P, Lacour B, Guerrini-Rousseau L, Bertozzi AI, Leblond P, Faure-Conter C, Pellier I, Freycon C, Michon J, Puget S, Ducassou S, Orsi L, Clavel J. Factors related to pregnancy and birth and the risk of childhood brain tumours: The ESTELLE and ESCALE studies (SFCE, France). International journal of cancer. 2017;140(8):1757–69. Epub 2017/01/06. https://​doi.​org/​10.​1002/​ijc.​30597.
17.
Zurück zum Zitat Lupo PJ, Schraw JM, Desrosiers TA, Nembhard WN, Langlois PH, Canfield MA, Copeland G, Meyer RE, Brown AL, Chambers TM, Sok P, Danysh HE, Carozza SE, Sisoudiya SD, Hilsenbeck SG, Janitz AE, Oster ME, Scheuerle AE, Schiffman JD, Luo C, Mian A, Mueller BA, Huff CD, Rasmussen SA, Scheurer ME, Plon SE. Association between birth defects and cancer risk among children and adolescents in a population-based assessment of 10 million live births. JAMA oncology. 2019;5(8):1150–8. Epub 2019/06/21. https://doi.org/10.1001/jamaoncol.2019.1215. Lupo PJ, Schraw JM, Desrosiers TA, Nembhard WN, Langlois PH, Canfield MA, Copeland G, Meyer RE, Brown AL, Chambers TM, Sok P, Danysh HE, Carozza SE, Sisoudiya SD, Hilsenbeck SG, Janitz AE, Oster ME, Scheuerle AE, Schiffman JD, Luo C, Mian A, Mueller BA, Huff CD, Rasmussen SA, Scheurer ME, Plon SE. Association between birth defects and cancer risk among children and adolescents in a population-based assessment of 10 million live births. JAMA oncology. 2019;5(8):1150–8. Epub 2019/06/21. https://​doi.​org/​10.​1001/​jamaoncol.​2019.​1215.
18.
19.
Zurück zum Zitat Janitz AE, Neas BR, Campbell JE, Pate AE, Stoner JA, Magzamen SL, Peck JD. Childhood cancer in children with congenital anomalies in Oklahoma, 1997 to 2009. Birth defects research Part A, Clinical and molecular teratology. 2016;106(7):633–42. Epub 2016/03/08. https://doi.org/10.1002/bdra.23494. Janitz AE, Neas BR, Campbell JE, Pate AE, Stoner JA, Magzamen SL, Peck JD. Childhood cancer in children with congenital anomalies in Oklahoma, 1997 to 2009. Birth defects research Part A, Clinical and molecular teratology. 2016;106(7):633–42. Epub 2016/03/08. https://​doi.​org/​10.​1002/​bdra.​23494.
21.
Zurück zum Zitat Bjørge T, Cnattingius S, Lie RT, Tretli S, Engeland A. Cancer risk in children with birth defects and in their families: a population based cohort study of 5.2 million children from Norway and Sweden. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2008;17(3):500–6. Epub 2008/02/26. https://doi.org/10.1158/1055-9965.epi-07-2630. Bjørge T, Cnattingius S, Lie RT, Tretli S, Engeland A. Cancer risk in children with birth defects and in their families: a population based cohort study of 5.2 million children from Norway and Sweden. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2008;17(3):500–6. Epub 2008/02/26. https://​doi.​org/​10.​1158/​1055-9965.​epi-07-2630.
22.
Zurück zum Zitat Sadetzki S, Chetrit A, Freedman L, Stovall M, Modan B, Novikov I. Long-term follow-up for brain tumor development after childhood exposure to ionizing radiation for tinea capitis. Radiat Res. 2005;163(4):424–32.CrossRef Sadetzki S, Chetrit A, Freedman L, Stovall M, Modan B, Novikov I. Long-term follow-up for brain tumor development after childhood exposure to ionizing radiation for tinea capitis. Radiat Res. 2005;163(4):424–32.CrossRef
23.
Zurück zum Zitat Amirian ES, Zhou R, Wrensch MR, Olson SH, Scheurer ME, Il'yasova D, Lachance D, Armstrong GN, McCoy LS, Lau CC, Claus EB, Barnholtz-Sloan JS, Schildkraut J, Ali-Osman F, Sadetzki S, Johansen C, Houlston RS, Jenkins RB, Bernstein JL, Merrell RT, Davis FG, Lai R, Shete S, Amos CI, Melin BS, Bondy ML. Approaching a scientific consensus on the association between allergies and glioma risk: a report from the Glioma International Case-Control Study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2016;25(2):282–90. Epub 2016/02/26. https://doi.org/10.1158/1055-9965.epi-15-0847. Amirian ES, Zhou R, Wrensch MR, Olson SH, Scheurer ME, Il'yasova D, Lachance D, Armstrong GN, McCoy LS, Lau CC, Claus EB, Barnholtz-Sloan JS, Schildkraut J, Ali-Osman F, Sadetzki S, Johansen C, Houlston RS, Jenkins RB, Bernstein JL, Merrell RT, Davis FG, Lai R, Shete S, Amos CI, Melin BS, Bondy ML. Approaching a scientific consensus on the association between allergies and glioma risk: a report from the Glioma International Case-Control Study. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2016;25(2):282–90. Epub 2016/02/26. https://​doi.​org/​10.​1158/​1055-9965.​epi-15-0847.
25.
Zurück zum Zitat Turner MC, Benke G, Bowman JD, Figuerola J, Fleming S, Hours M, Kincl L, Krewski D, McLean D, Parent ME, Richardson L, Sadetzki S, Schlaefer K, Schlehofer B, Schüz J, Siemiatycki J, van Tongeren M, Cardis E. Occupational exposure to extremely low-frequency magnetic fields and brain tumor risks in the INTEROCC study. Cancer Epidemiol Biomarkers Prev. 2014;23(9):1863–72. Epub 2014/06/18. https://doi.org/10.1158/1055-9965.Epi-14-0102. Turner MC, Benke G, Bowman JD, Figuerola J, Fleming S, Hours M, Kincl L, Krewski D, McLean D, Parent ME, Richardson L, Sadetzki S, Schlaefer K, Schlehofer B, Schüz J, Siemiatycki J, van Tongeren M, Cardis E. Occupational exposure to extremely low-frequency magnetic fields and brain tumor risks in the INTEROCC study. Cancer Epidemiol Biomarkers Prev. 2014;23(9):1863–72. Epub 2014/06/18. https://​doi.​org/​10.​1158/​1055-9965.​Epi-14-0102.
27.
28.
Zurück zum Zitat •• Melin BS, Barnholtz-Sloan JS, Wrensch MR, Johansen C, Il'yasova D, Kinnersley B, Ostrom QT, Labreche K, Chen Y, Armstrong G, Liu Y, Eckel-Passow JE, Decker PA, Labussiere M, Idbaih A, Hoang-Xuan K, Di Stefano AL, Mokhtari K, Delattre JY, Broderick P, Galan P, Gousias K, Schramm J, Schoemaker MJ, Fleming SJ, Herms S, Heilmann S, Nothen MM, Wichmann HE, Schreiber S, Swerdlow A, Lathrop M, Simon M, Sanson M, Andersson U, Rajaraman P, Chanock S, Linet M, Wang Z, Yeager M, Wiencke JK, Hansen H, McCoy L, Rice T, Kosel ML, Sicotte H, Amos CI, Bernstein JL, Davis F, Lachance D, Lau C, Merrell RT, Shildkraut J, Ali-Osman F, Sadetzki S, Scheurer M, Shete S, Lai RK, Claus EB, Olson SH, Jenkins RB, Houlston RS, Bondy ML. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nature genetics. 2017;49(5):789–94. Epub 2017/03/28. https://doi.org/10.1038/ng.3823. •• Melin BS, Barnholtz-Sloan JS, Wrensch MR, Johansen C, Il'yasova D, Kinnersley B, Ostrom QT, Labreche K, Chen Y, Armstrong G, Liu Y, Eckel-Passow JE, Decker PA, Labussiere M, Idbaih A, Hoang-Xuan K, Di Stefano AL, Mokhtari K, Delattre JY, Broderick P, Galan P, Gousias K, Schramm J, Schoemaker MJ, Fleming SJ, Herms S, Heilmann S, Nothen MM, Wichmann HE, Schreiber S, Swerdlow A, Lathrop M, Simon M, Sanson M, Andersson U, Rajaraman P, Chanock S, Linet M, Wang Z, Yeager M, Wiencke JK, Hansen H, McCoy L, Rice T, Kosel ML, Sicotte H, Amos CI, Bernstein JL, Davis F, Lachance D, Lau C, Merrell RT, Shildkraut J, Ali-Osman F, Sadetzki S, Scheurer M, Shete S, Lai RK, Claus EB, Olson SH, Jenkins RB, Houlston RS, Bondy ML. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nature genetics. 2017;49(5):789–94. Epub 2017/03/28. https://​doi.​org/​10.​1038/​ng.​3823.
29.
Zurück zum Zitat • Labreche K, Kinnersley B, Berzero G, Di Stefano AL, Rahimian A, Detrait I, Marie Y, Grenier-Boley B, Hoang-Xuan K, Delattre JY, Idbaih A, Houlston RS, Sanson M. Diffuse gliomas classified by 1p/19q co-deletion, TERT promoter and IDH mutation status are associated with specific genetic risk loci. Acta neuropathologica. 2018;135(5):743–55. Epub 2018/02/21. https://doi.org/10.1007/s00401-018-1825-z. PubMed PMID: 29460007; PMCID: PMC5904227 NF S96 900), and received the authorization for genetic analysis from ethical committee (CPP Ile de France VI, ref A39II and 2013–1962), and French Ministry for research (AC 2013–1962). Conflict of interest: The authors declare no conflict of interest. • Labreche K, Kinnersley B, Berzero G, Di Stefano AL, Rahimian A, Detrait I, Marie Y, Grenier-Boley B, Hoang-Xuan K, Delattre JY, Idbaih A, Houlston RS, Sanson M. Diffuse gliomas classified by 1p/19q co-deletion, TERT promoter and IDH mutation status are associated with specific genetic risk loci. Acta neuropathologica. 2018;135(5):743–55. Epub 2018/02/21. https://​doi.​org/​10.​1007/​s00401-018-1825-z. PubMed PMID: 29460007; PMCID: PMC5904227 NF S96 900), and received the authorization for genetic analysis from ethical committee (CPP Ile de France VI, ref A39II and 2013–1962), and French Ministry for research (AC 2013–1962). Conflict of interest: The authors declare no conflict of interest.
30.
32.
Zurück zum Zitat • Chen H, Chen G, Li G, Zhang S, Chen H, Chen Y, Duggan D, Hu Z, Chen J, Zhao Y, Zhao Y, Huang H, Zheng SL, Trent JM, Yu L, Jiang D, Mo Z, Wang H, Mou Y, Jiang T, Mao Y, Xu J, Lu D. Two novel genetic variants in the STK38L and RAB27A genes are associated with glioma susceptibility. International journal of cancer. 2019;145(9):2372–82. Epub 2019/02/05. https://doi.org/10.1002/ijc.32179. • Chen H, Chen G, Li G, Zhang S, Chen H, Chen Y, Duggan D, Hu Z, Chen J, Zhao Y, Zhao Y, Huang H, Zheng SL, Trent JM, Yu L, Jiang D, Mo Z, Wang H, Mou Y, Jiang T, Mao Y, Xu J, Lu D. Two novel genetic variants in the STK38L and RAB27A genes are associated with glioma susceptibility. International journal of cancer. 2019;145(9):2372–82. Epub 2019/02/05. https://​doi.​org/​10.​1002/​ijc.​32179.
33.
Zurück zum Zitat • Claus EB, Cornish AJ, Broderick P, Schildkraut JM, Dobbins SE, Holroyd A, Calvocoressi L, Lu L, Hansen HM, Smirnov I, Walsh KM, Schramm J, Hoffmann P, Nöthen MM, Jöckel KH, Swerdlow A, Larsen SB, Johansen C, Simon M, Bondy M, Wrensch M, Houlston RS, Wiemels JL. Genome-wide association analysis identifies a meningioma risk locus at 11p15.5. Neuro-oncology. 2018;20(11):1485–93. Epub 2018/05/16. https://doi.org/10.1093/neuonc/noy077. • Claus EB, Cornish AJ, Broderick P, Schildkraut JM, Dobbins SE, Holroyd A, Calvocoressi L, Lu L, Hansen HM, Smirnov I, Walsh KM, Schramm J, Hoffmann P, Nöthen MM, Jöckel KH, Swerdlow A, Larsen SB, Johansen C, Simon M, Bondy M, Wrensch M, Houlston RS, Wiemels JL. Genome-wide association analysis identifies a meningioma risk locus at 11p15.5. Neuro-oncology. 2018;20(11):1485–93. Epub 2018/05/16. https://​doi.​org/​10.​1093/​neuonc/​noy077.
34.
Zurück zum Zitat • Labreche K, Daniau M, Sud A, Law PJ, Royer-Perron L, Holroyd A, Broderick P, Went M, Benazra M, Ahle G, Soubeyran P, Taillandier L, Chinot OL, Casasnovas O, Bay JO, Jardin F, Oberic L, Fabbro M, Damaj G, Brion A, Mokhtari K, Philippe C, Sanson M, Houillier C, Soussain C, Hoang-Xuan K, Houlston RS, Alentorn A. A genome-wide association study identifies susceptibility loci for primary central nervous system lymphoma at 6p25.3 and 3p22.1: a LOC Network study. Neuro-oncology. 2019;21(8):1039–48. Epub 2019/05/19. https://doi.org/10.1093/neuonc/noz088. • Labreche K, Daniau M, Sud A, Law PJ, Royer-Perron L, Holroyd A, Broderick P, Went M, Benazra M, Ahle G, Soubeyran P, Taillandier L, Chinot OL, Casasnovas O, Bay JO, Jardin F, Oberic L, Fabbro M, Damaj G, Brion A, Mokhtari K, Philippe C, Sanson M, Houillier C, Soussain C, Hoang-Xuan K, Houlston RS, Alentorn A. A genome-wide association study identifies susceptibility loci for primary central nervous system lymphoma at 6p25.3 and 3p22.1: a LOC Network study. Neuro-oncology. 2019;21(8):1039–48. Epub 2019/05/19. https://​doi.​org/​10.​1093/​neuonc/​noz088.
35.
Zurück zum Zitat Ye Z, Li Z, Wang Y, Mao Y, Shen M, Zhang Q, Li S, Zhou L, Shou X, Chen J, Song Z, Ma Z, Zhang Z, Li Y, Ye H, Huang C, Wang T, He W, Zhang Y, Xie R, Qiao N, Qiu H, Huang S, Wang M, Shen J, Wen Z, Li W, Liu K, Zhou J, Wang L, Ji J, Wang Y, Chen H, Cheng H, Shi Z, Zhu Y, Geng D, Yao Z, Tang W, Lu B, Pan L, Zhang Y, Bao W, Wu J, Zheng K, Shi Y, Zhao Y. Common variants at 10p12.31, 10q21.1 and 13q12.13 are associated with sporadic pituitary adenoma. Nature genetics. 2015;47(7):793–7. Epub 2015/06/02. https://doi.org/10.1038/ng.3322. Ye Z, Li Z, Wang Y, Mao Y, Shen M, Zhang Q, Li S, Zhou L, Shou X, Chen J, Song Z, Ma Z, Zhang Z, Li Y, Ye H, Huang C, Wang T, He W, Zhang Y, Xie R, Qiao N, Qiu H, Huang S, Wang M, Shen J, Wen Z, Li W, Liu K, Zhou J, Wang L, Ji J, Wang Y, Chen H, Cheng H, Shi Z, Zhu Y, Geng D, Yao Z, Tang W, Lu B, Pan L, Zhang Y, Bao W, Wu J, Zheng K, Shi Y, Zhao Y. Common variants at 10p12.31, 10q21.1 and 13q12.13 are associated with sporadic pituitary adenoma. Nature genetics. 2015;47(7):793–7. Epub 2015/06/02. https://​doi.​org/​10.​1038/​ng.​3322.
36.
Zurück zum Zitat Walsh KM, Codd V, Rice T, Nelson CP, Smirnov IV, McCoy LS, Hansen HM, Elhauge E, Ojha J, Francis SS, Madsen NR, Bracci PM, Pico AR, Molinaro AM, Tihan T, Berger MS, Chang SM, Prados MD, Jenkins RB, Wiemels JL, Samani NJ, Wiencke JK, Wrensch MR. Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk. Oncotarget. 2015;6(40):42468–77. Epub 2015/12/10. https://doi.org/10.18632/oncotarget.6468. PubMed PMID: 26646793; PMCID: PMC4767445. Walsh KM, Codd V, Rice T, Nelson CP, Smirnov IV, McCoy LS, Hansen HM, Elhauge E, Ojha J, Francis SS, Madsen NR, Bracci PM, Pico AR, Molinaro AM, Tihan T, Berger MS, Chang SM, Prados MD, Jenkins RB, Wiemels JL, Samani NJ, Wiencke JK, Wrensch MR. Longer genotypically-estimated leukocyte telomere length is associated with increased adult glioma risk. Oncotarget. 2015;6(40):42468–77. Epub 2015/12/10. https://​doi.​org/​10.​18632/​oncotarget.​6468. PubMed PMID: 26646793; PMCID: PMC4767445.
37.
Zurück zum Zitat Muskens IS, Hansen HM, Smirnov IV, Molinaro AM, Bondy ML, Schildkraut JM, Wrensch M, Wiemels JL, Claus EB. Longer genotypically-estimated leukocyte telomere length is associated with increased meningioma risk. Journal of neuro-oncology. 2019;142(3):479–87. Epub 2019/02/24. https://doi.org/10.1007/s11060-019-03119-w. Muskens IS, Hansen HM, Smirnov IV, Molinaro AM, Bondy ML, Schildkraut JM, Wrensch M, Wiemels JL, Claus EB. Longer genotypically-estimated leukocyte telomere length is associated with increased meningioma risk. Journal of neuro-oncology. 2019;142(3):479–87. Epub 2019/02/24. https://​doi.​org/​10.​1007/​s11060-019-03119-w.
38.
Zurück zum Zitat Barthel FP, Wei W, Tang M, Martinez-Ledesma E, Hu X, Amin SB, Akdemir KC, Seth S, Song X, Wang Q, Lichtenberg T, Hu J, Zhang J, Zheng S, Verhaak RG. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nature genetics. 2017;49(3):349–57. Epub 2017/01/31. https://doi.org/10.1038/ng.3781. Barthel FP, Wei W, Tang M, Martinez-Ledesma E, Hu X, Amin SB, Akdemir KC, Seth S, Song X, Wang Q, Lichtenberg T, Hu J, Zhang J, Zheng S, Verhaak RG. Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nature genetics. 2017;49(3):349–57. Epub 2017/01/31. https://​doi.​org/​10.​1038/​ng.​3781.
39.
Zurück zum Zitat Leece R, Xu J, Ostrom QT, Chen Y, Kruchko C, Barnholtz-Sloan JS. Global incidence of malignant brain and other central nervous system tumors by histology, 2003–2007. Neuro-oncology. 2017;19(11):1553–64. Epub 2017/05/10. https://doi.org/10.1093/neuonc/nox091. Leece R, Xu J, Ostrom QT, Chen Y, Kruchko C, Barnholtz-Sloan JS. Global incidence of malignant brain and other central nervous system tumors by histology, 2003–2007. Neuro-oncology. 2017;19(11):1553–64. Epub 2017/05/10. https://​doi.​org/​10.​1093/​neuonc/​nox091.
40.
Zurück zum Zitat • Ostrom QT, Egan KM, Nabors LB, Gerke T, Thompson RC, Olson JJ, LaRocca R, Chowdhary S, Eckel-Passow JE, Armstrong G, Wiencke JK, Bernstein JL, Claus EB, Il'yasova D, Johansen C, Lachance DH, Lai RK, Merrell RT, Olson SH, Sadetzki S, Schildkraut JM, Shete S, Houlston RS, Jenkins RB, Wrensch MR, Melin B, Amos CI, Huse JT, Barnholtz-Sloan JS, Bondy ML. Glioma risk associated with extent of estimated European genetic ancestry in African Americans and Hispanics. International journal of cancer. 2020;146(3):739–48. Epub 2019/04/10. https://doi.org/10.1002/ijc.32318. • Ostrom QT, Egan KM, Nabors LB, Gerke T, Thompson RC, Olson JJ, LaRocca R, Chowdhary S, Eckel-Passow JE, Armstrong G, Wiencke JK, Bernstein JL, Claus EB, Il'yasova D, Johansen C, Lachance DH, Lai RK, Merrell RT, Olson SH, Sadetzki S, Schildkraut JM, Shete S, Houlston RS, Jenkins RB, Wrensch MR, Melin B, Amos CI, Huse JT, Barnholtz-Sloan JS, Bondy ML. Glioma risk associated with extent of estimated European genetic ancestry in African Americans and Hispanics. International journal of cancer. 2020;146(3):739–48. Epub 2019/04/10. https://​doi.​org/​10.​1002/​ijc.​32318.
41.
Zurück zum Zitat Rollison DE, Utaipat U, Ryschkewitsch C, Hou J, Goldthwaite P, Daniel R, Helzlsouer KJ, Burger PC, Shah KV, Major EO. Investigation of human brain tumors for the presence of polyomavirus genome sequences by two independent laboratories. International journal of cancer. 2005;113(5):769–74. Epub 2004/10/23. https://doi.org/10.1002/ijc.20641. Rollison DE, Utaipat U, Ryschkewitsch C, Hou J, Goldthwaite P, Daniel R, Helzlsouer KJ, Burger PC, Shah KV, Major EO. Investigation of human brain tumors for the presence of polyomavirus genome sequences by two independent laboratories. International journal of cancer. 2005;113(5):769–74. Epub 2004/10/23. https://​doi.​org/​10.​1002/​ijc.​20641.
42.
44.
Zurück zum Zitat Chauvin C, Suh M, Remy C, Benabid AL. Failure to detect viral genomic sequences of three viruses (herpes simplex, simian virus 40 and adenovirus) in human and rat brain tumors. Italian journal of neurological sciences. 1990;11(4):347–57. Epub 1990/08/01. https://doi.org/10.1007/bf02335937. Chauvin C, Suh M, Remy C, Benabid AL. Failure to detect viral genomic sequences of three viruses (herpes simplex, simian virus 40 and adenovirus) in human and rat brain tumors. Italian journal of neurological sciences. 1990;11(4):347–57. Epub 1990/08/01. https://​doi.​org/​10.​1007/​bf02335937.
46.
Zurück zum Zitat Holdhoff M, Guner G, Rodriguez FJ, Hicks JL, Zheng Q, Forman MS, Ye X, Grossman SA, Meeker AK, Heaphy CM, Eberhart CG, De Marzo AM, Arav-Boger R. Absence of cytomegalovirus in glioblastoma and other high-grade gliomas by real-time PCR, immunohistochemistry, and in situ hybridization. Clinical cancer research : an official journal of the American Association for Cancer Research. 2017;23(12):3150–7. Epub 2016/12/31. https://doi.org/10.1158/1078-0432.ccr-16-1490. Holdhoff M, Guner G, Rodriguez FJ, Hicks JL, Zheng Q, Forman MS, Ye X, Grossman SA, Meeker AK, Heaphy CM, Eberhart CG, De Marzo AM, Arav-Boger R. Absence of cytomegalovirus in glioblastoma and other high-grade gliomas by real-time PCR, immunohistochemistry, and in situ hybridization. Clinical cancer research : an official journal of the American Association for Cancer Research. 2017;23(12):3150–7. Epub 2016/12/31. https://​doi.​org/​10.​1158/​1078-0432.​ccr-16-1490.
47.
Zurück zum Zitat Strong MJ, Blanchard Et, Lin Z, Morris CA, Baddoo M, Taylor CM, Ware ML, Flemington EK. A comprehensive next generation sequencing-based virome assessment in brain tissue suggests no major virus-tumor association. Acta neuropathologica communications. 2016;4(1):71. Epub 2016/07/13. https://doi.org/10.1186/s40478-016-0338-z. Strong MJ, Blanchard Et, Lin Z, Morris CA, Baddoo M, Taylor CM, Ware ML, Flemington EK. A comprehensive next generation sequencing-based virome assessment in brain tissue suggests no major virus-tumor association. Acta neuropathologica communications. 2016;4(1):71. Epub 2016/07/13. https://​doi.​org/​10.​1186/​s40478-016-0338-z.
48.
Zurück zum Zitat Foster H, Piper K, DePledge L, Li HF, Scanlan J, Jae-Guen Y, Boeckh M, Cobbs C. Human cytomegalovirus seropositivity is associated with decreased survival in glioblastoma patients. Neuro-oncology advances. 2019;1(1):vdz020. Epub 2020/07/10. https://doi.org/10.1093/noajnl/vdz020. Foster H, Piper K, DePledge L, Li HF, Scanlan J, Jae-Guen Y, Boeckh M, Cobbs C. Human cytomegalovirus seropositivity is associated with decreased survival in glioblastoma patients. Neuro-oncology advances. 2019;1(1):vdz020. Epub 2020/07/10. https://​doi.​org/​10.​1093/​noajnl/​vdz020.
50.
Zurück zum Zitat Batich KA, Reap EA, Archer GE, Sanchez-Perez L, Nair SK, Schmittling RJ, Norberg P, Xie W, Herndon JE, 2nd, Healy P, McLendon RE, Friedman AH, Friedman HS, Bigner D, Vlahovic G, Mitchell DA, Sampson JH. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. Clinical cancer research : an official journal of the American Association for Cancer Research. 2017;23(8):1898–909. Epub 2017/04/16. https://doi.org/10.1158/1078-0432.ccr-16-2057. PubMed PMID: 28411277; PMCID: PMC5559300. Batich KA, Reap EA, Archer GE, Sanchez-Perez L, Nair SK, Schmittling RJ, Norberg P, Xie W, Herndon JE, 2nd, Healy P, McLendon RE, Friedman AH, Friedman HS, Bigner D, Vlahovic G, Mitchell DA, Sampson JH. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. Clinical cancer research : an official journal of the American Association for Cancer Research. 2017;23(8):1898–909. Epub 2017/04/16. https://​doi.​org/​10.​1158/​1078-0432.​ccr-16-2057. PubMed PMID: 28411277; PMCID: PMC5559300.
52.
Zurück zum Zitat Hodge JM, Coghill AE, Kim Y, Bender N, Smith-Warner SA, Gapstur S, Teras LR, Grimsrud TK, Waterboer T, Egan KM. Toxoplasma gondii infection and the risk of adult glioma in two prospective studies. International journal of cancer. 2021. Epub 2021/01/12. https://doi.org/10.1002/ijc.33443. Hodge JM, Coghill AE, Kim Y, Bender N, Smith-Warner SA, Gapstur S, Teras LR, Grimsrud TK, Waterboer T, Egan KM. Toxoplasma gondii infection and the risk of adult glioma in two prospective studies. International journal of cancer. 2021. Epub 2021/01/12. https://​doi.​org/​10.​1002/​ijc.​33443.
53.
Zurück zum Zitat Pergam SA, Limaye AP. Varicella zoster virus (VZV) in solid organ transplant recipients. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2009;9 Suppl 4(Suppl 4):S108–15. Epub 2010/01/28. https://doi.org/10.1111/j.1600-6143.2009.02901.x. Pergam SA, Limaye AP. Varicella zoster virus (VZV) in solid organ transplant recipients. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2009;9 Suppl 4(Suppl 4):S108–15. Epub 2010/01/28. https://​doi.​org/​10.​1111/​j.​1600-6143.​2009.​02901.​x.
54.
Zurück zum Zitat Wrensch M, Weinberg A, Wiencke J, Miike R, Sison J, Wiemels J, Barger G, DeLorenze G, Aldape K, Kelsey K. History of chickenpox and shingles and prevalence of antibodies to varicella-zoster virus and three other herpesviruses among adults with glioma and controls. American journal of epidemiology. 2005;161(10):929–38. Epub 2005/05/05. https://doi.org/10.1093/aje/kwi119. Wrensch M, Weinberg A, Wiencke J, Miike R, Sison J, Wiemels J, Barger G, DeLorenze G, Aldape K, Kelsey K. History of chickenpox and shingles and prevalence of antibodies to varicella-zoster virus and three other herpesviruses among adults with glioma and controls. American journal of epidemiology. 2005;161(10):929–38. Epub 2005/05/05. https://​doi.​org/​10.​1093/​aje/​kwi119.
55.
Zurück zum Zitat Lee ST, Bracci P, Zhou M, Rice T, Wiencke J, Wrensch M, Wiemels J. Interaction of allergy history and antibodies to specific varicella-zoster virus proteins on glioma risk. International journal of cancer. 2014;134(9):2199–210. Epub 2013/10/16. https://doi.org/10.1002/ijc.28535. Lee ST, Bracci P, Zhou M, Rice T, Wiencke J, Wrensch M, Wiemels J. Interaction of allergy history and antibodies to specific varicella-zoster virus proteins on glioma risk. International journal of cancer. 2014;134(9):2199–210. Epub 2013/10/16. https://​doi.​org/​10.​1002/​ijc.​28535.
56.
Zurück zum Zitat Amirian ES, Scheurer ME, Zhou R, Wrensch MR, Armstrong GN, Lachance D, Olson SH, Lau CC, Claus EB, Barnholtz-Sloan JS, Il'yasova D, Schildkraut J, Ali-Osman F, Sadetzki S, Jenkins RB, Bernstein JL, Merrell RT, Davis FG, Lai R, Shete S, Amos CI, Melin BS, Bondy ML. History of chickenpox in glioma risk: a report from the glioma international case-control study (GICC). Cancer medicine. 2016;5(6):1352–8. Epub 2016/03/15. https://doi.org/10.1002/cam4.682. Amirian ES, Scheurer ME, Zhou R, Wrensch MR, Armstrong GN, Lachance D, Olson SH, Lau CC, Claus EB, Barnholtz-Sloan JS, Il'yasova D, Schildkraut J, Ali-Osman F, Sadetzki S, Jenkins RB, Bernstein JL, Merrell RT, Davis FG, Lai R, Shete S, Amos CI, Melin BS, Bondy ML. History of chickenpox in glioma risk: a report from the glioma international case-control study (GICC). Cancer medicine. 2016;5(6):1352–8. Epub 2016/03/15. https://​doi.​org/​10.​1002/​cam4.​682.
58.
59.
Zurück zum Zitat Schwartzbaum J, Ding B, Johannesen TB, Osnes LT, Karavodin L, Ahlbom A, Feychting M, Grimsrud TK. Association between prediagnostic IgE levels and risk of glioma. Journal of the National Cancer Institute. 2012;104(16):1251–9. Epub 2012/08/03. https://doi.org/10.1093/jnci/djs315. Schwartzbaum J, Ding B, Johannesen TB, Osnes LT, Karavodin L, Ahlbom A, Feychting M, Grimsrud TK. Association between prediagnostic IgE levels and risk of glioma. Journal of the National Cancer Institute. 2012;104(16):1251–9. Epub 2012/08/03. https://​doi.​org/​10.​1093/​jnci/​djs315.
60.
Zurück zum Zitat Schoemaker MJ, Robertson L, Wigertz A, Jones ME, Hosking FJ, Feychting M, Lönn S, McKinney PA, Hepworth SJ, Muir KR, Auvinen A, Salminen T, Kiuru A, Johansen C, Houlston RS, Swerdlow AJ. Interaction between 5 genetic variants and allergy in glioma risk. American journal of epidemiology. 2010;171(11):1165–73. Epub 2010/05/14. https://doi.org/10.1093/aje/kwq075. Schoemaker MJ, Robertson L, Wigertz A, Jones ME, Hosking FJ, Feychting M, Lönn S, McKinney PA, Hepworth SJ, Muir KR, Auvinen A, Salminen T, Kiuru A, Johansen C, Houlston RS, Swerdlow AJ. Interaction between 5 genetic variants and allergy in glioma risk. American journal of epidemiology. 2010;171(11):1165–73. Epub 2010/05/14. https://​doi.​org/​10.​1093/​aje/​kwq075.
61.
Zurück zum Zitat Backes DM, Siddiq A, Cox DG, Calboli FC, Gaziano JM, Ma J, Stampfer M, Hunter DJ, Camargo CA, Michaud DS. Single-nucleotide polymorphisms of allergy-related genes and risk of adult glioma. Journal of neuro-oncology. 2013;113(2):229–38. Epub 2013/03/26. https://doi.org/10.1007/s11060-013-1122-6. Backes DM, Siddiq A, Cox DG, Calboli FC, Gaziano JM, Ma J, Stampfer M, Hunter DJ, Camargo CA, Michaud DS. Single-nucleotide polymorphisms of allergy-related genes and risk of adult glioma. Journal of neuro-oncology. 2013;113(2):229–38. Epub 2013/03/26. https://​doi.​org/​10.​1007/​s11060-013-1122-6.
62.
Zurück zum Zitat Disney-Hogg L, Cornish AJ, Sud A, Law PJ, Kinnersley B, Jacobs DI, Ostrom QT, Labreche K, Eckel-Passow JE, Armstrong GN, Claus EB, Il'yasova D, Schildkraut J, Barnholtz-Sloan JS, Olson SH, Bernstein JL, Lai RK, Schoemaker MJ, Simon M, Hoffmann P, Nöthen MM, Jöckel KH, Chanock S, Rajaraman P, Johansen C, Jenkins RB, Melin BS, Wrensch MR, Sanson M, Bondy ML, Houlston RS. Impact of atopy on risk of glioma: a Mendelian randomisation study. BMC medicine. 2018;16(1):42. Epub 2018/03/16. https://doi.org/10.1186/s12916-018-1027-5. Disney-Hogg L, Cornish AJ, Sud A, Law PJ, Kinnersley B, Jacobs DI, Ostrom QT, Labreche K, Eckel-Passow JE, Armstrong GN, Claus EB, Il'yasova D, Schildkraut J, Barnholtz-Sloan JS, Olson SH, Bernstein JL, Lai RK, Schoemaker MJ, Simon M, Hoffmann P, Nöthen MM, Jöckel KH, Chanock S, Rajaraman P, Johansen C, Jenkins RB, Melin BS, Wrensch MR, Sanson M, Bondy ML, Houlston RS. Impact of atopy on risk of glioma: a Mendelian randomisation study. BMC medicine. 2018;16(1):42. Epub 2018/03/16. https://​doi.​org/​10.​1186/​s12916-018-1027-5.
63.
Zurück zum Zitat Besson C, Amiel C, Le-Pendeven C, Plancoulaine S, Bonnardel C, Ranque B, Abbed K, Brice P, Ferme C, Carde P, Hermine O, Raphael M, Bresson JL, Nicolas JC, Gessain A, Dethe G, Abel L. Strong correlations of anti-viral capsid antigen antibody levels in first-degree relatives from families with Epstein-Barr virus-related lymphomas. J Infect Dis. 2009;199(8):1121–7. Epub 2009/03/17. https://doi.org/10.1086/597424. Besson C, Amiel C, Le-Pendeven C, Plancoulaine S, Bonnardel C, Ranque B, Abbed K, Brice P, Ferme C, Carde P, Hermine O, Raphael M, Bresson JL, Nicolas JC, Gessain A, Dethe G, Abel L. Strong correlations of anti-viral capsid antigen antibody levels in first-degree relatives from families with Epstein-Barr virus-related lymphomas. J Infect Dis. 2009;199(8):1121–7. Epub 2009/03/17. https://​doi.​org/​10.​1086/​597424.
64.
Zurück zum Zitat Willemsen G, van Beijsterveldt TC, van Baal CG, Postma D, Boomsma DI. Heritability of self-reported asthma and allergy: a study in adult Dutch twins, siblings and parents. Twin research and human genetics : the official journal of the International Society for Twin Studies. 2008;11(2):132–42. Epub 2008/03/26. https://doi.org/10.1375/twin.11.2.132. Willemsen G, van Beijsterveldt TC, van Baal CG, Postma D, Boomsma DI. Heritability of self-reported asthma and allergy: a study in adult Dutch twins, siblings and parents. Twin research and human genetics : the official journal of the International Society for Twin Studies. 2008;11(2):132–42. Epub 2008/03/26. https://​doi.​org/​10.​1375/​twin.​11.​2.​132.
65.
Zurück zum Zitat Fagnani C, Annesi-Maesano I, Brescianini S, D'Ippolito C, Medda E, Nisticò L, Patriarca V, Rotondi D, Toccaceli V, Stazi MA. Heritability and shared genetic effects of asthma and hay fever: an Italian study of young twins. Twin research and human genetics : the official journal of the International Society for Twin Studies. 2008;11(2):121–31. Epub 2008/03/26. https://doi.org/10.1375/twin.11.2.121. Fagnani C, Annesi-Maesano I, Brescianini S, D'Ippolito C, Medda E, Nisticò L, Patriarca V, Rotondi D, Toccaceli V, Stazi MA. Heritability and shared genetic effects of asthma and hay fever: an Italian study of young twins. Twin research and human genetics : the official journal of the International Society for Twin Studies. 2008;11(2):121–31. Epub 2008/03/26. https://​doi.​org/​10.​1375/​twin.​11.​2.​121.
66.
Zurück zum Zitat Waage J, Standl M, Curtin JA, Jessen LE, Thorsen J, Tian C, Schoettler N, Flores C, Abdellaoui A, Ahluwalia TS, Alves AC, Amaral AFS, Antó JM, Arnold A, Barreto-Luis A, Baurecht H, van Beijsterveldt CEM, Bleecker ER, Bonàs-Guarch S, Boomsma DI, Brix S, Bunyavanich S, Burchard EG, Chen Z, Curjuric I, Custovic A, den Dekker HT, Dharmage SC, Dmitrieva J, Duijts L, Ege MJ, Gauderman WJ, Georges M, Gieger C, Gilliland F, Granell R, Gui H, Hansen T, Heinrich J, Henderson J, Hernandez-Pacheco N, Holt P, Imboden M, Jaddoe VWV, Jarvelin MR, Jarvis DL, Jensen KK, Jónsdóttir I, Kabesch M, Kaprio J, Kumar A, Lee YA, Levin AM, Li X, Lorenzo-Diaz F, Melén E, Mercader JM, Meyers DA, Myers R, Nicolae DL, Nohr EA, Palviainen T, Paternoster L, Pennell CE, Pershagen G, Pino-Yanes M, Probst-Hensch NM, Rüschendorf F, Simpson A, Stefansson K, Sunyer J, Sveinbjornsson G, Thiering E, Thompson PJ, Torrent M, Torrents D, Tung JY, Wang CA, Weidinger S, Weiss S, Willemsen G, Williams LK, Ober C, Hinds DA, Ferreira MA, Bisgaard H, Strachan DP, Bønnelykke K. Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nature genetics. 2018;50(8):1072–80. Epub 2018/07/18. https://doi.org/10.1038/s41588-018-0157-1. Waage J, Standl M, Curtin JA, Jessen LE, Thorsen J, Tian C, Schoettler N, Flores C, Abdellaoui A, Ahluwalia TS, Alves AC, Amaral AFS, Antó JM, Arnold A, Barreto-Luis A, Baurecht H, van Beijsterveldt CEM, Bleecker ER, Bonàs-Guarch S, Boomsma DI, Brix S, Bunyavanich S, Burchard EG, Chen Z, Curjuric I, Custovic A, den Dekker HT, Dharmage SC, Dmitrieva J, Duijts L, Ege MJ, Gauderman WJ, Georges M, Gieger C, Gilliland F, Granell R, Gui H, Hansen T, Heinrich J, Henderson J, Hernandez-Pacheco N, Holt P, Imboden M, Jaddoe VWV, Jarvelin MR, Jarvis DL, Jensen KK, Jónsdóttir I, Kabesch M, Kaprio J, Kumar A, Lee YA, Levin AM, Li X, Lorenzo-Diaz F, Melén E, Mercader JM, Meyers DA, Myers R, Nicolae DL, Nohr EA, Palviainen T, Paternoster L, Pennell CE, Pershagen G, Pino-Yanes M, Probst-Hensch NM, Rüschendorf F, Simpson A, Stefansson K, Sunyer J, Sveinbjornsson G, Thiering E, Thompson PJ, Torrent M, Torrents D, Tung JY, Wang CA, Weidinger S, Weiss S, Willemsen G, Williams LK, Ober C, Hinds DA, Ferreira MA, Bisgaard H, Strachan DP, Bønnelykke K. Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis. Nature genetics. 2018;50(8):1072–80. Epub 2018/07/18. https://​doi.​org/​10.​1038/​s41588-018-0157-1.
67.
Zurück zum Zitat Tang J, Shao W, Dorak MT, Li Y, Miike R, Lobashevsky E, Wiencke JK, Wrensch M, Kaslow RA, Cobbs CS. Positive and negative associations of human leukocyte antigen variants with the onset and prognosis of adult glioblastoma multiforme. Cancer Epidemiol Biomarkers Prev. 2005;14(8):2040–4. Epub 2005/08/17. https://doi.org/10.1158/1055-9965.EPI-05-0136. Tang J, Shao W, Dorak MT, Li Y, Miike R, Lobashevsky E, Wiencke JK, Wrensch M, Kaslow RA, Cobbs CS. Positive and negative associations of human leukocyte antigen variants with the onset and prognosis of adult glioblastoma multiforme. Cancer Epidemiol Biomarkers Prev. 2005;14(8):2040–4. Epub 2005/08/17. https://​doi.​org/​10.​1158/​1055-9965.​EPI-05-0136.
68.
Zurück zum Zitat Song W, Ruder AM, Hu L, Li Y, Ni R, Shao W, Kaslow RA, Butler M, Tang J. Genetic epidemiology of glioblastoma multiforme: confirmatory and new findings from analyses of human leukocyte antigen alleles and motifs. PLoS One. 2009;4(9):e7157. Epub 2009/09/24. https://doi.org/10.1371/journal.pone.0007157. Song W, Ruder AM, Hu L, Li Y, Ni R, Shao W, Kaslow RA, Butler M, Tang J. Genetic epidemiology of glioblastoma multiforme: confirmatory and new findings from analyses of human leukocyte antigen alleles and motifs. PLoS One. 2009;4(9):e7157. Epub 2009/09/24. https://​doi.​org/​10.​1371/​journal.​pone.​0007157.
69.
70.
Zurück zum Zitat Kachuri L, Francis SS, Morrison ML, Wendt GA, Bosse Y, Cavazos TB, Rashkin SR, Ziv E, Witte JS. The landscape of host genetic factors involved in immune response to common viral infections. Genome Med. 2020;12(1):93. Epub 2020/10/29. https://doi.org/10.1186/s13073-020-00790-x. Kachuri L, Francis SS, Morrison ML, Wendt GA, Bosse Y, Cavazos TB, Rashkin SR, Ziv E, Witte JS. The landscape of host genetic factors involved in immune response to common viral infections. Genome Med. 2020;12(1):93. Epub 2020/10/29. https://​doi.​org/​10.​1186/​s13073-020-00790-x.
71.
Zurück zum Zitat Hammer C, Begemann M, McLaren PJ, Bartha I, Michel A, Klose B, Schmitt C, Waterboer T, Pawlita M, Schulz TF, Ehrenreich H, Fellay J. Amino acid variation in HLA class II Proteins is a major determinant of humoral response to common viruses. Am J Hum Genet. 2015;97(5):738–43. Epub 2015/10/13. https://doi.org/10.1016/j.ajhg.2015.09.008. Hammer C, Begemann M, McLaren PJ, Bartha I, Michel A, Klose B, Schmitt C, Waterboer T, Pawlita M, Schulz TF, Ehrenreich H, Fellay J. Amino acid variation in HLA class II Proteins is a major determinant of humoral response to common viruses. Am J Hum Genet. 2015;97(5):738–43. Epub 2015/10/13. https://​doi.​org/​10.​1016/​j.​ajhg.​2015.​09.​008.
72.
Zurück zum Zitat • Ostrom QT, Edelson J, Byun J, Han Y, Kinnersley B, Melin B, Houlston RS, Monje M, Walsh KM, Amos CI, Bondy ML. Partitioned glioma heritability shows subtype-specific enrichment in immune cells. Neuro-oncology. 2021. Epub 2021/03/21. https://doi.org/10.1093/neuonc/noab072. • Ostrom QT, Edelson J, Byun J, Han Y, Kinnersley B, Melin B, Houlston RS, Monje M, Walsh KM, Amos CI, Bondy ML. Partitioned glioma heritability shows subtype-specific enrichment in immune cells. Neuro-oncology. 2021. Epub 2021/03/21. https://​doi.​org/​10.​1093/​neuonc/​noab072.
73.
Zurück zum Zitat Martinez-Lage M, Lynch TM, Bi Y, Cocito C, Way GP, Pal S, Haller J, Yan RE, Ziober A, Nguyen A, Kandpal M, O'Rourke DM, Greenfield JP, Greene CS, Davuluri RV, Dahmane N. Immune landscapes associated with different glioblastoma molecular subtypes. Acta neuropathologica communications. 2019;7(1):203. Epub 2019/12/10. https://doi.org/10.1186/s40478-019-0803-6. Martinez-Lage M, Lynch TM, Bi Y, Cocito C, Way GP, Pal S, Haller J, Yan RE, Ziober A, Nguyen A, Kandpal M, O'Rourke DM, Greenfield JP, Greene CS, Davuluri RV, Dahmane N. Immune landscapes associated with different glioblastoma molecular subtypes. Acta neuropathologica communications. 2019;7(1):203. Epub 2019/12/10. https://​doi.​org/​10.​1186/​s40478-019-0803-6.
74.
Zurück zum Zitat • Dejaegher J, Solie L, Hunin Z, Sciot R, Capper D, Siewert C, Van Cauter S, Wilms G, van Loon J, Ectors N, Fieuws S, Pfister SM, Van Gool SW, De Vleeschouwer S. DNA methylation based glioblastoma subclassification is related to tumoral T-cell infiltration and patient survival. Neuro-oncology. 2021;23(2):240–50. Epub 2020/11/02. https://doi.org/10.1093/neuonc/noaa247. • Dejaegher J, Solie L, Hunin Z, Sciot R, Capper D, Siewert C, Van Cauter S, Wilms G, van Loon J, Ectors N, Fieuws S, Pfister SM, Van Gool SW, De Vleeschouwer S. DNA methylation based glioblastoma subclassification is related to tumoral T-cell infiltration and patient survival. Neuro-oncology. 2021;23(2):240–50. Epub 2020/11/02. https://​doi.​org/​10.​1093/​neuonc/​noaa247.
75.
Zurück zum Zitat Wiencke JK, Koestler DC, Salas LA, Wiemels JL, Roy RP, Hansen HM, Rice T, McCoy LS, Bracci PM, Molinaro AM, Kelsey KT, Wrensch MR, Christensen BC. Immunomethylomic approach to explore the blood neutrophil lymphocyte ratio (NLR) in glioma survival. Clinical epigenetics. 2017;9:10. Epub 2017/02/12. https://doi.org/10.1186/s13148-017-0316-8. Wiencke JK, Koestler DC, Salas LA, Wiemels JL, Roy RP, Hansen HM, Rice T, McCoy LS, Bracci PM, Molinaro AM, Kelsey KT, Wrensch MR, Christensen BC. Immunomethylomic approach to explore the blood neutrophil lymphocyte ratio (NLR) in glioma survival. Clinical epigenetics. 2017;9:10. Epub 2017/02/12. https://​doi.​org/​10.​1186/​s13148-017-0316-8.
76.
Zurück zum Zitat Demers PA, Vaughan TL, Schommer RR. Occupation, socioeconomic status, and brain tumor mortality: a death certificate-based case-control study. Journal of occupational medicine: official publication of the Industrial Medical Association. 1991;33(9):1001–6 (Epub 1991/09/01). Demers PA, Vaughan TL, Schommer RR. Occupation, socioeconomic status, and brain tumor mortality: a death certificate-based case-control study. Journal of occupational medicine: official publication of the Industrial Medical Association. 1991;33(9):1001–6 (Epub 1991/09/01).
79.
Zurück zum Zitat Khanolkar AR, Ljung R, Talbäck M, Brooke HL, Carlsson S, Mathiesen T, Feychting M. Socioeconomic position and the risk of brain tumour: a Swedish national population-based cohort study. Journal of epidemiology and community health. 2016;70(12):1222–8. Epub 2016/06/22. https://doi.org/10.1136/jech-2015-207002. Khanolkar AR, Ljung R, Talbäck M, Brooke HL, Carlsson S, Mathiesen T, Feychting M. Socioeconomic position and the risk of brain tumour: a Swedish national population-based cohort study. Journal of epidemiology and community health. 2016;70(12):1222–8. Epub 2016/06/22. https://​doi.​org/​10.​1136/​jech-2015-207002.
80.
Zurück zum Zitat •• Cote DJ, Ostrom QT, Gittleman H, Duncan KR, CreveCoeur TS, Kruchko C, Smith TR, Stampfer MJ, Barnholtz-Sloan JS. Glioma incidence and survival variations by county-level socioeconomic measures. Cancer. 2019;125(19):3390–400. Epub 2019/06/18. https://doi.org/10.1002/cncr.32328. •• Cote DJ, Ostrom QT, Gittleman H, Duncan KR, CreveCoeur TS, Kruchko C, Smith TR, Stampfer MJ, Barnholtz-Sloan JS. Glioma incidence and survival variations by county-level socioeconomic measures. Cancer. 2019;125(19):3390–400. Epub 2019/06/18. https://​doi.​org/​10.​1002/​cncr.​32328.
82.
Zurück zum Zitat • Erdmann F, Hvidtfeldt UA, Sørensen M, Raaschou-Nielsen O. Socioeconomic differences in the risk of childhood central nervous system tumors in Denmark: a nationwide register-based case-control study. Cancer causes & control : CCC. 2020;31(10):915–29. Epub 2020/08/09. https://doi.org/10.1007/s10552-020-01332-x. • Erdmann F, Hvidtfeldt UA, Sørensen M, Raaschou-Nielsen O. Socioeconomic differences in the risk of childhood central nervous system tumors in Denmark: a nationwide register-based case-control study. Cancer causes & control : CCC. 2020;31(10):915–29. Epub 2020/08/09. https://​doi.​org/​10.​1007/​s10552-020-01332-x.
Metadaten
Titel
Epidemiology of Brain and Other CNS Tumors
verfasst von
Quinn T. Ostrom
Stephen S. Francis
Jill S. Barnholtz-Sloan
Publikationsdatum
01.12.2021
Verlag
Springer US
Erschienen in
Current Neurology and Neuroscience Reports / Ausgabe 12/2021
Print ISSN: 1528-4042
Elektronische ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-021-01152-9

Weitere Artikel der Ausgabe 12/2021

Current Neurology and Neuroscience Reports 12/2021 Zur Ausgabe

Neuro-Oncology (P.Y. Wen, Section Editor)

Neurologic Complications of Cancer Therapies

Behavior (H. Kirshner, Section Editor)

Subcortical Aphasia

Neuroimaging (N. Pavese, Section Editor)

The Molecular Neuroimaging of Tremor

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.