Skip to main content
Erschienen in: NeuroMolecular Medicine 1/2011

01.03.2011 | Review Paper

Oxidative Stress in Alzheimer Disease: Synergy Between the Butterfield and Markesbery Laboratories

verfasst von: D. Allan Butterfield

Erschienen in: NeuroMolecular Medicine | Ausgabe 1/2011

Einloggen, um Zugang zu erhalten

Excerpt

William R. Markesbery, M.D., a 35-year wonderful colleague and deep personal friend of mine, as well as a gifted clinician, neuropathologist, and researcher of Alzheimer disease (AD), died on January 30, 2010. His is a legacy of excellence in all aspects of his life, and a tribute memorial article to his life has been recently published (Butterfield 2010). Bill and I together were among the first to develop the notion that oxidative stress in brain was associated with AD and arguably its earliest form, mild cognitive impairment (MCI), and that oxidative stress may underlie the progression of MCI to AD (Smith et al. 2001; Hensley et al. 1995; Markesbery 1997; Butterfield and Lauderback 2002; Butterfield et al. 2001, 2002, 2003, 2006a, 2007a, b; Keller et al. 2005; Castegna et al. 2002a, b, 2003; Butterfield 2004; Sultana et al. 2006a, b, 2007; Perluigi et al. 2009; Reed et al. 2008). …
Literatur
Zurück zum Zitat Aksenov, M. Y., Aksenova, M. V., Butterfield, D. A., Geddes, J. W., & Markesbery, W. R. (2001). Protein oxidation in the brain in Alzheimer’s disease. Neuroscience, 103, 373–383.PubMedCrossRef Aksenov, M. Y., Aksenova, M. V., Butterfield, D. A., Geddes, J. W., & Markesbery, W. R. (2001). Protein oxidation in the brain in Alzheimer’s disease. Neuroscience, 103, 373–383.PubMedCrossRef
Zurück zum Zitat Aksenov, M. Y., Aksenova, M. V., Butterfield, D. A., & Markesbery, W. R. (2000). Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. Journal of Neurochemistry, 74, 2520–2527.PubMedCrossRef Aksenov, M. Y., Aksenova, M. V., Butterfield, D. A., & Markesbery, W. R. (2000). Oxidative modification of creatine kinase BB in Alzheimer’s disease brain. Journal of Neurochemistry, 74, 2520–2527.PubMedCrossRef
Zurück zum Zitat Boyd-Kimball, D., Mohmmad-Abdul, H., Reed, T., Sultana, R., & Butterfield, D. A. (2004). Role of phenylalanine 20 in Alzheimer’s amyloid \(\upbeta\)-peptide (1–42)-induced oxidative stress and neurotoxicity. Chemical Research in Toxicology, 17, 1743–1749.PubMedCrossRef Boyd-Kimball, D., Mohmmad-Abdul, H., Reed, T., Sultana, R., & Butterfield, D. A. (2004). Role of phenylalanine 20 in Alzheimer’s amyloid \(\upbeta\)-peptide (1–42)-induced oxidative stress and neurotoxicity. Chemical Research in Toxicology, 17, 1743–1749.PubMedCrossRef
Zurück zum Zitat Boyd-Kimball, D., Poon, H. F., Lynn, B. C., Cai, J., Pierce, W. M., Jr., Klein, J. B., et al. (2006). Proteomic identification of proteins specifically oxidized in Caenorhabditis elegans expressing human A\(\upbeta\)(1–42): Implications for Alzheimer’s disease. Neurobiology of Aging, 27, 1239–1249.PubMedCrossRef Boyd-Kimball, D., Poon, H. F., Lynn, B. C., Cai, J., Pierce, W. M., Jr., Klein, J. B., et al. (2006). Proteomic identification of proteins specifically oxidized in Caenorhabditis elegans expressing human A\(\upbeta\)(1–42): Implications for Alzheimer’s disease. Neurobiology of Aging, 27, 1239–1249.PubMedCrossRef
Zurück zum Zitat Boyd-Kimball, D., Sultana, R., Poon, H. F., Lynn, B. C., Casamenti, F., Pepeu, G., et al. (2005). Proteomic identification of proteins specifically oxidized by intracerebral injection of A\(\upbeta\)(1–42) into rat brain: implications for Alzheimer’s disease. Neuroscience, 132, 313–324.PubMedCrossRef Boyd-Kimball, D., Sultana, R., Poon, H. F., Lynn, B. C., Casamenti, F., Pepeu, G., et al. (2005). Proteomic identification of proteins specifically oxidized by intracerebral injection of A\(\upbeta\)(1–42) into rat brain: implications for Alzheimer’s disease. Neuroscience, 132, 313–324.PubMedCrossRef
Zurück zum Zitat Butterfield, D. A. (2004). Proteomics: A new approach to investigate oxidative stress in Alzheimer’s disease brain. Brain Research, 1000, 1–7.PubMedCrossRef Butterfield, D. A. (2004). Proteomics: A new approach to investigate oxidative stress in Alzheimer’s disease brain. Brain Research, 1000, 1–7.PubMedCrossRef
Zurück zum Zitat Butterfield, D. A., Boyd-Kimball, D., & Castegna, A. (2003). Proteomics in Alzheimer’s disease: Insights into mechanisms of neurodegeneration. Journal of Neurochemistry, 86, 1313–1327.PubMedCrossRef Butterfield, D. A., Boyd-Kimball, D., & Castegna, A. (2003). Proteomics in Alzheimer’s disease: Insights into mechanisms of neurodegeneration. Journal of Neurochemistry, 86, 1313–1327.PubMedCrossRef
Zurück zum Zitat Butterfield, D. A., Castegna, A., Lauderback, C. M., & Drake, J. (2002). Review: Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contributes to neuronal death. Neurobiology of Aging, 23, 655–664.PubMedCrossRef Butterfield, D. A., Castegna, A., Lauderback, C. M., & Drake, J. (2002). Review: Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contributes to neuronal death. Neurobiology of Aging, 23, 655–664.PubMedCrossRef
Zurück zum Zitat Butterfield, D. A., Drake, J., Pocernich, C., & Castegna, A. (2001). Evidence of oxidative damage in Alzheimer’s disease brain: Central role of amyloid \(\upbeta\)-peptide. Trends in Molecular Medicine, 7, 548–554.PubMedCrossRef Butterfield, D. A., Drake, J., Pocernich, C., & Castegna, A. (2001). Evidence of oxidative damage in Alzheimer’s disease brain: Central role of amyloid \(\upbeta\)-peptide. Trends in Molecular Medicine, 7, 548–554.PubMedCrossRef
Zurück zum Zitat Butterfield, D. A., Galvan, V., Bader Lange, M., Tang, H., Sowell, R. A., Spilman, P., et al. (2010). In vivo oxidative stress in brain of Alzheimer disease transgenic mice: Requirement for methionine 35 in amyloid \(\upbeta\)-peptide of APP. Free Radical Biology and Medicine, 48, 136–144.PubMedCrossRef Butterfield, D. A., Galvan, V., Bader Lange, M., Tang, H., Sowell, R. A., Spilman, P., et al. (2010). In vivo oxidative stress in brain of Alzheimer disease transgenic mice: Requirement for methionine 35 in amyloid \(\upbeta\)-peptide of APP. Free Radical Biology and Medicine, 48, 136–144.PubMedCrossRef
Zurück zum Zitat Butterfield, D. A., & Lauderback, C. M. (2002). Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid \(\upbeta\)-peptide-associated free radical oxidative stress. Free Radical Biology and Medicine, 32, 1050–1060.PubMedCrossRef Butterfield, D. A., & Lauderback, C. M. (2002). Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: Potential causes and consequences involving amyloid \(\upbeta\)-peptide-associated free radical oxidative stress. Free Radical Biology and Medicine, 32, 1050–1060.PubMedCrossRef
Zurück zum Zitat Butterfield, D. A., Poon, H. F., St. Clair, D., Keller, J. N., Pierce, W. M., Klein, J. B., et al. (2006a). Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: Insights into the development of Alzheimer’s disease. Neurobiology of Disease, 22, 223–232.PubMedCrossRef Butterfield, D. A., Poon, H. F., St. Clair, D., Keller, J. N., Pierce, W. M., Klein, J. B., et al. (2006a). Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: Insights into the development of Alzheimer’s disease. Neurobiology of Disease, 22, 223–232.PubMedCrossRef
Zurück zum Zitat Butterfield, D. A., Reed, T., Newman, S. F., & Sultana, R. (2007a). Roles of amyloid \(\upbeta\)-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radical Biology and Medicine, 43, 658–677.PubMedCrossRef Butterfield, D. A., Reed, T., Newman, S. F., & Sultana, R. (2007a). Roles of amyloid \(\upbeta\)-peptide-associated oxidative stress and brain protein modifications in the pathogenesis of Alzheimer’s disease and mild cognitive impairment. Free Radical Biology and Medicine, 43, 658–677.PubMedCrossRef
Zurück zum Zitat Butterfield, D. A., Reed, T., Perluigi, M., De Marco, C., Coccia, R., Cini, C., et al. (2006b). Elevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment. Neuroscience Letters, 397, 170–173.PubMedCrossRef Butterfield, D. A., Reed, T., Perluigi, M., De Marco, C., Coccia, R., Cini, C., et al. (2006b). Elevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment. Neuroscience Letters, 397, 170–173.PubMedCrossRef
Zurück zum Zitat Butterfield, D. A., Reed, T., Perluigi, M., De Marco, C., Coccia, R., Keller, J. N., et al. (2007b). Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: Implications for the role of nitration in the progression of Alzheimer’s disease. Brain Research, 1148, 243–248.PubMedCrossRef Butterfield, D. A., Reed, T., Perluigi, M., De Marco, C., Coccia, R., Keller, J. N., et al. (2007b). Elevated levels of 3-nitrotyrosine in brain from subjects with amnestic mild cognitive impairment: Implications for the role of nitration in the progression of Alzheimer’s disease. Brain Research, 1148, 243–248.PubMedCrossRef
Zurück zum Zitat Butterfield, D. A., & Stadtman, E. R. (1997). Protein oxidation processes in aging brain. Advantage of Cell Aging Gerontology, 2, 161–191.CrossRef Butterfield, D. A., & Stadtman, E. R. (1997). Protein oxidation processes in aging brain. Advantage of Cell Aging Gerontology, 2, 161–191.CrossRef
Zurück zum Zitat Butterfield, D. A. (2010). William R. Markesbery, M.D.: A legacy of excellence in Alzheimer’s disease research and a life well-lived. Journal of Alzheimer’s Disease, 20, 3–4.PubMed Butterfield, D. A. (2010). William R. Markesbery, M.D.: A legacy of excellence in Alzheimer’s disease research and a life well-lived. Journal of Alzheimer’s Disease, 20, 3–4.PubMed
Zurück zum Zitat Castegna, A., Aksenov, M., Aksenova, M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., et al. (2002a). Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: Creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radical Biology and Medicine, 33, 562–571.PubMedCrossRef Castegna, A., Aksenov, M., Aksenova, M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., et al. (2002a). Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part I: Creatine kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radical Biology and Medicine, 33, 562–571.PubMedCrossRef
Zurück zum Zitat Castegna, A., Aksenov, Aksenova, M. M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., Booze, R. Markesbery, W. R. & Butterfield, D. A. (2002). Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: Dihydropyrimidinase-related protein 2, α-enolase, and heat shock cognate 71. Journal of Neurochemistry, 82, 1524–1532. Castegna, A., Aksenov, Aksenova, M. M., Thongboonkerd, V., Klein, J. B., Pierce, W. M., Booze, R. Markesbery, W. R. & Butterfield, D. A. (2002). Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: Dihydropyrimidinase-related protein 2, α-enolase, and heat shock cognate 71. Journal of Neurochemistry, 82, 1524–1532.
Zurück zum Zitat Castegna, A., Thongboonkerd, V., Klein, J. B., Lynn, B., Markesbery, W. R., & Butterfield, D. A. (2003). Proteomic identification of nitrated proteins in Alzheimer’s disease brain. Journal of Neurochemistry, 85, 1394–1401.PubMedCrossRef Castegna, A., Thongboonkerd, V., Klein, J. B., Lynn, B., Markesbery, W. R., & Butterfield, D. A. (2003). Proteomic identification of nitrated proteins in Alzheimer’s disease brain. Journal of Neurochemistry, 85, 1394–1401.PubMedCrossRef
Zurück zum Zitat Drake, J., Link, C. D., & Butterfield, D. A. (2003). Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid \(\upbeta\)–peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiology of Aging, 24, 415–420.PubMedCrossRef Drake, J., Link, C. D., & Butterfield, D. A. (2003). Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid \(\upbeta\)–peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiology of Aging, 24, 415–420.PubMedCrossRef
Zurück zum Zitat Hensley, K., Hall, N., Subramaniam, R., Cole, P., Harris, M., Aksenov, M., et al. (1995). Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. Journal of Neurochemistry, 66, 2146–2156. Hensley, K., Hall, N., Subramaniam, R., Cole, P., Harris, M., Aksenov, M., et al. (1995). Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. Journal of Neurochemistry, 66, 2146–2156.
Zurück zum Zitat Kanski, J., Aksenova, M., Schoneich, C., & Butterfield, D. A. (2002). Substitution of isoleucine-31 by helical-breaking proline abolishes oxidative stress and neurotoxic properties of Alzheimer’s amyloid \(\upbeta\)-peptide (1–42). Free Radical Biology and Medicine, 32, 1205–1211.PubMedCrossRef Kanski, J., Aksenova, M., Schoneich, C., & Butterfield, D. A. (2002). Substitution of isoleucine-31 by helical-breaking proline abolishes oxidative stress and neurotoxic properties of Alzheimer’s amyloid \(\upbeta\)-peptide (1–42). Free Radical Biology and Medicine, 32, 1205–1211.PubMedCrossRef
Zurück zum Zitat Keller, J. N., Schmitt, F. A., Scheff, S. W., Ding, Q., Chen, Q., Butterfield, D. A., et al. (2005). Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology, 64, 1152–1156.PubMed Keller, J. N., Schmitt, F. A., Scheff, S. W., Ding, Q., Chen, Q., Butterfield, D. A., et al. (2005). Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology, 64, 1152–1156.PubMed
Zurück zum Zitat Lauderback, C. M., Hackett, J. M., Huang, F. F., Keller, J. N., Szweda, L. I., Markesbery, W. R., et al. (2001). The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: Role of A\(\upbeta\)1–42. Journal of Neurochemistry, 78, 413–416.PubMedCrossRef Lauderback, C. M., Hackett, J. M., Huang, F. F., Keller, J. N., Szweda, L. I., Markesbery, W. R., et al. (2001). The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: Role of A\(\upbeta\)1–42. Journal of Neurochemistry, 78, 413–416.PubMedCrossRef
Zurück zum Zitat Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Lenz, A. G., Ahn, B. W., et al. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 186, 464–478.PubMedCrossRef Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Lenz, A. G., Ahn, B. W., et al. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 186, 464–478.PubMedCrossRef
Zurück zum Zitat Lovell, M. A., Xie, C., & Markesbery, W. R. (2001). Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiology of Aging, 22, 187–194.PubMedCrossRef Lovell, M. A., Xie, C., & Markesbery, W. R. (2001). Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiology of Aging, 22, 187–194.PubMedCrossRef
Zurück zum Zitat Mark, R. J., Hensley, K., Butterfield, D. A., & Mattson, M. P. (1995). Amyloid \(\upbeta\)-peptide impairs ion-motive ATPase activities: Evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. Journal of Neuroscience, 15, 6239–6249.PubMed Mark, R. J., Hensley, K., Butterfield, D. A., & Mattson, M. P. (1995). Amyloid \(\upbeta\)-peptide impairs ion-motive ATPase activities: Evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. Journal of Neuroscience, 15, 6239–6249.PubMed
Zurück zum Zitat Markesbery, W. R. (1997). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 23, 134–147.PubMedCrossRef Markesbery, W. R. (1997). Oxidative stress hypothesis in Alzheimer’s disease. Free Radical Biology and Medicine, 23, 134–147.PubMedCrossRef
Zurück zum Zitat Markesbery, W. R., & Lovell, M. A. (1998). Four-hydroxnonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiology of Aging, 19, 33–36.PubMedCrossRef Markesbery, W. R., & Lovell, M. A. (1998). Four-hydroxnonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiology of Aging, 19, 33–36.PubMedCrossRef
Zurück zum Zitat Markesbery, W. R., & Lovell, M. A. (2006). DNA oxidation in Alzheimer’s disease. Antioxidants & Redox Signaling, 8, 2039–2045.CrossRef Markesbery, W. R., & Lovell, M. A. (2006). DNA oxidation in Alzheimer’s disease. Antioxidants & Redox Signaling, 8, 2039–2045.CrossRef
Zurück zum Zitat Mohmmad Abdul, H., St. Sultana, R., Clair, D. K., Markesbery, W. R., & Butterfield, D. A. (2008). Oxidative damage in brain from human mutant APP/PS-1 double knock-in mice as a function of age. Free Radical Biology and Medicine, 45, 1420–1425.CrossRef Mohmmad Abdul, H., St. Sultana, R., Clair, D. K., Markesbery, W. R., & Butterfield, D. A. (2008). Oxidative damage in brain from human mutant APP/PS-1 double knock-in mice as a function of age. Free Radical Biology and Medicine, 45, 1420–1425.CrossRef
Zurück zum Zitat Mohmmad-Abdul, H., Sultana, R., Keller, J. N., St. Clair, D. K., Markesbery, W. R., & Butterfield, D. A. (2006). Mutations in amyloid precursor protein and presenilin-1 genes increase the basal oxidative stress in murine neuronal cells and lead to increased sensitivity to oxidative stress mediated by amyloid \(\upbeta\)-peptide (1-42), H2O2 and kainic acid: Implications for Alzheimer’s disease. Journal of Neurochemistry, 96, 1322–1335.PubMedCrossRef Mohmmad-Abdul, H., Sultana, R., Keller, J. N., St. Clair, D. K., Markesbery, W. R., & Butterfield, D. A. (2006). Mutations in amyloid precursor protein and presenilin-1 genes increase the basal oxidative stress in murine neuronal cells and lead to increased sensitivity to oxidative stress mediated by amyloid \(\upbeta\)-peptide (1-42), H2O2 and kainic acid: Implications for Alzheimer’s disease. Journal of Neurochemistry, 96, 1322–1335.PubMedCrossRef
Zurück zum Zitat Perluigi, M., Sultana, R., Cenini, G., Di Domenico, F., Memo, M., Pierce, W. M., Coccia, R. & Butterfield, D. A. (2009). Redox proteomics identification of HNE-modified brain proteins in Alzheimer’s disease: Role of lipid peroxidation in Alzheimer’s disease pathogenesis. Proteomics Clinical Applications, 3, 682–693. Perluigi, M., Sultana, R., Cenini, G., Di Domenico, F., Memo, M., Pierce, W. M., Coccia, R. & Butterfield, D. A. (2009). Redox proteomics identification of HNE-modified brain proteins in Alzheimer’s disease: Role of lipid peroxidation in Alzheimer’s disease pathogenesis. Proteomics Clinical Applications, 3, 682–693.
Zurück zum Zitat Reed, T., Perluigi, M., Sultana, R., Pierce, W. M., Turner, D. M., Coccia, R., et al. (2008). Redox proteomic identification of 4-hydroxy-2-nonenal-modified proteins in amnestic mild cognitive impairment: Insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiology of Disease, 30, 107–120.PubMedCrossRef Reed, T., Perluigi, M., Sultana, R., Pierce, W. M., Turner, D. M., Coccia, R., et al. (2008). Redox proteomic identification of 4-hydroxy-2-nonenal-modified proteins in amnestic mild cognitive impairment: Insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiology of Disease, 30, 107–120.PubMedCrossRef
Zurück zum Zitat Reich, E. E., Markesbery, W. R., Roberts, L. J., 2nd, Swift, L. L., Morrow, J. D., & Montine, T. J. (2001). Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer’s disease. American Journal of Pathology, 158, 293–297.PubMedCrossRef Reich, E. E., Markesbery, W. R., Roberts, L. J., 2nd, Swift, L. L., Morrow, J. D., & Montine, T. J. (2001). Brain regional quantification of F-ring and D-/E-ring isoprostanes and neuroprostanes in Alzheimer’s disease. American Journal of Pathology, 158, 293–297.PubMedCrossRef
Zurück zum Zitat Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A., et al. (2001). Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 88, 10540–10543.CrossRef Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A., et al. (2001). Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 88, 10540–10543.CrossRef
Zurück zum Zitat Sultana, R., Boyd-Kimball, D., Poon, H. F., Cai, J., Pierce, W. M., Klein, J. B., et al. (2006a). Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiology of Disease, 22, 76–87.PubMedCrossRef Sultana, R., Boyd-Kimball, D., Poon, H. F., Cai, J., Pierce, W. M., Klein, J. B., et al. (2006a). Identification of nitrated proteins in Alzheimer’s disease brain using a redox proteomics approach. Neurobiology of Disease, 22, 76–87.PubMedCrossRef
Zurück zum Zitat Sultana, R., Boyd-Kimball, D., Poon, H. F., Cai, J., Pierce, W. M., Klein, J. B., et al. (2006b). Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: An approach to understand pathological and biochemical alterations in AD. Neurobiology of Aging, 27, 1564–1576.PubMedCrossRef Sultana, R., Boyd-Kimball, D., Poon, H. F., Cai, J., Pierce, W. M., Klein, J. B., et al. (2006b). Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: An approach to understand pathological and biochemical alterations in AD. Neurobiology of Aging, 27, 1564–1576.PubMedCrossRef
Zurück zum Zitat Sultana, R., Ravagna, A., Mohmmad-Abdul, H., Calabrese, V., & Butterfield, D. A. (2005). Ferulic acid ethyl ester protects neurons against amyloid \(\upbeta\)-peptide (1–42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. Journal of Neurochemistry, 92, 749–758.PubMedCrossRef Sultana, R., Ravagna, A., Mohmmad-Abdul, H., Calabrese, V., & Butterfield, D. A. (2005). Ferulic acid ethyl ester protects neurons against amyloid \(\upbeta\)-peptide (1–42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. Journal of Neurochemistry, 92, 749–758.PubMedCrossRef
Zurück zum Zitat Sultana, R., Reed, T., Perluigi, M., Coccia, R., Pierce, W. M., & Butterfield, D. A. (2007). Proteomic identification of nitrated brain proteins in amnestic mild cognitive impairment: A regional study. Journal of Cellular and Molecular Medicine, 11, 839–851.PubMedCrossRef Sultana, R., Reed, T., Perluigi, M., Coccia, R., Pierce, W. M., & Butterfield, D. A. (2007). Proteomic identification of nitrated brain proteins in amnestic mild cognitive impairment: A regional study. Journal of Cellular and Molecular Medicine, 11, 839–851.PubMedCrossRef
Zurück zum Zitat Varadarajan, S., Kanski, J., Aksenova, M., Lauderback, C., & Butterfield, D. A. (2001). Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s A\(\upbeta\)(1–42) and A\(\upbeta\)(25–35). Journal of the American Chemical Society, 123, 5625–5631.PubMedCrossRef Varadarajan, S., Kanski, J., Aksenova, M., Lauderback, C., & Butterfield, D. A. (2001). Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s A\(\upbeta\)(1–42) and A\(\upbeta\)(25–35). Journal of the American Chemical Society, 123, 5625–5631.PubMedCrossRef
Zurück zum Zitat Yatin, S. M., Link, C. D., & Butterfield, D. A. (1999a). In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid \(\upbeta\)–peptide (1–42). Neurobiology of Aging, 20, 325–330.PubMedCrossRef Yatin, S. M., Link, C. D., & Butterfield, D. A. (1999a). In vitro and in vivo oxidative stress associated with Alzheimer’s amyloid \(\upbeta\)–peptide (1–42). Neurobiology of Aging, 20, 325–330.PubMedCrossRef
Zurück zum Zitat Yatin, S. M., Varadarajan, S., & Butterfield, D. A. (2000). Vitamin E prevents Alzheimer’s amyloid \(\upbeta\)-peptide (1–42)-induced protein oxidation and reactive oxygen species formation. Journal of Alzheimer’s Disease, 2, 123–131.PubMed Yatin, S. M., Varadarajan, S., & Butterfield, D. A. (2000). Vitamin E prevents Alzheimer’s amyloid \(\upbeta\)-peptide (1–42)-induced protein oxidation and reactive oxygen species formation. Journal of Alzheimer’s Disease, 2, 123–131.PubMed
Zurück zum Zitat Yatin, S. M., Yatin, M., Aulick, T., Ain, K. B., & Butterfield, D. A. (1999b). Alzheimer’s amyloid \(\upbeta\)-peptide generated free radicals increase rat embryonic neuronal polyamine uptake and ODC activity: Protective effect of vitamin E. Neuroscience Letters, 263, 17–20.PubMedCrossRef Yatin, S. M., Yatin, M., Aulick, T., Ain, K. B., & Butterfield, D. A. (1999b). Alzheimer’s amyloid \(\upbeta\)-peptide generated free radicals increase rat embryonic neuronal polyamine uptake and ODC activity: Protective effect of vitamin E. Neuroscience Letters, 263, 17–20.PubMedCrossRef
Metadaten
Titel
Oxidative Stress in Alzheimer Disease: Synergy Between the Butterfield and Markesbery Laboratories
verfasst von
D. Allan Butterfield
Publikationsdatum
01.03.2011
Verlag
Humana Press Inc
Erschienen in
NeuroMolecular Medicine / Ausgabe 1/2011
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-010-8123-9

Weitere Artikel der Ausgabe 1/2011

NeuroMolecular Medicine 1/2011 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Demenzkranke durch Antipsychotika vielfach gefährdet

Demenz Nachrichten

Der Einsatz von Antipsychotika gegen psychische und Verhaltenssymptome in Zusammenhang mit Demenzerkrankungen erfordert eine sorgfältige Nutzen-Risiken-Abwägung. Neuen Erkenntnissen zufolge sind auf der Risikoseite weitere schwerwiegende Ereignisse zu berücksichtigen.

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.