Skip to main content
Erschienen in: NeuroMolecular Medicine 1/2016

01.03.2016 | Original Paper

Does PGC1α/FNDC5/BDNF Elicit the Beneficial Effects of Exercise on Neurodegenerative Disorders?

verfasst von: Mohammad Jodeiri Farshbaf, Kamran Ghaedi, Timothy L. Megraw, Jennifer Curtiss, Mahsa Shirani Faradonbeh, Pooneh Vaziri, Mohammad Hossein Nasr-Esfahani

Erschienen in: NeuroMolecular Medicine | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

Neurodegenerative disorders such as Alzheimer’s, Parkinson’s and Huntington’s diseases have high prevalence among the elderly. Many strategies have been established to alleviate the symptoms experienced by affected individuals. Recent studies have shown that exercise helps patients with neurological disorders to regain lost physical abilities. PGC1α/FNDC5/BDNF has emerged recently as a critical pathway for neuroprotection. PGC1α is a highly conserved co-activator of transcription factors that preserves and protects neurons against destruction. PGC1α regulates FNDC5 and its processed and secreted peptide Irisin, which has been proposed to play a critical role in energy expenditure and to promote neural differentiation of mouse embryonic stem cells. FNDC5 may also increase the expression of the neurotrophic factor BDNF, a neuroprotective agent, in the hippocampus. BDNF is secreted from hippocampus, amygdala, cerebral cortex and hypothalamus neurons and initiates intracellular signaling pathways through TrkB receptors. These pathways have positive feedback on CREB activities and lead to enhancement in PGC1α expression in neurons. Therefore, FNDC5 could behave as a key regulator in neuronal survival and development. This review presents recent findings on the PGC1α/FNDC5/BDNF pathway and its role in neuroprotection, and discusses the controversial promise of irisin as a mediator of the positive benefits of exercise.
Literatur
Zurück zum Zitat Albrecht, E., Norheim, F., Thiede, B., Holen, T., Ohashi, T., Schering, L., et al. (2015). Irisin—A myth rather than an exercise-inducible myokine. Scientific reports, 5, 8889.PubMedCentralPubMedCrossRef Albrecht, E., Norheim, F., Thiede, B., Holen, T., Ohashi, T., Schering, L., et al. (2015). Irisin—A myth rather than an exercise-inducible myokine. Scientific reports, 5, 8889.PubMedCentralPubMedCrossRef
Zurück zum Zitat Amadoro, G., Corsetti, V., Florenzano, F., Atlante, A., Bobba, A., Nicolin, V., et al. (2014). Morphological and bioenergetic demands underlying the mitophagy in post-mitotic neurons: the pink-parkin pathway. Front Aging Neurosci, 6, 18.PubMedCentralPubMedCrossRef Amadoro, G., Corsetti, V., Florenzano, F., Atlante, A., Bobba, A., Nicolin, V., et al. (2014). Morphological and bioenergetic demands underlying the mitophagy in post-mitotic neurons: the pink-parkin pathway. Front Aging Neurosci, 6, 18.PubMedCentralPubMedCrossRef
Zurück zum Zitat Andreyev, A. Y., Kushnareva, Y. E., Murphy, A. N., & Starkov, A. A. (2015). Mitochondrial ROS metabolism: 10 years later. Biochemistry (Mosc), 80, 517–531.CrossRef Andreyev, A. Y., Kushnareva, Y. E., Murphy, A. N., & Starkov, A. A. (2015). Mitochondrial ROS metabolism: 10 years later. Biochemistry (Mosc), 80, 517–531.CrossRef
Zurück zum Zitat Antonenkov, V. D., Grunau, S., Ohlmeier, S., & Hiltunen, J. K. (2010). Peroxisomes are oxidative organelles. Antioxidants and Redox Signaling, 13, 525–537.PubMedCrossRef Antonenkov, V. D., Grunau, S., Ohlmeier, S., & Hiltunen, J. K. (2010). Peroxisomes are oxidative organelles. Antioxidants and Redox Signaling, 13, 525–537.PubMedCrossRef
Zurück zum Zitat Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 360438.PubMedCentralPubMedCrossRef Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 360438.PubMedCentralPubMedCrossRef
Zurück zum Zitat Aydin, S., Kuloglu, T., Eren, M. N., Celik, A., Yilmaz, M., Kalayci, M., et al. (2014). Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: Cardiac muscle produces more irisin than skeletal muscle. Peptides, 52, 68–73.PubMedCrossRef Aydin, S., Kuloglu, T., Eren, M. N., Celik, A., Yilmaz, M., Kalayci, M., et al. (2014). Cardiac, skeletal muscle and serum irisin responses to with or without water exercise in young and old male rats: Cardiac muscle produces more irisin than skeletal muscle. Peptides, 52, 68–73.PubMedCrossRef
Zurück zum Zitat Baes, M., & Aubourg, P. (2009). Peroxisomes, myelination, and axonal integrity in the CNS. Neuroscientist, 15, 367–379.PubMedCrossRef Baes, M., & Aubourg, P. (2009). Peroxisomes, myelination, and axonal integrity in the CNS. Neuroscientist, 15, 367–379.PubMedCrossRef
Zurück zum Zitat Baes, M., & Van Veldhoven, P. P. (2006). Generalised and conditional inactivation of Pex genes in mice. Biochimica et Biophysica Acta, 1763, 1785–1793.PubMedCrossRef Baes, M., & Van Veldhoven, P. P. (2006). Generalised and conditional inactivation of Pex genes in mice. Biochimica et Biophysica Acta, 1763, 1785–1793.PubMedCrossRef
Zurück zum Zitat Balaban, R. S., Nemoto, S., & Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell, 120, 483–495.PubMedCrossRef Balaban, R. S., Nemoto, S., & Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell, 120, 483–495.PubMedCrossRef
Zurück zum Zitat Bennett, S. A., Valenzuela, N., Xu, H., Franko, B., Fai, S., & Figeys, D. (2013). Using neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer’s Disease. Frontiers in Physiology, 4, 168.PubMedCentralPubMedCrossRef Bennett, S. A., Valenzuela, N., Xu, H., Franko, B., Fai, S., & Figeys, D. (2013). Using neurolipidomics to identify phospholipid mediators of synaptic (dys)function in Alzheimer’s Disease. Frontiers in Physiology, 4, 168.PubMedCentralPubMedCrossRef
Zurück zum Zitat Blesa, J., Trigo-Damas, I., Quiroga-Varela, A., Jackson-Lewis, V.R. (2015). Oxidative stress and Parkinson’s disease. Front Neuroanat, 9, 91.PubMedCentralPubMed Blesa, J., Trigo-Damas, I., Quiroga-Varela, A., Jackson-Lewis, V.R. (2015). Oxidative stress and Parkinson’s disease. Front Neuroanat, 9, 91.PubMedCentralPubMed
Zurück zum Zitat Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., et al. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481, 463–468.PubMedCentralPubMedCrossRef Boström, P., Wu, J., Jedrychowski, M. P., Korde, A., Ye, L., Lo, J. C., et al. (2012). A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature, 481, 463–468.PubMedCentralPubMedCrossRef
Zurück zum Zitat Bordt, E.A.,& Polster, B.M. (2014). NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial activation: a bipartisan affair? Free Radic Biol Med, 76, 34–46.PubMedCrossRef Bordt, E.A.,& Polster, B.M. (2014). NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial activation: a bipartisan affair? Free Radic Biol Med, 76, 34–46.PubMedCrossRef
Zurück zum Zitat Braverman, N. E., & Moser, A. B. (2012). Functions of plasmalogen lipids in health and disease. Biochimica et Biophysica Acta, 1822, 1442–1452.PubMedCrossRef Braverman, N. E., & Moser, A. B. (2012). Functions of plasmalogen lipids in health and disease. Biochimica et Biophysica Acta, 1822, 1442–1452.PubMedCrossRef
Zurück zum Zitat Calon, F., Lim, G. P., Yang, F., Morihara, T., Teter, B., Ubeda, O., et al. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron, 43, 633–645.PubMedCentralPubMedCrossRef Calon, F., Lim, G. P., Yang, F., Morihara, T., Teter, B., Ubeda, O., et al. (2004). Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron, 43, 633–645.PubMedCentralPubMedCrossRef
Zurück zum Zitat Carlezon, W. A., Duman, R. S., & Nestler, E. J. (2005). The many faces of CREB. Trends in Neurosciences, 28, 436–445.PubMedCrossRef Carlezon, W. A., Duman, R. S., & Nestler, E. J. (2005). The many faces of CREB. Trends in Neurosciences, 28, 436–445.PubMedCrossRef
Zurück zum Zitat Castillo-Quan, J. I. (2011). Parkin’ control: Regulation of PGC-1α through PARIS in Parkinson’s disease. Disease Models and Mechanisms, 4, 427–429.PubMedCentralPubMedCrossRef Castillo-Quan, J. I. (2011). Parkin’ control: Regulation of PGC-1α through PARIS in Parkinson’s disease. Disease Models and Mechanisms, 4, 427–429.PubMedCentralPubMedCrossRef
Zurück zum Zitat Chapman, P. F., White, G. L., Jones, M. W., Cooper-Blacketer, D., Marshall, V. J., Irizarry, M., et al. (1999). Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nature Neuroscience, 2, 271–276.PubMedCrossRef Chapman, P. F., White, G. L., Jones, M. W., Cooper-Blacketer, D., Marshall, V. J., Irizarry, M., et al. (1999). Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nature Neuroscience, 2, 271–276.PubMedCrossRef
Zurück zum Zitat Chaturvedi, R. K., & Beal, M. F. (2013). Mitochondrial diseases of the brain. Free Radical Biology and Medicine, 63, 1–29.PubMedCrossRef Chaturvedi, R. K., & Beal, M. F. (2013). Mitochondrial diseases of the brain. Free Radical Biology and Medicine, 63, 1–29.PubMedCrossRef
Zurück zum Zitat Chen, H., McCaffery, J. M., & Chan, D. C. (2007). Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell, 130, 548–562.PubMedCrossRef Chen, H., McCaffery, J. M., & Chan, D. C. (2007). Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell, 130, 548–562.PubMedCrossRef
Zurück zum Zitat Chen, Z. Y., Patel, P. D., Sant, G., Meng, C. X., Teng, K. K., Hempstead, B. L., & Lee, F. S. (2004). Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. Journal of Neuroscience, 24, 4401–4411.PubMedCrossRef Chen, Z. Y., Patel, P. D., Sant, G., Meng, C. X., Teng, K. K., Hempstead, B. L., & Lee, F. S. (2004). Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. Journal of Neuroscience, 24, 4401–4411.PubMedCrossRef
Zurück zum Zitat Ciccone, S., Maiani, E., Bellusci, G., Diederich, M., & Gonfloni, S. (2013). Parkinson’s disease: A complex interplay of mitochondrial DNA alterations and oxidative stress. International Journal of Molecular Sciences, 14, 2388–2409.PubMedCentralPubMedCrossRef Ciccone, S., Maiani, E., Bellusci, G., Diederich, M., & Gonfloni, S. (2013). Parkinson’s disease: A complex interplay of mitochondrial DNA alterations and oxidative stress. International Journal of Molecular Sciences, 14, 2388–2409.PubMedCentralPubMedCrossRef
Zurück zum Zitat Clark, J., Reddy, S., Zheng, K., Betensky, R. A., & Simon, D. K. (2011). Association of PGC-1alpha polymorphisms with age of onset and risk of Parkinson’s disease. BMC Medical Genetics, 12, 69.PubMedCentralPubMedCrossRef Clark, J., Reddy, S., Zheng, K., Betensky, R. A., & Simon, D. K. (2011). Association of PGC-1alpha polymorphisms with age of onset and risk of Parkinson’s disease. BMC Medical Genetics, 12, 69.PubMedCentralPubMedCrossRef
Zurück zum Zitat Connolly, A. M., Chez, M., Streif, E. M., Keeling, R. M., Golumbek, P. T., Kwon, J. M., et al. (2006). Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, Landau–Kleffner syndrome, and epilepsy. Biological Psychiatry, 59, 354–363.PubMedCrossRef Connolly, A. M., Chez, M., Streif, E. M., Keeling, R. M., Golumbek, P. T., Kwon, J. M., et al. (2006). Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, Landau–Kleffner syndrome, and epilepsy. Biological Psychiatry, 59, 354–363.PubMedCrossRef
Zurück zum Zitat Conquer, J. A., Tierney, M. C., Zecevic, J., Bettger, W. J., & Fisher, R. H. (2000). Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids, 35, 1305–1312.PubMedCrossRef Conquer, J. A., Tierney, M. C., Zecevic, J., Bettger, W. J., & Fisher, R. H. (2000). Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids, 35, 1305–1312.PubMedCrossRef
Zurück zum Zitat Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 464–472.PubMedCrossRef Cotman, C. W., Berchtold, N. C., & Christie, L. A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30, 464–472.PubMedCrossRef
Zurück zum Zitat Cui, L., Jeong, H., Borovecki, F., Parkhurst, C. N., Tanese, N., & Krainc, D. (2006). Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127, 59–69.PubMedCrossRef Cui, L., Jeong, H., Borovecki, F., Parkhurst, C. N., Tanese, N., & Krainc, D. (2006). Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell, 127, 59–69.PubMedCrossRef
Zurück zum Zitat del Río, L. A., Corpas, F. J., Sandalio, L. M., Palma, J. M., Gómez, M., & Barroso, J. B. (2002). Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany, 53, 1255–1272.PubMedCrossRef del Río, L. A., Corpas, F. J., Sandalio, L. M., Palma, J. M., Gómez, M., & Barroso, J. B. (2002). Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. Journal of Experimental Botany, 53, 1255–1272.PubMedCrossRef
Zurück zum Zitat Desai, N. S., Rutherford, L. C., & Turrigiano, G. G. (1999). BDNF regulates the intrinsic excitability of cortical neurons. Learning and Memory, 6, 284–291.PubMedCentralPubMed Desai, N. S., Rutherford, L. C., & Turrigiano, G. G. (1999). BDNF regulates the intrinsic excitability of cortical neurons. Learning and Memory, 6, 284–291.PubMedCentralPubMed
Zurück zum Zitat Dun, S. L., Lyu, R. M., Chen, Y. H., Chang, J. K., Luo, J. J., & Dun, N. J. (2013). Irisin-immunoreactivity in neural and non-neural cells of the rodent. Neuroscience, 240, 155–162.PubMedCentralPubMedCrossRef Dun, S. L., Lyu, R. M., Chen, Y. H., Chang, J. K., Luo, J. J., & Dun, N. J. (2013). Irisin-immunoreactivity in neural and non-neural cells of the rodent. Neuroscience, 240, 155–162.PubMedCentralPubMedCrossRef
Zurück zum Zitat Edmondson, D. E. (2014). Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: biological implications. Current Pharmaceutical Design, 20, 155–160.PubMedCrossRef Edmondson, D. E. (2014). Hydrogen peroxide produced by mitochondrial monoamine oxidase catalysis: biological implications. Current Pharmaceutical Design, 20, 155–160.PubMedCrossRef
Zurück zum Zitat Eichner, L. J., & Giguère, V. (2011). Estrogen related receptors (ERRs): A new dawn in transcriptional control of mitochondrial gene networks. Mitochondrion, 11, 544–552.PubMedCrossRef Eichner, L. J., & Giguère, V. (2011). Estrogen related receptors (ERRs): A new dawn in transcriptional control of mitochondrial gene networks. Mitochondrion, 11, 544–552.PubMedCrossRef
Zurück zum Zitat Evans, R. M. (2005). The nuclear receptor superfamily: A rosetta stone for physiology. Molecular Endocrinology, 19, 1429–1438.PubMedCrossRef Evans, R. M. (2005). The nuclear receptor superfamily: A rosetta stone for physiology. Molecular Endocrinology, 19, 1429–1438.PubMedCrossRef
Zurück zum Zitat Exner, N., Lutz, A.K., Haass, C., Winklhofer, K.F. (2012). Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J, 31(14), 3038–3062.PubMedCentralPubMedCrossRef Exner, N., Lutz, A.K., Haass, C., Winklhofer, K.F. (2012). Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J, 31(14), 3038–3062.PubMedCentralPubMedCrossRef
Zurück zum Zitat Farrar, G. J., Chadderton, N., Kenna, P. F., & Millington-Ward, S. (2013). Mitochondrial disorders: Aetiologies, models systems, and candidate therapies. Trends in Genetics, 29, 488–497.PubMedCrossRef Farrar, G. J., Chadderton, N., Kenna, P. F., & Millington-Ward, S. (2013). Mitochondrial disorders: Aetiologies, models systems, and candidate therapies. Trends in Genetics, 29, 488–497.PubMedCrossRef
Zurück zum Zitat Ferreiro, E., Baldeiras, I., Ferreira, I. L., Costa, R. O., Rego, A. C., Pereira, C. F., & Oliveira, C. R. (2012). Mitochondrial- and endoplasmic reticulum-associated oxidative stress in Alzheimer’s disease: From pathogenesis to biomarkers. International Journal of Cell Biology, 2012, 735206.PubMedCentralPubMedCrossRef Ferreiro, E., Baldeiras, I., Ferreira, I. L., Costa, R. O., Rego, A. C., Pereira, C. F., & Oliveira, C. R. (2012). Mitochondrial- and endoplasmic reticulum-associated oxidative stress in Alzheimer’s disease: From pathogenesis to biomarkers. International Journal of Cell Biology, 2012, 735206.PubMedCentralPubMedCrossRef
Zurück zum Zitat Ferrer-Martínez, A., Ruiz-Lozano, P., & Chien, K. R. (2002). Mouse PeP: A novel peroxisomal protein linked to myoblast differentiation and development. Developmental Dynamics, 224, 154–167.PubMedCrossRef Ferrer-Martínez, A., Ruiz-Lozano, P., & Chien, K. R. (2002). Mouse PeP: A novel peroxisomal protein linked to myoblast differentiation and development. Developmental Dynamics, 224, 154–167.PubMedCrossRef
Zurück zum Zitat Fiore, M., Chaldakov, G. N., & Aloe, L. (2009). Nerve growth factor as a signaling molecule for nerve cells and also for the neuroendocrine-immune systems. Reviews in the Neurosciences, 20, 133–145.PubMedCrossRef Fiore, M., Chaldakov, G. N., & Aloe, L. (2009). Nerve growth factor as a signaling molecule for nerve cells and also for the neuroendocrine-immune systems. Reviews in the Neurosciences, 20, 133–145.PubMedCrossRef
Zurück zum Zitat Forouzanfar, M., Rabiee, F., Ghaedi, K., Beheshti, S., Tanhaei, S., Shoaraye Nejati, A., et al. (2015). Fndc5 overexpression facilitated neural differentiation of mouse embryonic stem cells. Cell Biology International, 39, 629–637.PubMedCrossRef Forouzanfar, M., Rabiee, F., Ghaedi, K., Beheshti, S., Tanhaei, S., Shoaraye Nejati, A., et al. (2015). Fndc5 overexpression facilitated neural differentiation of mouse embryonic stem cells. Cell Biology International, 39, 629–637.PubMedCrossRef
Zurück zum Zitat Fransen, M., Nordgren, M., Wang, B., & Apanasets, O. (2012). Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochimica et Biophysica Acta, 1822, 1363–1373.PubMedCrossRef Fransen, M., Nordgren, M., Wang, B., & Apanasets, O. (2012). Role of peroxisomes in ROS/RNS-metabolism: Implications for human disease. Biochimica et Biophysica Acta, 1822, 1363–1373.PubMedCrossRef
Zurück zum Zitat Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M. S., et al. (2002). alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biology, 4, 160–164.PubMedCrossRef Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M. S., et al. (2002). alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biology, 4, 160–164.PubMedCrossRef
Zurück zum Zitat Ghahrizjani, F. A., Ghaedi, K., Salamian, A., Tanhaei, S., Nejati, A. S., Salehi, H., et al. (2015). Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues. Gene, 557, 123–129.PubMedCrossRef Ghahrizjani, F. A., Ghaedi, K., Salamian, A., Tanhaei, S., Nejati, A. S., Salehi, H., et al. (2015). Enhanced expression of FNDC5 in human embryonic stem cell-derived neural cells along with relevant embryonic neural tissues. Gene, 557, 123–129.PubMedCrossRef
Zurück zum Zitat Giampà, C., Montagna, E., Dato, C., Melone, M. A., Bernardi, G., & Fusco, F. R. (2013). Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington’s disease. PLoS One, 8, e64037.PubMedCentralPubMedCrossRef Giampà, C., Montagna, E., Dato, C., Melone, M. A., Bernardi, G., & Fusco, F. R. (2013). Systemic delivery of recombinant brain derived neurotrophic factor (BDNF) in the R6/2 mouse model of Huntington’s disease. PLoS One, 8, e64037.PubMedCentralPubMedCrossRef
Zurück zum Zitat Ginsberg, L., Rafique, S., Xuereb, J. H., Rapoport, S. I., & Gershfeld, N. L. (1995). Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Research, 698, 223–226.PubMedCrossRef Ginsberg, L., Rafique, S., Xuereb, J. H., Rapoport, S. I., & Gershfeld, N. L. (1995). Disease and anatomic specificity of ethanolamine plasmalogen deficiency in Alzheimer’s disease brain. Brain Research, 698, 223–226.PubMedCrossRef
Zurück zum Zitat Goncalves, R. L., Rothschild, D. E., Quinlan, C. L., Scott, G. K., Benz, C. C., & Brand, M. D. (2014). Sources of superoxide/H2O2 during mitochondrial proline oxidation. Redox Biology, 2, 901–909.PubMedCentralPubMedCrossRef Goncalves, R. L., Rothschild, D. E., Quinlan, C. L., Scott, G. K., Benz, C. C., & Brand, M. D. (2014). Sources of superoxide/H2O2 during mitochondrial proline oxidation. Redox Biology, 2, 901–909.PubMedCentralPubMedCrossRef
Zurück zum Zitat Green, D. R., & Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science, 305, 626–629.PubMedCrossRef Green, D. R., & Kroemer, G. (2004). The pathophysiology of mitochondrial cell death. Science, 305, 626–629.PubMedCrossRef
Zurück zum Zitat Greenberg, M. E., Xu, B., Lu, B., & Hempstead, B. L. (2009). New insights in the biology of BDNF synthesis and release: implications in CNS function. Journal of Neuroscience, 29, 12764–12767.PubMedCentralPubMedCrossRef Greenberg, M. E., Xu, B., Lu, B., & Hempstead, B. L. (2009). New insights in the biology of BDNF synthesis and release: implications in CNS function. Journal of Neuroscience, 29, 12764–12767.PubMedCentralPubMedCrossRef
Zurück zum Zitat Guo, C., Sun, L., Chen, X., & Zhang, D. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research, 8, 2003–2014.PubMedCentralPubMed Guo, C., Sun, L., Chen, X., & Zhang, D. (2013). Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regeneration Research, 8, 2003–2014.PubMedCentralPubMed
Zurück zum Zitat Haas, R. H., Parikh, S., Falk, M. J., Saneto, R. P., Wolf, N. I., Darin, N., et al. (2008). The in-depth evaluation of suspected mitochondrial disease. Molecular Genetics and Metabolism, 94, 16–37.PubMedCentralPubMedCrossRef Haas, R. H., Parikh, S., Falk, M. J., Saneto, R. P., Wolf, N. I., Darin, N., et al. (2008). The in-depth evaluation of suspected mitochondrial disease. Molecular Genetics and Metabolism, 94, 16–37.PubMedCentralPubMedCrossRef
Zurück zum Zitat Han, J.Y., Kim, J.S., Son, J.H. (2014). Mitochondrial homeostasis molecules: regulation by a trio of recessive Parkinson's disease genes. Exp Neurobiol, 23(4), 345–351.PubMedCentralPubMedCrossRef Han, J.Y., Kim, J.S., Son, J.H. (2014). Mitochondrial homeostasis molecules: regulation by a trio of recessive Parkinson's disease genes. Exp Neurobiol, 23(4), 345–351.PubMedCentralPubMedCrossRef
Zurück zum Zitat Handschin, C. (2009). The biology of PGC-1α and its therapeutic potential. Trends in Pharmacological Sciences, 30, 322–329.PubMedCrossRef Handschin, C. (2009). The biology of PGC-1α and its therapeutic potential. Trends in Pharmacological Sciences, 30, 322–329.PubMedCrossRef
Zurück zum Zitat Hashemi, M. S., Ghaedi, K., Salamian, A., Karbalaie, K., Emadi-Baygi, M., Tanhaei, S., et al. (2013). Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells. Neuroscience, 231, 296–304.PubMedCrossRef Hashemi, M. S., Ghaedi, K., Salamian, A., Karbalaie, K., Emadi-Baygi, M., Tanhaei, S., et al. (2013). Fndc5 knockdown significantly decreased neural differentiation rate of mouse embryonic stem cells. Neuroscience, 231, 296–304.PubMedCrossRef
Zurück zum Zitat Herben-Dekker, M., van Oostrom, J. C., Roos, R. A., Jurgens, C. K., Witjes-Ané, M. N., Kremer, H. P., et al. (2014). Striatal metabolism and psychomotor speed as predictors of motor onset in Huntington’s disease. Journal of Neurology, 261, 1387–1397.PubMedCrossRef Herben-Dekker, M., van Oostrom, J. C., Roos, R. A., Jurgens, C. K., Witjes-Ané, M. N., Kremer, H. P., et al. (2014). Striatal metabolism and psychomotor speed as predictors of motor onset in Huntington’s disease. Journal of Neurology, 261, 1387–1397.PubMedCrossRef
Zurück zum Zitat Huang, E. J., & Reichardt, L. F. (2001). Neurotrophins: Roles in neuronal development and function. Annual Review of Neuroscience, 24, 677–736.PubMedCentralPubMedCrossRef Huang, E. J., & Reichardt, L. F. (2001). Neurotrophins: Roles in neuronal development and function. Annual Review of Neuroscience, 24, 677–736.PubMedCentralPubMedCrossRef
Zurück zum Zitat Ivanov, I.P., Firth, A.E., Michel, A.M., Atkins, J.F., Baranov, P.V. (2011). Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences. Nucleic Acids Res, 39(10), 4220–4234.PubMedCentralPubMedCrossRef Ivanov, I.P., Firth, A.E., Michel, A.M., Atkins, J.F., Baranov, P.V. (2011). Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences. Nucleic Acids Res, 39(10), 4220–4234.PubMedCentralPubMedCrossRef
Zurück zum Zitat Ivashchenko, O., Van Veldhoven, P. P., Brees, C., Ho, Y. S., Terlecky, S. R., & Fransen, M. (2011). Intraperoxisomal redox balance in mammalian cells: Oxidative stress and interorganellar cross-talk. Molecular Biology of the Cell, 22, 1440–1451.PubMedCentralPubMedCrossRef Ivashchenko, O., Van Veldhoven, P. P., Brees, C., Ho, Y. S., Terlecky, S. R., & Fransen, M. (2011). Intraperoxisomal redox balance in mammalian cells: Oxidative stress and interorganellar cross-talk. Molecular Biology of the Cell, 22, 1440–1451.PubMedCentralPubMedCrossRef
Zurück zum Zitat Jin, Y. N., & Johnson, G. V. (2010). The interrelationship between mitochondrial dysfunction and transcriptional dysregulation in Huntington disease. Journal of Bioenergetics and Biomembranes, 42, 199–205.PubMedCentralPubMedCrossRef Jin, Y. N., & Johnson, G. V. (2010). The interrelationship between mitochondrial dysfunction and transcriptional dysregulation in Huntington disease. Journal of Bioenergetics and Biomembranes, 42, 199–205.PubMedCentralPubMedCrossRef
Zurück zum Zitat Johnson, W. T., Johnson, L. A., & Lukaski, H. C. (2005). Serum superoxide dismutase 3 (extracellular superoxide dismutase) activity is a sensitive indicator of Cu status in rats. Journal of Nutritional Biochemistry, 16, 682–692.PubMedCrossRef Johnson, W. T., Johnson, L. A., & Lukaski, H. C. (2005). Serum superoxide dismutase 3 (extracellular superoxide dismutase) activity is a sensitive indicator of Cu status in rats. Journal of Nutritional Biochemistry, 16, 682–692.PubMedCrossRef
Zurück zum Zitat Johri, A., & Beal, M. F. (2012). Mitochondrial dysfunction in neurodegenerative diseases. Journal of Pharmacology and Experimental Therapeutics, 342, 619–630.PubMedCentralPubMedCrossRef Johri, A., & Beal, M. F. (2012). Mitochondrial dysfunction in neurodegenerative diseases. Journal of Pharmacology and Experimental Therapeutics, 342, 619–630.PubMedCentralPubMedCrossRef
Zurück zum Zitat Kalmijn, S., Launer, L. J., Ott, A., Witteman, J. C., Hofman, A., & Breteler, M. M. (1997). Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Annals of Neurology, 42, 776–782.PubMedCrossRef Kalmijn, S., Launer, L. J., Ott, A., Witteman, J. C., Hofman, A., & Breteler, M. M. (1997). Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Annals of Neurology, 42, 776–782.PubMedCrossRef
Zurück zum Zitat Kassmann, C. M., Lappe-Siefke, C., Baes, M., Brügger, B., Mildner, A., Werner, H. B., et al. (2007). Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nature Genetics, 39, 969–976.PubMedCrossRef Kassmann, C. M., Lappe-Siefke, C., Baes, M., Brügger, B., Mildner, A., Werner, H. B., et al. (2007). Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nature Genetics, 39, 969–976.PubMedCrossRef
Zurück zum Zitat Katsouri, L., Parr, C., Bogdanovic, N., Willem, M., & Sastre, M. (2011). PPARγ co-activator-1α (PGC-1α) reduces amyloid-β generation through a PPARγ-dependent mechanism. Journal of Alzheimer’s Disease, 25, 151–162.PubMed Katsouri, L., Parr, C., Bogdanovic, N., Willem, M., & Sastre, M. (2011). PPARγ co-activator-1α (PGC-1α) reduces amyloid-β generation through a PPARγ-dependent mechanism. Journal of Alzheimer’s Disease, 25, 151–162.PubMed
Zurück zum Zitat Kelly, D. P., & Scarpulla, R. C. (2004). Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes and Development, 18, 357–368.PubMedCrossRef Kelly, D. P., & Scarpulla, R. C. (2004). Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes and Development, 18, 357–368.PubMedCrossRef
Zurück zum Zitat Keogh, M.J., Chinnery, P.F. (2015). Mitochondrial DNA mutations in neurodegeneration. Biochim Biophys Acta, 1847(11), 1401–1411.CrossRef Keogh, M.J., Chinnery, P.F. (2015). Mitochondrial DNA mutations in neurodegeneration. Biochim Biophys Acta, 1847(11), 1401–1411.CrossRef
Zurück zum Zitat Kobilo, T., Liu, Q. R., Gandhi, K., Mughal, M., Shaham, Y., & van Praag, H. (2011). Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learning and Memory, 18, 605–609.PubMedCentralPubMedCrossRef Kobilo, T., Liu, Q. R., Gandhi, K., Mughal, M., Shaham, Y., & van Praag, H. (2011). Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learning and Memory, 18, 605–609.PubMedCentralPubMedCrossRef
Zurück zum Zitat Koepke, J. I., Nakrieko, K. A., Wood, C. S., Boucher, K. K., Terlecky, L. J., Walton, P. A., & Terlecky, S. R. (2007). Restoration of peroxisomal catalase import in a model of human cellular aging. Traffic, 8, 1590–1600.PubMedCrossRef Koepke, J. I., Nakrieko, K. A., Wood, C. S., Boucher, K. K., Terlecky, L. J., Walton, P. A., & Terlecky, S. R. (2007). Restoration of peroxisomal catalase import in a model of human cellular aging. Traffic, 8, 1590–1600.PubMedCrossRef
Zurück zum Zitat Kotiadis, V. N., Duchen, M. R., & Osellame, L. D. (2014). Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochimica et Biophysica Acta, 1840, 1254–1265.PubMedCentralPubMedCrossRef Kotiadis, V. N., Duchen, M. R., & Osellame, L. D. (2014). Mitochondrial quality control and communications with the nucleus are important in maintaining mitochondrial function and cell health. Biochimica et Biophysica Acta, 1840, 1254–1265.PubMedCentralPubMedCrossRef
Zurück zum Zitat Kou, J., Kovacs, G. G., Höftberger, R., Kulik, W., Brodde, A., Forss-Petter, S., et al. (2011). Peroxisomal alterations in Alzheimer’s disease. Acta Neuropathologica, 122, 271–283.PubMedCentralPubMedCrossRef Kou, J., Kovacs, G. G., Höftberger, R., Kulik, W., Brodde, A., Forss-Petter, S., et al. (2011). Peroxisomal alterations in Alzheimer’s disease. Acta Neuropathologica, 122, 271–283.PubMedCentralPubMedCrossRef
Zurück zum Zitat Kressler, D., Schreiber, S. N., Knutti, D., & Kralli, A. (2002). The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. Journal of Biological Chemistry, 277, 13918–13925.PubMedCrossRef Kressler, D., Schreiber, S. N., Knutti, D., & Kralli, A. (2002). The PGC-1-related protein PERC is a selective coactivator of estrogen receptor alpha. Journal of Biological Chemistry, 277, 13918–13925.PubMedCrossRef
Zurück zum Zitat Lee, P., Linderman, J. D., Smith, S., Brychta, R. J., Wang, J., Idelson, C., et al. (2014). Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metabolism, 19, 302–309.PubMedCrossRef Lee, P., Linderman, J. D., Smith, S., Brychta, R. J., Wang, J., Idelson, C., et al. (2014). Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metabolism, 19, 302–309.PubMedCrossRef
Zurück zum Zitat Legros, F., Malka, F., Frachon, P., Lombès, A., & Rojo, M. (2004). Organization and dynamics of human mitochondrial DNA. Journal of Cell Science, 117, 2653–2662.PubMedCrossRef Legros, F., Malka, F., Frachon, P., Lombès, A., & Rojo, M. (2004). Organization and dynamics of human mitochondrial DNA. Journal of Cell Science, 117, 2653–2662.PubMedCrossRef
Zurück zum Zitat Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443, 787–795.PubMedCrossRef Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443, 787–795.PubMedCrossRef
Zurück zum Zitat Lin, J., Puigserver, P., Donovan, J., Tarr, P., & Spiegelman, B. M. (2002a). Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. Journal of Biological Chemistry, 277, 1645–1648.PubMedCrossRef Lin, J., Puigserver, P., Donovan, J., Tarr, P., & Spiegelman, B. M. (2002a). Peroxisome proliferator-activated receptor gamma coactivator 1beta (PGC-1beta), a novel PGC-1-related transcription coactivator associated with host cell factor. Journal of Biological Chemistry, 277, 1645–1648.PubMedCrossRef
Zurück zum Zitat Lin, M.Y., & Sheng, Z.H. (2015). Regulation of mitochondrial transport in neurons. Exp Cell Res, 334(1), 35–44.PubMedCrossRef Lin, M.Y., & Sheng, Z.H. (2015). Regulation of mitochondrial transport in neurons. Exp Cell Res, 334(1), 35–44.PubMedCrossRef
Zurück zum Zitat Lin, J., Wu, P. H., Tarr, P. T., Lindenberg, K. S., St-Pierre, J., Zhang, C. Y., et al. (2004). Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell, 119, 121–135.PubMedCrossRef Lin, J., Wu, P. H., Tarr, P. T., Lindenberg, K. S., St-Pierre, J., Zhang, C. Y., et al. (2004). Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell, 119, 121–135.PubMedCrossRef
Zurück zum Zitat Lin, J., Wu, H., Tarr, P. T., Zhang, C. Y., Wu, Z., Boss, O., et al. (2002b). Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature, 418, 797–801.PubMedCrossRef Lin, J., Wu, H., Tarr, P. T., Zhang, C. Y., Wu, Z., Boss, O., et al. (2002b). Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature, 418, 797–801.PubMedCrossRef
Zurück zum Zitat Lopez-Huertas, E., Charlton, W. L., Johnson, B., Graham, I. A., & Baker, A. (2000). Stress induces peroxisome biogenesis genes. EMBO Journal, 19, 6770–6777.PubMedCentralPubMedCrossRef Lopez-Huertas, E., Charlton, W. L., Johnson, B., Graham, I. A., & Baker, A. (2000). Stress induces peroxisome biogenesis genes. EMBO Journal, 19, 6770–6777.PubMedCentralPubMedCrossRef
Zurück zum Zitat Mailloux, R. J. (2015). Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biology, 4, 381–398.PubMedCentralPubMedCrossRef Mailloux, R. J. (2015). Teaching the fundamentals of electron transfer reactions in mitochondria and the production and detection of reactive oxygen species. Redox Biology, 4, 381–398.PubMedCentralPubMedCrossRef
Zurück zum Zitat Martin, E., Betuing, S., Pagès, C., Cambon, K., Auregan, G., Deglon, N., et al. (2011). Mitogen- and stress-activated protein kinase 1-induced neuroprotection in Huntington’s disease: role on chromatin remodeling at the PGC-1-alpha promoter. Human Molecular Genetics, 20, 2422–2434.PubMedCentralPubMedCrossRef Martin, E., Betuing, S., Pagès, C., Cambon, K., Auregan, G., Deglon, N., et al. (2011). Mitogen- and stress-activated protein kinase 1-induced neuroprotection in Huntington’s disease: role on chromatin remodeling at the PGC-1-alpha promoter. Human Molecular Genetics, 20, 2422–2434.PubMedCentralPubMedCrossRef
Zurück zum Zitat Mattson, M. P. (2012). Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metabolism, 16, 706–722.PubMedCentralPubMedCrossRef Mattson, M. P. (2012). Energy intake and exercise as determinants of brain health and vulnerability to injury and disease. Cell Metabolism, 16, 706–722.PubMedCentralPubMedCrossRef
Zurück zum Zitat McAllister, A. K. (2001). Neurotrophins and neuronal differentiation in the central nervous system. Cellular and Molecular Life Sciences, 58, 1054–1060.PubMedCrossRef McAllister, A. K. (2001). Neurotrophins and neuronal differentiation in the central nervous system. Cellular and Molecular Life Sciences, 58, 1054–1060.PubMedCrossRef
Zurück zum Zitat McGill, J. K., & Beal, M. F. (2006). PGC-1alpha, a new therapeutic target in Huntington’s disease? Cell, 127, 465–468.PubMedCrossRef McGill, J. K., & Beal, M. F. (2006). PGC-1alpha, a new therapeutic target in Huntington’s disease? Cell, 127, 465–468.PubMedCrossRef
Zurück zum Zitat Milnerwood, A. J., & Raymond, L. A. (2010). Early synaptic pathophysiology in neurodegeneration: Insights from Huntington’s disease. Trends in Neurosciences, 33, 513–523.PubMedCrossRef Milnerwood, A. J., & Raymond, L. A. (2010). Early synaptic pathophysiology in neurodegeneration: Insights from Huntington’s disease. Trends in Neurosciences, 33, 513–523.PubMedCrossRef
Zurück zum Zitat Momose, Y., Murata, M., Kobayashi, K., Tachikawa, M., Nakabayashi, Y., Kanazawa, I., & Toda, T. (2002). Association studies of multiple candidate genes for Parkinson’s disease using single nucleotide polymorphisms. Annals of Neurology, 51, 133–136.PubMedCrossRef Momose, Y., Murata, M., Kobayashi, K., Tachikawa, M., Nakabayashi, Y., Kanazawa, I., & Toda, T. (2002). Association studies of multiple candidate genes for Parkinson’s disease using single nucleotide polymorphisms. Annals of Neurology, 51, 133–136.PubMedCrossRef
Zurück zum Zitat Monteiro-Junior, R. S., Cevada, T., Oliveira, B. R., Lattari, E., Portugal, E. M., Carvalho, A., & Deslandes, A. C. (2015). We need to move more: Neurobiological hypotheses of physical exercise as a treatment for Parkinson’s disease. Medical Hypotheses,. doi:10.1016/j.mehy.2015.07.011 PubMed Monteiro-Junior, R. S., Cevada, T., Oliveira, B. R., Lattari, E., Portugal, E. M., Carvalho, A., & Deslandes, A. C. (2015). We need to move more: Neurobiological hypotheses of physical exercise as a treatment for Parkinson’s disease. Medical Hypotheses,. doi:10.​1016/​j.​mehy.​2015.​07.​011 PubMed
Zurück zum Zitat Moon, H. S., Dincer, F., & Mantzoros, C. S. (2013). Pharmacological concentrations of irisin increase cell proliferation without influencing markers of neurite outgrowth and synaptogenesis in mouse H19-7 hippocampal cell lines. Metabolism, 62, 1131–1136.PubMedCentralPubMedCrossRef Moon, H. S., Dincer, F., & Mantzoros, C. S. (2013). Pharmacological concentrations of irisin increase cell proliferation without influencing markers of neurite outgrowth and synaptogenesis in mouse H19-7 hippocampal cell lines. Metabolism, 62, 1131–1136.PubMedCentralPubMedCrossRef
Zurück zum Zitat Moreira, P. I., Santos, M. S., Seiça, R., & Oliveira, C. R. (2007). Brain mitochondrial dysfunction as a link between Alzheimer’s disease and diabetes. Journal of the Neurological Sciences, 257, 206–214.PubMedCrossRef Moreira, P. I., Santos, M. S., Seiça, R., & Oliveira, C. R. (2007). Brain mitochondrial dysfunction as a link between Alzheimer’s disease and diabetes. Journal of the Neurological Sciences, 257, 206–214.PubMedCrossRef
Zurück zum Zitat Mudò, G., Mäkelä, J., Di Liberto, V., Tselykh, T. V., Olivieri, M., Piepponen, P., et al. (2012). Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cellular and Molecular Life Sciences, 69, 1153–1165.PubMedCrossRef Mudò, G., Mäkelä, J., Di Liberto, V., Tselykh, T. V., Olivieri, M., Piepponen, P., et al. (2012). Transgenic expression and activation of PGC-1α protect dopaminergic neurons in the MPTP mouse model of Parkinson’s disease. Cellular and Molecular Life Sciences, 69, 1153–1165.PubMedCrossRef
Zurück zum Zitat Nagley, P., Higgins, G. C., Atkin, J. D., & Beart, P. M. (2010). Multifaceted deaths orchestrated by mitochondria in neurones. Biochimica et Biophysica Acta, 1802, 167–185.PubMedCrossRef Nagley, P., Higgins, G. C., Atkin, J. D., & Beart, P. M. (2010). Multifaceted deaths orchestrated by mitochondria in neurones. Biochimica et Biophysica Acta, 1802, 167–185.PubMedCrossRef
Zurück zum Zitat Nicholls, D. G. (2008). Oxidative stress and energy crises in neuronal dysfunction. Annals of the New York Academy of Sciences, 1147, 53–60.PubMedCrossRef Nicholls, D. G. (2008). Oxidative stress and energy crises in neuronal dysfunction. Annals of the New York Academy of Sciences, 1147, 53–60.PubMedCrossRef
Zurück zum Zitat Nixon, R. A., Cataldo, A. M., & Mathews, P. M. (2000). The endosomal–lysosomal system of neurons in Alzheimer’s disease pathogenesis: A review. Neurochemical Research, 25, 1161–1172.PubMedCrossRef Nixon, R. A., Cataldo, A. M., & Mathews, P. M. (2000). The endosomal–lysosomal system of neurons in Alzheimer’s disease pathogenesis: A review. Neurochemical Research, 25, 1161–1172.PubMedCrossRef
Zurück zum Zitat Obulesu, M., & Lakshmi, M. J. (2014). Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochemical Research, 39, 2301–2312.PubMedCrossRef Obulesu, M., & Lakshmi, M. J. (2014). Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochemical Research, 39, 2301–2312.PubMedCrossRef
Zurück zum Zitat Ostadsharif, M., Ghaedi, K., Hossein Nasr-Esfahani, M., Mojbafan, M., Tanhaie, S., Karbalaie, K., & Baharvand, H. (2011). The expression of peroxisomal protein transcripts increased by retinoic acid during neural differentiation. Differentiation, 81, 127–132.PubMedCrossRef Ostadsharif, M., Ghaedi, K., Hossein Nasr-Esfahani, M., Mojbafan, M., Tanhaie, S., Karbalaie, K., & Baharvand, H. (2011). The expression of peroxisomal protein transcripts increased by retinoic acid during neural differentiation. Differentiation, 81, 127–132.PubMedCrossRef
Zurück zum Zitat Outeiro, T. F., Marques, O., & Kazantsev, A. (2008). Therapeutic role of sirtuins in neurodegenerative disease. Biochimica et Biophysica Acta, 1782, 363–369.PubMedCrossRef Outeiro, T. F., Marques, O., & Kazantsev, A. (2008). Therapeutic role of sirtuins in neurodegenerative disease. Biochimica et Biophysica Acta, 1782, 363–369.PubMedCrossRef
Zurück zum Zitat Payne, B. A., & Chinnery, P. F. (2015). Mitochondrial dysfunction in aging: Much progress but many unresolved questions. Biochim Biophys Acta, 1847(11), 1347–1353. CrossRef Payne, B. A., & Chinnery, P. F. (2015). Mitochondrial dysfunction in aging: Much progress but many unresolved questions. Biochim Biophys Acta, 1847(11), 1347–1353. CrossRef
Zurück zum Zitat Petzold, A., Psotta, L., Brigadski, T., Endres, T., & Lessmann, V. (2015). Chronic BDNF deficiency leads to an age-dependent impairment in spatial learning. Neurobiology of Learning and Memory, 120, 52–60.PubMedCrossRef Petzold, A., Psotta, L., Brigadski, T., Endres, T., & Lessmann, V. (2015). Chronic BDNF deficiency leads to an age-dependent impairment in spatial learning. Neurobiology of Learning and Memory, 120, 52–60.PubMedCrossRef
Zurück zum Zitat Phillips, C., Baktir, M. A., Srivatsan, M., & Salehi, A. (2014). Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Frontiers in Cellular Neuroscience, 8, 170.PubMedCentralPubMedCrossRef Phillips, C., Baktir, M. A., Srivatsan, M., & Salehi, A. (2014). Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling. Frontiers in Cellular Neuroscience, 8, 170.PubMedCentralPubMedCrossRef
Zurück zum Zitat Picconi, B., Piccoli, G., & Calabresi, P. (2012). Synaptic dysfunction in Parkinson’s disease. Advances in Experimental Medicine and Biology, 970, 553–572.PubMedCrossRef Picconi, B., Piccoli, G., & Calabresi, P. (2012). Synaptic dysfunction in Parkinson’s disease. Advances in Experimental Medicine and Biology, 970, 553–572.PubMedCrossRef
Zurück zum Zitat Picone, P., Nuzzo, D., Caruana, L., Scafidi, V., Di Carlo, M. (2014). Mitochondrial dysfunction: different routes to Alzheimer's disease therapy. Oxid Med Cell Longev, 2014, 780179.PubMedCentralPubMedCrossRef Picone, P., Nuzzo, D., Caruana, L., Scafidi, V., Di Carlo, M. (2014). Mitochondrial dysfunction: different routes to Alzheimer's disease therapy. Oxid Med Cell Longev, 2014, 780179.PubMedCentralPubMedCrossRef
Zurück zum Zitat Pizzorusso, T., Ratto, G. M., Putignano, E., & Maffei, L. (2000). Brain-derived neurotrophic factor causes cAMP response element-binding protein phosphorylation in absence of calcium increases in slices and cultured neurons from rat visual cortex. Journal of Neuroscience, 20, 2809–2816.PubMed Pizzorusso, T., Ratto, G. M., Putignano, E., & Maffei, L. (2000). Brain-derived neurotrophic factor causes cAMP response element-binding protein phosphorylation in absence of calcium increases in slices and cultured neurons from rat visual cortex. Journal of Neuroscience, 20, 2809–2816.PubMed
Zurück zum Zitat Przedborski, S., Vila, M., & Jackson-Lewis, V. (2003). Neurodegeneration: What is it and where are we? Journal of Clinical Investigation, 111, 3–10.PubMedCentralPubMedCrossRef Przedborski, S., Vila, M., & Jackson-Lewis, V. (2003). Neurodegeneration: What is it and where are we? Journal of Clinical Investigation, 111, 3–10.PubMedCentralPubMedCrossRef
Zurück zum Zitat Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M., & Spiegelman, B. M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 92, 829–839.PubMedCrossRef Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M., & Spiegelman, B. M. (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell, 92, 829–839.PubMedCrossRef
Zurück zum Zitat Qin, W., Haroutunian, V., Katsel, P., Cardozo, C. P., Ho, L., Buxbaum, J. D., & Pasinetti, G. M. (2009). PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Archives of Neurology, 66, 352–361.PubMedCentralPubMedCrossRef Qin, W., Haroutunian, V., Katsel, P., Cardozo, C. P., Ho, L., Buxbaum, J. D., & Pasinetti, G. M. (2009). PGC-1alpha expression decreases in the Alzheimer disease brain as a function of dementia. Archives of Neurology, 66, 352–361.PubMedCentralPubMedCrossRef
Zurück zum Zitat Qin, W., Yang, T., Ho, L., Zhao, Z., Wang, J., Chen, L., et al. (2006). Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. Journal of Biological Chemistry, 281, 21745–21754.PubMedCrossRef Qin, W., Yang, T., Ho, L., Zhao, Z., Wang, J., Chen, L., et al. (2006). Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. Journal of Biological Chemistry, 281, 21745–21754.PubMedCrossRef
Zurück zum Zitat Rabiee, F., Forouzanfar, M., Ghazvini Zadegan, F., Tanhaei, S., Ghaedi, K., Motovali Bashi, M., et al. (2014). Induced expression of Fndc5 significantly increased cardiomyocyte differentiation rate of mouse embryonic stem cells. Gene, 551, 127–137.PubMedCrossRef Rabiee, F., Forouzanfar, M., Ghazvini Zadegan, F., Tanhaei, S., Ghaedi, K., Motovali Bashi, M., et al. (2014). Induced expression of Fndc5 significantly increased cardiomyocyte differentiation rate of mouse embryonic stem cells. Gene, 551, 127–137.PubMedCrossRef
Zurück zum Zitat Radak, Z., Chung, H. Y., & Goto, S. (2005). Exercise and hormesis: Oxidative stress-related adaptation for successful aging. Biogerontology, 6, 71–75.PubMedCrossRef Radak, Z., Chung, H. Y., & Goto, S. (2005). Exercise and hormesis: Oxidative stress-related adaptation for successful aging. Biogerontology, 6, 71–75.PubMedCrossRef
Zurück zum Zitat Raschke, S., Elsen, M., Gassenhuber, H., Sommerfeld, M., Schwahn, U., Brockmann, B., et al. (2013). Evidence against a beneficial effect of irisin in humans. PLoS ONE, 8, e73680.PubMedCentralPubMedCrossRef Raschke, S., Elsen, M., Gassenhuber, H., Sommerfeld, M., Schwahn, U., Brockmann, B., et al. (2013). Evidence against a beneficial effect of irisin in humans. PLoS ONE, 8, e73680.PubMedCentralPubMedCrossRef
Zurück zum Zitat Reddy, P. H. (2009). Role of mitochondria in neurodegenerative diseases: Mitochondria as a therapeutic target in Alzheimer’s disease. CNS Spectrums, 14, 8–13. discussion 16–18.PubMedCentralPubMed Reddy, P. H. (2009). Role of mitochondria in neurodegenerative diseases: Mitochondria as a therapeutic target in Alzheimer’s disease. CNS Spectrums, 14, 8–13. discussion 16–18.PubMedCentralPubMed
Zurück zum Zitat Reichardt, L. F. (2006). Neurotrophin-regulated signalling pathways. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 361, 1545–1564.PubMedCentralPubMedCrossRef Reichardt, L. F. (2006). Neurotrophin-regulated signalling pathways. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 361, 1545–1564.PubMedCentralPubMedCrossRef
Zurück zum Zitat Rinnerthaler, M., Bischof, J., Streubel, M. K., Trost, A., & Richter, K. (2015). Oxidative stress in aging human skin. Biomolecules, 5, 545–589.PubMedCentralPubMedCrossRef Rinnerthaler, M., Bischof, J., Streubel, M. K., Trost, A., & Richter, K. (2015). Oxidative stress in aging human skin. Biomolecules, 5, 545–589.PubMedCentralPubMedCrossRef
Zurück zum Zitat Rossignol, D. A., & Frye, R. E. (2012). A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Molecular Psychiatry, 17, 389–401.PubMedCentralPubMedCrossRef Rossignol, D. A., & Frye, R. E. (2012). A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Molecular Psychiatry, 17, 389–401.PubMedCentralPubMedCrossRef
Zurück zum Zitat Ruetenik, A., & Barrientos, A. (2015) Dietary restriction, mitochondrial function and aging: From yeast to humans. Biochim Biophys Acta, 1847(11), 1434–1447.PubMedCrossRef Ruetenik, A., & Barrientos, A. (2015) Dietary restriction, mitochondrial function and aging: From yeast to humans. Biochim Biophys Acta, 1847(11), 1434–1447.PubMedCrossRef
Zurück zum Zitat Santos, M. J., Quintanilla, R. A., Toro, A., Grandy, R., Dinamarca, M. C., Godoy, J. A., & Inestrosa, N. C. (2005). Peroxisomal proliferation protects from beta-amyloid neurodegeneration. Journal of Biological Chemistry, 280, 41057–41068.PubMedCrossRef Santos, M. J., Quintanilla, R. A., Toro, A., Grandy, R., Dinamarca, M. C., Godoy, J. A., & Inestrosa, N. C. (2005). Peroxisomal proliferation protects from beta-amyloid neurodegeneration. Journal of Biological Chemistry, 280, 41057–41068.PubMedCrossRef
Zurück zum Zitat Scarpulla, R. C. (2008). Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiological Reviews, 88, 611–638.PubMedCrossRef Scarpulla, R. C. (2008). Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiological Reviews, 88, 611–638.PubMedCrossRef
Zurück zum Zitat Schäbitz, W. R., Sommer, C., Zoder, W., Kiessling, M., Schwaninger, M., & Schwab, S. (2000). Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke, 31, 2212–2217.PubMedCrossRef Schäbitz, W. R., Sommer, C., Zoder, W., Kiessling, M., Schwaninger, M., & Schwab, S. (2000). Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke, 31, 2212–2217.PubMedCrossRef
Zurück zum Zitat Schon, E. A., DiMauro, S., Hirano, M., & Gilkerson, R. W. (2010). Therapeutic prospects for mitochondrial disease. Trends in Molecular Medicine, 16, 268–276.PubMedCentralPubMedCrossRef Schon, E. A., DiMauro, S., Hirano, M., & Gilkerson, R. W. (2010). Therapeutic prospects for mitochondrial disease. Trends in Molecular Medicine, 16, 268–276.PubMedCentralPubMedCrossRef
Zurück zum Zitat Schreiber, S. N., Emter, R., Hock, M. B., Knutti, D., Cardenas, J., Podvinec, M., et al. (2004). The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proceedings of the National Academy of Sciences USA, 101, 6472–6477.CrossRef Schreiber, S. N., Emter, R., Hock, M. B., Knutti, D., Cardenas, J., Podvinec, M., et al. (2004). The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proceedings of the National Academy of Sciences USA, 101, 6472–6477.CrossRef
Zurück zum Zitat Selkoe, D. J., & Schenk, D. (2003). Alzheimer’s disease: Molecular understanding predicts amyloid-based therapeutics. Annual Review of Pharmacology and Toxicology, 43, 545–584.PubMedCrossRef Selkoe, D. J., & Schenk, D. (2003). Alzheimer’s disease: Molecular understanding predicts amyloid-based therapeutics. Annual Review of Pharmacology and Toxicology, 43, 545–584.PubMedCrossRef
Zurück zum Zitat Sen, S., Nesse, R. M., Stoltenberg, S. F., Li, S., Gleiberman, L., Chakravarti, A., et al. (2003). A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology, 28, 397–401.PubMedCrossRef Sen, S., Nesse, R. M., Stoltenberg, S. F., Li, S., Gleiberman, L., Chakravarti, A., et al. (2003). A BDNF coding variant is associated with the NEO personality inventory domain neuroticism, a risk factor for depression. Neuropsychopharmacology, 28, 397–401.PubMedCrossRef
Zurück zum Zitat Sharon, R., Bar-Joseph, I., Frosch, M. P., Walsh, D. M., Hamilton, J. A., & Selkoe, D. J. (2003a). The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron, 37, 583–595.PubMedCrossRef Sharon, R., Bar-Joseph, I., Frosch, M. P., Walsh, D. M., Hamilton, J. A., & Selkoe, D. J. (2003a). The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron, 37, 583–595.PubMedCrossRef
Zurück zum Zitat Sharon, R., Bar-Joseph, I., Mirick, G. E., Serhan, C. N., & Selkoe, D. J. (2003b). Altered fatty acid composition of dopaminergic neurons expressing alpha-synuclein and human brains with alpha-synucleinopathies. Journal of Biological Chemistry, 278, 49874–49881.PubMedCrossRef Sharon, R., Bar-Joseph, I., Mirick, G. E., Serhan, C. N., & Selkoe, D. J. (2003b). Altered fatty acid composition of dopaminergic neurons expressing alpha-synuclein and human brains with alpha-synucleinopathies. Journal of Biological Chemistry, 278, 49874–49881.PubMedCrossRef
Zurück zum Zitat Sheikh, F. G., Pahan, K., Khan, M., Barbosa, E., & Singh, I. (1998). Abnormality in catalase import into peroxisomes leads to severe neurological disorder. Proceedings of the National Academy of Sciences, 95, 2961–2966.CrossRef Sheikh, F. G., Pahan, K., Khan, M., Barbosa, E., & Singh, I. (1998). Abnormality in catalase import into peroxisomes leads to severe neurological disorder. Proceedings of the National Academy of Sciences, 95, 2961–2966.CrossRef
Zurück zum Zitat Sheng, B., Wang, X., Su, B., Lee, H. G., Casadesus, G., Perry, G., & Zhu, X. (2012). Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. Journal of Neurochemistry, 120, 419–429.PubMedCentralPubMedCrossRef Sheng, B., Wang, X., Su, B., Lee, H. G., Casadesus, G., Perry, G., & Zhu, X. (2012). Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in Alzheimer’s disease. Journal of Neurochemistry, 120, 419–429.PubMedCentralPubMedCrossRef
Zurück zum Zitat Shin, J. H., Ko, H. S., Kang, H., Lee, Y., Lee, Y. I., Pletinkova, O., et al. (2011). PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell, 144, 689–702.PubMedCentralPubMedCrossRef Shin, J. H., Ko, H. S., Kang, H., Lee, Y., Lee, Y. I., Pletinkova, O., et al. (2011). PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson’s disease. Cell, 144, 689–702.PubMedCentralPubMedCrossRef
Zurück zum Zitat Shutt, T.E.,& McBride, H.M. (2013). Staying cool in difficult times: mitochondrial dynamics, quality control and the stress response. Biochim Biophys Acta, 1833(2), 417–424.PubMedCrossRef Shutt, T.E.,& McBride, H.M. (2013). Staying cool in difficult times: mitochondrial dynamics, quality control and the stress response. Biochim Biophys Acta, 1833(2), 417–424.PubMedCrossRef
Zurück zum Zitat Song, W., Chen, J., Petrilli, A., Liot, G., Klinglmayr, E., Zhou, Y., et al. (2011). Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nature Medicine, 17, 377–382.PubMedCentralPubMedCrossRef Song, W., Chen, J., Petrilli, A., Liot, G., Klinglmayr, E., Zhou, Y., et al. (2011). Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nature Medicine, 17, 377–382.PubMedCentralPubMedCrossRef
Zurück zum Zitat Spiegelman, B. M. (2013). Banting Lecture 2012 Regulation of adipogenesis: Toward new therapeutics for metabolic disease. Diabetes, 62, 1774–1782.PubMedCentralPubMedCrossRef Spiegelman, B. M. (2013). Banting Lecture 2012 Regulation of adipogenesis: Toward new therapeutics for metabolic disease. Diabetes, 62, 1774–1782.PubMedCentralPubMedCrossRef
Zurück zum Zitat Steinberg, S. J., Dodt, G., Raymond, G. V., Braverman, N. E., Moser, A. B., & Moser, H. W. (2006). Peroxisome biogenesis disorders. Biochimica et Biophysica Acta, 1763, 1733–1748.PubMedCrossRef Steinberg, S. J., Dodt, G., Raymond, G. V., Braverman, N. E., Moser, A. B., & Moser, H. W. (2006). Peroxisome biogenesis disorders. Biochimica et Biophysica Acta, 1763, 1733–1748.PubMedCrossRef
Zurück zum Zitat St-Pierre, J., Drori, S., Uldry, M., Silvaggi, J. M., Rhee, J., Jäger, S., et al. (2006). Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 127, 397–408.PubMedCrossRef St-Pierre, J., Drori, S., Uldry, M., Silvaggi, J. M., Rhee, J., Jäger, S., et al. (2006). Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 127, 397–408.PubMedCrossRef
Zurück zum Zitat Sun, M., Kong, L., Wang, X., Lu, X. G., Gao, Q., & Geller, A. I. (2005). Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson’s disease. Brain Research, 1052, 119–129.PubMedCentralPubMedCrossRef Sun, M., Kong, L., Wang, X., Lu, X. G., Gao, Q., & Geller, A. I. (2005). Comparison of the capability of GDNF, BDNF, or both, to protect nigrostriatal neurons in a rat model of Parkinson’s disease. Brain Research, 1052, 119–129.PubMedCentralPubMedCrossRef
Zurück zum Zitat Tapia-Arancibia, L., Aliaga, E., Silhol, M., & Arancibia, S. (2008). New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Research Reviews, 59, 201–220.PubMedCrossRef Tapia-Arancibia, L., Aliaga, E., Silhol, M., & Arancibia, S. (2008). New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Research Reviews, 59, 201–220.PubMedCrossRef
Zurück zum Zitat Tapia-Arancibia, L., Rage, F., Givalois, L., & Arancibia, S. (2004). Physiology of BDNF: Focus on hypothalamic function. Frontiers in Neuroendocrinology, 25, 77–107.PubMedCrossRef Tapia-Arancibia, L., Rage, F., Givalois, L., & Arancibia, S. (2004). Physiology of BDNF: Focus on hypothalamic function. Frontiers in Neuroendocrinology, 25, 77–107.PubMedCrossRef
Zurück zum Zitat Tillement, L., Lecanu, L., & Papadopoulos, V. (2011). Alzheimer’s disease: Effects of β-amyloid on mitochondria. Mitochondrion, 11, 13–21.PubMedCrossRef Tillement, L., Lecanu, L., & Papadopoulos, V. (2011). Alzheimer’s disease: Effects of β-amyloid on mitochondria. Mitochondrion, 11, 13–21.PubMedCrossRef
Zurück zum Zitat Tong, L., Balazs, R., Thornton, P. L., & Cotman, C. W. (2004). Beta-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons. Journal of Neuroscience, 24, 6799–6809.PubMedCrossRef Tong, L., Balazs, R., Thornton, P. L., & Cotman, C. W. (2004). Beta-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons. Journal of Neuroscience, 24, 6799–6809.PubMedCrossRef
Zurück zum Zitat Trempe, J.F., & Fon, E.A. (2013). Structure and Function of Parkin, PINK1, and DJ-1, the Three Musketeers of Neuroprotection. Front Neurol, 4, 38.PubMedCentralPubMedCrossRef Trempe, J.F., & Fon, E.A. (2013). Structure and Function of Parkin, PINK1, and DJ-1, the Three Musketeers of Neuroprotection. Front Neurol, 4, 38.PubMedCentralPubMedCrossRef
Zurück zum Zitat Tretter, L., Sipos, I., & Adam-Vizi, V. (2004). Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson’s disease. Neurochemical Research, 29, 569–577.PubMedCrossRef Tretter, L., Sipos, I., & Adam-Vizi, V. (2004). Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson’s disease. Neurochemical Research, 29, 569–577.PubMedCrossRef
Zurück zum Zitat Tsai, S. J. (2006). TrkB partial agonists: potential treatment strategy for epilepsy, mania, and autism. Medical Hypotheses, 66, 173–175.PubMedCrossRef Tsai, S. J. (2006). TrkB partial agonists: potential treatment strategy for epilepsy, mania, and autism. Medical Hypotheses, 66, 173–175.PubMedCrossRef
Zurück zum Zitat Tsunemi, T., Ashe, T. D., Morrison, B. E., Soriano, K. R., Au, J., Roque, R. A., et al. (2012). PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Science Translational Medicine, 4, 142ra197.CrossRef Tsunemi, T., Ashe, T. D., Morrison, B. E., Soriano, K. R., Au, J., Roque, R. A., et al. (2012). PGC-1α rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Science Translational Medicine, 4, 142ra197.CrossRef
Zurück zum Zitat van der Valk, P., Gille, J. J., Oostra, A. B., Roubos, E. W., Sminia, T., & Joenje, H. (1985). Characterization of an oxygen-tolerant cell line derived from Chinese hamster ovary. Antioxygenic enzyme levels and ultrastructural morphometry of peroxisomes and mitochondria. Cell and Tissue Research, 239, 61–68.PubMedCrossRef van der Valk, P., Gille, J. J., Oostra, A. B., Roubos, E. W., Sminia, T., & Joenje, H. (1985). Characterization of an oxygen-tolerant cell line derived from Chinese hamster ovary. Antioxygenic enzyme levels and ultrastructural morphometry of peroxisomes and mitochondria. Cell and Tissue Research, 239, 61–68.PubMedCrossRef
Zurück zum Zitat Vega, R. B., Huss, J. M., & Kelly, D. P. (2000). The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Molecular and Cellular Biology, 20, 1868–1876.PubMedCentralPubMedCrossRef Vega, R. B., Huss, J. M., & Kelly, D. P. (2000). The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Molecular and Cellular Biology, 20, 1868–1876.PubMedCentralPubMedCrossRef
Zurück zum Zitat Ventriglia, M., Bocchio Chiavetto, L., Benussi, L., Binetti, G., Zanetti, O., Riva, M. A., & Gennarelli, M. (2002). Association between the BDNF 196 A/G polymorphism and sporadic Alzheimer’s disease. Molecular Psychiatry, 7, 136–137.PubMedCrossRef Ventriglia, M., Bocchio Chiavetto, L., Benussi, L., Binetti, G., Zanetti, O., Riva, M. A., & Gennarelli, M. (2002). Association between the BDNF 196 A/G polymorphism and sporadic Alzheimer’s disease. Molecular Psychiatry, 7, 136–137.PubMedCrossRef
Zurück zum Zitat Vila, M., & Przedborski, S. (2003). Targeting programmed cell death in neurodegenerative diseases. Nature Reviews Neuroscience, 4, 365–375.PubMedCrossRef Vila, M., & Przedborski, S. (2003). Targeting programmed cell death in neurodegenerative diseases. Nature Reviews Neuroscience, 4, 365–375.PubMedCrossRef
Zurück zum Zitat Villena, J. A. (2015). New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS Journal, 282, 647–672.PubMedCrossRef Villena, J. A. (2015). New insights into PGC-1 coactivators: redefining their role in the regulation of mitochondrial function and beyond. FEBS Journal, 282, 647–672.PubMedCrossRef
Zurück zum Zitat Volakakis, N., Kadkhodaei, B., Joodmardi, E., Wallis, K., Panman, L., Silvaggi, J., et al. (2010). NR4A orphan nuclear receptors as mediators of CREB-dependent neuroprotection. Proceedings of the National Academy of Sciences USA, 107, 12317–12322.CrossRef Volakakis, N., Kadkhodaei, B., Joodmardi, E., Wallis, K., Panman, L., Silvaggi, J., et al. (2010). NR4A orphan nuclear receptors as mediators of CREB-dependent neuroprotection. Proceedings of the National Academy of Sciences USA, 107, 12317–12322.CrossRef
Zurück zum Zitat Wanders, R. J., & Waterham, H. R. (2005). Peroxisomal disorders I: Biochemistry and genetics of peroxisome biogenesis disorders. Clinical Genetics, 67, 107–133.PubMedCrossRef Wanders, R. J., & Waterham, H. R. (2005). Peroxisomal disorders I: Biochemistry and genetics of peroxisome biogenesis disorders. Clinical Genetics, 67, 107–133.PubMedCrossRef
Zurück zum Zitat Wanders, R. J., & Waterham, H. R. (2006). Peroxisomal disorders: The single peroxisomal enzyme deficiencies. Biochimica et Biophysica Acta, 1763, 1707–1720.PubMedCrossRef Wanders, R. J., & Waterham, H. R. (2006). Peroxisomal disorders: The single peroxisomal enzyme deficiencies. Biochimica et Biophysica Acta, 1763, 1707–1720.PubMedCrossRef
Zurück zum Zitat Wang, R., Li, J. J., Diao, S., Kwak, Y. D., Liu, L., Zhi, L., et al. (2013). Metabolic stress modulates Alzheimer’s β-secretase gene transcription via SIRT1-PPARγ-PGC-1 in neurons. Cell Metabolism, 17, 685–694.PubMedCrossRef Wang, R., Li, J. J., Diao, S., Kwak, Y. D., Liu, L., Zhi, L., et al. (2013). Metabolic stress modulates Alzheimer’s β-secretase gene transcription via SIRT1-PPARγ-PGC-1 in neurons. Cell Metabolism, 17, 685–694.PubMedCrossRef
Zurück zum Zitat Wenz, T. (2009). PGC-1alpha activation as a therapeutic approach in mitochondrial disease. IUBMB Life, 61, 1051–1062.PubMedCrossRef Wenz, T. (2009). PGC-1alpha activation as a therapeutic approach in mitochondrial disease. IUBMB Life, 61, 1051–1062.PubMedCrossRef
Zurück zum Zitat Weydt, P., Soyal, S. M., Gellera, C., Didonato, S., Weidinger, C., Oberkofler, H., et al. (2009). The gene coding for PGC-1alpha modifies age at onset in Huntington’s Disease. Molecular neurodegeneration, 4, 3.PubMedCentralPubMedCrossRef Weydt, P., Soyal, S. M., Gellera, C., Didonato, S., Weidinger, C., Oberkofler, H., et al. (2009). The gene coding for PGC-1alpha modifies age at onset in Huntington’s Disease. Molecular neurodegeneration, 4, 3.PubMedCentralPubMedCrossRef
Zurück zum Zitat Winterbourn, C. C. (1995). Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicology Letters, 82–83, 969–974.PubMedCrossRef Winterbourn, C. C. (1995). Toxicity of iron and hydrogen peroxide: The Fenton reaction. Toxicology Letters, 82–83, 969–974.PubMedCrossRef
Zurück zum Zitat Witte, M. E., Geurts, J. J., de Vries, H. E., van der Valk, P., & van Horssen, J. (2010). Mitochondrial dysfunction: A potential link between neuroinflammation and neurodegeneration? Mitochondrion, 10, 411–418.PubMedCrossRef Witte, M. E., Geurts, J. J., de Vries, H. E., van der Valk, P., & van Horssen, J. (2010). Mitochondrial dysfunction: A potential link between neuroinflammation and neurodegeneration? Mitochondrion, 10, 411–418.PubMedCrossRef
Zurück zum Zitat Wood, C. S., Koepke, J. I., Teng, H., Boucher, K. K., Katz, S., Chang, P., et al. (2006). Hypocatalasemic fibroblasts accumulate hydrogen peroxide and display age-associated pathologies. Traffic, 7, 97–107.PubMedCrossRef Wood, C. S., Koepke, J. I., Teng, H., Boucher, K. K., Katz, S., Chang, P., et al. (2006). Hypocatalasemic fibroblasts accumulate hydrogen peroxide and display age-associated pathologies. Traffic, 7, 97–107.PubMedCrossRef
Zurück zum Zitat Wrann, C. D., White, J. P., Salogiannnis, J., Laznik-Bogoslavski, D., Wu, J., Ma, D., et al. (2013). Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metabolism, 18, 649–659.PubMedCentralPubMedCrossRef Wrann, C. D., White, J. P., Salogiannnis, J., Laznik-Bogoslavski, D., Wu, J., Ma, D., et al. (2013). Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metabolism, 18, 649–659.PubMedCentralPubMedCrossRef
Zurück zum Zitat Wu, Z., Huang, X., Feng, Y., Handschin, C., Gullicksen, P. S., Bare, O., et al. (2006). Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1alpha transcription and mitochondrial biogenesis in muscle cells. Proceedings of the National Academy of Sciences USA, 103, 14379–14384.CrossRef Wu, Z., Huang, X., Feng, Y., Handschin, C., Gullicksen, P. S., Bare, O., et al. (2006). Transducer of regulated CREB-binding proteins (TORCs) induce PGC-1alpha transcription and mitochondrial biogenesis in muscle cells. Proceedings of the National Academy of Sciences USA, 103, 14379–14384.CrossRef
Zurück zum Zitat Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., et al. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 98, 115–124.PubMedCrossRef Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., et al. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 98, 115–124.PubMedCrossRef
Zurück zum Zitat Yakunin, E., Moser, A., Loeb, V., Saada, A., Faust, P., Crane, D. I., et al. (2010). alpha-Synuclein abnormalities in mouse models of peroxisome biogenesis disorders. Journal of Neuroscience Research, 88, 866–876.PubMedCentralPubMed Yakunin, E., Moser, A., Loeb, V., Saada, A., Faust, P., Crane, D. I., et al. (2010). alpha-Synuclein abnormalities in mouse models of peroxisome biogenesis disorders. Journal of Neuroscience Research, 88, 866–876.PubMedCentralPubMed
Zurück zum Zitat Yang, L., Long, Q., Liu, J., Tang, H., Li, Y., Bao, F., Qin, D., Pei, D., Liu, X. (2015). Mitochondrial fusion provides an ‘initial metabolic complementation’ controlled by mtDNA. Cell Mol Life Sci, 72(13):2585-2598. PubMedCrossRef Yang, L., Long, Q., Liu, J., Tang, H., Li, Y., Bao, F., Qin, D., Pei, D., Liu, X. (2015). Mitochondrial fusion provides an ‘initial metabolic complementation’ controlled by mtDNA. Cell Mol Life Sci, 72(13):2585-2598. PubMedCrossRef
Zurück zum Zitat Yu, S. P. (2003). Na(+), K(+)-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochemical Pharmacology, 66, 1601–1609.PubMedCrossRef Yu, S. P. (2003). Na(+), K(+)-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. Biochemical Pharmacology, 66, 1601–1609.PubMedCrossRef
Zurück zum Zitat Zhang, Y., Ma, K., Song, S., Elam, M. B., Cook, G. A., & Park, E. A. (2004). Peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) enhances the thyroid hormone induction of carnitine palmitoyltransferase I (CPT-I alpha). Journal of Biological Chemistry, 279, 53963–53971.PubMedCrossRef Zhang, Y., Ma, K., Song, S., Elam, M. B., Cook, G. A., & Park, E. A. (2004). Peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha) enhances the thyroid hormone induction of carnitine palmitoyltransferase I (CPT-I alpha). Journal of Biological Chemistry, 279, 53963–53971.PubMedCrossRef
Zurück zum Zitat Zhao, W., Varghese, M., Yemul, S., Pan, Y., Cheng, A., Marano, P., et al. (2011). Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Molecular Neurodegeneration, 6, 51.PubMedCentralPubMedCrossRef Zhao, W., Varghese, M., Yemul, S., Pan, Y., Cheng, A., Marano, P., et al. (2011). Peroxisome proliferator activator receptor gamma coactivator-1alpha (PGC-1α) improves motor performance and survival in a mouse model of amyotrophic lateral sclerosis. Molecular Neurodegeneration, 6, 51.PubMedCentralPubMedCrossRef
Zurück zum Zitat Zheng, B., Liao, Z., Locascio, J. J., Lesniak, K. A., Roderick, S. S., Watt, M. L., et al. (2010). PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Science Translational Medicine, 2, 52ra73.PubMedCentralPubMedCrossRef Zheng, B., Liao, Z., Locascio, J. J., Lesniak, K. A., Roderick, S. S., Watt, M. L., et al. (2010). PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Science Translational Medicine, 2, 52ra73.PubMedCentralPubMedCrossRef
Zurück zum Zitat Zorzano, A., & Claret, M. (2015). Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Front Aging Neurosci, 7, 101.PubMedCentralPubMedCrossRef Zorzano, A., & Claret, M. (2015). Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Front Aging Neurosci, 7, 101.PubMedCentralPubMedCrossRef
Metadaten
Titel
Does PGC1α/FNDC5/BDNF Elicit the Beneficial Effects of Exercise on Neurodegenerative Disorders?
verfasst von
Mohammad Jodeiri Farshbaf
Kamran Ghaedi
Timothy L. Megraw
Jennifer Curtiss
Mahsa Shirani Faradonbeh
Pooneh Vaziri
Mohammad Hossein Nasr-Esfahani
Publikationsdatum
01.03.2016
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 1/2016
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-015-8370-x

Weitere Artikel der Ausgabe 1/2016

NeuroMolecular Medicine 1/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.