Skip to main content
Erschienen in: NeuroMolecular Medicine 3/2016

21.05.2016 | Original Paper

Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and Up-Regulate Antioxidant Responses in BV-2 Microglial Cells

verfasst von: Grace Y. Sun, Runting Li, Jiankun Cui, Mark Hannink, Zezong Gu, Kevin L. Fritsche, Dennis B. Lubahn, Agnes Simonyi

Erschienen in: NeuroMolecular Medicine | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Withania somnifera (L.) Dunal, commonly known as Ashwagandha, has been used in Ayurvedic medicine for promoting health and quality of life. Recent clinical trials together with experimental studies indicated significant neuroprotective effects of Ashwagandha and its constituents. This study is aimed to investigate anti-inflammatory and anti-oxidative properties of this botanical and its two withanolide constituents, namely, Withaferin A and Withanolide A, using the murine immortalized BV-2 microglial cells. Ashwagandha extracts not only effectively inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and reactive oxygen species (ROS) production in BV-2 cells, but also stimulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway, leading to induction of heme oxygenase-1 (HO-1), both in the presence and absence of LPS. Although the withanolides were also capable of inhibiting LPS-induced NO production and stimulating Nrf2/HO-1 pathway, Withaferin A was tenfold more effective than Withanolide A. In serum-free culture, LPS can also induce production of long thin processes (filopodia) between 4 and 8 h in BV-2 cells. This morphological change was significantly suppressed by Ashwagandha and both withanolides at concentrations for suppressing LPS-induced NO production. Taken together, these results suggest an immunomodulatory role for Ashwagandha and its withanolides, and their ability to suppress oxidative and inflammatory responses in microglial cells by simultaneously down-regulating the NF-kB and upregulating the Nrf2 pathways.
Literatur
Zurück zum Zitat Ashkenazi, S., Plotnikov, A., Bahat, A., Ben-Zeev, E., Warszawski, S., & Dikstein, R. (2016). A novel allosteric mechanism of NF-κB dimerization and DNA binding targeted by an anti-inflammatory drug. Molecular and Cellular Biology, 36(8), 1237–1247.CrossRefPubMed Ashkenazi, S., Plotnikov, A., Bahat, A., Ben-Zeev, E., Warszawski, S., & Dikstein, R. (2016). A novel allosteric mechanism of NF-κB dimerization and DNA binding targeted by an anti-inflammatory drug. Molecular and Cellular Biology, 36(8), 1237–1247.CrossRefPubMed
Zurück zum Zitat Brandenburg, L. O., Kipp, M., Lucius, R., Pufe, T., & Wruck, C. J. (2010). Sulforaphane suppresses LPS-induced inflammation in primary rat microglia. Inflammation Research, 59(6), 443–450.CrossRefPubMed Brandenburg, L. O., Kipp, M., Lucius, R., Pufe, T., & Wruck, C. J. (2010). Sulforaphane suppresses LPS-induced inflammation in primary rat microglia. Inflammation Research, 59(6), 443–450.CrossRefPubMed
Zurück zum Zitat Calabrese, V., Cornelius, C., Dinkova-Kostova, A. T., Calabrese, E. J., & Mattson, M. P. (2010). Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxidants and Redox Signaling, 13(11), 1763–1811.CrossRefPubMedPubMedCentral Calabrese, V., Cornelius, C., Dinkova-Kostova, A. T., Calabrese, E. J., & Mattson, M. P. (2010). Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxidants and Redox Signaling, 13(11), 1763–1811.CrossRefPubMedPubMedCentral
Zurück zum Zitat Chen, Z., & Trapp, B. D. (2016). Microglia and neuroprotection. Journal of Neurochemistry, 136(Suppl 1), 10–17.CrossRefPubMed Chen, Z., & Trapp, B. D. (2016). Microglia and neuroprotection. Journal of Neurochemistry, 136(Suppl 1), 10–17.CrossRefPubMed
Zurück zum Zitat Chen, J. C., Ho, F. M., Pei-Dawn Lee, C., Chen, C. P., Jeng, K. C., Hsu, H. B., et al. (2005). Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IκB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. European Journal of Pharmacology, 521(1–3), 9–20.CrossRefPubMed Chen, J. C., Ho, F. M., Pei-Dawn Lee, C., Chen, C. P., Jeng, K. C., Hsu, H. B., et al. (2005). Inhibition of iNOS gene expression by quercetin is mediated by the inhibition of IκB kinase, nuclear factor-kappa B and STAT1, and depends on heme oxygenase-1 induction in mouse BV-2 microglia. European Journal of Pharmacology, 521(1–3), 9–20.CrossRefPubMed
Zurück zum Zitat Chuang, D. Y., Chan, M. H., Zong, Y., Sheng, W., He, Y., Jiang, J. H., et al. (2013). Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. Journal of Neuroinflammation, 10, 15.CrossRefPubMedPubMedCentral Chuang, D. Y., Chan, M. H., Zong, Y., Sheng, W., He, Y., Jiang, J. H., et al. (2013). Magnolia polyphenols attenuate oxidative and inflammatory responses in neurons and microglial cells. Journal of Neuroinflammation, 10, 15.CrossRefPubMedPubMedCentral
Zurück zum Zitat Chuang, D. Y., Simonyi, A., Kotzbauer, P. T., Gu, Z., & Sun, G. Y. (2015). Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. Journal of Neuroinflammation, 12, 199.CrossRefPubMedPubMedCentral Chuang, D. Y., Simonyi, A., Kotzbauer, P. T., Gu, Z., & Sun, G. Y. (2015). Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. Journal of Neuroinflammation, 12, 199.CrossRefPubMedPubMedCentral
Zurück zum Zitat Dar, N. J., Hamid, A., & Ahmad, M. (2015). Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cellular and Molecular Life Sciences, 72(23), 4445–4460.CrossRefPubMed Dar, N. J., Hamid, A., & Ahmad, M. (2015). Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cellular and Molecular Life Sciences, 72(23), 4445–4460.CrossRefPubMed
Zurück zum Zitat Durg, S., Dhadde, S. B., Vandal, R., Shivakumar, B. S., & Charan, C. S. (2015). Withania somnifera (Ashwagandha) in neurobehavioural disorders induced by brain oxidative stress in rodents: A systematic review and meta-analysis. Journal of Pharmacy and Pharmacology, 67(7), 879–899.CrossRefPubMed Durg, S., Dhadde, S. B., Vandal, R., Shivakumar, B. S., & Charan, C. S. (2015). Withania somnifera (Ashwagandha) in neurobehavioural disorders induced by brain oxidative stress in rodents: A systematic review and meta-analysis. Journal of Pharmacy and Pharmacology, 67(7), 879–899.CrossRefPubMed
Zurück zum Zitat Foresti, R., Bains, S. K., Pitchumony, T. S., de Castro Bras, L. E., Drago, F., Dubois-Rande, J. L., et al. (2013). Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells. Pharmacological Research, 76, 132–148.CrossRefPubMed Foresti, R., Bains, S. K., Pitchumony, T. S., de Castro Bras, L. E., Drago, F., Dubois-Rande, J. L., et al. (2013). Small molecule activators of the Nrf2-HO-1 antioxidant axis modulate heme metabolism and inflammation in BV2 microglia cells. Pharmacological Research, 76, 132–148.CrossRefPubMed
Zurück zum Zitat Gan, L., & Johnson, J. A. (2014). Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochimica et Biophysica Acta, 1842(8), 1208–1218.CrossRefPubMed Gan, L., & Johnson, J. A. (2014). Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochimica et Biophysica Acta, 1842(8), 1208–1218.CrossRefPubMed
Zurück zum Zitat Gao, B., Doan, A., & Hybertson, B. M. (2014). The clinical potential of influencing Nrf2 signaling in degenerative and immunological disorders. Clin Pharmacol, 6, 19–34.PubMedPubMedCentral Gao, B., Doan, A., & Hybertson, B. M. (2014). The clinical potential of influencing Nrf2 signaling in degenerative and immunological disorders. Clin Pharmacol, 6, 19–34.PubMedPubMedCentral
Zurück zum Zitat Grin, B., Mahammad, S., Wedig, T., Cleland, M. M., Tsai, L., Herrmann, H., et al. (2012). Withaferin a alters intermediate filament organization, cell shape and behavior. PLoS One, 7(6), e39065.CrossRefPubMed Grin, B., Mahammad, S., Wedig, T., Cleland, M. M., Tsai, L., Herrmann, H., et al. (2012). Withaferin a alters intermediate filament organization, cell shape and behavior. PLoS One, 7(6), e39065.CrossRefPubMed
Zurück zum Zitat Grunz-Borgmann, E., Mossine, V., Fritsche, K., & Parrish, A. R. (2015). Ashwagandha attenuates TNF-α- and LPS-induced NF-κB activation and CCL2 and CCL5 gene expression in NRK-52E cells. BMC Complementary and Alternative Medicine, 15, 434.CrossRefPubMedPubMedCentral Grunz-Borgmann, E., Mossine, V., Fritsche, K., & Parrish, A. R. (2015). Ashwagandha attenuates TNF-α- and LPS-induced NF-κB activation and CCL2 and CCL5 gene expression in NRK-52E cells. BMC Complementary and Alternative Medicine, 15, 434.CrossRefPubMedPubMedCentral
Zurück zum Zitat Innamorato, N. G., Rojo, A. I., Garcia-Yague, A. J., Yamamoto, M., de Ceballos, M. L., & Cuadrado, A. (2008). The transcription factor Nrf2 is a therapeutic target against brain inflammation. Journal of Immunology, 181(1), 680–689.CrossRef Innamorato, N. G., Rojo, A. I., Garcia-Yague, A. J., Yamamoto, M., de Ceballos, M. L., & Cuadrado, A. (2008). The transcription factor Nrf2 is a therapeutic target against brain inflammation. Journal of Immunology, 181(1), 680–689.CrossRef
Zurück zum Zitat Jazwa, A., & Cuadrado, A. (2010). Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Current Drug Targets, 11(12), 1517–1531.CrossRefPubMed Jazwa, A., & Cuadrado, A. (2010). Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Current Drug Targets, 11(12), 1517–1531.CrossRefPubMed
Zurück zum Zitat Jiang, J., Chuang, D. Y., Zong, Y., Patel, J., Brownstein, K., Lei, W., et al. (2014). Sutherlandia frutescens ethanol extracts inhibit oxidative stress and inflammatory responses in neurons and microglial cells. PLoS One, 9(2), e89748.CrossRefPubMedPubMedCentral Jiang, J., Chuang, D. Y., Zong, Y., Patel, J., Brownstein, K., Lei, W., et al. (2014). Sutherlandia frutescens ethanol extracts inhibit oxidative stress and inflammatory responses in neurons and microglial cells. PLoS One, 9(2), e89748.CrossRefPubMedPubMedCentral
Zurück zum Zitat Joshi, G., & Johnson, J. A. (2012). The Nrf2-ARE pathway: A valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Patents on CNS Drug Discovery, 7(3), 218–229.CrossRefPubMedPubMedCentral Joshi, G., & Johnson, J. A. (2012). The Nrf2-ARE pathway: A valuable therapeutic target for the treatment of neurodegenerative diseases. Recent Patents on CNS Drug Discovery, 7(3), 218–229.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kang, C. H., Choi, Y. H., Moon, S. K., Kim, W. J., & Kim, G. Y. (2013). Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. International Immunopharmacology, 17(3), 808–813.CrossRefPubMed Kang, C. H., Choi, Y. H., Moon, S. K., Kim, W. J., & Kim, G. Y. (2013). Quercetin inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-dependent HO-1 pathway. International Immunopharmacology, 17(3), 808–813.CrossRefPubMed
Zurück zum Zitat Kobayashi, A., Kang, M. I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., et al. (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Molecular and Cellular Biology, 24(16), 7130–7139.CrossRefPubMedPubMedCentral Kobayashi, A., Kang, M. I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., et al. (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Molecular and Cellular Biology, 24(16), 7130–7139.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kuboyama, T., Tohda, C., & Komatsu, K. (2014). Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biological and Pharmaceutical Bulletin, 37(6), 892–897.CrossRefPubMed Kuboyama, T., Tohda, C., & Komatsu, K. (2014). Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biological and Pharmaceutical Bulletin, 37(6), 892–897.CrossRefPubMed
Zurück zum Zitat Kulkarni, S. K., & Dhir, A. (2008). Withania somnifera: An Indian ginseng. Progress in Neuropsychopharmacology and Biological Psychiatry, 32(5), 1093–1105.CrossRef Kulkarni, S. K., & Dhir, A. (2008). Withania somnifera: An Indian ginseng. Progress in Neuropsychopharmacology and Biological Psychiatry, 32(5), 1093–1105.CrossRef
Zurück zum Zitat Kurapati, K. R., Atluri, V. S., Samikkannu, T., & Nair, M. P. (2013). Ashwagandha (Withania somnifera) reverses beta-amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND). PLoS One, 8(10), e77624.CrossRefPubMedPubMedCentral Kurapati, K. R., Atluri, V. S., Samikkannu, T., & Nair, M. P. (2013). Ashwagandha (Withania somnifera) reverses beta-amyloid1-42 induced toxicity in human neuronal cells: implications in HIV-associated neurocognitive disorders (HAND). PLoS One, 8(10), e77624.CrossRefPubMedPubMedCentral
Zurück zum Zitat Kurapati, K. R., Atluri, V. S., Samikkannu, T., Garcia, G., & Nair, M. P. (2015). Natural products as anti-HIV agents and role in HIV-associated neurocognitive disorders (HAND): A brief overview. Frontiers in Microbiology, 6, 1444.PubMed Kurapati, K. R., Atluri, V. S., Samikkannu, T., Garcia, G., & Nair, M. P. (2015). Natural products as anti-HIV agents and role in HIV-associated neurocognitive disorders (HAND): A brief overview. Frontiers in Microbiology, 6, 1444.PubMed
Zurück zum Zitat Lee, J., Jo, D. G., Park, D., Chung, H. Y., & Mattson, M. P. (2014). Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: Focus on the nervous system. Pharmacological Reviews, 66(3), 815–868.CrossRefPubMedPubMedCentral Lee, J., Jo, D. G., Park, D., Chung, H. Y., & Mattson, M. P. (2014). Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: Focus on the nervous system. Pharmacological Reviews, 66(3), 815–868.CrossRefPubMedPubMedCentral
Zurück zum Zitat Min, K. J., Choi, K., & Kwon, T. K. (2011). Withaferin A down-regulates lipopolysaccharide-induced cyclooxygenase-2 expression and PGE2 production through the inhibition of STAT1/3 activation in microglial cells. International Immunopharmacology, 11(8), 1137–1142.CrossRefPubMed Min, K. J., Choi, K., & Kwon, T. K. (2011). Withaferin A down-regulates lipopolysaccharide-induced cyclooxygenase-2 expression and PGE2 production through the inhibition of STAT1/3 activation in microglial cells. International Immunopharmacology, 11(8), 1137–1142.CrossRefPubMed
Zurück zum Zitat Mirjalili, M. H., Moyano, E., Bonfill, M., Cusido, R. M., & Palazon, J. (2009). Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules, 14(7), 2373–2393.CrossRefPubMed Mirjalili, M. H., Moyano, E., Bonfill, M., Cusido, R. M., & Palazon, J. (2009). Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules, 14(7), 2373–2393.CrossRefPubMed
Zurück zum Zitat Nair, S., Doh, S. T., Chan, J. Y., Kong, A. N., & Cai, L. (2008). Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis. British Journal of Cancer, 99(12), 2070–2082.CrossRefPubMedPubMedCentral Nair, S., Doh, S. T., Chan, J. Y., Kong, A. N., & Cai, L. (2008). Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis. British Journal of Cancer, 99(12), 2070–2082.CrossRefPubMedPubMedCentral
Zurück zum Zitat Narayan, M., Seeley, K. W., & Jinwal, U. K. (2015). Identification and quantitative analysis of cellular proteins affected by treatment with withaferin a using a SILAC-based proteomics approach. Journal of Ethnopharmacology, 175, 86–92.CrossRefPubMed Narayan, M., Seeley, K. W., & Jinwal, U. K. (2015). Identification and quantitative analysis of cellular proteins affected by treatment with withaferin a using a SILAC-based proteomics approach. Journal of Ethnopharmacology, 175, 86–92.CrossRefPubMed
Zurück zum Zitat Oh, J. H., Lee, T. J., Park, J. W., & Kwon, T. K. (2008). Withaferin A inhibits iNOS expression and nitric oxide production by Akt inactivation and down-regulating LPS-induced activity of NF-κB in RAW 264.7 cells. European Journal of Pharmacology, 599(1–3), 11–17.CrossRefPubMed Oh, J. H., Lee, T. J., Park, J. W., & Kwon, T. K. (2008). Withaferin A inhibits iNOS expression and nitric oxide production by Akt inactivation and down-regulating LPS-induced activity of NF-κB in RAW 264.7 cells. European Journal of Pharmacology, 599(1–3), 11–17.CrossRefPubMed
Zurück zum Zitat Paine, A., Eiz-Vesper, B., Blasczyk, R., & Immenschuh, S. (2010). Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochemical Pharmacology, 80(12), 1895–1903.CrossRefPubMed Paine, A., Eiz-Vesper, B., Blasczyk, R., & Immenschuh, S. (2010). Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochemical Pharmacology, 80(12), 1895–1903.CrossRefPubMed
Zurück zum Zitat Parada, E., Buendia, I., Navarro, E., Avendano, C., Egea, J., & Lopez, M. G. (2015). Microglial HO-1 induction by curcumin provides antioxidant, antineuroinflammatory, and glioprotective effects. Molecular Nutrition and Food Research, 59(9), 1690–1700.CrossRefPubMed Parada, E., Buendia, I., Navarro, E., Avendano, C., Egea, J., & Lopez, M. G. (2015). Microglial HO-1 induction by curcumin provides antioxidant, antineuroinflammatory, and glioprotective effects. Molecular Nutrition and Food Research, 59(9), 1690–1700.CrossRefPubMed
Zurück zum Zitat Patil, D., Gautam, M., Mishra, S., Karupothula, S., Gairola, S., Jadhav, S., et al. (2013). Determination of withaferin A and withanolide A in mice plasma using high-performance liquid chromatography-tandem mass spectrometry: Application to pharmacokinetics after oral administration of Withania somnifera aqueous extract. Journal of Pharmaceutical and Biomedical Analysis, 80, 203–212.CrossRefPubMed Patil, D., Gautam, M., Mishra, S., Karupothula, S., Gairola, S., Jadhav, S., et al. (2013). Determination of withaferin A and withanolide A in mice plasma using high-performance liquid chromatography-tandem mass spectrometry: Application to pharmacokinetics after oral administration of Withania somnifera aqueous extract. Journal of Pharmaceutical and Biomedical Analysis, 80, 203–212.CrossRefPubMed
Zurück zum Zitat Queiroga, C. S., Vercelli, A., & Vieira, H. L. (2015). Carbon monoxide and the CNS: Challenges and achievements. British Journal of Pharmacology, 172(6), 1533–1545.CrossRefPubMed Queiroga, C. S., Vercelli, A., & Vieira, H. L. (2015). Carbon monoxide and the CNS: Challenges and achievements. British Journal of Pharmacology, 172(6), 1533–1545.CrossRefPubMed
Zurück zum Zitat Salter, M. W., & Beggs, S. (2014). Sublime microglia: Expanding roles for the guardians of the CNS. Cell, 158(1), 15–24.CrossRefPubMed Salter, M. W., & Beggs, S. (2014). Sublime microglia: Expanding roles for the guardians of the CNS. Cell, 158(1), 15–24.CrossRefPubMed
Zurück zum Zitat Sandberg, M., Patil, J., D’Angelo, B., Weber, S. G., & Mallard, C. (2014). NRF2-regulation in brain health and disease: Implication of cerebral inflammation. Neuropharmacology, 79, 298–306.CrossRefPubMed Sandberg, M., Patil, J., D’Angelo, B., Weber, S. G., & Mallard, C. (2014). NRF2-regulation in brain health and disease: Implication of cerebral inflammation. Neuropharmacology, 79, 298–306.CrossRefPubMed
Zurück zum Zitat Scapagnini, G., Vasto, S., Abraham, N. G., Caruso, C., Zella, D., & Fabio, G. (2011). Modulation of Nrf2/ARE pathway by food polyphenols: A nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Molecular Neurobiology, 44(2), 192–201.CrossRefPubMed Scapagnini, G., Vasto, S., Abraham, N. G., Caruso, C., Zella, D., & Fabio, G. (2011). Modulation of Nrf2/ARE pathway by food polyphenols: A nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Molecular Neurobiology, 44(2), 192–201.CrossRefPubMed
Zurück zum Zitat Shah, N., Singh, R., Sarangi, U., Saxena, N., Chaudhary, A., Kaur, G., et al. (2015). Combinations of Ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation. PLoS One, 10(3), e0120554.CrossRefPubMedPubMedCentral Shah, N., Singh, R., Sarangi, U., Saxena, N., Chaudhary, A., Kaur, G., et al. (2015). Combinations of Ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation. PLoS One, 10(3), e0120554.CrossRefPubMedPubMedCentral
Zurück zum Zitat Sheng, W., Zong, Y., Mohammad, A., Ajit, D., Cui, J., Han, D., et al. (2011). Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA(2)-IIA expression in astrocytes and microglia. Journal of Neuroinflammation, 8, 121.CrossRefPubMedPubMedCentral Sheng, W., Zong, Y., Mohammad, A., Ajit, D., Cui, J., Han, D., et al. (2011). Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA(2)-IIA expression in astrocytes and microglia. Journal of Neuroinflammation, 8, 121.CrossRefPubMedPubMedCentral
Zurück zum Zitat Simonyi, A., Chen, Z., Jiang, J., Zong, Y., Chuang, D. Y., Gu, Z., et al. (2015). Inhibition of microglial activation by elderberry extracts and its phenolic components. Life Sciences, 128, 30–38.CrossRefPubMedPubMedCentral Simonyi, A., Chen, Z., Jiang, J., Zong, Y., Chuang, D. Y., Gu, Z., et al. (2015). Inhibition of microglial activation by elderberry extracts and its phenolic components. Life Sciences, 128, 30–38.CrossRefPubMedPubMedCentral
Zurück zum Zitat Singh, N., Bhalla, M., de Jager, P., & Gilca, M. (2011). An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. African Journal of Traditional, Complementary and Alternative Medicines, 8(5 Suppl), 208–213. Singh, N., Bhalla, M., de Jager, P., & Gilca, M. (2011). An overview on ashwagandha: A Rasayana (rejuvenator) of Ayurveda. African Journal of Traditional, Complementary and Alternative Medicines, 8(5 Suppl), 208–213.
Zurück zum Zitat Soares, M. P., Marguti, I., Cunha, A., & Larsen, R. (2009). Immunoregulatory effects of HO-1: How does it work? Current Opinion in Pharmacology, 9(4), 482–489.CrossRefPubMed Soares, M. P., Marguti, I., Cunha, A., & Larsen, R. (2009). Immunoregulatory effects of HO-1: How does it work? Current Opinion in Pharmacology, 9(4), 482–489.CrossRefPubMed
Zurück zum Zitat Sun, G. Y., Chen, Z., Jasmer, K. J., Chuang, D. Y., Gu, Z., Hannink, M., et al. (2015). Quercetin attenuates inflammatory responses in BV-2 microglial cells: Role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PLoS One, 10(10), e0141509.CrossRefPubMedPubMedCentral Sun, G. Y., Chen, Z., Jasmer, K. J., Chuang, D. Y., Gu, Z., Hannink, M., et al. (2015). Quercetin attenuates inflammatory responses in BV-2 microglial cells: Role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PLoS One, 10(10), e0141509.CrossRefPubMedPubMedCentral
Zurück zum Zitat Syapin, P. J. (2008). Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. British Journal of Pharmacology, 155(5), 623–640.CrossRefPubMedPubMedCentral Syapin, P. J. (2008). Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. British Journal of Pharmacology, 155(5), 623–640.CrossRefPubMedPubMedCentral
Zurück zum Zitat Terazawa, R., Akimoto, N., Kato, T., Itoh, T., Fujita, Y., Hamada, N., et al. (2013). A kavalactone derivative inhibits lipopolysaccharide-stimulated iNOS induction and NO production through activation of Nrf2 signaling in BV2 microglial cells. Pharmacological Research, 71, 34–43.CrossRefPubMed Terazawa, R., Akimoto, N., Kato, T., Itoh, T., Fujita, Y., Hamada, N., et al. (2013). A kavalactone derivative inhibits lipopolysaccharide-stimulated iNOS induction and NO production through activation of Nrf2 signaling in BV2 microglial cells. Pharmacological Research, 71, 34–43.CrossRefPubMed
Zurück zum Zitat Vanden Berghe, W., Sabbe, L., Kaileh, M., Haegeman, G., & Heyninck, K. (2012). Molecular insight in the multifunctional activities of Withaferin A. Biochemical Pharmacology, 84(10), 1282–1291.CrossRefPubMed Vanden Berghe, W., Sabbe, L., Kaileh, M., Haegeman, G., & Heyninck, K. (2012). Molecular insight in the multifunctional activities of Withaferin A. Biochemical Pharmacology, 84(10), 1282–1291.CrossRefPubMed
Zurück zum Zitat Ven Murthy, M. R., Ranjekar, P. K., Ramassamy, C., & Deshpande, M. (2010). Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: Ashwagandha. Central Nervous System Agents in Medicinal Chemistry, 10(3), 238–246.CrossRefPubMed Ven Murthy, M. R., Ranjekar, P. K., Ramassamy, C., & Deshpande, M. (2010). Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: Ashwagandha. Central Nervous System Agents in Medicinal Chemistry, 10(3), 238–246.CrossRefPubMed
Zurück zum Zitat Vyas, A. R., & Singh, S. V. (2014). Molecular targets and mechanisms of cancer prevention and treatment by withaferin a, a naturally occurring steroidal lactone. AAPS Journal, 16(1), 1–10.CrossRefPubMed Vyas, A. R., & Singh, S. V. (2014). Molecular targets and mechanisms of cancer prevention and treatment by withaferin a, a naturally occurring steroidal lactone. AAPS Journal, 16(1), 1–10.CrossRefPubMed
Zurück zum Zitat Wadhwa, R., Konar, A., & Kaul, S. C. (2016). Nootropic potential of ashwagandha leaves: Beyond traditional root extracts. Neurochemistry International, 95, 109–118.CrossRefPubMed Wadhwa, R., Konar, A., & Kaul, S. C. (2016). Nootropic potential of ashwagandha leaves: Beyond traditional root extracts. Neurochemistry International, 95, 109–118.CrossRefPubMed
Zurück zum Zitat Wardyn, J. D., Ponsford, A. H., & Sanderson, C. M. (2015). Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochemical Society Transactions, 43(4), 621–626.CrossRefPubMedPubMedCentral Wardyn, J. D., Ponsford, A. H., & Sanderson, C. M. (2015). Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochemical Society Transactions, 43(4), 621–626.CrossRefPubMedPubMedCentral
Zurück zum Zitat Zhang, D. D., Lo, S. C., Cross, J. V., Templeton, D. J., & Hannink, M. (2004). Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Molecular and Cellular Biology, 24(24), 10941–10953.CrossRefPubMedPubMedCentral Zhang, D. D., Lo, S. C., Cross, J. V., Templeton, D. J., & Hannink, M. (2004). Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Molecular and Cellular Biology, 24(24), 10941–10953.CrossRefPubMedPubMedCentral
Metadaten
Titel
Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and Up-Regulate Antioxidant Responses in BV-2 Microglial Cells
verfasst von
Grace Y. Sun
Runting Li
Jiankun Cui
Mark Hannink
Zezong Gu
Kevin L. Fritsche
Dennis B. Lubahn
Agnes Simonyi
Publikationsdatum
21.05.2016
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 3/2016
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-016-8411-0

Weitere Artikel der Ausgabe 3/2016

NeuroMolecular Medicine 3/2016 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.