Skip to main content
Erschienen in: Immunologic Research 1-3/2013

01.03.2013 | Immunology in Colorado

The TRPM2 ion channel, an oxidative stress and metabolic sensor regulating innate immunity and inflammation

verfasst von: Heather Knowles, Yuan Li, Anne-Laure Perraud

Erschienen in: Immunologic Research | Ausgabe 1-3/2013

Einloggen, um Zugang zu erhalten

Abstract

TRPM2 (transient receptor potential melastatin 2) is the unique fusion of a Ca2+-permeable pore with an enzymatic domain that binds the NAD+-metabolite ADP-ribose (ADPR), resulting in channel opening. ADPR formation is a metabolic corollary of cellular stress, but can also be elicited enzymatically through NAD glycohydrolases like CD38. TRPM2 thus functions as a metabolic and oxidative stress sensor and translates this information into ion fluxes that can affect Ca2+ signaling and the membrane potential. TRPM2 is strongly represented in immune cells of the phagocytic lineage, themselves professional generators of oxidants. The recent characterization of TRPM2-deficient mouse models has revealed the involvement of this channel in various aspects of immunity. Monocytes lacking TRPM2 show reduced production of the CXCL2 chemokine, resulting in diminished neutrophilic influx to the colon in chemically induced colitis, and thus protection against tissue ulceration in TRPM2−/− mice. However, the insufficient production of proinflammatory cytokines leads to high morbidity and lethality of the TRPM2−/− mice following infection with the bacterial pathogen Listeria monocytogenes. In the context of endotoxin-induced pulmonary inflammation, TRPM2’s absence was found to promote inflammation and ROS production. TRPM2 acts thereby as a negative feedback loop by interfering through membrane depolarization with ROS generation by NADPH oxidases. In dendritic cells, TRPM2 is a lysosomal Ca2+-release channel that promotes chemokine responsiveness and cell migration, which is reminiscent of CD38-mediated functions. The discovery of TRPM2 has unveiled an unsuspected signaling pathway and established ADPR as a novel second messenger. Understanding TRPM2’s complex involvement in inflammation is crucial to evaluating the potential of manipulating TRPM2 activity and ADPR metabolism for therapeutic intervention.
Literatur
1.
Zurück zum Zitat Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium. 2005;38:233–52.PubMedCrossRef Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium. 2005;38:233–52.PubMedCrossRef
3.
Zurück zum Zitat Clare JJ. Targeting ion channels for drug discovery. Discov Med. 2011;9:253–60. Clare JJ. Targeting ion channels for drug discovery. Discov Med. 2011;9:253–60.
4.
Zurück zum Zitat Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5:993–6.PubMedCrossRef Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5:993–6.PubMedCrossRef
5.
Zurück zum Zitat Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell. 2002;109:397–407.PubMedCrossRef Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, et al. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell. 2002;109:397–407.PubMedCrossRef
6.
Zurück zum Zitat Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, et al. LTRPC7 is a Mg. ATP-regulated divalent cation channel required for cell viability. Nature. 2001;411:590–5.PubMedCrossRef Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, et al. LTRPC7 is a Mg. ATP-regulated divalent cation channel required for cell viability. Nature. 2001;411:590–5.PubMedCrossRef
7.
Zurück zum Zitat Perraud AL, Knowles HM, Schmitz C. Novel aspects of signaling and ion-homeostasis regulation in immunocytes. The TRPM ion channels and their potential role in modulating the immune response. Mol Immunol. 2004;41:657–73.PubMedCrossRef Perraud AL, Knowles HM, Schmitz C. Novel aspects of signaling and ion-homeostasis regulation in immunocytes. The TRPM ion channels and their potential role in modulating the immune response. Mol Immunol. 2004;41:657–73.PubMedCrossRef
8.
Zurück zum Zitat Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature. 2001;411:595–9.PubMedCrossRef Perraud AL, Fleig A, Dunn CA, Bagley LA, Launay P, et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature. 2001;411:595–9.PubMedCrossRef
9.
Zurück zum Zitat Nagamine K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, et al. Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics. 1998;54:124–31.PubMedCrossRef Nagamine K, Kudoh J, Minoshima S, Kawasaki K, Asakawa S, et al. Molecular cloning of a novel putative Ca2+ channel protein (TRPC7) highly expressed in brain. Genomics. 1998;54:124–31.PubMedCrossRef
10.
Zurück zum Zitat Perraud AL, Schmitz C, Scharenberg AM. TRPM2 Ca2+ permeable cation channels: from gene to biological function. Cell Calcium. 2003;33:519–31.PubMedCrossRef Perraud AL, Schmitz C, Scharenberg AM. TRPM2 Ca2+ permeable cation channels: from gene to biological function. Cell Calcium. 2003;33:519–31.PubMedCrossRef
11.
Zurück zum Zitat Mederos y Schnitzler M, Waring J, Gudermann T, Chubanov V. Evolutionary determinants of divergent calcium selectivity of TRPM channels. Faseb J. 2008;22:1540–51.PubMedCrossRef Mederos y Schnitzler M, Waring J, Gudermann T, Chubanov V. Evolutionary determinants of divergent calcium selectivity of TRPM channels. Faseb J. 2008;22:1540–51.PubMedCrossRef
12.
Zurück zum Zitat Montell C. Mg2+ homeostasis: the Mg2+ nificent TRPM chanzymes. Curr Biol. 2003;13:R799–801.PubMedCrossRef Montell C. Mg2+ homeostasis: the Mg2+ nificent TRPM chanzymes. Curr Biol. 2003;13:R799–801.PubMedCrossRef
13.
14.
Zurück zum Zitat Lee HC. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol Rev. 1997;77:1133–64.PubMed Lee HC. Mechanisms of calcium signaling by cyclic ADP-ribose and NAADP. Physiol Rev. 1997;77:1133–64.PubMed
15.
Zurück zum Zitat Koch-Nolte F, Haag F, Guse AH, Lund F, Ziegler M. Emerging roles of NAD+ and its metabolites in cell signaling. Sci Signal. 2009;2:mr1.PubMedCrossRef Koch-Nolte F, Haag F, Guse AH, Lund F, Ziegler M. Emerging roles of NAD+ and its metabolites in cell signaling. Sci Signal. 2009;2:mr1.PubMedCrossRef
16.
Zurück zum Zitat Csanady L, Torocsik B. Four Ca2+ ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate. J Gen Physiol. 2009;133:189–203.PubMedCrossRef Csanady L, Torocsik B. Four Ca2+ ions activate TRPM2 channels by binding in deep crevices near the pore but intracellularly of the gate. J Gen Physiol. 2009;133:189–203.PubMedCrossRef
17.
Zurück zum Zitat McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ. Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem. 2003;278:11002–6.PubMedCrossRef McHugh D, Flemming R, Xu SZ, Perraud AL, Beech DJ. Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem. 2003;278:11002–6.PubMedCrossRef
18.
Zurück zum Zitat Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. 2008;88:841–86.PubMedCrossRef Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev. 2008;88:841–86.PubMedCrossRef
19.
Zurück zum Zitat Partida-Sanchez S, Rivero-Nava L, Shi G, Lund FE. CD38: an ecto-enzyme at the crossroads of innate and adaptive immune responses. Adv Exp Med Biol. 2007;590:171–83.PubMedCrossRef Partida-Sanchez S, Rivero-Nava L, Shi G, Lund FE. CD38: an ecto-enzyme at the crossroads of innate and adaptive immune responses. Adv Exp Med Biol. 2007;590:171–83.PubMedCrossRef
20.
Zurück zum Zitat Gally F, Hartney JM, Janssen WJ, Perraud AL. CD38 plays a dual role in allergen-induced airway hyperresponsiveness. Am J Respir Cell Mol Biol. 2009;40:433–42.PubMedCrossRef Gally F, Hartney JM, Janssen WJ, Perraud AL. CD38 plays a dual role in allergen-induced airway hyperresponsiveness. Am J Respir Cell Mol Biol. 2009;40:433–42.PubMedCrossRef
21.
Zurück zum Zitat Knowles H, Heizer JW, Li Y, Chapman K, Ogden CA, et al. Transient receptor potential melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes. PNAS USA. 2011;108:11578–83.PubMedCrossRef Knowles H, Heizer JW, Li Y, Chapman K, Ogden CA, et al. Transient receptor potential melastatin 2 (TRPM2) ion channel is required for innate immunity against Listeria monocytogenes. PNAS USA. 2011;108:11578–83.PubMedCrossRef
22.
Zurück zum Zitat Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, et al. TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med. 2008;14:738–47.PubMedCrossRef Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, et al. TRPM2-mediated Ca2+ influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med. 2008;14:738–47.PubMedCrossRef
23.
Zurück zum Zitat Partida-Sanchez S, Goodrich S, Kusser K, Oppenheimer N, Randall TD, et al. Regulation of dendritic cell trafficking by the ADP-ribosyl cyclase CD38: impact on the development of humoral immunity. Immunity. 2004;20:279–91.PubMedCrossRef Partida-Sanchez S, Goodrich S, Kusser K, Oppenheimer N, Randall TD, et al. Regulation of dendritic cell trafficking by the ADP-ribosyl cyclase CD38: impact on the development of humoral immunity. Immunity. 2004;20:279–91.PubMedCrossRef
24.
Zurück zum Zitat Sumoza-Toledo A, Lange I, Cortado H, Bhagat H, Mori Y, et al. Dendritic cell maturation and chemotaxis is regulated by TRPM2-mediated lysosomal Ca2+ release. FASEB J. 2011;25:3529–42.PubMedCrossRef Sumoza-Toledo A, Lange I, Cortado H, Bhagat H, Mori Y, et al. Dendritic cell maturation and chemotaxis is regulated by TRPM2-mediated lysosomal Ca2+ release. FASEB J. 2011;25:3529–42.PubMedCrossRef
25.
Zurück zum Zitat Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell. 2002;9:163–73.PubMedCrossRef Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, et al. LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell. 2002;9:163–73.PubMedCrossRef
26.
Zurück zum Zitat Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, et al. Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem. 2005;280:6138–48.PubMedCrossRef Perraud AL, Takanishi CL, Shen B, Kang S, Smith MK, et al. Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J Biol Chem. 2005;280:6138–48.PubMedCrossRef
27.
Zurück zum Zitat Blenn C, Wyrsch P, Bader J, Bollhalder M, Althaus FR. Poly(ADP-ribose)glycohydrolase is an upstream regulator of Ca2+ fluxes in oxidative cell death. Cell Mol Life Sci. 2010;68:1455–66.PubMedCrossRef Blenn C, Wyrsch P, Bader J, Bollhalder M, Althaus FR. Poly(ADP-ribose)glycohydrolase is an upstream regulator of Ca2+ fluxes in oxidative cell death. Cell Mol Life Sci. 2010;68:1455–66.PubMedCrossRef
28.
Zurück zum Zitat Buelow B, Song Y, Scharenberg AM. The Poly(ADP-ribose) polymerase PARP-1 is required for oxidative stress-induced TRPM2 activation in lymphocytes. J Biol Chem. 2008;283:24571–83.PubMedCrossRef Buelow B, Song Y, Scharenberg AM. The Poly(ADP-ribose) polymerase PARP-1 is required for oxidative stress-induced TRPM2 activation in lymphocytes. J Biol Chem. 2008;283:24571–83.PubMedCrossRef
29.
Zurück zum Zitat Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, et al. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol. 2004;143:186–92.PubMedCrossRef Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, et al. TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol. 2004;143:186–92.PubMedCrossRef
30.
Zurück zum Zitat Wehage E, Eisfeld J, Heiner I, Jungling E, Zitt C, et al. Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem. 2002;277:23150–6.PubMedCrossRef Wehage E, Eisfeld J, Heiner I, Jungling E, Zitt C, et al. Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J Biol Chem. 2002;277:23150–6.PubMedCrossRef
31.
Zurück zum Zitat Toth B, Csanady L. Identification of direct and indirect effectors of the transient receptor potential melastatin 2 (TRPM2) cation channel. J Biol Chem. 2010;285:30091–102.PubMedCrossRef Toth B, Csanady L. Identification of direct and indirect effectors of the transient receptor potential melastatin 2 (TRPM2) cation channel. J Biol Chem. 2010;285:30091–102.PubMedCrossRef
32.
Zurück zum Zitat Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jungling E, et al. Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J. 2003;371:1045–53.PubMedCrossRef Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jungling E, et al. Expression profile of the transient receptor potential (TRP) family in neutrophil granulocytes: evidence for currents through long TRP channel 2 induced by ADP-ribose and NAD. Biochem J. 2003;371:1045–53.PubMedCrossRef
33.
Zurück zum Zitat Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, et al. Immunocyte Ca2+ influx system mediated by LTRPC2. Science. 2001;293:1327–30.PubMedCrossRef Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, et al. Immunocyte Ca2+ influx system mediated by LTRPC2. Science. 2001;293:1327–30.PubMedCrossRef
34.
Zurück zum Zitat Heiner I, Eisfeld J, Warnstedt M, Radukina N, Jungling E, et al. Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J. 2006;398:225–32.PubMedCrossRef Heiner I, Eisfeld J, Warnstedt M, Radukina N, Jungling E, et al. Endogenous ADP-ribose enables calcium-regulated cation currents through TRPM2 channels in neutrophil granulocytes. Biochem J. 2006;398:225–32.PubMedCrossRef
35.
Zurück zum Zitat Starkus JG, Fleig A, Penner R. The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification. J Physiol. 2010;588:1227–40.PubMedCrossRef Starkus JG, Fleig A, Penner R. The calcium-permeable non-selective cation channel TRPM2 is modulated by cellular acidification. J Physiol. 2010;588:1227–40.PubMedCrossRef
36.
Zurück zum Zitat Du J, Xie J, Yue L. Modulation of TRPM2 by acidic pH and the underlying mechanisms for pH sensitivity. J Gen Physiol. 2009;134:471–88.PubMedCrossRef Du J, Xie J, Yue L. Modulation of TRPM2 by acidic pH and the underlying mechanisms for pH sensitivity. J Gen Physiol. 2009;134:471–88.PubMedCrossRef
37.
Zurück zum Zitat Starkus J, Beck A, Fleig A, Penner R. Regulation of TRPM2 by extra- and intracellular calcium. J Gen Physiol. 2007;130:427–40.PubMedCrossRef Starkus J, Beck A, Fleig A, Penner R. Regulation of TRPM2 by extra- and intracellular calcium. J Gen Physiol. 2007;130:427–40.PubMedCrossRef
38.
Zurück zum Zitat Wehrhahn J, Kraft R, Harteneck C, Hauschildt S. Transient receptor potential melastatin 2 is required for lipopolysaccharide-induced cytokine production in human monocytes. J Immunol. 2010;184:2386–93.PubMedCrossRef Wehrhahn J, Kraft R, Harteneck C, Hauschildt S. Transient receptor potential melastatin 2 is required for lipopolysaccharide-induced cytokine production in human monocytes. J Immunol. 2010;184:2386–93.PubMedCrossRef
39.
Zurück zum Zitat Haraguchi K, Kawamoto A, Isami K, Maeda S, Kusano A, et al. TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J Neurosci. 2012;32:3931–41.PubMedCrossRef Haraguchi K, Kawamoto A, Isami K, Maeda S, Kusano A, et al. TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J Neurosci. 2012;32:3931–41.PubMedCrossRef
40.
Zurück zum Zitat Elinav E, Strowig T, Henao-Mejia J, Flavell RA. Regulation of the antimicrobial response by NLR proteins. Immunity. 2011;34:665–79.PubMedCrossRef Elinav E, Strowig T, Henao-Mejia J, Flavell RA. Regulation of the antimicrobial response by NLR proteins. Immunity. 2011;34:665–79.PubMedCrossRef
41.
Zurück zum Zitat Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–50.PubMedCrossRef Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–50.PubMedCrossRef
42.
Zurück zum Zitat Zhang Z, Zhang W, Jung DY, Ko HJ, Lee Y, et al. TRPM2 Ca2+ channel regulates energy balance and glucose metabolism. Am J Physiol Endocrinol Metab. 2012;302:E807–16.PubMedCrossRef Zhang Z, Zhang W, Jung DY, Ko HJ, Lee Y, et al. TRPM2 Ca2+ channel regulates energy balance and glucose metabolism. Am J Physiol Endocrinol Metab. 2012;302:E807–16.PubMedCrossRef
43.
Zurück zum Zitat Di A, Gao XP, Qian F, Kawamura T, Han J, et al. The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat Immunol. 2011;13:29–34.PubMedCrossRef Di A, Gao XP, Qian F, Kawamura T, Han J, et al. The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat Immunol. 2011;13:29–34.PubMedCrossRef
44.
Zurück zum Zitat Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, et al. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol. 2010;11:232–9.PubMedCrossRef Link TM, Park U, Vonakis BM, Raben DM, Soloski MJ, et al. TRPV2 has a pivotal role in macrophage particle binding and phagocytosis. Nat Immunol. 2010;11:232–9.PubMedCrossRef
45.
Zurück zum Zitat Hardaker L, Bahra P, Cochin de Billy B, Freeman M, Kupfer N, et al. The ion channel transient receptor potential melastatin-2 does not play a role in inflammatory mouse models of chronic obstructive pulmonary diseases. Respir Res. 2012;13:30.PubMedCrossRef Hardaker L, Bahra P, Cochin de Billy B, Freeman M, Kupfer N, et al. The ion channel transient receptor potential melastatin-2 does not play a role in inflammatory mouse models of chronic obstructive pulmonary diseases. Respir Res. 2012;13:30.PubMedCrossRef
46.
Zurück zum Zitat Beck A, Kolisek M, Bagley LA, Fleig A, Penner R. Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J. 2006;20:962–4.PubMedCrossRef Beck A, Kolisek M, Bagley LA, Fleig A, Penner R. Nicotinic acid adenine dinucleotide phosphate and cyclic ADP-ribose regulate TRPM2 channels in T lymphocytes. FASEB J. 2006;20:962–4.PubMedCrossRef
47.
Zurück zum Zitat Heiner I, Eisfeld J, Luckhoff A. Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium. 2003;33:533–40.PubMedCrossRef Heiner I, Eisfeld J, Luckhoff A. Role and regulation of TRP channels in neutrophil granulocytes. Cell Calcium. 2003;33:533–40.PubMedCrossRef
48.
Zurück zum Zitat Lange I, Penner R, Fleig A, Beck A. Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils. Cell Calcium. 2008;44:604–15.PubMedCrossRef Lange I, Penner R, Fleig A, Beck A. Synergistic regulation of endogenous TRPM2 channels by adenine dinucleotides in primary human neutrophils. Cell Calcium. 2008;44:604–15.PubMedCrossRef
49.
Zurück zum Zitat Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, et al. TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Sci Signal. 2009;2:ra23.PubMedCrossRef Lange I, Yamamoto S, Partida-Sanchez S, Mori Y, Fleig A, et al. TRPM2 functions as a lysosomal Ca2+-release channel in beta cells. Sci Signal. 2009;2:ra23.PubMedCrossRef
50.
Zurück zum Zitat Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, et al. Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol. 2004;286:C129–37.PubMedCrossRef Kraft R, Grimm C, Grosse K, Hoffmann A, Sauerbruch S, et al. Hydrogen peroxide and ADP-ribose induce TRPM2-mediated calcium influx and cation currents in microglia. Am J Physiol Cell Physiol. 2004;286:C129–37.PubMedCrossRef
51.
Zurück zum Zitat Hill K, Tigue NJ, Kelsell RE, Benham CD, McNulty S, et al. Characterisation of recombinant rat TRPM2 and a TRPM2-like conductance in cultured rat striatal neurones. Neuropharmacology. 2006;50:89–97.PubMedCrossRef Hill K, Tigue NJ, Kelsell RE, Benham CD, McNulty S, et al. Characterisation of recombinant rat TRPM2 and a TRPM2-like conductance in cultured rat striatal neurones. Neuropharmacology. 2006;50:89–97.PubMedCrossRef
52.
Zurück zum Zitat Olah ME, Jackson MF, Li H, Perez Y, Sun HS, et al. Ca2+-dependent induction of TRPM2 currents in hippocampal neurons. J Physiol. 2009;587:965–79.PubMedCrossRef Olah ME, Jackson MF, Li H, Perez Y, Sun HS, et al. Ca2+-dependent induction of TRPM2 currents in hippocampal neurons. J Physiol. 2009;587:965–79.PubMedCrossRef
53.
Zurück zum Zitat Belrose JC, Xie YF, Gierszewski LJ, Macdonald JF, Jackson MF. Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons. Mol Brain. 2012;5:11.PubMedCrossRef Belrose JC, Xie YF, Gierszewski LJ, Macdonald JF, Jackson MF. Loss of glutathione homeostasis associated with neuronal senescence facilitates TRPM2 channel activation in cultured hippocampal pyramidal neurons. Mol Brain. 2012;5:11.PubMedCrossRef
54.
Zurück zum Zitat Chung KK, Freestone PS, Lipski J. Expression and functional properties of TRPM2 channels in dopaminergic neurons of the substantia nigra of the rat. J Neurophysiol. 2011;106:2865–75.PubMedCrossRef Chung KK, Freestone PS, Lipski J. Expression and functional properties of TRPM2 channels in dopaminergic neurons of the substantia nigra of the rat. J Neurophysiol. 2011;106:2865–75.PubMedCrossRef
55.
Zurück zum Zitat Mrejeru A, Wei A, Ramirez JM. Calcium-activated non-selective cation currents are involved in generation of tonic and bursting activity in dopamine neurons of the substantia nigra pars compacta. J Physiol. 2011;589:2497–514.PubMedCrossRef Mrejeru A, Wei A, Ramirez JM. Calcium-activated non-selective cation currents are involved in generation of tonic and bursting activity in dopamine neurons of the substantia nigra pars compacta. J Physiol. 2011;589:2497–514.PubMedCrossRef
56.
Zurück zum Zitat Fonfria E, Marshall IC, Boyfield I, Skaper SD, Hughes JP, et al. Amyloid beta-peptide(1–42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem. 2005;95:715–23.PubMedCrossRef Fonfria E, Marshall IC, Boyfield I, Skaper SD, Hughes JP, et al. Amyloid beta-peptide(1–42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem. 2005;95:715–23.PubMedCrossRef
57.
Zurück zum Zitat Ishii M, Oyama A, Hagiwara T, Miyazaki A, Mori Y, et al. Facilitation of H2O2-induced A172 human glioblastoma cell death by insertion of oxidative stress-sensitive TRPM2 channels. Anticancer Res. 2007;27:3987–92.PubMed Ishii M, Oyama A, Hagiwara T, Miyazaki A, Mori Y, et al. Facilitation of H2O2-induced A172 human glioblastoma cell death by insertion of oxidative stress-sensitive TRPM2 channels. Anticancer Res. 2007;27:3987–92.PubMed
58.
Zurück zum Zitat Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, et al. A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci. 2006;101:66–76.PubMedCrossRef Kaneko S, Kawakami S, Hara Y, Wakamori M, Itoh E, et al. A critical role of TRPM2 in neuronal cell death by hydrogen peroxide. J Pharmacol Sci. 2006;101:66–76.PubMedCrossRef
59.
Zurück zum Zitat Yang KT, Chang WL, Yang PC, Chien CL, Lai MS, et al. Activation of the transient receptor potential M2 channel and poly(ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Cell Death Differ. 2006;13:1815–26.PubMedCrossRef Yang KT, Chang WL, Yang PC, Chien CL, Lai MS, et al. Activation of the transient receptor potential M2 channel and poly(ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Cell Death Differ. 2006;13:1815–26.PubMedCrossRef
60.
Zurück zum Zitat Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, et al. A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem. 2003;278:16222–9.PubMedCrossRef Zhang W, Chu X, Tong Q, Cheung JY, Conrad K, et al. A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death. J Biol Chem. 2003;278:16222–9.PubMedCrossRef
61.
Zurück zum Zitat Zhang W, Hirschler-Laszkiewicz I, Tong Q, Conrad K, Sun SC, et al. TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am J Physiol Cell Physiol. 2006;290:C1146–59.PubMedCrossRef Zhang W, Hirschler-Laszkiewicz I, Tong Q, Conrad K, Sun SC, et al. TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am J Physiol Cell Physiol. 2006;290:C1146–59.PubMedCrossRef
62.
Zurück zum Zitat Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010;47:122–9.PubMedCrossRef Szydlowska K, Tymianski M. Calcium, ischemia and excitotoxicity. Cell Calcium. 2010;47:122–9.PubMedCrossRef
63.
Zurück zum Zitat MacDonald JF, Jackson MF. Transient receptor potential channels of the melastatin family and ischemic responses of central neurons. Stroke. 2007;38:665–9.PubMedCrossRef MacDonald JF, Jackson MF. Transient receptor potential channels of the melastatin family and ischemic responses of central neurons. Stroke. 2007;38:665–9.PubMedCrossRef
64.
Zurück zum Zitat Hermosura MC, Cui AM, Go RC, Davenport B, Shetler CM, et al. Altered functional properties of a TRPM2 variant in Guamanian ALS and PD. PNAS USA. 2008;105:18029–34.PubMedCrossRef Hermosura MC, Cui AM, Go RC, Davenport B, Shetler CM, et al. Altered functional properties of a TRPM2 variant in Guamanian ALS and PD. PNAS USA. 2008;105:18029–34.PubMedCrossRef
65.
Zurück zum Zitat McQuillin A, Bass NJ, Kalsi G, Lawrence J, Puri V, et al. Fine mapping of a susceptibility locus for bipolar and genetically related unipolar affective disorders, to a region containing the C21ORF29 and TRPM2 genes on chromosome 21q22.3. Mol Psychiatry. 2006;11:134–42.PubMedCrossRef McQuillin A, Bass NJ, Kalsi G, Lawrence J, Puri V, et al. Fine mapping of a susceptibility locus for bipolar and genetically related unipolar affective disorders, to a region containing the C21ORF29 and TRPM2 genes on chromosome 21q22.3. Mol Psychiatry. 2006;11:134–42.PubMedCrossRef
66.
Zurück zum Zitat Xu C, Li PP, Cooke RG, Parikh SV, Wang K, et al. TRPM2 variants and bipolar disorder risk: confirmation in a family-based association study. Bipolar Disord. 2009;11:1–10.PubMedCrossRef Xu C, Li PP, Cooke RG, Parikh SV, Wang K, et al. TRPM2 variants and bipolar disorder risk: confirmation in a family-based association study. Bipolar Disord. 2009;11:1–10.PubMedCrossRef
67.
Zurück zum Zitat Cook NL, Vink R, Helps SC, Manavis J, van den Heuvel C. Transient receptor potential melastatin 2 expression is increased following experimental traumatic brain injury in rats. J Mol Neurosci. 2010;42:192–9.PubMedCrossRef Cook NL, Vink R, Helps SC, Manavis J, van den Heuvel C. Transient receptor potential melastatin 2 expression is increased following experimental traumatic brain injury in rats. J Mol Neurosci. 2010;42:192–9.PubMedCrossRef
68.
Zurück zum Zitat Fonfria E, Mattei C, Hill K, Brown JT, Randall A, et al. TRPM2 is elevated in the tMCAO stroke model, transcriptionally regulated, and functionally expressed in C13 microglia. J Recept Signal Transduct Res. 2006;26:179–98.PubMedCrossRef Fonfria E, Mattei C, Hill K, Brown JT, Randall A, et al. TRPM2 is elevated in the tMCAO stroke model, transcriptionally regulated, and functionally expressed in C13 microglia. J Recept Signal Transduct Res. 2006;26:179–98.PubMedCrossRef
69.
Zurück zum Zitat Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, et al. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab. 2011;31:2160–8.PubMedCrossRef Jia J, Verma S, Nakayama S, Quillinan N, Grafe MR, et al. Sex differences in neuroprotection provided by inhibition of TRPM2 channels following experimental stroke. J Cereb Blood Flow Metab. 2011;31:2160–8.PubMedCrossRef
70.
71.
Zurück zum Zitat Katano M, Numata T, Aguan K, Hara Y, Kiyonaka S, et al. The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death. Cell Calcium. 2012;51:179–85.PubMedCrossRef Katano M, Numata T, Aguan K, Hara Y, Kiyonaka S, et al. The juvenile myoclonic epilepsy-related protein EFHC1 interacts with the redox-sensitive TRPM2 channel linked to cell death. Cell Calcium. 2012;51:179–85.PubMedCrossRef
73.
Zurück zum Zitat Takahashi N, Kozai D, Kobayashi R, Ebert M, Mori Y. Roles of TRPM2 in oxidative stress. Cell Calcium. 2011;50:279–87.PubMedCrossRef Takahashi N, Kozai D, Kobayashi R, Ebert M, Mori Y. Roles of TRPM2 in oxidative stress. Cell Calcium. 2011;50:279–87.PubMedCrossRef
74.
Zurück zum Zitat Colsoul B, Vennekens R, Nilius B. Transient receptor potential cation channels in pancreatic beta cells. Rev Physiol Biochem Pharmacol. 2011;161:87–110.PubMed Colsoul B, Vennekens R, Nilius B. Transient receptor potential cation channels in pancreatic beta cells. Rev Physiol Biochem Pharmacol. 2011;161:87–110.PubMed
Metadaten
Titel
The TRPM2 ion channel, an oxidative stress and metabolic sensor regulating innate immunity and inflammation
verfasst von
Heather Knowles
Yuan Li
Anne-Laure Perraud
Publikationsdatum
01.03.2013
Verlag
Springer-Verlag
Erschienen in
Immunologic Research / Ausgabe 1-3/2013
Print ISSN: 0257-277X
Elektronische ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-012-8373-8

Weitere Artikel der Ausgabe 1-3/2013

Immunologic Research 1-3/2013 Zur Ausgabe

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Betalaktam-Allergie: praxisnahes Vorgehen beim Delabeling

16.05.2024 Pädiatrische Allergologie Nachrichten

Die große Mehrheit der vermeintlichen Penicillinallergien sind keine. Da das „Etikett“ Betalaktam-Allergie oft schon in der Kindheit erworben wird, kann ein frühzeitiges Delabeling lebenslange Vorteile bringen. Ein Team von Pädiaterinnen und Pädiatern aus Kanada stellt vor, wie sie dabei vorgehen.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Eingreifen von Umstehenden rettet vor Erstickungstod

15.05.2024 Fremdkörperaspiration Nachrichten

Wer sich an einem Essensrest verschluckt und um Luft ringt, benötigt vor allem rasche Hilfe. Dass Umstehende nur in jedem zweiten Erstickungsnotfall bereit waren, diese zu leisten, ist das ernüchternde Ergebnis einer Beobachtungsstudie aus Japan. Doch es gibt auch eine gute Nachricht.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.