Skip to main content
Erschienen in: The Cerebellum 3/2019

01.06.2019 | Review

Past and Present of Eye Movement Abnormalities in Ataxia-Telangiectasia

verfasst von: Sherry Y. Tang, Aasef G. Shaikh

Erschienen in: The Cerebellum | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Ataxia-telangiectasia is the second most common autosomal recessive hereditary ataxia, with an estimated incidence of 1 in 100,000 births. Besides ataxia and ocular telangiectasias, eye movement abnormalities have long been associated with this disorder and is frequently present in almost all patients. A handful of studies have described the phenomenology of ocular motor deficits in ataxia-telangiectasia. Contemporary literature linked their physiology to cerebellar dysfunction and secondary abnormalities at the level of brainstem. These studies, while providing a proof of concept of ocular motor physiology in disease, i.e., ataxia-telangiectasia, also advanced our understanding of how the cerebellum works. Here, we will summarize the clinical abnormalities seen with ataxia-telangiectasia in each subtype of eye movements and subsequently describe the underlying pathophysiology. Finally, we will review how these deficits are linked to abnormal cerebellar function and how it allows better understanding of the cerebellar physiology.
Literatur
1.
Zurück zum Zitat Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT. The incidence and gene frequency of ataxia-telangiectasia A-T in the United States. Am J Hum Genet. 1986;39(5):573–83.PubMedPubMedCentral Swift M, Morrell D, Cromartie E, Chamberlin AR, Skolnick MH, Bishop DT. The incidence and gene frequency of ataxia-telangiectasia A-T in the United States. Am J Hum Genet. 1986;39(5):573–83.PubMedPubMedCentral
3.
Zurück zum Zitat Boder E, Sedgwick RP. Ataxia-Telangiectasia A-T: a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics. 1958;21(4):526–54.PubMed Boder E, Sedgwick RP. Ataxia-Telangiectasia A-T: a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics. 1958;21(4):526–54.PubMed
4.
Zurück zum Zitat McFarlin DE, Strober W, Waldmann TA. Ataxia-telangiectasia A-T. Medicine (Baltimore). 1972;51(4):281–314.CrossRef McFarlin DE, Strober W, Waldmann TA. Ataxia-telangiectasia A-T. Medicine (Baltimore). 1972;51(4):281–314.CrossRef
5.
Zurück zum Zitat Biemond A. Paleo cerebellar atrophy with extrapyramidal manifestations in association with bronchiectasis and telangiectasia of the conjunctiva bulbi as a familial syndrome. Van Bogaert Radermecker J Eds Proc First Int Congr. 1957;206. Biemond A. Paleo cerebellar atrophy with extrapyramidal manifestations in association with bronchiectasis and telangiectasia of the conjunctiva bulbi as a familial syndrome. Van Bogaert Radermecker J Eds Proc First Int Congr. 1957;206.
6.
Zurück zum Zitat Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268(5218):1749–53.CrossRefPubMed Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, et al. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science. 1995;268(5218):1749–53.CrossRefPubMed
7.
Zurück zum Zitat Byrd PJ, McConville CM, Cooper P, Parkhill J, Stankovic T, McGuire GM, et al. Mutations revealed by sequencing the 5′ half of the gene for ataxia telangiectasia. Hum Mol Genet. 1996;5(1):145–9.CrossRefPubMed Byrd PJ, McConville CM, Cooper P, Parkhill J, Stankovic T, McGuire GM, et al. Mutations revealed by sequencing the 5′ half of the gene for ataxia telangiectasia. Hum Mol Genet. 1996;5(1):145–9.CrossRefPubMed
8.
Zurück zum Zitat Moin M, Aghamohammadi A, Kouhi A, Tavassoli S, Rezaei N, Ghaffari S-R, et al. Ataxia-telangiectasia A-T in Iran: clinical and laboratory features of 104 patients. Pediatr Neurol. 2007;37(1):21–8.CrossRefPubMed Moin M, Aghamohammadi A, Kouhi A, Tavassoli S, Rezaei N, Ghaffari S-R, et al. Ataxia-telangiectasia A-T in Iran: clinical and laboratory features of 104 patients. Pediatr Neurol. 2007;37(1):21–8.CrossRefPubMed
9.
Zurück zum Zitat Smith JL, Cogan DG. Ataxia-Telangiectasia A-T. AMA Arch Ophthalmol. 1959;62(3):364–9.CrossRef Smith JL, Cogan DG. Ataxia-Telangiectasia A-T. AMA Arch Ophthalmol. 1959;62(3):364–9.CrossRef
10.
Zurück zum Zitat Cogan DG, Chu FC, Reingold D, Barranger J. Ocular motor signs in some metabolic diseases. Arch Ophthalmol. 1981;99(10):1802–8.CrossRefPubMed Cogan DG, Chu FC, Reingold D, Barranger J. Ocular motor signs in some metabolic diseases. Arch Ophthalmol. 1981;99(10):1802–8.CrossRefPubMed
11.
Zurück zum Zitat Federighi P, Ramat S, Rosini F, Pretegiani E, Federico A, Rufa A. Characteristic eye movements in ataxia-telangiectasia-like disorder: an explanatory hypothesis. Front Neurol. 2017;8:596.CrossRefPubMedPubMedCentral Federighi P, Ramat S, Rosini F, Pretegiani E, Federico A, Rufa A. Characteristic eye movements in ataxia-telangiectasia-like disorder: an explanatory hypothesis. Front Neurol. 2017;8:596.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Hyams SW, Reisner SH, Neumann E. The eye signs in ataxia-telangiectasia A-T. Am J Ophthalmol. 62(6):1118–24. Hyams SW, Reisner SH, Neumann E. The eye signs in ataxia-telangiectasia A-T. Am J Ophthalmol. 62(6):1118–24.
13.
Zurück zum Zitat Boder E, Sedgwick RP. Ataxia telangiectasia: a review of 150 cases. Intern Cong Ment Retard. 1964. Boder E, Sedgwick RP. Ataxia telangiectasia: a review of 150 cases. Intern Cong Ment Retard. 1964.
14.
Zurück zum Zitat Lewis RF, Lederman HM, Crawford TO. Ocular motor abnormalities in ataxia telangiectasia. Ann Neurol. 1999;46(3):287–95.CrossRefPubMed Lewis RF, Lederman HM, Crawford TO. Ocular motor abnormalities in ataxia telangiectasia. Ann Neurol. 1999;46(3):287–95.CrossRefPubMed
15.
Zurück zum Zitat Baloh RW, Yee RD, Boder E. Eye movements in ataxia-telangiectasia. Neurology. 1978;28(11):1099–104.CrossRefPubMed Baloh RW, Yee RD, Boder E. Eye movements in ataxia-telangiectasia. Neurology. 1978;28(11):1099–104.CrossRefPubMed
16.
Zurück zum Zitat Harris CM, Shawkat F, Russell-Eggitt I, Wilson J, Taylor D. Intermittent horizontal saccade failure (‘ocular motor apraxia’) in children. Br J Ophthalmol. 1996;80(2):151–8.CrossRefPubMedPubMedCentral Harris CM, Shawkat F, Russell-Eggitt I, Wilson J, Taylor D. Intermittent horizontal saccade failure (‘ocular motor apraxia’) in children. Br J Ophthalmol. 1996;80(2):151–8.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Zee DS, Yee RD, Singer HS. Congenital ocular motor apraxia. Brain J Neurol. 1977;100(3):581–99.CrossRef Zee DS, Yee RD, Singer HS. Congenital ocular motor apraxia. Brain J Neurol. 1977;100(3):581–99.CrossRef
19.
Zurück zum Zitat Riopel DA. Congenital ocular motor apraxia* *from the division of ophthalmology, College of Medicine, University of Florida. Am J Ophthalmol. 1963;55(3):511–4.CrossRefPubMed Riopel DA. Congenital ocular motor apraxia* *from the division of ophthalmology, College of Medicine, University of Florida. Am J Ophthalmol. 1963;55(3):511–4.CrossRefPubMed
20.
Zurück zum Zitat ROBLES J. Congenital ocular motor apraxia in identical twins. Arch Ophthalmol. 1966;75(6):746–9.CrossRefPubMed ROBLES J. Congenital ocular motor apraxia in identical twins. Arch Ophthalmol. 1966;75(6):746–9.CrossRefPubMed
21.
Zurück zum Zitat Orrison WW, Robertson WC. Congenital ocular motor apraxia: a possible disconnection syndrome. Arch Neurol. 1979;36(1):29–31.CrossRefPubMed Orrison WW, Robertson WC. Congenital ocular motor apraxia: a possible disconnection syndrome. Arch Neurol. 1979;36(1):29–31.CrossRefPubMed
22.
Zurück zum Zitat Leigh RJ, Zee DS. The neurology of eye movements: Oxford University Press; 2015. 1137 p Leigh RJ, Zee DS. The neurology of eye movements: Oxford University Press; 2015. 1137 p
23.
Zurück zum Zitat Van Gisbergen JA, Robinson DA, Gielen S. A quantitative analysis of generation of saccadic eye movements by burst neurons. J Neurophysiol. 1981;45(3):417–42.CrossRefPubMed Van Gisbergen JA, Robinson DA, Gielen S. A quantitative analysis of generation of saccadic eye movements by burst neurons. J Neurophysiol. 1981;45(3):417–42.CrossRefPubMed
24.
Zurück zum Zitat Hepp K, Henn V. Spatio-temporal recoding of rapid eye movement signals in the monkey paramedian pontine reticular formation (PPRF). Exp Brain Res. 1983;52(1):105–20.CrossRefPubMed Hepp K, Henn V. Spatio-temporal recoding of rapid eye movement signals in the monkey paramedian pontine reticular formation (PPRF). Exp Brain Res. 1983;52(1):105–20.CrossRefPubMed
25.
Zurück zum Zitat Henn V, Hepp K, Vilis T. Rapid eye movement generation in the primate. Physiology, pathophysiology, and clinical implications. Rev Neurol (Paris). 1989;145(8–9):540–5. Henn V, Hepp K, Vilis T. Rapid eye movement generation in the primate. Physiology, pathophysiology, and clinical implications. Rev Neurol (Paris). 1989;145(8–9):540–5.
26.
Zurück zum Zitat Ramat S, Leigh RJ, Zee DS, Optican LM. Ocular oscillations generated by coupling of brainstem excitatory and inhibitory saccadic burst neurons. Exp Brain Res. 2005;160(1):89–106.CrossRefPubMed Ramat S, Leigh RJ, Zee DS, Optican LM. Ocular oscillations generated by coupling of brainstem excitatory and inhibitory saccadic burst neurons. Exp Brain Res. 2005;160(1):89–106.CrossRefPubMed
27.
Zurück zum Zitat Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford T, Straumann D, et al. Gaze fixation deficits and their implication in ataxia-telangiectasia A-T. J Neurol Neurosurg Psychiatry. 2009;80(8):858–64.CrossRefPubMed Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford T, Straumann D, et al. Gaze fixation deficits and their implication in ataxia-telangiectasia A-T. J Neurol Neurosurg Psychiatry. 2009;80(8):858–64.CrossRefPubMed
28.
Zurück zum Zitat Shook BL, Schlag-Rey M, Schlag J. Direct projection from the supplementary eye field to the nucleus raphe interpositus. Exp Brain Res. 1988;73(1):215–8.CrossRefPubMed Shook BL, Schlag-Rey M, Schlag J. Direct projection from the supplementary eye field to the nucleus raphe interpositus. Exp Brain Res. 1988;73(1):215–8.CrossRefPubMed
29.
Zurück zum Zitat Stanton GB, Goldberg ME, Bruce CJ. Frontal eye field efferents in the macaque monkey: I. subcortical pathways and topography of striatal and thalamic terminal fields. J Comp Neurol. 1988;271(4):473–92.CrossRefPubMed Stanton GB, Goldberg ME, Bruce CJ. Frontal eye field efferents in the macaque monkey: I. subcortical pathways and topography of striatal and thalamic terminal fields. J Comp Neurol. 1988;271(4):473–92.CrossRefPubMed
30.
Zurück zum Zitat Noda H, Sugita S, Ikeda Y. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol. 1990;302(2):330–48.CrossRefPubMed Noda H, Sugita S, Ikeda Y. Afferent and efferent connections of the oculomotor region of the fastigial nucleus in the macaque monkey. J Comp Neurol. 1990;302(2):330–48.CrossRefPubMed
31.
Zurück zum Zitat Büttner-Ennever JA, Horn AK, Henn V, Cohen B. Projections from the superior colliculus motor map to omnipause neurons in monkey. J Comp Neurol. 1999;413(1):55–67.CrossRefPubMed Büttner-Ennever JA, Horn AK, Henn V, Cohen B. Projections from the superior colliculus motor map to omnipause neurons in monkey. J Comp Neurol. 1999;413(1):55–67.CrossRefPubMed
32.
Zurück zum Zitat Gandhi NJ, Keller EL. Spatial distribution and discharge characteristics of superior colliculus neurons antidromically activated from the omnipause region in monkey. J Neurophysiol. 1997;78(4):2221–5.CrossRefPubMed Gandhi NJ, Keller EL. Spatial distribution and discharge characteristics of superior colliculus neurons antidromically activated from the omnipause region in monkey. J Neurophysiol. 1997;78(4):2221–5.CrossRefPubMed
33.
Zurück zum Zitat Gandhi NJ, Keller EL. Activity of the brain stem omnipause neurons during saccades perturbed by stimulation of the primate superior colliculus. J Neurophysiol. 1999;82(6):3254–67.CrossRefPubMed Gandhi NJ, Keller EL. Activity of the brain stem omnipause neurons during saccades perturbed by stimulation of the primate superior colliculus. J Neurophysiol. 1999;82(6):3254–67.CrossRefPubMed
34.
Zurück zum Zitat Ohgaki T, Markham CH, Schneider JS, Curthoys IS. Anatomical evidence of the projection of pontine omnipause neurons to midbrain regions controlling vertical eye movements. J Comp Neurol. 1989;289(4):610–25.CrossRefPubMed Ohgaki T, Markham CH, Schneider JS, Curthoys IS. Anatomical evidence of the projection of pontine omnipause neurons to midbrain regions controlling vertical eye movements. J Comp Neurol. 1989;289(4):610–25.CrossRefPubMed
35.
Zurück zum Zitat Keller EL, Edelman JA. Use of interrupted saccade paradigm to study spatial and temporal dynamics of saccadic burst cells in superior colliculus in monkey. J Neurophysiol. 1994;72(6):2754–70.CrossRefPubMed Keller EL, Edelman JA. Use of interrupted saccade paradigm to study spatial and temporal dynamics of saccadic burst cells in superior colliculus in monkey. J Neurophysiol. 1994;72(6):2754–70.CrossRefPubMed
36.
Zurück zum Zitat Keller EL, Gandhi NJ, Shieh JM. Endpoint accuracy in saccades interrupted by stimulation in the omnipause region in monkey. Vis Neurosci. 1996;13(6):1059–67.CrossRefPubMed Keller EL, Gandhi NJ, Shieh JM. Endpoint accuracy in saccades interrupted by stimulation in the omnipause region in monkey. Vis Neurosci. 1996;13(6):1059–67.CrossRefPubMed
37.
Zurück zum Zitat Munoz DP, Waitzman DM, Wurtz RH. Activity of neurons in monkey superior colliculus during interrupted saccades. J Neurophysiol. 1996;75(6):2562–80.CrossRefPubMed Munoz DP, Waitzman DM, Wurtz RH. Activity of neurons in monkey superior colliculus during interrupted saccades. J Neurophysiol. 1996;75(6):2562–80.CrossRefPubMed
38.
Zurück zum Zitat Schiller PH, True SD, Conway JL. Deficits in eye movements following frontal eye-field and superior colliculus ablations. J Neurophysiol. 1980;44(6):1175–89.CrossRefPubMed Schiller PH, True SD, Conway JL. Deficits in eye movements following frontal eye-field and superior colliculus ablations. J Neurophysiol. 1980;44(6):1175–89.CrossRefPubMed
39.
Zurück zum Zitat Schiller PH, Chou IH. The effects of frontal eye field and dorsomedial frontal cortex lesions on visually guided eye movements. Nat Neurosci. 1998;1(3):248–53.CrossRefPubMed Schiller PH, Chou IH. The effects of frontal eye field and dorsomedial frontal cortex lesions on visually guided eye movements. Nat Neurosci. 1998;1(3):248–53.CrossRefPubMed
40.
Zurück zum Zitat Dias EC, Segraves MA. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J Neurophysiol. 1999;81(5):2191–214.CrossRefPubMed Dias EC, Segraves MA. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J Neurophysiol. 1999;81(5):2191–214.CrossRefPubMed
41.
Zurück zum Zitat Hanes DP, Smith MK, Optican LM, Wurtz RH. Recovery of saccadic dysmetria following localized lesions in monkey superior colliculus. Exp Brain Res. 2005;160(3):312–25.CrossRefPubMed Hanes DP, Smith MK, Optican LM, Wurtz RH. Recovery of saccadic dysmetria following localized lesions in monkey superior colliculus. Exp Brain Res. 2005;160(3):312–25.CrossRefPubMed
42.
Zurück zum Zitat Ohtsuka K, Noda H. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. J Neurophysiol. 1995;74(5):1828–40.CrossRefPubMed Ohtsuka K, Noda H. Discharge properties of Purkinje cells in the oculomotor vermis during visually guided saccades in the macaque monkey. J Neurophysiol. 1995;74(5):1828–40.CrossRefPubMed
43.
Zurück zum Zitat Optican LM, Robinson DA. Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol. 1980;44(6):1058–76.CrossRefPubMed Optican LM, Robinson DA. Cerebellar-dependent adaptive control of primate saccadic system. J Neurophysiol. 1980;44(6):1058–76.CrossRefPubMed
44.
Zurück zum Zitat Zee DS, Yamazaki A, Butler PH, Gücer G. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol. 1981;46(4):878–99.CrossRefPubMed Zee DS, Yamazaki A, Butler PH, Gücer G. Effects of ablation of flocculus and paraflocculus of eye movements in primate. J Neurophysiol. 1981;46(4):878–99.CrossRefPubMed
45.
Zurück zum Zitat Ohtsuka K, Noda H. Saccadic burst neurons in the oculomotor region of the fastigial nucleus of macaque monkeys. J Neurophysiol. 1991;65(6):1422–34.CrossRefPubMed Ohtsuka K, Noda H. Saccadic burst neurons in the oculomotor region of the fastigial nucleus of macaque monkeys. J Neurophysiol. 1991;65(6):1422–34.CrossRefPubMed
46.
Zurück zum Zitat Fuchs AF, Robinson FR, Straube A. Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J Neurophysiol. 1993;70(5):1723–40.CrossRefPubMed Fuchs AF, Robinson FR, Straube A. Role of the caudal fastigial nucleus in saccade generation. I. Neuronal discharge pattern. J Neurophysiol. 1993;70(5):1723–40.CrossRefPubMed
47.
Zurück zum Zitat Helmchen C, Straube A, Büttner U. Saccade-related activity in the fastigial oculomotor region of the macaque monkey during spontaneous eye movements in light and darkness. Exp Brain Res. 1994;98(3):474–82.CrossRefPubMed Helmchen C, Straube A, Büttner U. Saccade-related activity in the fastigial oculomotor region of the macaque monkey during spontaneous eye movements in light and darkness. Exp Brain Res. 1994;98(3):474–82.CrossRefPubMed
48.
Zurück zum Zitat Selhorst JB, Stark L, Ochs AL, Hoyt WF. Disorders in cerebellar ocular motor control. I. Saccadic overshoot dysmetria. An oculographic, control system and clinico-anatomical analysis. Brain J Neurol. 1976;99(3):497–508.CrossRef Selhorst JB, Stark L, Ochs AL, Hoyt WF. Disorders in cerebellar ocular motor control. I. Saccadic overshoot dysmetria. An oculographic, control system and clinico-anatomical analysis. Brain J Neurol. 1976;99(3):497–508.CrossRef
49.
Zurück zum Zitat Selhorst JB, Stark L, Ochs AL, Hoyt WF. Disorders in cerebellar ocular motor control. II. Macrosaccadic oscillation. An oculographic, control system and clinico-anatomical analysis. Brain J Neurol. 1976;99(3):509–22.CrossRef Selhorst JB, Stark L, Ochs AL, Hoyt WF. Disorders in cerebellar ocular motor control. II. Macrosaccadic oscillation. An oculographic, control system and clinico-anatomical analysis. Brain J Neurol. 1976;99(3):509–22.CrossRef
50.
Zurück zum Zitat Robinson FR, Straube A, Fuchs AF. Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J Neurophysiol. 1993;70(5):1741–58.CrossRefPubMed Robinson FR, Straube A, Fuchs AF. Role of the caudal fastigial nucleus in saccade generation. II. Effects of muscimol inactivation. J Neurophysiol. 1993;70(5):1741–58.CrossRefPubMed
51.
Zurück zum Zitat Livingstone M, Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science. 1988;240(4853):740–9.CrossRefPubMed Livingstone M, Hubel D. Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science. 1988;240(4853):740–9.CrossRefPubMed
52.
Zurück zum Zitat Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J. Visual pontocerebellar projections in the macaque. J Comp Neurol. 1994;349(1):51–72.CrossRefPubMed Glickstein M, Gerrits N, Kralj-Hans I, Mercier B, Stein J, Voogd J. Visual pontocerebellar projections in the macaque. J Comp Neurol. 1994;349(1):51–72.CrossRefPubMed
53.
Zurück zum Zitat Van Essen DC, Gallant JL. Neural mechanisms of form and motion processing in the primate visual system. Neuron. 1994;13(1):1–10.CrossRefPubMed Van Essen DC, Gallant JL. Neural mechanisms of form and motion processing in the primate visual system. Neuron. 1994;13(1):1–10.CrossRefPubMed
54.
Zurück zum Zitat Ilg UJ. Commentary: smooth pursuit eye movements: from low-level to high-level vision. Prog Brain Res. 2002;140:279–98.CrossRefPubMed Ilg UJ. Commentary: smooth pursuit eye movements: from low-level to high-level vision. Prog Brain Res. 2002;140:279–98.CrossRefPubMed
55.
Zurück zum Zitat Werner JS, Chalupa LM, editors. The new visual neurosciences. 1st ed. Cambridge: The MIT Press; 2013. 1696 p Werner JS, Chalupa LM, editors. The new visual neurosciences. 1st ed. Cambridge: The MIT Press; 2013. 1696 p
56.
Zurück zum Zitat Derrington AM, Allen HA, Delicato LS. Visual mechanisms of motion analysis and motion perception. Annu Rev Psychol. 2004;55(1):181–205.CrossRefPubMed Derrington AM, Allen HA, Delicato LS. Visual mechanisms of motion analysis and motion perception. Annu Rev Psychol. 2004;55(1):181–205.CrossRefPubMed
57.
Zurück zum Zitat Vaina LM, Soloviev S. First-order and second-order motion: neurological evidence for neuroanatomically distinct systems. Prog Brain Res. 2004;144:197–212.CrossRefPubMed Vaina LM, Soloviev S. First-order and second-order motion: neurological evidence for neuroanatomically distinct systems. Prog Brain Res. 2004;144:197–212.CrossRefPubMed
58.
Zurück zum Zitat Chen KJ, Sheliga BM, Fitzgibbon EJ, Miles FA. Initial ocular following in humans depends critically on the fourier components of the motion stimulus. Ann N Y Acad Sci. 2005;1039:260–71.CrossRefPubMedPubMedCentral Chen KJ, Sheliga BM, Fitzgibbon EJ, Miles FA. Initial ocular following in humans depends critically on the fourier components of the motion stimulus. Ann N Y Acad Sci. 2005;1039:260–71.CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Nagao S, Kitamura T, Nakamura N, Hiramatsu T, Yamada J. Differences of the primate flocculus and ventral paraflocculus in the mossy and climbing fiber input organization. J Comp Neurol. 1997;382(4):480–98.CrossRefPubMed Nagao S, Kitamura T, Nakamura N, Hiramatsu T, Yamada J. Differences of the primate flocculus and ventral paraflocculus in the mossy and climbing fiber input organization. J Comp Neurol. 1997;382(4):480–98.CrossRefPubMed
60.
Zurück zum Zitat Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG. Partial ablations of the Flocculus and ventral Paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol. 2002;87(2):912–24.CrossRefPubMedPubMedCentral Rambold H, Churchland A, Selig Y, Jasmin L, Lisberger SG. Partial ablations of the Flocculus and ventral Paraflocculus in monkeys cause linked deficits in smooth pursuit eye movements and adaptive modification of the VOR. J Neurophysiol. 2002;87(2):912–24.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Heinen SJ, Keller EL. The function of the cerebellar uvula in monkey during optokinetic and pursuit eye movements: single-unit responses and lesion effects. Exp Brain Res. 1996;110(1):1–14.CrossRefPubMed Heinen SJ, Keller EL. The function of the cerebellar uvula in monkey during optokinetic and pursuit eye movements: single-unit responses and lesion effects. Exp Brain Res. 1996;110(1):1–14.CrossRefPubMed
62.
Zurück zum Zitat Kase M, Noda H, Suzuki DA, Miller DC. Target velocity signals of visual tracking in vermal Purkinje cells of the monkey. Science. 1979;205(4407):717–20.CrossRefPubMed Kase M, Noda H, Suzuki DA, Miller DC. Target velocity signals of visual tracking in vermal Purkinje cells of the monkey. Science. 1979;205(4407):717–20.CrossRefPubMed
63.
Zurück zum Zitat Suzuki DA, Noda H, Kase M. Visual and pursuit eye movement-related activity in posterior vermis of monkey cerebellum. J Neurophysiol. 1981;46(5):1120–39.CrossRefPubMed Suzuki DA, Noda H, Kase M. Visual and pursuit eye movement-related activity in posterior vermis of monkey cerebellum. J Neurophysiol. 1981;46(5):1120–39.CrossRefPubMed
64.
Zurück zum Zitat Suzuki DA, Keller EL. The role of the posterior vermis of monkey cerebellum in smooth-pursuit eye movement control. II. Target velocity-related Purkinje cell activity. J Neurophysiol. 1988;59(1):19–40.CrossRefPubMed Suzuki DA, Keller EL. The role of the posterior vermis of monkey cerebellum in smooth-pursuit eye movement control. II. Target velocity-related Purkinje cell activity. J Neurophysiol. 1988;59(1):19–40.CrossRefPubMed
65.
Zurück zum Zitat Ohtsuka K, Enoki T. Transcranial magnetic stimulation over the posterior cerebellum during smooth pursuit eye movements in man. Brain J Neurol. 1998;121(Pt 3):429–35.CrossRef Ohtsuka K, Enoki T. Transcranial magnetic stimulation over the posterior cerebellum during smooth pursuit eye movements in man. Brain J Neurol. 1998;121(Pt 3):429–35.CrossRef
66.
Zurück zum Zitat Shinmei Y, Yamanobe T, Fukushima J, Fukushima K. Purkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation. J Neurophysiol. 2002;87(4):1836–49.CrossRefPubMed Shinmei Y, Yamanobe T, Fukushima J, Fukushima K. Purkinje cells of the cerebellar dorsal vermis: simple-spike activity during pursuit and passive whole-body rotation. J Neurophysiol. 2002;87(4):1836–49.CrossRefPubMed
67.
Zurück zum Zitat Fuchs AF, Robinson FR, Straube A. Participation of the caudal fastigial nucleus in smooth-pursuit eye movements. I. Neuronal activity. J Neurophysiol. 1994;72(6):2714–28.CrossRefPubMed Fuchs AF, Robinson FR, Straube A. Participation of the caudal fastigial nucleus in smooth-pursuit eye movements. I. Neuronal activity. J Neurophysiol. 1994;72(6):2714–28.CrossRefPubMed
68.
Zurück zum Zitat Vahedi K, Rivaud S, Amarenco P, Pierrot-Deseilligny C. Horizontal eye movement disorders after posterior vermis infarctions. J Neurol Neurosurg Psychiatry. 1995;58(1):91–4.CrossRefPubMedPubMedCentral Vahedi K, Rivaud S, Amarenco P, Pierrot-Deseilligny C. Horizontal eye movement disorders after posterior vermis infarctions. J Neurol Neurosurg Psychiatry. 1995;58(1):91–4.CrossRefPubMedPubMedCentral
69.
70.
Zurück zum Zitat Zee DS, Leigh RJ, Mathieu-Millaire F. Cerebellar control of ocular gaze stability. Ann Neurol. 1980;7(1):37–40.CrossRefPubMed Zee DS, Leigh RJ, Mathieu-Millaire F. Cerebellar control of ocular gaze stability. Ann Neurol. 1980;7(1):37–40.CrossRefPubMed
71.
Zurück zum Zitat Leigh RJ, Robinson DA, Zee DS. A hypothetical explanation for periodic alternating nystagmus: instability in the optokinetic-vestibular system. Ann N Y Acad Sci. 1981;374:619–35.CrossRefPubMed Leigh RJ, Robinson DA, Zee DS. A hypothetical explanation for periodic alternating nystagmus: instability in the optokinetic-vestibular system. Ann N Y Acad Sci. 1981;374:619–35.CrossRefPubMed
72.
Zurück zum Zitat Stell R, Bronstein AM, Plant GT, Harding AE. Ataxia telangiectasia: a reappraisal of the ocular motor features and their value in the diagnosis of atypical cases. Mov Disord Off J Mov Disord Soc. 1989;4(4):320–9.CrossRef Stell R, Bronstein AM, Plant GT, Harding AE. Ataxia telangiectasia: a reappraisal of the ocular motor features and their value in the diagnosis of atypical cases. Mov Disord Off J Mov Disord Soc. 1989;4(4):320–9.CrossRef
73.
Zurück zum Zitat Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford TO, Straumann D, et al. Ataxia telangiectasia: a “disease model” to understand the cerebellar control of vestibular reflexes. J Neurophysiol. 2011;105(6):3034–41.CrossRefPubMed Shaikh AG, Marti S, Tarnutzer AA, Palla A, Crawford TO, Straumann D, et al. Ataxia telangiectasia: a “disease model” to understand the cerebellar control of vestibular reflexes. J Neurophysiol. 2011;105(6):3034–41.CrossRefPubMed
74.
Zurück zum Zitat Waespe W, Cohen B, Raphan T. Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science. 1985;228(4696):199–202.CrossRefPubMed Waespe W, Cohen B, Raphan T. Dynamic modification of the vestibulo-ocular reflex by the nodulus and uvula. Science. 1985;228(4696):199–202.CrossRefPubMed
75.
Zurück zum Zitat Ito M. Neurophysiological aspects of the cerebellar motor control system. Int J Neurol. 1970;7(2):162–76.PubMed Ito M. Neurophysiological aspects of the cerebellar motor control system. Int J Neurol. 1970;7(2):162–76.PubMed
76.
Zurück zum Zitat Schultheis LW, Robinson DA. Directional plasticity of the vestibuloocular reflex in the cat. Ann N Y Acad Sci. 1981;374:504–12.CrossRefPubMed Schultheis LW, Robinson DA. Directional plasticity of the vestibuloocular reflex in the cat. Ann N Y Acad Sci. 1981;374:504–12.CrossRefPubMed
77.
Zurück zum Zitat Walker MF, Zee DS. Cerebellar disease alters the axis of the high-acceleration vestibuloocular reflex. J Neurophysiol. 2005;94(5):3417–29.CrossRefPubMed Walker MF, Zee DS. Cerebellar disease alters the axis of the high-acceleration vestibuloocular reflex. J Neurophysiol. 2005;94(5):3417–29.CrossRefPubMed
78.
Zurück zum Zitat Walker MF, Zee DS. Directional abnormalities of vestibular and optokinetic responses in cerebellar disease. Ann N Y Acad Sci. 1999;871:205–20.CrossRefPubMed Walker MF, Zee DS. Directional abnormalities of vestibular and optokinetic responses in cerebellar disease. Ann N Y Acad Sci. 1999;871:205–20.CrossRefPubMed
79.
Zurück zum Zitat Lisberger SG. The latency of pathways containing the site of motor learning in the monkey vestibulo-ocular reflex. Science. 1984;225(4657):74–6.CrossRefPubMed Lisberger SG. The latency of pathways containing the site of motor learning in the monkey vestibulo-ocular reflex. Science. 1984;225(4657):74–6.CrossRefPubMed
80.
Zurück zum Zitat Fernandez C, Goldberg JM, Abend WK. Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol. 1972;35(6):978–87.CrossRefPubMed Fernandez C, Goldberg JM, Abend WK. Response to static tilts of peripheral neurons innervating otolith organs of the squirrel monkey. J Neurophysiol. 1972;35(6):978–87.CrossRefPubMed
81.
Zurück zum Zitat Angelaki DE, Shaikh AG, Green AM, Dickman JD. Neurons compute internal models of the physical laws of motion. Nature. 2004;430(6999):560–4.CrossRefPubMed Angelaki DE, Shaikh AG, Green AM, Dickman JD. Neurons compute internal models of the physical laws of motion. Nature. 2004;430(6999):560–4.CrossRefPubMed
82.
Zurück zum Zitat Shaikh AG, Ghasia FF, Dickman JD, Angelaki DE. Properties of cerebellar fastigial neurons during translation, rotation, and eye movements. J Neurophysiol. 2005;93(2):853–63.CrossRefPubMed Shaikh AG, Ghasia FF, Dickman JD, Angelaki DE. Properties of cerebellar fastigial neurons during translation, rotation, and eye movements. J Neurophysiol. 2005;93(2):853–63.CrossRefPubMed
83.
Zurück zum Zitat Shaikh AG, Green AM, Ghasia FF, Newlands SD, Dickman JD, Angelaki DE. Sensory convergence solves a motion ambiguity problem. Curr Biol CB. 2005;15(18):1657–62.CrossRefPubMed Shaikh AG, Green AM, Ghasia FF, Newlands SD, Dickman JD, Angelaki DE. Sensory convergence solves a motion ambiguity problem. Curr Biol CB. 2005;15(18):1657–62.CrossRefPubMed
84.
Zurück zum Zitat Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE. Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron. 2007;54(6):973–85.CrossRefPubMed Yakusheva TA, Shaikh AG, Green AM, Blazquez PM, Dickman JD, Angelaki DE. Purkinje cells in posterior cerebellar vermis encode motion in an inertial reference frame. Neuron. 2007;54(6):973–85.CrossRefPubMed
85.
Zurück zum Zitat Angelaki DE, Hess BJ. Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. J Neurophysiol. 1995;73(5):1729–51.CrossRefPubMed Angelaki DE, Hess BJ. Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. J Neurophysiol. 1995;73(5):1729–51.CrossRefPubMed
86.
Zurück zum Zitat Sheliga BM, Yakushin SB, Silvers A, Raphan T, Cohen B. Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula of the vestibulocerebellum. Ann N Y Acad Sci. 1999;871(1):94–122.CrossRefPubMed Sheliga BM, Yakushin SB, Silvers A, Raphan T, Cohen B. Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula of the vestibulocerebellum. Ann N Y Acad Sci. 1999;871(1):94–122.CrossRefPubMed
87.
Zurück zum Zitat Robinson DA. Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol. 1976;39(5):954–69.CrossRefPubMed Robinson DA. Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol. 1976;39(5):954–69.CrossRefPubMed
88.
Zurück zum Zitat Wearne S, Raphan T, Cohen B. Effects of tilt of the gravito-inertial acceleration vector on the angular vestibuloocular reflex during centrifugation. J Neurophysiol. 1999;81(5):2175–90.CrossRefPubMed Wearne S, Raphan T, Cohen B. Effects of tilt of the gravito-inertial acceleration vector on the angular vestibuloocular reflex during centrifugation. J Neurophysiol. 1999;81(5):2175–90.CrossRefPubMed
89.
Zurück zum Zitat Robinson DA. The use of matrices in analyzing the three-dimensional behavior of the vestibulo-ocular reflex. Biol Cybern. 1982;46(1):53–66.CrossRefPubMed Robinson DA. The use of matrices in analyzing the three-dimensional behavior of the vestibulo-ocular reflex. Biol Cybern. 1982;46(1):53–66.CrossRefPubMed
90.
Zurück zum Zitat Raphan T, Matsuo V, Cohen B. Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res. 1979;35(2):229–48.CrossRefPubMed Raphan T, Matsuo V, Cohen B. Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res. 1979;35(2):229–48.CrossRefPubMed
91.
Zurück zum Zitat Ramat S, Leigh RJ, Zee DS, Optican LM. What clinical disorders tell us about the neural control of saccadic eye movements. Brain J Neurol. 2007;130(Pt 1):10–35. Ramat S, Leigh RJ, Zee DS, Optican LM. What clinical disorders tell us about the neural control of saccadic eye movements. Brain J Neurol. 2007;130(Pt 1):10–35.
Metadaten
Titel
Past and Present of Eye Movement Abnormalities in Ataxia-Telangiectasia
verfasst von
Sherry Y. Tang
Aasef G. Shaikh
Publikationsdatum
01.06.2019
Verlag
Springer US
Erschienen in
The Cerebellum / Ausgabe 3/2019
Print ISSN: 1473-4222
Elektronische ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-018-0990-x

Weitere Artikel der Ausgabe 3/2019

The Cerebellum 3/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.