Skip to main content
Erschienen in: Translational Stroke Research 6/2020

26.06.2020 | Review Article

Mitochondrial Transfer as a Therapeutic Strategy Against Ischemic Stroke

verfasst von: Wei Chen, Jingjing Huang, Yueqiang Hu, Seyed Esmaeil Khoshnam, Alireza Sarkaki

Erschienen in: Translational Stroke Research | Ausgabe 6/2020

Einloggen, um Zugang zu erhalten

Abstract

Stroke is a debilitating disease that remains the second leading cause of death and disability worldwide. Despite accumulating knowledge of the disease pathology, treatments for stroke are limited, and clinical translation of the neuroprotective agents has not been a complete success. Accumulating evidence links mitochondrial dysfunction to brain impairments after stroke. Recent studies have implicated the important roles of healthy mitochondria in neuroprotection and neural recovery following ischemic stroke. New and convincing studies have shown that mitochondrial transfer to the damaged cells can help revive cells energetic in the recipient cells. Hence, mitochondrial transplantation has shown to replace impaired or dysfunctional mitochondria with exogenous healthy mitochondria after ischemic stroke. We highlight the potential of mitochondrial transfer by stem cells as a therapeutic strategy for the treatment of ischemic stroke. This review captures the recent advances in the mitochondrial transfer as a novel and promising treatment for ischemic stroke.
Literatur
1.
Zurück zum Zitat Vos T, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800. Vos T, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800.
2.
Zurück zum Zitat Bhatia R, et al. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke. 2010;41(10):2254–8.PubMed Bhatia R, et al. Low rates of acute recanalization with intravenous recombinant tissue plasminogen activator in ischemic stroke: real-world experience and a call for action. Stroke. 2010;41(10):2254–8.PubMed
3.
Zurück zum Zitat Nour M, Scalzo F, Liebeskind DS. Ischemia-reperfusion injury in stroke. Interv Neurol. 2012;1(3–4):185–99. Nour M, Scalzo F, Liebeskind DS. Ischemia-reperfusion injury in stroke. Interv Neurol. 2012;1(3–4):185–99.
4.
Zurück zum Zitat Mizuma A, You JS, Yenari MA. Targeting reperfusion injury in the age of mechanical thrombectomy. Stroke. 2018;49(7):1796–802.PubMedPubMedCentral Mizuma A, You JS, Yenari MA. Targeting reperfusion injury in the age of mechanical thrombectomy. Stroke. 2018;49(7):1796–802.PubMedPubMedCentral
5.
Zurück zum Zitat Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke—implications for treatment. Nat Rev Neurol. 2019:1. Stoll G, Nieswandt B. Thrombo-inflammation in acute ischaemic stroke—implications for treatment. Nat Rev Neurol. 2019:1.
6.
Zurück zum Zitat Balog J, Mehta SL, Vemuganti R. Mitochondrial fission and fusion in secondary brain damage after CNS insults. J Cereb Blood Flow Metab. 2016;36(12):2022–33.PubMedPubMedCentral Balog J, Mehta SL, Vemuganti R. Mitochondrial fission and fusion in secondary brain damage after CNS insults. J Cereb Blood Flow Metab. 2016;36(12):2022–33.PubMedPubMedCentral
7.
Zurück zum Zitat Rutkai I, et al. Cerebrovascular function and mitochondrial bioenergetics after ischemia-reperfusion in male rats. J Cereb Blood Flow Metab. 2019;39(6):1056–68.PubMed Rutkai I, et al. Cerebrovascular function and mitochondrial bioenergetics after ischemia-reperfusion in male rats. J Cereb Blood Flow Metab. 2019;39(6):1056–68.PubMed
8.
Zurück zum Zitat Bukeirat M, et al. MiR-34a regulates blood–brain barrier permeability and mitochondrial function by targeting cytochrome c. J Cereb Blood Flow Metab. 2016;36(2):387–92.PubMed Bukeirat M, et al. MiR-34a regulates blood–brain barrier permeability and mitochondrial function by targeting cytochrome c. J Cereb Blood Flow Metab. 2016;36(2):387–92.PubMed
9.
Zurück zum Zitat Andersen JV, et al. Improved cerebral energetics and ketone body metabolism in db/db mice. J Cereb Blood Flow Metab. 2017;37(3):1137–47.PubMed Andersen JV, et al. Improved cerebral energetics and ketone body metabolism in db/db mice. J Cereb Blood Flow Metab. 2017;37(3):1137–47.PubMed
10.
Zurück zum Zitat Borlongan CV, et al. May the force be with you: transfer of healthy mitochondria from stem cells to stroke cells. J Cereb Blood Flow Metab. 2019;39(2):367–70.PubMed Borlongan CV, et al. May the force be with you: transfer of healthy mitochondria from stem cells to stroke cells. J Cereb Blood Flow Metab. 2019;39(2):367–70.PubMed
11.
Zurück zum Zitat Torralba D, Baixauli F, Sánchez-Madrid F. Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev Biol. 2016;4:107.PubMedPubMedCentral Torralba D, Baixauli F, Sánchez-Madrid F. Mitochondria know no boundaries: mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev Biol. 2016;4:107.PubMedPubMedCentral
12.
13.
Zurück zum Zitat Chang C-Y, Liang M-Z, Chen L. Current progress of mitochondrial transplantation that promotes neuronal regeneration. Transl Neurodegener. 2019;8(1):17.PubMedPubMedCentral Chang C-Y, Liang M-Z, Chen L. Current progress of mitochondrial transplantation that promotes neuronal regeneration. Transl Neurodegener. 2019;8(1):17.PubMedPubMedCentral
14.
Zurück zum Zitat Campbell BC, et al. Ischaemic stroke. Nat Rev Dis Prim. 2019;5(1):1–22. Campbell BC, et al. Ischaemic stroke. Nat Rev Dis Prim. 2019;5(1):1–22.
15.
Zurück zum Zitat Obrenovitch TP, et al. Extracellular neuroactive amino acids in the rat striatum during ischaemia: comparison between penumbral conditions and ischaemia with sustained anoxic depolarisation. J Neurochem. 1993;61(1):178–86.PubMed Obrenovitch TP, et al. Extracellular neuroactive amino acids in the rat striatum during ischaemia: comparison between penumbral conditions and ischaemia with sustained anoxic depolarisation. J Neurochem. 1993;61(1):178–86.PubMed
16.
Zurück zum Zitat Nowak L, et al. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984;307(5950):462.PubMed Nowak L, et al. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984;307(5950):462.PubMed
17.
18.
Zurück zum Zitat Mayer ML, Miller RJ. Excitatory amino acid receptors, second messengers and regulation of intracellular Ca2+ in mammalian neurons. Trends Pharmacol Sci. 1990;11(6):254–60.PubMed Mayer ML, Miller RJ. Excitatory amino acid receptors, second messengers and regulation of intracellular Ca2+ in mammalian neurons. Trends Pharmacol Sci. 1990;11(6):254–60.PubMed
19.
Zurück zum Zitat Love S. Oxidative stress in brain ischemia. Brain Pathol. 1999;9(1):119–31.PubMed Love S. Oxidative stress in brain ischemia. Brain Pathol. 1999;9(1):119–31.PubMed
20.
Zurück zum Zitat Hartings JA, et al. The continuum of spreading depolarizations in acute cortical lesion development: examining Leao’s legacy. J Cereb Blood Flow Metab. 2017;37(5):1571–94.PubMed Hartings JA, et al. The continuum of spreading depolarizations in acute cortical lesion development: examining Leao’s legacy. J Cereb Blood Flow Metab. 2017;37(5):1571–94.PubMed
21.
Zurück zum Zitat Dohmen C, et al. Spreading depolarizations occur in human ischemic stroke with high incidence. Ann Neurol. 2008;63(6):720–8.PubMed Dohmen C, et al. Spreading depolarizations occur in human ischemic stroke with high incidence. Ann Neurol. 2008;63(6):720–8.PubMed
22.
Zurück zum Zitat Shen P-P, et al. Cortical spreading depression-induced preconditioning in the brain. Neural Regen Res. 2016;11(11):1857.PubMedPubMedCentral Shen P-P, et al. Cortical spreading depression-induced preconditioning in the brain. Neural Regen Res. 2016;11(11):1857.PubMedPubMedCentral
23.
Zurück zum Zitat Liddelow SA, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481.PubMedPubMedCentral Liddelow SA, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481.PubMedPubMedCentral
24.
Zurück zum Zitat Tarassishin L, Suh HS, Lee SC. LPS and IL-1 differentially activate mouse and human astrocytes: role of CD14. Glia. 2014;62(6):999–1013.PubMedPubMedCentral Tarassishin L, Suh HS, Lee SC. LPS and IL-1 differentially activate mouse and human astrocytes: role of CD14. Glia. 2014;62(6):999–1013.PubMedPubMedCentral
25.
Zurück zum Zitat Choudhury GR, Ding S. Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol Dis. 2016;85:234–44.PubMed Choudhury GR, Ding S. Reactive astrocytes and therapeutic potential in focal ischemic stroke. Neurobiol Dis. 2016;85:234–44.PubMed
26.
Zurück zum Zitat Hall CN, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55.PubMedPubMedCentral Hall CN, et al. Capillary pericytes regulate cerebral blood flow in health and disease. Nature. 2014;508(7494):55.PubMedPubMedCentral
27.
Zurück zum Zitat Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428.PubMed Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428.PubMed
28.
Zurück zum Zitat Chamorro Á, Hallenbeck J. The harms and benefits of inflammatory and immune responses in vascular disease. Stroke. 2006;37(2):291.PubMedPubMedCentral Chamorro Á, Hallenbeck J. The harms and benefits of inflammatory and immune responses in vascular disease. Stroke. 2006;37(2):291.PubMedPubMedCentral
29.
Zurück zum Zitat Ferrari S, et al. A novel technique for cheek mucosa defect reconstruction using a pedicled buccal fat pad and buccinator myomucosal island flap. Oral Oncol. 2009;45(1):59–62.PubMed Ferrari S, et al. A novel technique for cheek mucosa defect reconstruction using a pedicled buccal fat pad and buccinator myomucosal island flap. Oral Oncol. 2009;45(1):59–62.PubMed
30.
Zurück zum Zitat Mehrotra D, Pradhan R, Gupta S. Retrospective comparison of surgical treatment modalities in 100 patients with oral submucous fibrosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(3):e1–e10.PubMed Mehrotra D, Pradhan R, Gupta S. Retrospective comparison of surgical treatment modalities in 100 patients with oral submucous fibrosis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(3):e1–e10.PubMed
31.
Zurück zum Zitat Chamorro A, et al. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401.PubMed Chamorro A, et al. The immunology of acute stroke. Nat Rev Neurol. 2012;8(7):401.PubMed
32.
Zurück zum Zitat Pappachan B, Vasant R. Application of bilateral pedicled buccal fat pad in wide primary cleft palate. Br J Oral Maxillofac Surg. 2008;46(4):310–2.PubMed Pappachan B, Vasant R. Application of bilateral pedicled buccal fat pad in wide primary cleft palate. Br J Oral Maxillofac Surg. 2008;46(4):310–2.PubMed
33.
Zurück zum Zitat Kim Y-K. The use of a pedicled buccal fat pad graft for bone coverage in primary palatorrhaphy: a case report. J Oral Maxillofac Surg. 2001;59(12):1499–501.PubMed Kim Y-K. The use of a pedicled buccal fat pad graft for bone coverage in primary palatorrhaphy: a case report. J Oral Maxillofac Surg. 2001;59(12):1499–501.PubMed
34.
Zurück zum Zitat Dubin B, et al. Anatomy of the buccal fat pad and its clinical significance. Plast Reconstr Surg. 1989;83(2):257–64.PubMed Dubin B, et al. Anatomy of the buccal fat pad and its clinical significance. Plast Reconstr Surg. 1989;83(2):257–64.PubMed
35.
Zurück zum Zitat Dolanmaz D, et al. Use of pedicled buccal fat pad in the closure of oroantral communication: analysis of 75 cases. Quintessence Int. 2004:35(3). Dolanmaz D, et al. Use of pedicled buccal fat pad in the closure of oroantral communication: analysis of 75 cases. Quintessence Int. 2004:35(3).
36.
Zurück zum Zitat Matzinger P. An innate sense of danger. Ann N Y Acad Sci. 2002;961(1):341–2.PubMed Matzinger P. An innate sense of danger. Ann N Y Acad Sci. 2002;961(1):341–2.PubMed
37.
Zurück zum Zitat Vila N, et al. Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke. 2000;31(10):2325–9.PubMed Vila N, et al. Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke. 2000;31(10):2325–9.PubMed
38.
Zurück zum Zitat Khoshnam SE, Winlow W, Farzaneh M. The interplay of microRNAs in the inflammatory mechanisms following ischemic stroke. J Neuropathol Exp Neurol. 2017;76(7):548–61.PubMed Khoshnam SE, Winlow W, Farzaneh M. The interplay of microRNAs in the inflammatory mechanisms following ischemic stroke. J Neuropathol Exp Neurol. 2017;76(7):548–61.PubMed
39.
Zurück zum Zitat Ehrensperger E, et al. Predictive value of soluble intercellular adhesion molecule-1 for risk of ischemic events in individuals with cerebrovascular disease. Cerebrovasc Dis. 2005;20(6):456–62.PubMed Ehrensperger E, et al. Predictive value of soluble intercellular adhesion molecule-1 for risk of ischemic events in individuals with cerebrovascular disease. Cerebrovasc Dis. 2005;20(6):456–62.PubMed
41.
Zurück zum Zitat Suárez Y, et al. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol. 2010;184(1):21–5.PubMed Suárez Y, et al. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol. 2010;184(1):21–5.PubMed
42.
Zurück zum Zitat Madge LA, Pober JS. TNF signaling in vascular endothelial cells. Exp Mol Pathol. 2001;70(3):317–25.PubMed Madge LA, Pober JS. TNF signaling in vascular endothelial cells. Exp Mol Pathol. 2001;70(3):317–25.PubMed
43.
Zurück zum Zitat Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147(S1):S232–40.PubMedPubMedCentral Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol. 2006;147(S1):S232–40.PubMedPubMedCentral
45.
Zurück zum Zitat Buck BH, et al. Early neutrophilia is associated with volume of ischemic tissue in acute stroke. Stroke. 2008;39(2):355–60.PubMed Buck BH, et al. Early neutrophilia is associated with volume of ischemic tissue in acute stroke. Stroke. 2008;39(2):355–60.PubMed
46.
Zurück zum Zitat Tang Y, et al. Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab. 2006;26(8):1089–102.PubMed Tang Y, et al. Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab. 2006;26(8):1089–102.PubMed
47.
Zurück zum Zitat Amantea D, et al. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J. 2009;276(1):13–26.PubMed Amantea D, et al. Post-ischemic brain damage: pathophysiology and role of inflammatory mediators. FEBS J. 2009;276(1):13–26.PubMed
48.
Zurück zum Zitat Khoshnam SE, et al. Pathogenic mechanisms following ischemic stroke. Neurol Sci. 2017;38(7):1167–86.PubMed Khoshnam SE, et al. Pathogenic mechanisms following ischemic stroke. Neurol Sci. 2017;38(7):1167–86.PubMed
49.
Zurück zum Zitat Sutherland RW. Obstructive Uropathy, in National Kidney Foundation Primer on Kidney Diseases (Sixth Edition). Elsevier; 2014. p. 397–404. Sutherland RW. Obstructive Uropathy, in National Kidney Foundation Primer on Kidney Diseases (Sixth Edition). Elsevier; 2014. p. 397–404.
50.
Zurück zum Zitat Zeidel ML., Obstructive uropathy, in Goldman's Cecil Medicine (Twenty Fourth Edition). Elsevier; 2012. p. 776–780. Zeidel ML., Obstructive uropathy, in Goldman's Cecil Medicine (Twenty Fourth Edition). Elsevier; 2012. p. 776–780.
51.
Zurück zum Zitat Yilmaz G, et al. Selectin-mediated recruitment of bone marrow stromal cells in the postischemic cerebral microvasculature. Stroke. 2011;42(3):806–11.PubMedPubMedCentral Yilmaz G, et al. Selectin-mediated recruitment of bone marrow stromal cells in the postischemic cerebral microvasculature. Stroke. 2011;42(3):806–11.PubMedPubMedCentral
53.
Zurück zum Zitat Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol. 2012;13(12):780.PubMed Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol. 2012;13(12):780.PubMed
54.
Zurück zum Zitat Chen S-D, et al. Effects of rosiglitazone on global ischemia-induced hippocampal injury and expression of mitochondrial uncoupling protein 2. Biochem Biophys Res Commun. 2006;351(1):198–203.PubMed Chen S-D, et al. Effects of rosiglitazone on global ischemia-induced hippocampal injury and expression of mitochondrial uncoupling protein 2. Biochem Biophys Res Commun. 2006;351(1):198–203.PubMed
55.
Zurück zum Zitat Novo E, Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair. 2008;1(1):5.PubMedPubMedCentral Novo E, Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair. 2008;1(1):5.PubMedPubMedCentral
56.
Zurück zum Zitat Lennon S, Martin S, Cotter T. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 1991;24(2):203–14.PubMed Lennon S, Martin S, Cotter T. Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif. 1991;24(2):203–14.PubMed
57.
Zurück zum Zitat Kunz A, et al. Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci. 2007;27(27):7083–93.PubMedPubMedCentral Kunz A, et al. Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci. 2007;27(27):7083–93.PubMedPubMedCentral
58.
Zurück zum Zitat Chen S-D, et al. Roles of oxidative stress, apoptosis, PGC-1α and mitochondrial biogenesis in cerebral ischemia. Int J Mol Sci. 2011;12(10):7199–215.PubMedPubMedCentral Chen S-D, et al. Roles of oxidative stress, apoptosis, PGC-1α and mitochondrial biogenesis in cerebral ischemia. Int J Mol Sci. 2011;12(10):7199–215.PubMedPubMedCentral
59.
Zurück zum Zitat Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol. 2014;2:702–14.PubMedPubMedCentral Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol. 2014;2:702–14.PubMedPubMedCentral
60.
Zurück zum Zitat Varanyuwatana P, Halestrap AP. The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore. Mitochondrion. 2012;12(1):120–5.PubMedPubMedCentral Varanyuwatana P, Halestrap AP. The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore. Mitochondrion. 2012;12(1):120–5.PubMedPubMedCentral
61.
Zurück zum Zitat Schinzel AC, et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci. 2005;102(34):12005–10.PubMedPubMedCentral Schinzel AC, et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci. 2005;102(34):12005–10.PubMedPubMedCentral
62.
Zurück zum Zitat Nakagawa T, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434(7033):652.PubMed Nakagawa T, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 2005;434(7033):652.PubMed
63.
Zurück zum Zitat Baines CP, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434(7033):658.PubMed Baines CP, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature. 2005;434(7033):658.PubMed
64.
Zurück zum Zitat Picard M, et al. Resistance to Ca2+−induced opening of the permeability transition pore differs in mitochondria from glycolytic and oxidative muscles. Am J Phys Regul Integr Comp Phys. 2008;295(2):R659–68. Picard M, et al. Resistance to Ca2+−induced opening of the permeability transition pore differs in mitochondria from glycolytic and oxidative muscles. Am J Phys Regul Integr Comp Phys. 2008;295(2):R659–68.
65.
Zurück zum Zitat Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex: another view. Biochimie. 2002;84(2–3):153–66.PubMed Halestrap AP, McStay GP, Clarke SJ. The permeability transition pore complex: another view. Biochimie. 2002;84(2–3):153–66.PubMed
66.
Zurück zum Zitat Rasola A, Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis. 2007;12(5):815–33.PubMed Rasola A, Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis. 2007;12(5):815–33.PubMed
67.
Zurück zum Zitat Chouchani ET, et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab. 2016;23(2):254–63.PubMed Chouchani ET, et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab. 2016;23(2):254–63.PubMed
68.
Zurück zum Zitat Lutz J, Thürmel K, Heemann U. Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation. J Inflamm. 2010;7(1):27. Lutz J, Thürmel K, Heemann U. Anti-inflammatory treatment strategies for ischemia/reperfusion injury in transplantation. J Inflamm. 2010;7(1):27.
69.
Zurück zum Zitat Baines CP. The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol. 2009;104(2):181–8.PubMedPubMedCentral Baines CP. The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol. 2009;104(2):181–8.PubMedPubMedCentral
70.
Zurück zum Zitat Gong Z, et al. Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflammation. 2018;15(1):242.PubMedPubMedCentral Gong Z, et al. Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflammation. 2018;15(1):242.PubMedPubMedCentral
71.
Zurück zum Zitat Hornung V, Latz E. Critical functions of priming and lysosomal damage for NLRP3 activation. Eur J Immunol. 2010;40(3):620–3.PubMedPubMedCentral Hornung V, Latz E. Critical functions of priming and lysosomal damage for NLRP3 activation. Eur J Immunol. 2010;40(3):620–3.PubMedPubMedCentral
72.
Zurück zum Zitat Agostini L, et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20(3):319–25.PubMed Agostini L, et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20(3):319–25.PubMed
73.
Zurück zum Zitat Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10(2):417–26.PubMed Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10(2):417–26.PubMed
74.
Zurück zum Zitat Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T, et al. Inflammasomes: current understanding and open questions. Cell Mol Life Sci. 2011;68(5):765–83.PubMed Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T, et al. Inflammasomes: current understanding and open questions. Cell Mol Life Sci. 2011;68(5):765–83.PubMed
75.
Zurück zum Zitat Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–32.PubMed Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–32.PubMed
76.
Zurück zum Zitat Lamkanfi M, Dixit VM. Manipulation of host cell death pathways during microbial infections. Cell Host Microbe. 2010;8(1):44–54.PubMed Lamkanfi M, Dixit VM. Manipulation of host cell death pathways during microbial infections. Cell Host Microbe. 2010;8(1):44–54.PubMed
77.
Zurück zum Zitat Zhou R, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136.PubMed Zhou R, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136.PubMed
78.
Zurück zum Zitat Zhou R, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221.PubMed Zhou R, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221.PubMed
79.
Zurück zum Zitat Subramanian N, et al. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell. 2013;153(2):348–61.PubMedPubMedCentral Subramanian N, et al. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell. 2013;153(2):348–61.PubMedPubMedCentral
80.
81.
Zurück zum Zitat He Z, et al. Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med. 2019. He Z, et al. Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med. 2019.
82.
Zurück zum Zitat Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov. 2018;17(12):865.PubMed Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov. 2018;17(12):865.PubMed
83.
Zurück zum Zitat Mailloux JR. Application of mitochondria-targeted pharmaceuticals for the treatment of heart disease. Curr Pharm Des. 2016;22(31):4763–79.PubMed Mailloux JR. Application of mitochondria-targeted pharmaceuticals for the treatment of heart disease. Curr Pharm Des. 2016;22(31):4763–79.PubMed
84.
Zurück zum Zitat Yin X, Manczak M, Reddy PH. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington’s disease. Hum Mol Genet. 2016;25(9):1739–53.PubMedPubMedCentral Yin X, Manczak M, Reddy PH. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington’s disease. Hum Mol Genet. 2016;25(9):1739–53.PubMedPubMedCentral
85.
Zurück zum Zitat Powell RD, et al. MitoQ modulates oxidative stress and decreases inflammation following hemorrhage. J Trauma Acute Care Surg. 2015;78(3):573–9.PubMed Powell RD, et al. MitoQ modulates oxidative stress and decreases inflammation following hemorrhage. J Trauma Acute Care Surg. 2015;78(3):573–9.PubMed
86.
Zurück zum Zitat Manczak M, et al. Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer’s disease neurons. J Alzheimers Dis. 2010;20(s2):S609–31.PubMedPubMedCentral Manczak M, et al. Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer’s disease neurons. J Alzheimers Dis. 2010;20(s2):S609–31.PubMedPubMedCentral
87.
Zurück zum Zitat Jauslin ML, Meier T, Smith RA, Murphy MP. Mitochondria-targeted antioxidants protect Friedreich ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J. 2003;17(13):1972–4.PubMed Jauslin ML, Meier T, Smith RA, Murphy MP. Mitochondria-targeted antioxidants protect Friedreich ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J. 2003;17(13):1972–4.PubMed
88.
Zurück zum Zitat Shuaib A, et al. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med. 2007;357(6):562–71.PubMed Shuaib A, et al. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med. 2007;357(6):562–71.PubMed
89.
Zurück zum Zitat Diener H-C, et al. NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II trials. Stroke. 2008;39(6):1751–8.PubMed Diener H-C, et al. NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II trials. Stroke. 2008;39(6):1751–8.PubMed
90.
Zurück zum Zitat Ley JJ, et al. Stilbazulenyl nitrone, a second-generation azulenyl nitrone antioxidant, confers enduring neuroprotection in experimental focal cerebral ischemia in the rat: neurobehavior, histopathology, and pharmacokinetics. J Pharmacol Exp Ther. 2005;313(3):1090–100.PubMed Ley JJ, et al. Stilbazulenyl nitrone, a second-generation azulenyl nitrone antioxidant, confers enduring neuroprotection in experimental focal cerebral ischemia in the rat: neurobehavior, histopathology, and pharmacokinetics. J Pharmacol Exp Ther. 2005;313(3):1090–100.PubMed
91.
Zurück zum Zitat Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells antioxidant and antiapoptotic properties. J Biol Chem. 2001;276(7):4588–96.PubMed Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells antioxidant and antiapoptotic properties. J Biol Chem. 2001;276(7):4588–96.PubMed
92.
Zurück zum Zitat James AM, et al. Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem. 2007;282(20):14708–18.PubMed James AM, et al. Interaction of the mitochondria-targeted antioxidant MitoQ with phospholipid bilayers and ubiquinone oxidoreductases. J Biol Chem. 2007;282(20):14708–18.PubMed
93.
Zurück zum Zitat Snow BJ, et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov Disord. 2010;25(11):1670–4.PubMed Snow BJ, et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov Disord. 2010;25(11):1670–4.PubMed
94.
Zurück zum Zitat Gane EJ, et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 2010;30(7):1019–26.PubMed Gane EJ, et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 2010;30(7):1019–26.PubMed
95.
Zurück zum Zitat Oyewole AO, et al. Comparing the effects of mitochondrial targeted and localized antioxidants with cellular antioxidants in human skin cells exposed to UVA and hydrogen peroxide. FASEB J. 2014;28(1):485–94.PubMed Oyewole AO, et al. Comparing the effects of mitochondrial targeted and localized antioxidants with cellular antioxidants in human skin cells exposed to UVA and hydrogen peroxide. FASEB J. 2014;28(1):485–94.PubMed
96.
Zurück zum Zitat Fang Y, et al. Tiron protects against UVB-induced senescence-like characteristics in human dermal fibroblasts by the inhibition of superoxide anion production and glutathione depletion. Australas J Dermatol. 2012;53(3):172–80.PubMed Fang Y, et al. Tiron protects against UVB-induced senescence-like characteristics in human dermal fibroblasts by the inhibition of superoxide anion production and glutathione depletion. Australas J Dermatol. 2012;53(3):172–80.PubMed
97.
Zurück zum Zitat Oyewole AO, Birch-Machin MA. Mitochondria-targeted antioxidants. FASEB J. 2015;29(12):4766–71.PubMed Oyewole AO, Birch-Machin MA. Mitochondria-targeted antioxidants. FASEB J. 2015;29(12):4766–71.PubMed
98.
Zurück zum Zitat Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders—a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1066–77.PubMed Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders—a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863(5):1066–77.PubMed
99.
Zurück zum Zitat Mao G, et al. A mitochondria-targeted vitamin E derivative decreases hepatic oxidative stress and inhibits fat deposition in mice. J Nutr. 2010;140(8):1425–31.PubMed Mao G, et al. A mitochondria-targeted vitamin E derivative decreases hepatic oxidative stress and inhibits fat deposition in mice. J Nutr. 2010;140(8):1425–31.PubMed
100.
Zurück zum Zitat Jin H, et al. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim Biophys Acta Mol Basis Dis. 2014;1842(8):1282–94. Jin H, et al. Mitochondria-targeted antioxidants for treatment of Parkinson’s disease: preclinical and clinical outcomes. Biochim Biophys Acta Mol Basis Dis. 2014;1842(8):1282–94.
101.
Zurück zum Zitat Gollihue JL, Rabchevsky AG. Prospects for therapeutic mitochondrial transplantation. Mitochondrion. 2017;35:70–9.PubMedPubMedCentral Gollihue JL, Rabchevsky AG. Prospects for therapeutic mitochondrial transplantation. Mitochondrion. 2017;35:70–9.PubMedPubMedCentral
102.
Zurück zum Zitat Ou X, et al. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells. 2014;32(5):1183–94.PubMedPubMedCentral Ou X, et al. SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells. 2014;32(5):1183–94.PubMedPubMedCentral
103.
Zurück zum Zitat Watts L, et al. Stroke neuroprotection: targeting mitochondria. Brain Sci. 2013;3(2):540–60.PubMed Watts L, et al. Stroke neuroprotection: targeting mitochondria. Brain Sci. 2013;3(2):540–60.PubMed
104.
Zurück zum Zitat Wen Y, et al. Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J Biol Chem. 2011;286(18):16504–15.PubMedPubMedCentral Wen Y, et al. Alternative mitochondrial electron transfer as a novel strategy for neuroprotection. J Biol Chem. 2011;286(18):16504–15.PubMedPubMedCentral
105.
Zurück zum Zitat Khoury N, et al. The NAD+-dependent family of sirtuins in cerebral ischemia and preconditioning. Antioxid Redox Signal. 2018;28(8):691–710.PubMedPubMedCentral Khoury N, et al. The NAD+-dependent family of sirtuins in cerebral ischemia and preconditioning. Antioxid Redox Signal. 2018;28(8):691–710.PubMedPubMedCentral
106.
Zurück zum Zitat Qi X, et al. A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci. 2013;126(3):789–802.PubMedPubMedCentral Qi X, et al. A novel Drp1 inhibitor diminishes aberrant mitochondrial fission and neurotoxicity. J Cell Sci. 2013;126(3):789–802.PubMedPubMedCentral
107.
Zurück zum Zitat Cassidy-Stone A, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14(2):193–204.PubMedPubMedCentral Cassidy-Stone A, et al. Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell. 2008;14(2):193–204.PubMedPubMedCentral
108.
Zurück zum Zitat Meuer K, Suppanz IE, Lingor P, Planchamp V, Göricke B, Fichtner L, et al. Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death Differ. 2007;14(4):651–61.PubMed Meuer K, Suppanz IE, Lingor P, Planchamp V, Göricke B, Fichtner L, et al. Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death Differ. 2007;14(4):651–61.PubMed
109.
Zurück zum Zitat Kondo T, et al. Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci. 1997;17(11):4180–9.PubMedPubMedCentral Kondo T, et al. Reduction of CuZn-superoxide dismutase activity exacerbates neuronal cell injury and edema formation after transient focal cerebral ischemia. J Neurosci. 1997;17(11):4180–9.PubMedPubMedCentral
110.
Zurück zum Zitat Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11–22.PubMed Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11–22.PubMed
111.
Zurück zum Zitat Borlongan CV. Age of PISCES: stem-cell clinical trials in stroke. Lancet. 2016;388(10046):736–8.PubMed Borlongan CV. Age of PISCES: stem-cell clinical trials in stroke. Lancet. 2016;388(10046):736–8.PubMed
112.
Zurück zum Zitat Prasad K, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45(12):3618–24.PubMed Prasad K, et al. Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke. 2014;45(12):3618–24.PubMed
113.
Zurück zum Zitat Hao L, et al. Stem cell-based therapies for ischemic stroke. Biomed Res Int. 2014;2014. Hao L, et al. Stem cell-based therapies for ischemic stroke. Biomed Res Int. 2014;2014.
114.
Zurück zum Zitat Li X, et al. Mitochondrial transfer of induced pluripotent stem cell–derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke–induced damage. Am J Respir Cell Mol Biol. 2014;51(3):455–65.PubMed Li X, et al. Mitochondrial transfer of induced pluripotent stem cell–derived mesenchymal stem cells to airway epithelial cells attenuates cigarette smoke–induced damage. Am J Respir Cell Mol Biol. 2014;51(3):455–65.PubMed
115.
Zurück zum Zitat Acquistapace A, et al. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells. 2011;29(5):812–24.PubMedPubMedCentral Acquistapace A, et al. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer. Stem Cells. 2011;29(5):812–24.PubMedPubMedCentral
116.
Zurück zum Zitat Sarmah D, et al. Getting closer to an effective intervention of ischemic stroke: the big promise of stem cell. Transl Stroke Res. 2018;9(4):356–74.PubMed Sarmah D, et al. Getting closer to an effective intervention of ischemic stroke: the big promise of stem cell. Transl Stroke Res. 2018;9(4):356–74.PubMed
117.
Zurück zum Zitat Babenko V, et al. Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules. 2018;23(3):687.PubMedCentral Babenko V, et al. Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules. 2018;23(3):687.PubMedCentral
118.
Zurück zum Zitat Ahmad T, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 2014;33(9):994–1010.PubMedPubMedCentral Ahmad T, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 2014;33(9):994–1010.PubMedPubMedCentral
119.
Zurück zum Zitat Rustom A, et al. Nanotubular highways for intercellular organelle transport. Science. 2004;303(5660):1007–10.PubMed Rustom A, et al. Nanotubular highways for intercellular organelle transport. Science. 2004;303(5660):1007–10.PubMed
120.
Zurück zum Zitat Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteome. 2010;73(10):1907–20. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteome. 2010;73(10):1907–20.
121.
Zurück zum Zitat Kiriyama Y, Nochi H. Intra-and intercellular quality control mechanisms of mitochondria. Cells. 2018;7(1):1. Kiriyama Y, Nochi H. Intra-and intercellular quality control mechanisms of mitochondria. Cells. 2018;7(1):1.
122.
Zurück zum Zitat Rustom A, et al. Nanotubular highways for intercellular organelle transport. Science. 2004;303(5660):1007–10.PubMed Rustom A, et al. Nanotubular highways for intercellular organelle transport. Science. 2004;303(5660):1007–10.PubMed
123.
Zurück zum Zitat Rogers RS, Bhattacharya J. When cells become organelle donors. Physiology (Bethesda). 2013;28(6):414–22. Rogers RS, Bhattacharya J. When cells become organelle donors. Physiology (Bethesda). 2013;28(6):414–22.
124.
Zurück zum Zitat Koyanagi M, et al. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res. 2005;96(10):1039–41.PubMed Koyanagi M, et al. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res. 2005;96(10):1039–41.PubMed
125.
Zurück zum Zitat Önfelt B, et al. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol. 2006;177(12):8476–83.PubMed Önfelt B, et al. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol. 2006;177(12):8476–83.PubMed
126.
Zurück zum Zitat Wang X, Gerdes H-H. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 2015;22(7):1181.PubMedPubMedCentral Wang X, Gerdes H-H. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 2015;22(7):1181.PubMedPubMedCentral
127.
Zurück zum Zitat Sáenz-de-Santa-María I, et al. Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes. Oncotarget. 2017;8(13):20939.PubMedPubMedCentral Sáenz-de-Santa-María I, et al. Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes. Oncotarget. 2017;8(13):20939.PubMedPubMedCentral
128.
Zurück zum Zitat Yasuda K, et al. Adriamycin nephropathy: a failure of endothelial progenitor cell-induced repair. Am J Pathol. 2010;176(4):1685–95.PubMedPubMedCentral Yasuda K, et al. Adriamycin nephropathy: a failure of endothelial progenitor cell-induced repair. Am J Pathol. 2010;176(4):1685–95.PubMedPubMedCentral
129.
Zurück zum Zitat Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, et al. Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18(5):759–65.PubMedPubMedCentral Islam MN, Das SR, Emin MT, Wei M, Sun L, Westphalen K, et al. Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18(5):759–65.PubMedPubMedCentral
130.
Zurück zum Zitat He K, et al. Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc Res. 2011;92(1):39–47.PubMed He K, et al. Long-distance intercellular connectivity between cardiomyocytes and cardiofibroblasts mediated by membrane nanotubes. Cardiovasc Res. 2011;92(1):39–47.PubMed
131.
Zurück zum Zitat Spees JL, et al. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci. 2006;103(5):1283–8.PubMedPubMedCentral Spees JL, et al. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci. 2006;103(5):1283–8.PubMedPubMedCentral
132.
Zurück zum Zitat Phinney DG, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472.PubMed Phinney DG, et al. Mesenchymal stem cells use extracellular vesicles to outsource mitophagy and shuttle microRNAs. Nat Commun. 2015;6:8472.PubMed
133.
Zurück zum Zitat Plotnikov E, et al. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med. 2008;12(5a):1622–31.PubMed Plotnikov E, et al. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med. 2008;12(5a):1622–31.PubMed
134.
Zurück zum Zitat Liu K, et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res. 2014;92:10–8.PubMed Liu K, et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res. 2014;92:10–8.PubMed
135.
Zurück zum Zitat Vallabhaneni KC, Haller H, Dumler I. Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev. 2012;21(17):3104–13.PubMedPubMedCentral Vallabhaneni KC, Haller H, Dumler I. Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev. 2012;21(17):3104–13.PubMedPubMedCentral
136.
Zurück zum Zitat Lou E, et al. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One. 2012;7(3):e33093.PubMedPubMedCentral Lou E, et al. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS One. 2012;7(3):e33093.PubMedPubMedCentral
137.
Zurück zum Zitat Hayakawa K, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613):551–5.PubMedPubMedCentral Hayakawa K, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613):551–5.PubMedPubMedCentral
138.
139.
Zurück zum Zitat Paliwal S, et al. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci. 2018;25(1):31.PubMedPubMedCentral Paliwal S, et al. Regenerative abilities of mesenchymal stem cells through mitochondrial transfer. J Biomed Sci. 2018;25(1):31.PubMedPubMedCentral
140.
Zurück zum Zitat Hayakawa K, et al. Extracellular mitochondria for therapy and diagnosis in acute central nervous system injury. JAMA Neurol. 2018;75(1):119–22.PubMedPubMedCentral Hayakawa K, et al. Extracellular mitochondria for therapy and diagnosis in acute central nervous system injury. JAMA Neurol. 2018;75(1):119–22.PubMedPubMedCentral
141.
Zurück zum Zitat Islam MN, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18(5):759–65.PubMedPubMedCentral Islam MN, et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat Med. 2012;18(5):759–65.PubMedPubMedCentral
142.
Zurück zum Zitat Ahmad T, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 2014;33(9):994–1010.PubMedPubMedCentral Ahmad T, et al. Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J. 2014;33(9):994–1010.PubMedPubMedCentral
143.
Zurück zum Zitat Tan AS, et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015;21(1):81–94.PubMed Tan AS, et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 2015;21(1):81–94.PubMed
144.
Zurück zum Zitat Moschoi R. et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy Blood. 2016;128(2):253–64.PubMed Moschoi R. et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy Blood. 2016;128(2):253–64.PubMed
145.
Zurück zum Zitat Liu K, et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res. 2014;92:10–8.PubMed Liu K, et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc Res. 2014;92:10–8.PubMed
146.
Zurück zum Zitat Han H, et al. Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model. Mol Med Rep. 2016;13(2):1517–24.PubMed Han H, et al. Bone marrow-derived mesenchymal stem cells rescue injured H9c2 cells via transferring intact mitochondria through tunneling nanotubes in an in vitro simulated ischemia/reperfusion model. Mol Med Rep. 2016;13(2):1517–24.PubMed
147.
Zurück zum Zitat Ahmad T, et al. Miro 1 knockdown in stem cells inhibits mitochondrial donation mediated rescue of bronchial epithelial injury. Biophys J. 2013;104(2):659a. Ahmad T, et al. Miro 1 knockdown in stem cells inhibits mitochondrial donation mediated rescue of bronchial epithelial injury. Biophys J. 2013;104(2):659a.
148.
Zurück zum Zitat Caicedo A, et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep. 2015;5:9073.PubMedPubMedCentral Caicedo A, et al. MitoCeption as a new tool to assess the effects of mesenchymal stem/stromal cell mitochondria on cancer cell metabolism and function. Sci Rep. 2015;5:9073.PubMedPubMedCentral
149.
Zurück zum Zitat Caicedo A, et al. Artificial mitochondria transfer: current challenges, advances, and future applications. Stem Cells Int. 2017;2017. Caicedo A, et al. Artificial mitochondria transfer: current challenges, advances, and future applications. Stem Cells Int. 2017;2017.
150.
Zurück zum Zitat Sinha P, et al. Intercellular mitochondrial transfer: bioenergetic crosstalk between cells. Curr Opin Genet Dev. 2016;38:97–101.PubMedPubMedCentral Sinha P, et al. Intercellular mitochondrial transfer: bioenergetic crosstalk between cells. Curr Opin Genet Dev. 2016;38:97–101.PubMedPubMedCentral
151.
Zurück zum Zitat Cho YM, et al. Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PLoS One. 2012;7(3):e32778.PubMedPubMedCentral Cho YM, et al. Mesenchymal stem cells transfer mitochondria to the cells with virtually no mitochondrial function but not with pathogenic mtDNA mutations. PLoS One. 2012;7(3):e32778.PubMedPubMedCentral
152.
Zurück zum Zitat Wang X, Gerdes HH. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 2015;22(7):1181–91.PubMedPubMedCentral Wang X, Gerdes HH. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 2015;22(7):1181–91.PubMedPubMedCentral
153.
Zurück zum Zitat Nakajima A, et al. Mitochondrial extrusion through the cytoplasmic vacuoles during cell death. J Biol Chem. 2008;283(35):24128–35.PubMedPubMedCentral Nakajima A, et al. Mitochondrial extrusion through the cytoplasmic vacuoles during cell death. J Biol Chem. 2008;283(35):24128–35.PubMedPubMedCentral
154.
Zurück zum Zitat Maeda A, Fadeel B. Mitochondria released by cells undergoing TNF-α-induced necroptosis act as danger signals. Cell Death Dis. 2014;5(7):e1312.PubMedPubMedCentral Maeda A, Fadeel B. Mitochondria released by cells undergoing TNF-α-induced necroptosis act as danger signals. Cell Death Dis. 2014;5(7):e1312.PubMedPubMedCentral
155.
Zurück zum Zitat Berridge MV, Schneider RT, McConnell MJ. Mitochondrial transfer from astrocytes to neurons following ischemic insult: guilt by association? Cell Metab. 2016;24(3):376–8.PubMed Berridge MV, Schneider RT, McConnell MJ. Mitochondrial transfer from astrocytes to neurons following ischemic insult: guilt by association? Cell Metab. 2016;24(3):376–8.PubMed
156.
Zurück zum Zitat English K, et al. Astrocytes improve neuronal health after cisplatin treatment through mitochondrial transfer. bioRxiv. 2019. English K, et al. Astrocytes improve neuronal health after cisplatin treatment through mitochondrial transfer. bioRxiv. 2019.
158.
Zurück zum Zitat Debattisti V, et al. ROS control mitochondrial motility through p38 and the motor adaptor Miro/Trak. Cell Rep. 2017;21(6):1667–80.PubMedPubMedCentral Debattisti V, et al. ROS control mitochondrial motility through p38 and the motor adaptor Miro/Trak. Cell Rep. 2017;21(6):1667–80.PubMedPubMedCentral
159.
Zurück zum Zitat Marlein CR, et al. CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res. 2019;79(9):2285–97.PubMed Marlein CR, et al. CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res. 2019;79(9):2285–97.PubMed
160.
Zurück zum Zitat Wei W, Graeff R, Yue J. Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca2+ signaling pathway. World J Biol Chem. 2014;5(1):58.PubMedPubMedCentral Wei W, Graeff R, Yue J. Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca2+ signaling pathway. World J Biol Chem. 2014;5(1):58.PubMedPubMedCentral
161.
Zurück zum Zitat Gao L, et al. Mitochondria are dynamically transferring between human neural cells and Alexander disease-associated GFAP mutations impair the astrocytic transfer. Front Cell Neurosci. 2019;13:316.PubMedPubMedCentral Gao L, et al. Mitochondria are dynamically transferring between human neural cells and Alexander disease-associated GFAP mutations impair the astrocytic transfer. Front Cell Neurosci. 2019;13:316.PubMedPubMedCentral
162.
Zurück zum Zitat Fransson Å, Ruusala A, Aspenström P. The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun. 2006;344(2):500–10.PubMed Fransson Å, Ruusala A, Aspenström P. The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys Res Commun. 2006;344(2):500–10.PubMed
163.
Zurück zum Zitat Lee K-S, Lu B. The myriad roles of Miro in the nervous system: axonal transport of mitochondria and beyond. Front Cell Neurosci. 2014;8:330.PubMedPubMedCentral Lee K-S, Lu B. The myriad roles of Miro in the nervous system: axonal transport of mitochondria and beyond. Front Cell Neurosci. 2014;8:330.PubMedPubMedCentral
164.
Zurück zum Zitat Nakahira K, Hisata S, Choi AM. The roles of mitochondrial damage-associated molecular patterns in diseases. Antioxid Redox Signal. 2015;23(17):1329–50.PubMedPubMedCentral Nakahira K, Hisata S, Choi AM. The roles of mitochondrial damage-associated molecular patterns in diseases. Antioxid Redox Signal. 2015;23(17):1329–50.PubMedPubMedCentral
165.
Zurück zum Zitat Zhang Q, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104.PubMedPubMedCentral Zhang Q, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104.PubMedPubMedCentral
166.
Zurück zum Zitat Mahrouf-Yorgov M, et al. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ. 2017;24(7):1224.PubMedPubMedCentral Mahrouf-Yorgov M, et al. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ. 2017;24(7):1224.PubMedPubMedCentral
167.
Zurück zum Zitat Zhang Y, Yu Z, Jiang D, Liang X, Liao S, Zhang Z, et al. iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-α yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy. Stem Cell Rep. 2016;7(4):749–63. Zhang Y, Yu Z, Jiang D, Liang X, Liao S, Zhang Z, et al. iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-α yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy. Stem Cell Rep. 2016;7(4):749–63.
168.
Zurück zum Zitat Marlein CR, et al. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood. 2017;130(14):1649–60.PubMed Marlein CR, et al. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood. 2017;130(14):1649–60.PubMed
169.
Zurück zum Zitat Shen J, et al. Mitochondria are transported along microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis. Cell Death Dis. 2018;9(2):81.PubMedPubMedCentral Shen J, et al. Mitochondria are transported along microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis. Cell Death Dis. 2018;9(2):81.PubMedPubMedCentral
170.
Zurück zum Zitat Hirokawa N, Noda Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev. 2008;88(3):1089–118.PubMed Hirokawa N, Noda Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function, and dynamics. Physiol Rev. 2008;88(3):1089–118.PubMed
171.
Zurück zum Zitat Hayakawa K, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613):551–5.PubMedPubMedCentral Hayakawa K, et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535(7613):551–5.PubMedPubMedCentral
172.
Zurück zum Zitat Rocca CJ, Goodman SM, Dulin JN. Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia. 2017;9(413). Rocca CJ, Goodman SM, Dulin JN. Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia. 2017;9(413).
174.
Zurück zum Zitat Hayakawa K, et al. Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells. 2018;36(9):1404–10.PubMedPubMedCentral Hayakawa K, et al. Protective effects of endothelial progenitor cell-derived extracellular mitochondria in brain endothelium. Stem Cells. 2018;36(9):1404–10.PubMedPubMedCentral
175.
Zurück zum Zitat Kaneko Y, et al. Cell therapy for stroke: emphasis on optimizing safety and efficacy profile of endothelial progenitor cells. Curr Pharm Des. 2012;18(25):3731–4.PubMedPubMedCentral Kaneko Y, et al. Cell therapy for stroke: emphasis on optimizing safety and efficacy profile of endothelial progenitor cells. Curr Pharm Des. 2012;18(25):3731–4.PubMedPubMedCentral
176.
Zurück zum Zitat Plotnikov EY, et al. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med. 2008;12(5a):1622–31.PubMed Plotnikov EY, et al. Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture. J Cell Mol Med. 2008;12(5a):1622–31.PubMed
177.
Zurück zum Zitat Melentijevic I, et al. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature. 2017;542(7641):367.PubMedPubMedCentral Melentijevic I, et al. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature. 2017;542(7641):367.PubMedPubMedCentral
178.
Zurück zum Zitat Jiang D, et al. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis. 2016;7(11):e2467.PubMedPubMedCentral Jiang D, et al. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis. 2016;7(11):e2467.PubMedPubMedCentral
179.
Zurück zum Zitat Babenko VA, et al. Improving the post-stroke therapeutic potency of mesenchymal multipotent stromal cells by cocultivation with cortical neurons: the role of crosstalk between cells. Stem Cells Transl Med. 2015;4(9):1011–20.PubMedPubMedCentral Babenko VA, et al. Improving the post-stroke therapeutic potency of mesenchymal multipotent stromal cells by cocultivation with cortical neurons: the role of crosstalk between cells. Stem Cells Transl Med. 2015;4(9):1011–20.PubMedPubMedCentral
180.
Zurück zum Zitat Gollihue JL, Patel SP, Rabchevsky AG. Mitochondrial transplantation strategies as potential therapeutics for central nervous system trauma. Neural Regen Res. 2018;13(2):194.PubMedPubMedCentral Gollihue JL, Patel SP, Rabchevsky AG. Mitochondrial transplantation strategies as potential therapeutics for central nervous system trauma. Neural Regen Res. 2018;13(2):194.PubMedPubMedCentral
181.
Zurück zum Zitat Armstrong JS. Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br J Pharmacol. 2007;151(8):1154–65.PubMedPubMedCentral Armstrong JS. Mitochondrial medicine: pharmacological targeting of mitochondria in disease. Br J Pharmacol. 2007;151(8):1154–65.PubMedPubMedCentral
183.
Zurück zum Zitat Chang J-C, et al. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine–induced neurotoxicity. Transl Res. 2016;170:40–56.e3.PubMed Chang J-C, et al. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine–induced neurotoxicity. Transl Res. 2016;170:40–56.e3.PubMed
184.
Zurück zum Zitat Gollihue JL, et al. Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury. J Neurotrauma. 2018;35(15):1800–18.PubMedPubMedCentral Gollihue JL, et al. Effects of mitochondrial transplantation on bioenergetics, cellular incorporation, and functional recovery after spinal cord injury. J Neurotrauma. 2018;35(15):1800–18.PubMedPubMedCentral
185.
Zurück zum Zitat Masuzawa A, et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Phys Heart Circ Phys. 2013;304(7):H966–82. Masuzawa A, et al. Transplantation of autologously derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Phys Heart Circ Phys. 2013;304(7):H966–82.
186.
Zurück zum Zitat Kaza AK, et al. Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg. 2017;153(4):934–43.PubMed Kaza AK, et al. Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg. 2017;153(4):934–43.PubMed
187.
Zurück zum Zitat Shi X, et al. Intravenous administration of mitochondria for treating experimental Parkinson’s disease. Mitochondrion. 2017;34:91–100.PubMed Shi X, et al. Intravenous administration of mitochondria for treating experimental Parkinson’s disease. Mitochondrion. 2017;34:91–100.PubMed
188.
Zurück zum Zitat Fu A, et al. Mitotherapy for fatty liver by intravenous administration of exogenous mitochondria in male mice. Front Pharmacol. 2017;8:241.PubMedPubMedCentral Fu A, et al. Mitotherapy for fatty liver by intravenous administration of exogenous mitochondria in male mice. Front Pharmacol. 2017;8:241.PubMedPubMedCentral
189.
Zurück zum Zitat Huang P-J, et al. Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains. Cell Transplant. 2016;25(5):913–27.PubMed Huang P-J, et al. Transferring xenogenic mitochondria provides neural protection against ischemic stress in ischemic rat brains. Cell Transplant. 2016;25(5):913–27.PubMed
190.
Zurück zum Zitat Zhang Z, et al. Muscle-derived autologous mitochondrial transplantation: a novel strategy for treating cerebral ischemic injury. Behav Brain Res. 2019;356:322–31.PubMed Zhang Z, et al. Muscle-derived autologous mitochondrial transplantation: a novel strategy for treating cerebral ischemic injury. Behav Brain Res. 2019;356:322–31.PubMed
191.
Zurück zum Zitat Kaza AK, et al. Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg. 2017;153(4):934–43.PubMed Kaza AK, et al. Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J Thorac Cardiovasc Surg. 2017;153(4):934–43.PubMed
192.
Zurück zum Zitat Cowan DB, et al. Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PLoS One. 2016:11(8). Cowan DB, et al. Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PLoS One. 2016:11(8).
193.
Zurück zum Zitat McCully JD, et al. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Phys Heart Circ Phys. 2009;296(1):H94–H105. McCully JD, et al. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Phys Heart Circ Phys. 2009;296(1):H94–H105.
194.
Zurück zum Zitat Berridge MV, et al. Horizontal transfer of mitochondria between mammalian cells: beyond co-culture approaches. Curr Opin Genet Dev. 2016;38:75–82.PubMed Berridge MV, et al. Horizontal transfer of mitochondria between mammalian cells: beyond co-culture approaches. Curr Opin Genet Dev. 2016;38:75–82.PubMed
195.
Zurück zum Zitat Li C, et al. Mesenchymal stem cells and their mitochondrial transfer: a double-edged sword. Biosci Rep. 2019;39(5):BSR20182417.PubMedPubMedCentral Li C, et al. Mesenchymal stem cells and their mitochondrial transfer: a double-edged sword. Biosci Rep. 2019;39(5):BSR20182417.PubMedPubMedCentral
196.
Zurück zum Zitat Nguyen H, et al. Understanding the role of dysfunctional and healthy mitochondria in stroke pathology and its treatment. Int J Mol Sci. 2018;19(7):2127.PubMedCentral Nguyen H, et al. Understanding the role of dysfunctional and healthy mitochondria in stroke pathology and its treatment. Int J Mol Sci. 2018;19(7):2127.PubMedCentral
197.
Zurück zum Zitat Lin H-Y, et al. Mitochondrial transfer from Wharton’s jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion. 2015;22:31–44.PubMed Lin H-Y, et al. Mitochondrial transfer from Wharton’s jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function. Mitochondrion. 2015;22:31–44.PubMed
198.
Zurück zum Zitat Rogers RS, Bhattacharya J. When cells become organelle donors. Physiology. 2013;28(6):414–22.PubMed Rogers RS, Bhattacharya J. When cells become organelle donors. Physiology. 2013;28(6):414–22.PubMed
199.
Zurück zum Zitat Napoli E, Lippert T, Borlongan CV. Stem cell therapy: repurposing cell-based regenerative medicine beyond cell replacement. Cell Biol Transl Med. 2018;1:87–91 Springer. Napoli E, Lippert T, Borlongan CV. Stem cell therapy: repurposing cell-based regenerative medicine beyond cell replacement. Cell Biol Transl Med. 2018;1:87–91 Springer.
200.
Zurück zum Zitat Babenko VA, et al. Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules. 2018;23(3):687.PubMedCentral Babenko VA, et al. Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules. 2018;23(3):687.PubMedCentral
201.
Zurück zum Zitat Liu K, et al. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res. 2019;123:74–80.PubMed Liu K, et al. Mesenchymal stem cells transfer mitochondria into cerebral microvasculature and promote recovery from ischemic stroke. Microvasc Res. 2019;123:74–80.PubMed
202.
Zurück zum Zitat Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov. 2018;17(12):865–86.PubMed Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov. 2018;17(12):865–86.PubMed
203.
Zurück zum Zitat Gurung P, Lukens JR, Kanneganti T-D. Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends Mol Med. 2015;21(3):193–201.PubMed Gurung P, Lukens JR, Kanneganti T-D. Mitochondria: diversity in the regulation of the NLRP3 inflammasome. Trends Mol Med. 2015;21(3):193–201.PubMed
204.
Zurück zum Zitat Catanese L, Tarsia J, Fisher M. Acute ischemic stroke therapy overview. Circ Res. 2017;120(3):541–58.PubMed Catanese L, Tarsia J, Fisher M. Acute ischemic stroke therapy overview. Circ Res. 2017;120(3):541–58.PubMed
206.
Zurück zum Zitat Li Z, et al. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell. 2004;119(6):873–87.PubMed Li Z, et al. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell. 2004;119(6):873–87.PubMed
207.
Zurück zum Zitat Egawa N, et al. Mechanisms of axonal damage and repair after central nervous system injury. Transl Stroke Res. 2017;8(1):14–21.PubMed Egawa N, et al. Mechanisms of axonal damage and repair after central nervous system injury. Transl Stroke Res. 2017;8(1):14–21.PubMed
208.
Zurück zum Zitat Emani SM, et al. Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2017;154(1):286–9.PubMed Emani SM, et al. Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J Thorac Cardiovasc Surg. 2017;154(1):286–9.PubMed
209.
Zurück zum Zitat Han SM, Baig HS, Hammarlund M. Mitochondria localize to injured axons to support regeneration. Neuron. 2016;92(6):1308–23.PubMedPubMedCentral Han SM, Baig HS, Hammarlund M. Mitochondria localize to injured axons to support regeneration. Neuron. 2016;92(6):1308–23.PubMedPubMedCentral
210.
Zurück zum Zitat Rodriguez-Enriquez S, et al. Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy. 2009;5(8):1099–106.PubMed Rodriguez-Enriquez S, et al. Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes. Autophagy. 2009;5(8):1099–106.PubMed
211.
Zurück zum Zitat Alishahi M, et al. NLRP3 inflammasome in ischemic stroke: as possible therapeutic target. Int J Stroke. 2019;1747493019841242. Alishahi M, et al. NLRP3 inflammasome in ischemic stroke: as possible therapeutic target. Int J Stroke. 2019;1747493019841242.
212.
Zurück zum Zitat Villa E, Marchetti S, Ricci J-E. No Parkin zone: mitophagy without Parkin. Trends Cell Biol. 2018;28(11):882–95.PubMed Villa E, Marchetti S, Ricci J-E. No Parkin zone: mitophagy without Parkin. Trends Cell Biol. 2018;28(11):882–95.PubMed
213.
Zurück zum Zitat Wible DJ, Bratton SB. Reciprocity in ROS and autophagic signaling. Curr Opin Toxicol. 2018;7:28–36.PubMed Wible DJ, Bratton SB. Reciprocity in ROS and autophagic signaling. Curr Opin Toxicol. 2018;7:28–36.PubMed
214.
Zurück zum Zitat Chan DC. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol. 2006;22:79–99.PubMed Chan DC. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol. 2006;22:79–99.PubMed
215.
Zurück zum Zitat Westermann B. Molecular machinery of mitochondrial fusion and fission. J Biol Chem. 2008;283(20):13501–5.PubMed Westermann B. Molecular machinery of mitochondrial fusion and fission. J Biol Chem. 2008;283(20):13501–5.PubMed
216.
Zurück zum Zitat Okamoto K, Shaw JM. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet. 2005;39:503–36.PubMed Okamoto K, Shaw JM. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet. 2005;39:503–36.PubMed
217.
Zurück zum Zitat Anzell AR, et al. Mitochondrial quality control and disease: insights into ischemia-reperfusion injury. Mol Neurobiol. 2018;55(3):2547–64.PubMed Anzell AR, et al. Mitochondrial quality control and disease: insights into ischemia-reperfusion injury. Mol Neurobiol. 2018;55(3):2547–64.PubMed
218.
Zurück zum Zitat Kameoka S, et al. Phosphatidic acid and cardiolipin coordinate mitochondrial dynamics. Trends Cell Biol. 2018;28(1):67–76.PubMed Kameoka S, et al. Phosphatidic acid and cardiolipin coordinate mitochondrial dynamics. Trends Cell Biol. 2018;28(1):67–76.PubMed
219.
Zurück zum Zitat Griessinger E, et al. Mitochondrial transfer in the leukemia microenvironment. Trends Cancer. 2017;3(12):828–39.PubMed Griessinger E, et al. Mitochondrial transfer in the leukemia microenvironment. Trends Cancer. 2017;3(12):828–39.PubMed
220.
Zurück zum Zitat Wang J, et al. Stem cell-derived mitochondria transplantation: a novel strategy and the challenges for the treatment of tissue injury. Stem Cell Res Ther. 2018;9(1):106.PubMedPubMedCentral Wang J, et al. Stem cell-derived mitochondria transplantation: a novel strategy and the challenges for the treatment of tissue injury. Stem Cell Res Ther. 2018;9(1):106.PubMedPubMedCentral
Metadaten
Titel
Mitochondrial Transfer as a Therapeutic Strategy Against Ischemic Stroke
verfasst von
Wei Chen
Jingjing Huang
Yueqiang Hu
Seyed Esmaeil Khoshnam
Alireza Sarkaki
Publikationsdatum
26.06.2020
Verlag
Springer US
Erschienen in
Translational Stroke Research / Ausgabe 6/2020
Print ISSN: 1868-4483
Elektronische ISSN: 1868-601X
DOI
https://doi.org/10.1007/s12975-020-00828-7

Weitere Artikel der Ausgabe 6/2020

Translational Stroke Research 6/2020 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.