Skip to main content
Erschienen in: Neurotherapeutics 1/2012

01.01.2012 | Review

Novel Treatment Targets for Cerebral Edema

verfasst von: Brian P. Walcott, Kristopher T. Kahle, J. Marc Simard

Erschienen in: Neurotherapeutics | Ausgabe 1/2012

Einloggen, um Zugang zu erhalten

Abstract

Cerebral edema is a common finding in a variety of neurological conditions, including ischemic stroke, traumatic brain injury, ruptured cerebral aneurysm, and neoplasia. With the possible exception of neoplasia, most pathological processes leading to edema seem to share similar molecular mechanisms of edema formation. Challenges to brain-cell volume homeostasis can have dramatic consequences, given the fixed volume of the rigid skull and the effect of swelling on secondary neuronal injury. With even small changes in cellular and extracellular volume, cerebral edema can compromise regional or global cerebral blood flow and metabolism or result in compression of vital brain structures. Osmotherapy has been the mainstay of pharmacologic therapy and is typically administered as part of an escalating medical treatment algorithm that can include corticosteroids, diuretics, and pharmacological cerebral metabolic suppression. Novel treatment targets for cerebral edema include the Na(+)-K(+)-2Cl(−) co-transporter (NKCC1) and the SUR1-regulated NCCa-ATP (SUR1/TRPM4) channel. These two ion channels have been demonstrated to be critical mediators of edema formation in brain-injured states. Their specific inhibitors, bumetanide and glibenclamide, respectively, are well-characterized Food and Drug Administration-approved drugs with excellent safety profiles. Directed inhibition of these ion transporters has the potential to reduce the development of cerebral edema and is currently being investigated in human clinical trials. Another class of treatment agents for cerebral edema is vasopressin receptor antagonists. Euvolemic hyponatremia is present in a myriad of neurological conditions resulting in cerebral edema. A specific antagonist of the vasopressin V1A- and V2-receptor, conivaptan, promotes water excretion while sparing electrolytes through a process known as aquaresis.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Glaser N, Barnett P, McCaslin I, et al. Risk factors for cerebral edema in children with diabetic ketoacidosis. The Pediatric Emergency Medicine Collaborative Research Committee of the American Academy of Pediatrics. N Engl J Med 2001;344:264–269.PubMedCrossRef Glaser N, Barnett P, McCaslin I, et al. Risk factors for cerebral edema in children with diabetic ketoacidosis. The Pediatric Emergency Medicine Collaborative Research Committee of the American Academy of Pediatrics. N Engl J Med 2001;344:264–269.PubMedCrossRef
2.
Zurück zum Zitat Matsuzaki M, Takahashi R, Nakayama T, et al. Disruption of endothelial tight junctions in a patient with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS). Neuropediatrics 2010;41:72–74.PubMedCrossRef Matsuzaki M, Takahashi R, Nakayama T, et al. Disruption of endothelial tight junctions in a patient with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS). Neuropediatrics 2010;41:72–74.PubMedCrossRef
3.
Zurück zum Zitat Kahle KT, Walcott BP, Nahed BV, et al. Cerebral edema and a transtentorial brain herniation syndrome associated with pandemic swine influenza A (H1N1) virus infection. J Clin Neurosci 2011;18:1245–1248.PubMedCrossRef Kahle KT, Walcott BP, Nahed BV, et al. Cerebral edema and a transtentorial brain herniation syndrome associated with pandemic swine influenza A (H1N1) virus infection. J Clin Neurosci 2011;18:1245–1248.PubMedCrossRef
4.
Zurück zum Zitat Gerstner ER, Duda DG, di Tomaso E, et al. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat Rev Clin Oncol 2009;6:229–236.PubMedCrossRef Gerstner ER, Duda DG, di Tomaso E, et al. VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer. Nat Rev Clin Oncol 2009;6:229–236.PubMedCrossRef
5.
Zurück zum Zitat Hofmeijer J, Algra A, Kappelle LJ, van der Worp HB. Predictors of life-threatening brain edema in middle cerebral artery infarction. Cerebrovasc Dis 2008;25:176–184.PubMedCrossRef Hofmeijer J, Algra A, Kappelle LJ, van der Worp HB. Predictors of life-threatening brain edema in middle cerebral artery infarction. Cerebrovasc Dis 2008;25:176–184.PubMedCrossRef
6.
Zurück zum Zitat Hofmeijer J, Kappelle LJ, Algra A, Amelink GJ, van Gijn J, van der Worp HB. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol 2009;8:326–333.PubMedCrossRef Hofmeijer J, Kappelle LJ, Algra A, Amelink GJ, van Gijn J, van der Worp HB. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol 2009;8:326–333.PubMedCrossRef
7.
Zurück zum Zitat Simard JM, Sahuquillo J, Sheth KN, Kahle KT, Walcott BP. Managing malignant cerebral infarction. Curr Treat Options Neurol 2011;13:217–229.PubMedCrossRef Simard JM, Sahuquillo J, Sheth KN, Kahle KT, Walcott BP. Managing malignant cerebral infarction. Curr Treat Options Neurol 2011;13:217–229.PubMedCrossRef
8.
Zurück zum Zitat Wilde EA, McCauley SR, Hunter JV, et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology 2008;70:948–955.PubMedCrossRef Wilde EA, McCauley SR, Hunter JV, et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology 2008;70:948–955.PubMedCrossRef
9.
Zurück zum Zitat Donkin JJ, Vink R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol 2010;23:293–299.PubMedCrossRef Donkin JJ, Vink R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol 2010;23:293–299.PubMedCrossRef
10.
Zurück zum Zitat Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol 2007;6:258–268.PubMedCrossRef Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol 2007;6:258–268.PubMedCrossRef
11.
Zurück zum Zitat Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience 2004;129:1021–1029.PubMedCrossRef Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience 2004;129:1021–1029.PubMedCrossRef
12.
Zurück zum Zitat King LS, Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Physiol 1996;58:619–648.PubMedCrossRef King LS, Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Physiol 1996;58:619–648.PubMedCrossRef
13.
Zurück zum Zitat Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med 2000;6:159–163.PubMedCrossRef Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med 2000;6:159–163.PubMedCrossRef
14.
Zurück zum Zitat Badaut J, Lasbennes F, Magistretti PJ, Regli L. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 2002;22:367–378.PubMedCrossRef Badaut J, Lasbennes F, Magistretti PJ, Regli L. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 2002;22:367–378.PubMedCrossRef
15.
Zurück zum Zitat Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci 2003;4:991–1001.PubMedCrossRef Amiry-Moghaddam M, Ottersen OP. The molecular basis of water transport in the brain. Nat Rev Neurosci 2003;4:991–1001.PubMedCrossRef
16.
Zurück zum Zitat Ribeiro MDC, Hirt L, Bogousslavsky J, Regli L, Badaut J. Time course of aquaporin expression after transient focal cerebral ischemia in mice. J Neurosci Res 2006;83:1231–1240.CrossRef Ribeiro MDC, Hirt L, Bogousslavsky J, Regli L, Badaut J. Time course of aquaporin expression after transient focal cerebral ischemia in mice. J Neurosci Res 2006;83:1231–1240.CrossRef
17.
Zurück zum Zitat Banasiak KJ, Burenkova O, Haddad GG. Activation of voltage-sensitive sodium channels during oxygen deprivation leads to apoptotic neuronal death. Neuroscience 2004;126:31–44.PubMedCrossRef Banasiak KJ, Burenkova O, Haddad GG. Activation of voltage-sensitive sodium channels during oxygen deprivation leads to apoptotic neuronal death. Neuroscience 2004;126:31–44.PubMedCrossRef
18.
Zurück zum Zitat Beck J, Lenart B, Kintner DB, Sun D. Na-K-Cl Cotransporter Contributes to Glutamate-Mediated Excitotoxicity. J Neurosci 2003;23:5061–5068.PubMed Beck J, Lenart B, Kintner DB, Sun D. Na-K-Cl Cotransporter Contributes to Glutamate-Mediated Excitotoxicity. J Neurosci 2003;23:5061–5068.PubMed
19.
Zurück zum Zitat Breder J, Sabelhaus CF, Opitz T, Reymann KG, Schröder UH. Inhibition of different pathways influencing Na + homeostasis protects organotypic hippocampal slice cultures from hypoxic/hypoglycemic injury. Neuropharmacology 2000;39:1779–1787.PubMedCrossRef Breder J, Sabelhaus CF, Opitz T, Reymann KG, Schröder UH. Inhibition of different pathways influencing Na + homeostasis protects organotypic hippocampal slice cultures from hypoxic/hypoglycemic injury. Neuropharmacology 2000;39:1779–1787.PubMedCrossRef
20.
Zurück zum Zitat Hacke W, Schwab S, Horn M, Spranger M, De Georgia M, von Kummer R. "Malignant" middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol 1996;53:309–315.PubMedCrossRef Hacke W, Schwab S, Horn M, Spranger M, De Georgia M, von Kummer R. "Malignant" middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol 1996;53:309–315.PubMedCrossRef
21.
Zurück zum Zitat Cruz J, Minoja G, Okuchi K, Facco E. Successful use of the new high-dose mannitol treatment in patients with Glasgow Coma Scale scores of 3 and bilateral abnormal pupillary widening: a randomized trial. J Neurosurg 2004;100:376–383.PubMedCrossRef Cruz J, Minoja G, Okuchi K, Facco E. Successful use of the new high-dose mannitol treatment in patients with Glasgow Coma Scale scores of 3 and bilateral abnormal pupillary widening: a randomized trial. J Neurosurg 2004;100:376–383.PubMedCrossRef
22.
Zurück zum Zitat Chesnut RM, Gautille T, Blunt BA, Klauber MR, Marshall LF. Neurogenic hypotension in patients with severe head injuries. J Trauma 1998;44:958–964.PubMedCrossRef Chesnut RM, Gautille T, Blunt BA, Klauber MR, Marshall LF. Neurogenic hypotension in patients with severe head injuries. J Trauma 1998;44:958–964.PubMedCrossRef
23.
Zurück zum Zitat Kaufmann AM, Cardoso ER. Aggravation of vasogenic cerebral edema by multiple-dose mannitol. J Neurosurg 1992;77:584–589.PubMedCrossRef Kaufmann AM, Cardoso ER. Aggravation of vasogenic cerebral edema by multiple-dose mannitol. J Neurosurg 1992;77:584–589.PubMedCrossRef
24.
Zurück zum Zitat Ware ML, Nemani VM, Meeker M, Lee C, Morabito DJ, Manley GT. Effects of 23.4% sodium chloride solution in reducing intracranial pressure in patients with traumatic brain injury: a preliminary study. Neurosurgery 2005;57:727–736.PubMedCrossRef Ware ML, Nemani VM, Meeker M, Lee C, Morabito DJ, Manley GT. Effects of 23.4% sodium chloride solution in reducing intracranial pressure in patients with traumatic brain injury: a preliminary study. Neurosurgery 2005;57:727–736.PubMedCrossRef
25.
Zurück zum Zitat Kerwin AJ, Schinco MA, Tepas JJ 3rd, Renfro WH, Vitarbo EA, Muehlberger M. The use of 23.4% hypertonic saline for the management of elevated intracranial pressure in patients with severe traumatic brain injury: a pilot study. J Trauma 2009;67:277–282.PubMedCrossRef Kerwin AJ, Schinco MA, Tepas JJ 3rd, Renfro WH, Vitarbo EA, Muehlberger M. The use of 23.4% hypertonic saline for the management of elevated intracranial pressure in patients with severe traumatic brain injury: a pilot study. J Trauma 2009;67:277–282.PubMedCrossRef
26.
Zurück zum Zitat Weed LH, McKibben PS. Experimental alteration of brain bulk. Am J Physiol 1919;48:531–558. Weed LH, McKibben PS. Experimental alteration of brain bulk. Am J Physiol 1919;48:531–558.
27.
Zurück zum Zitat Qureshi AI, Suarez JI. Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med 2000;28:3301–3313.PubMedCrossRef Qureshi AI, Suarez JI. Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med 2000;28:3301–3313.PubMedCrossRef
28.
Zurück zum Zitat Koenig MA, Bryan M, Lewin JL, Mirski MA, Geocadin RG, Stevens RD. Reversal of transtentorial herniation with hypertonic saline. Neurology 2008;70:1023–1029.PubMedCrossRef Koenig MA, Bryan M, Lewin JL, Mirski MA, Geocadin RG, Stevens RD. Reversal of transtentorial herniation with hypertonic saline. Neurology 2008;70:1023–1029.PubMedCrossRef
29.
Zurück zum Zitat Zeynalov E, Chen C, Froehner SC, et al. The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med 2008;36:2634–2640.PubMedCrossRef Zeynalov E, Chen C, Froehner SC, et al. The perivascular pool of aquaporin-4 mediates the effect of osmotherapy in postischemic cerebral edema. Crit Care Med 2008;36:2634–2640.PubMedCrossRef
30.
Zurück zum Zitat Gundersen Y, Ruud TE, Krohn CD, Sveen O, Lyngstadaas SP, Aasen AO. Impact of hypertonic saline on the release of selected cytokines after stimulation with LPS or peptidoglycan in ex vivo whole blood from healthy humans. Shock 2010;34:450–454.PubMedCrossRef Gundersen Y, Ruud TE, Krohn CD, Sveen O, Lyngstadaas SP, Aasen AO. Impact of hypertonic saline on the release of selected cytokines after stimulation with LPS or peptidoglycan in ex vivo whole blood from healthy humans. Shock 2010;34:450–454.PubMedCrossRef
31.
Zurück zum Zitat Jin QH, Ueda Y, Ishizuka Y, Kunitake T, Kannan H. Cardiovascular changes induced by central hypertonic saline are accompanied by glutamate release in awake rats. Am J Physiol Regul Integr Comp Physiol 2001;281:R1224-R1231.PubMed Jin QH, Ueda Y, Ishizuka Y, Kunitake T, Kannan H. Cardiovascular changes induced by central hypertonic saline are accompanied by glutamate release in awake rats. Am J Physiol Regul Integr Comp Physiol 2001;281:R1224-R1231.PubMed
32.
Zurück zum Zitat Chodobski A. Possible new mechanism underlying hypertonic saline therapy for cerebral edema. J Appl Physiol 2006;100:1437–1438.PubMedCrossRef Chodobski A. Possible new mechanism underlying hypertonic saline therapy for cerebral edema. J Appl Physiol 2006;100:1437–1438.PubMedCrossRef
33.
Zurück zum Zitat Qureshi AI, Wilson DA, Traystman RJ. Treatment of transtentorial herniation unresponsive to hyperventilation using hypertonic saline in dogs: effect on cerebral blood flow and metabolism. J Neurosurg Anesthesiol 2002;14:22–30.PubMedCrossRef Qureshi AI, Wilson DA, Traystman RJ. Treatment of transtentorial herniation unresponsive to hyperventilation using hypertonic saline in dogs: effect on cerebral blood flow and metabolism. J Neurosurg Anesthesiol 2002;14:22–30.PubMedCrossRef
34.
Zurück zum Zitat Qureshi AI, Suri MFK, Ringer AJ, Guterman LR, Hopkins LN. Regional intraparenchymal pressure differences in experimental intracerebral hemorrhage: effect of hypertonic saline. Crit Care Med 2002;30:435–441.PubMedCrossRef Qureshi AI, Suri MFK, Ringer AJ, Guterman LR, Hopkins LN. Regional intraparenchymal pressure differences in experimental intracerebral hemorrhage: effect of hypertonic saline. Crit Care Med 2002;30:435–441.PubMedCrossRef
35.
Zurück zum Zitat Toung TJ, Nyquist P, Mirski MA. Effect of hypertonic saline concentration on cerebral and visceral organ water in an uninjured rodent model. Crit Care Med 2008;36:256–261.PubMedCrossRef Toung TJ, Nyquist P, Mirski MA. Effect of hypertonic saline concentration on cerebral and visceral organ water in an uninjured rodent model. Crit Care Med 2008;36:256–261.PubMedCrossRef
36.
Zurück zum Zitat Qureshi AI, Wilson DA, Traystman RJ. Treatment of elevated intracranial pressure in experimental intracerebral hemorrhage: comparison between mannitol and hypertonic saline. Neurosurgery 1999;44:1055–1064.PubMedCrossRef Qureshi AI, Wilson DA, Traystman RJ. Treatment of elevated intracranial pressure in experimental intracerebral hemorrhage: comparison between mannitol and hypertonic saline. Neurosurgery 1999;44:1055–1064.PubMedCrossRef
37.
Zurück zum Zitat Suarez JI, Qureshi AI, Bhardwaj A, et al. Treatment of refractory intracranial hypertension with 23.4% saline. Crit Care Med 1998;26:1118–1122.PubMedCrossRef Suarez JI, Qureshi AI, Bhardwaj A, et al. Treatment of refractory intracranial hypertension with 23.4% saline. Crit Care Med 1998;26:1118–1122.PubMedCrossRef
38.
Zurück zum Zitat Rockswold GL, Solid CA, Paredes-Andrade E, Rockswold SB, Jancik JT, Quickel RR. Hypertonic saline and its effect on intracranial pressure, cerebral perfusion pressure, and brain tissue oxygen. Neurosurgery 2009;65:1035–1042.PubMedCrossRef Rockswold GL, Solid CA, Paredes-Andrade E, Rockswold SB, Jancik JT, Quickel RR. Hypertonic saline and its effect on intracranial pressure, cerebral perfusion pressure, and brain tissue oxygen. Neurosurgery 2009;65:1035–1042.PubMedCrossRef
39.
Zurück zum Zitat Delashaw JB, Broaddus WC, Kassell NF, Haley EC, Pendleton GA, Vollmer DG, et al. Treatment of right hemispheric cerebral infarction by hemicraniectomy. Stroke 1990;21:874–881.PubMedCrossRef Delashaw JB, Broaddus WC, Kassell NF, Haley EC, Pendleton GA, Vollmer DG, et al. Treatment of right hemispheric cerebral infarction by hemicraniectomy. Stroke 1990;21:874–881.PubMedCrossRef
40.
Zurück zum Zitat Schwab S, Steiner T, Aschoff A, et al. Early hemicraniectomy in patients with complete middle cerebral artery infarction. Stroke 1998;29:1888–1893.PubMedCrossRef Schwab S, Steiner T, Aschoff A, et al. Early hemicraniectomy in patients with complete middle cerebral artery infarction. Stroke 1998;29:1888–1893.PubMedCrossRef
41.
Zurück zum Zitat Fisher CM, Ojemann RG. Bilateral decompressive craniectomy for worsening coma in acute subarachnoid hemorrhage. Observations in support of the procedure. Surg Neurol 1994;41:65–74.PubMedCrossRef Fisher CM, Ojemann RG. Bilateral decompressive craniectomy for worsening coma in acute subarachnoid hemorrhage. Observations in support of the procedure. Surg Neurol 1994;41:65–74.PubMedCrossRef
42.
Zurück zum Zitat Carter BS, Ogilvy CS, Candia GJ, Rosas HD, Buonanno F. One-year outcome after decompressive surgery for massive nondominant hemispheric infarction. Neurosurgery 1997;40:1168–1176.PubMedCrossRef Carter BS, Ogilvy CS, Candia GJ, Rosas HD, Buonanno F. One-year outcome after decompressive surgery for massive nondominant hemispheric infarction. Neurosurgery 1997;40:1168–1176.PubMedCrossRef
43.
Zurück zum Zitat Uhl E, Kreth FW, Elias B, et al. Outcome and prognostic factors of hemicraniectomy for space occupying cerebral infarction. J Neurol Neurosurg Psychiatr 2004;75:270–274.PubMed Uhl E, Kreth FW, Elias B, et al. Outcome and prognostic factors of hemicraniectomy for space occupying cerebral infarction. J Neurol Neurosurg Psychiatr 2004;75:270–274.PubMed
44.
Zurück zum Zitat Jüttler E, Schwab S, Schmiedek P, et al. Decompressive Surgery for the Treatment of Malignant Infarction of the Middle Cerebral Artery (DESTINY): a randomized, controlled trial. Stroke 2007;38:2518–2525.PubMedCrossRef Jüttler E, Schwab S, Schmiedek P, et al. Decompressive Surgery for the Treatment of Malignant Infarction of the Middle Cerebral Artery (DESTINY): a randomized, controlled trial. Stroke 2007;38:2518–2525.PubMedCrossRef
45.
Zurück zum Zitat Vahedi K, Vicaut E, Mateo J, et al. Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL Trial). Stroke 2007;38:2506–2517.PubMedCrossRef Vahedi K, Vicaut E, Mateo J, et al. Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL Trial). Stroke 2007;38:2506–2517.PubMedCrossRef
46.
Zurück zum Zitat Frank J. Hemicraniectomy and durotomy upon deterioration from infarction related swelling trial (HeADDFIRST): first public presentation of the primary study findings. Neurology 2003;(60 suppl 1):A426. Frank J. Hemicraniectomy and durotomy upon deterioration from infarction related swelling trial (HeADDFIRST): first public presentation of the primary study findings. Neurology 2003;(60 suppl 1):A426.
47.
Zurück zum Zitat Walberer M, Ritschel N, Nedelmann M, et al. Aggravation of infarct formation by brain swelling in a large territorial stroke: a target for neuroprotection? J Neurosurg 2008;109:287–293.PubMedCrossRef Walberer M, Ritschel N, Nedelmann M, et al. Aggravation of infarct formation by brain swelling in a large territorial stroke: a target for neuroprotection? J Neurosurg 2008;109:287–293.PubMedCrossRef
48.
Zurück zum Zitat Cooper DJ, Rosenfeld JV, Murray L, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med 2011;364:1493–1502.PubMedCrossRef Cooper DJ, Rosenfeld JV, Murray L, et al. Decompressive craniectomy in diffuse traumatic brain injury. N Engl J Med 2011;364:1493–1502.PubMedCrossRef
49.
Zurück zum Zitat Smith DS, Rehncrona S, Siesjö BK. Barbiturates as protective agents in brain ischemia and as free radical scavengers in vitro. Acta Physiol Scand Suppl 1980;492:129–134.PubMed Smith DS, Rehncrona S, Siesjö BK. Barbiturates as protective agents in brain ischemia and as free radical scavengers in vitro. Acta Physiol Scand Suppl 1980;492:129–134.PubMed
50.
Zurück zum Zitat Qizilbash N, Lewington SL, Lopez-Arrieta JM. Corticosteroids for acute ischaemic stroke. Cochrane Database Syst Rev 2002;(2):CD000064. Qizilbash N, Lewington SL, Lopez-Arrieta JM. Corticosteroids for acute ischaemic stroke. Cochrane Database Syst Rev 2002;(2):CD000064.
51.
Zurück zum Zitat Betz AL, Iannotti F, Hoff JT. Brain edema: a classification based on blood–brain barrier integrity. Cerebrovasc Brain Metab Rev 1989;1:133–154PubMed Betz AL, Iannotti F, Hoff JT. Brain edema: a classification based on blood–brain barrier integrity. Cerebrovasc Brain Metab Rev 1989;1:133–154PubMed
52.
Zurück zum Zitat Young W, Rappaport Z, Chalif D, Flamm E. Regional brain sodium, potassium, and water changes in the rat middle cerebral artery occlusion model of ischemia. Stroke 1987;18:751–759.PubMedCrossRef Young W, Rappaport Z, Chalif D, Flamm E. Regional brain sodium, potassium, and water changes in the rat middle cerebral artery occlusion model of ischemia. Stroke 1987;18:751–759.PubMedCrossRef
53.
Zurück zum Zitat Kahle KT, Staley KJ, Nahed BV, et al. Roles of the cation-chloride cotransporters in neurological disease. Nat Clin Pract Neurol 2008;4:490–503.PubMedCrossRef Kahle KT, Staley KJ, Nahed BV, et al. Roles of the cation-chloride cotransporters in neurological disease. Nat Clin Pract Neurol 2008;4:490–503.PubMedCrossRef
54.
Zurück zum Zitat Yan Y, Dempsey RJ, Sun D. Na + −K + −Cl- cotransporter in rat focal cerebral ischemia. J Cereb Blood Flow Metab 2001;21:711–721.PubMedCrossRef Yan Y, Dempsey RJ, Sun D. Na + −K + −Cl- cotransporter in rat focal cerebral ischemia. J Cereb Blood Flow Metab 2001;21:711–721.PubMedCrossRef
55.
Zurück zum Zitat Yan Y, Dempsey RJ, Flemmer A, Forbush B, Sun D. Inhibition of Na(+)-K(+)-Cl(−) cotransporter during focal cerebral ischemia decreases edema and neuronal damage. Brain Res 2003;961:22–31.PubMedCrossRef Yan Y, Dempsey RJ, Flemmer A, Forbush B, Sun D. Inhibition of Na(+)-K(+)-Cl(−) cotransporter during focal cerebral ischemia decreases edema and neuronal damage. Brain Res 2003;961:22–31.PubMedCrossRef
56.
Zurück zum Zitat Su G, Kintner DB, Flagella M, Shull GE, Sun D. Astrocytes from Na + −K + −Cl − cotransporter-null mice exhibit absence of swelling and decrease in EAA release. American J Physiol Cell Physiol 2002;282:C1147-C1160. Su G, Kintner DB, Flagella M, Shull GE, Sun D. Astrocytes from Na + −K + −Cl − cotransporter-null mice exhibit absence of swelling and decrease in EAA release. American J Physiol Cell Physiol 2002;282:C1147-C1160.
57.
Zurück zum Zitat Su G, Kintner DB, Sun D. Contribution of Na + −K + −Cl − cotransporter to high-[K+]o- induced swelling and EAA release in astrocytes. Am J Physiol Cell Physiol 2002;282:C1136-C1146.PubMed Su G, Kintner DB, Sun D. Contribution of Na + −K + −Cl − cotransporter to high-[K+]o- induced swelling and EAA release in astrocytes. Am J Physiol Cell Physiol 2002;282:C1136-C1146.PubMed
58.
Zurück zum Zitat Chen H, Sun D. The role of Na-K-Cl co-transporter in cerebral ischemia. Neurol Res 2005;27:280–286.PubMedCrossRef Chen H, Sun D. The role of Na-K-Cl co-transporter in cerebral ischemia. Neurol Res 2005;27:280–286.PubMedCrossRef
59.
Zurück zum Zitat Staley KJ. Wrong-way chloride transport: is it a treatable cause of some intractable seizures? Epilepsy Curr 2006;6:124–127.PubMedCrossRef Staley KJ. Wrong-way chloride transport: is it a treatable cause of some intractable seizures? Epilepsy Curr 2006;6:124–127.PubMedCrossRef
60.
Zurück zum Zitat Maa EH, Kahle KT, Walcott BP, Spitz MC, Staley KJ. Diuretics and epilepsy: will the past and present meet? Epilepsia 2011;52(9):1559–1569.PubMedCrossRef Maa EH, Kahle KT, Walcott BP, Spitz MC, Staley KJ. Diuretics and epilepsy: will the past and present meet? Epilepsia 2011;52(9):1559–1569.PubMedCrossRef
61.
Zurück zum Zitat Lu K, Cheng N, Wu C, Yang Y. NKCC1-mediated traumatic brain injury-induced brain edema and neuron death via Raf/MEK/MAPK cascade. Crit Care Med 2008;36:917–922.PubMedCrossRef Lu K, Cheng N, Wu C, Yang Y. NKCC1-mediated traumatic brain injury-induced brain edema and neuron death via Raf/MEK/MAPK cascade. Crit Care Med 2008;36:917–922.PubMedCrossRef
62.
Zurück zum Zitat Lu K, Wu C, Yen H, Peng JF, Wang C, Yang Y. Bumetanide administration attenuated traumatic brain injury through IL-1 overexpression. Neurol Res 2007;29:404–409.PubMedCrossRef Lu K, Wu C, Yen H, Peng JF, Wang C, Yang Y. Bumetanide administration attenuated traumatic brain injury through IL-1 overexpression. Neurol Res 2007;29:404–409.PubMedCrossRef
63.
Zurück zum Zitat Lu K, Wu C, Cheng N, et al. Inhibition of the Na + −K + −2Cl- cotransporter in choroid plexus attenuates traumatic brain injury-induced brain edema and neuronal damage. Eur J Pharmacol 2006;548:99–105.PubMedCrossRef Lu K, Wu C, Cheng N, et al. Inhibition of the Na + −K + −2Cl- cotransporter in choroid plexus attenuates traumatic brain injury-induced brain edema and neuronal damage. Eur J Pharmacol 2006;548:99–105.PubMedCrossRef
64.
Zurück zum Zitat Chen H, Luo J, Kintner DB, Shull GE, Sun D. Na(+)-dependent chloride transporter (NKCC1)-null mice exhibit less gray and white matter damage after focal cerebral ischemia. J Cereb Blood Flow Metab 2005;25:54–66.PubMedCrossRef Chen H, Luo J, Kintner DB, Shull GE, Sun D. Na(+)-dependent chloride transporter (NKCC1)-null mice exhibit less gray and white matter damage after focal cerebral ischemia. J Cereb Blood Flow Metab 2005;25:54–66.PubMedCrossRef
65.
Zurück zum Zitat Simard JM, Chen M, Tarasov KV, et al. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med 2006;12:433–440.PubMedCrossRef Simard JM, Chen M, Tarasov KV, et al. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med 2006;12:433–440.PubMedCrossRef
66.
Zurück zum Zitat Simard JM, Kahle KT, Gerzanich V. Molecular mechanisms of microvascular failure in central nervous system injury — synergistic roles of NKCC1 and SUR1/TRPM4. J Neurosurg 2010;113:622–629.PubMedCrossRef Simard JM, Kahle KT, Gerzanich V. Molecular mechanisms of microvascular failure in central nervous system injury — synergistic roles of NKCC1 and SUR1/TRPM4. J Neurosurg 2010;113:622–629.PubMedCrossRef
67.
Zurück zum Zitat Conti L, Palma E, Roseti C, et al. Anomalous levels of Cl- transporters cause a decrease of GABAergic inhibition in human peritumoral epileptic cortex. Epilepsia 2011;52:1635–1644.PubMedCrossRef Conti L, Palma E, Roseti C, et al. Anomalous levels of Cl- transporters cause a decrease of GABAergic inhibition in human peritumoral epileptic cortex. Epilepsia 2011;52:1635–1644.PubMedCrossRef
68.
Zurück zum Zitat Haas BR, Sontheimer H. Inhibition of the sodium-potassium-chloride cotransporter isoform-1 reduces glioma invasion. Cancer Res 2010;70:5597–5606.PubMedCrossRef Haas BR, Sontheimer H. Inhibition of the sodium-potassium-chloride cotransporter isoform-1 reduces glioma invasion. Cancer Res 2010;70:5597–5606.PubMedCrossRef
69.
Zurück zum Zitat Seino S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol 1999;61:337–362.PubMedCrossRef Seino S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu Rev Physiol 1999;61:337–362.PubMedCrossRef
70.
Zurück zum Zitat Chang Y, Chen T, Chen C, Crain BJ, Toung TJK, Bhardwaj A. Plasma arginine-vasopressin following experimental stroke: effect of osmotherapy. J Appl Physiol 2006;100:1445–1451.PubMedCrossRef Chang Y, Chen T, Chen C, Crain BJ, Toung TJK, Bhardwaj A. Plasma arginine-vasopressin following experimental stroke: effect of osmotherapy. J Appl Physiol 2006;100:1445–1451.PubMedCrossRef
71.
Zurück zum Zitat Chen M, Simard JM. Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain. J Neurosci 2001;21:6512–6521.PubMed Chen M, Simard JM. Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain. J Neurosci 2001;21:6512–6521.PubMed
72.
Zurück zum Zitat Chen M, Dong Y, Simard JM. Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J Neurosci 2003;23:8568–8577.PubMed Chen M, Dong Y, Simard JM. Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J Neurosci 2003;23:8568–8577.PubMed
73.
Zurück zum Zitat Ningaraj NS, Rao MK, Black KL. Adenosine 5'-triphosphate-sensitive potassium channel-mediated blood–brain tumor barrier permeability increase in a rat brain tumor model. Cancer Res 2003;63:8899–8911.PubMed Ningaraj NS, Rao MK, Black KL. Adenosine 5'-triphosphate-sensitive potassium channel-mediated blood–brain tumor barrier permeability increase in a rat brain tumor model. Cancer Res 2003;63:8899–8911.PubMed
74.
Zurück zum Zitat Zhang H, Gu YT, Xue YX. Bradykinin-induced blood–brain tumor barrier permeability increase is mediated by adenosine 5'-triphosphate-sensitive potassium channel. Brain Res 2007;1144:33–41.PubMedCrossRef Zhang H, Gu YT, Xue YX. Bradykinin-induced blood–brain tumor barrier permeability increase is mediated by adenosine 5'-triphosphate-sensitive potassium channel. Brain Res 2007;1144:33–41.PubMedCrossRef
75.
Zurück zum Zitat Simard JM, Tsymbalyuk N, Tsymbalyuk O, Ivanova S, Yurovsky V, Gerzanich V. Glibenclamide is superior to decompressive craniectomy in a rat model of malignant stroke. Stroke 2010;41:531–537.PubMedCrossRef Simard JM, Tsymbalyuk N, Tsymbalyuk O, Ivanova S, Yurovsky V, Gerzanich V. Glibenclamide is superior to decompressive craniectomy in a rat model of malignant stroke. Stroke 2010;41:531–537.PubMedCrossRef
76.
Zurück zum Zitat Wijdicks EF, Ropper AH, Hunnicutt EJ, Richardson GS, Nathanson JA. Atrial natriuretic factor and salt wasting after aneurysmal subarachnoid hemorrhage. Stroke 1991;22:1519–1524.PubMedCrossRef Wijdicks EF, Ropper AH, Hunnicutt EJ, Richardson GS, Nathanson JA. Atrial natriuretic factor and salt wasting after aneurysmal subarachnoid hemorrhage. Stroke 1991;22:1519–1524.PubMedCrossRef
77.
Zurück zum Zitat Sherlock M, O'Sullivan E, Agha A, et al. The incidence and pathophysiology of hyponatraemia after subarachnoid haemorrhage. Clin Endocrinol (Oxf) 2006;64:250–254.CrossRef Sherlock M, O'Sullivan E, Agha A, et al. The incidence and pathophysiology of hyponatraemia after subarachnoid haemorrhage. Clin Endocrinol (Oxf) 2006;64:250–254.CrossRef
78.
Zurück zum Zitat Wartenberg KE, Schmidt JM, Claassen J, et al. Impact of medical complications on outcome after subarachnoid hemorrhage. Crit Care Med 2006;34:617–624.PubMedCrossRef Wartenberg KE, Schmidt JM, Claassen J, et al. Impact of medical complications on outcome after subarachnoid hemorrhage. Crit Care Med 2006;34:617–624.PubMedCrossRef
79.
Zurück zum Zitat Hasan D, Wijdicks EF, Vermeulen M. Hyponatremia is associated with cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. Ann Neurol 1990;27:106–108.PubMedCrossRef Hasan D, Wijdicks EF, Vermeulen M. Hyponatremia is associated with cerebral ischemia in patients with aneurysmal subarachnoid hemorrhage. Ann Neurol 1990;27:106–108.PubMedCrossRef
80.
Zurück zum Zitat Soupart A, Decaux G. Therapeutic recommendations for management of severe hyponatremia: current concepts on pathogenesis and prevention of neurologic complications. Clin Nephrol 1996;46:149–169.PubMed Soupart A, Decaux G. Therapeutic recommendations for management of severe hyponatremia: current concepts on pathogenesis and prevention of neurologic complications. Clin Nephrol 1996;46:149–169.PubMed
81.
Zurück zum Zitat Upadhyay UM, Gormley WB. Etiology and management of hyponatremia in neurosurgical patients. J Intensive Care Med 2011;Feb 23 [online]:PMID 21345881. Upadhyay UM, Gormley WB. Etiology and management of hyponatremia in neurosurgical patients. J Intensive Care Med 2011;Feb 23 [online]:PMID 21345881.
82.
Zurück zum Zitat Diringer MN, Zazulia AR. Hyponatremia in neurologic patients: consequences and approaches to treatment. Neurologist 2006;12:117–126.PubMedCrossRef Diringer MN, Zazulia AR. Hyponatremia in neurologic patients: consequences and approaches to treatment. Neurologist 2006;12:117–126.PubMedCrossRef
83.
Zurück zum Zitat Rahman M, Friedman WA. Hyponatremia in neurosurgical patients: clinical guidelines development. Neurosurgery 2009;65:925–936.PubMedCrossRef Rahman M, Friedman WA. Hyponatremia in neurosurgical patients: clinical guidelines development. Neurosurgery 2009;65:925–936.PubMedCrossRef
84.
Zurück zum Zitat Origitano TC, Wascher TM, Reichman OH, Anderson DE. Sustained increased cerebral blood flow with prophylactic hypertensive hypervolemic hemodilution ("triple-H" therapy) after subarachnoid hemorrhage. Neurosurgery 1990;27:729–740.PubMedCrossRef Origitano TC, Wascher TM, Reichman OH, Anderson DE. Sustained increased cerebral blood flow with prophylactic hypertensive hypervolemic hemodilution ("triple-H" therapy) after subarachnoid hemorrhage. Neurosurgery 1990;27:729–740.PubMedCrossRef
85.
Zurück zum Zitat Wijdicks EF, Vermeulen M, Hijdra A, van Gijn J. Hyponatremia and cerebral infarction in patients with ruptured intracranial aneurysms: is fluid restriction harmful? Ann Neurol 1985;17:137–140.PubMedCrossRef Wijdicks EF, Vermeulen M, Hijdra A, van Gijn J. Hyponatremia and cerebral infarction in patients with ruptured intracranial aneurysms: is fluid restriction harmful? Ann Neurol 1985;17:137–140.PubMedCrossRef
86.
Zurück zum Zitat Woo MH, Kale-Pradhan PB. Fludrocortisone in the treatment of subarachnoid hemorrhage-induced hyponatremia. Ann Pharmacother 1997;31:637–639.PubMed Woo MH, Kale-Pradhan PB. Fludrocortisone in the treatment of subarachnoid hemorrhage-induced hyponatremia. Ann Pharmacother 1997;31:637–639.PubMed
87.
Zurück zum Zitat Wijdicks EF, Vermeulen M, van Brummelen P, van Gijn J. The effect of fludrocortisone acetate on plasma volume and natriuresis in patients with aneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg 1988;90:209–214.PubMedCrossRef Wijdicks EF, Vermeulen M, van Brummelen P, van Gijn J. The effect of fludrocortisone acetate on plasma volume and natriuresis in patients with aneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg 1988;90:209–214.PubMedCrossRef
88.
Zurück zum Zitat Cawley MJ. Hyponatremia: current treatment strategies and the role of vasopressin antagonists. Ann Pharmacother 2007;41:840–850.PubMedCrossRef Cawley MJ. Hyponatremia: current treatment strategies and the role of vasopressin antagonists. Ann Pharmacother 2007;41:840–850.PubMedCrossRef
89.
Zurück zum Zitat Hays RM. Vasopressin antagonists — progress and promise. N Engl J Med 2006;355:2146–2148.PubMedCrossRef Hays RM. Vasopressin antagonists — progress and promise. N Engl J Med 2006;355:2146–2148.PubMedCrossRef
90.
Zurück zum Zitat Palm C, Pistrosch F, Herbrig K, Gross P. Vasopressin antagonists as aquaretic agents for the treatment of hyponatremia. Am J Med 2006;119(7 suppl 1):S87-S92.PubMedCrossRef Palm C, Pistrosch F, Herbrig K, Gross P. Vasopressin antagonists as aquaretic agents for the treatment of hyponatremia. Am J Med 2006;119(7 suppl 1):S87-S92.PubMedCrossRef
91.
Zurück zum Zitat Decaux G, Soupart A, Vassart G. Non-peptide arginine-vasopressin antagonists: the vaptans. Lancet 2008;371:1624–1632.PubMedCrossRef Decaux G, Soupart A, Vassart G. Non-peptide arginine-vasopressin antagonists: the vaptans. Lancet 2008;371:1624–1632.PubMedCrossRef
92.
Zurück zum Zitat Zeltser D, Rosansky S, van Rensburg H, Verbalis JG, Smith N. Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol 2007;27:447–457.PubMedCrossRef Zeltser D, Rosansky S, van Rensburg H, Verbalis JG, Smith N. Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol 2007;27:447–457.PubMedCrossRef
93.
Zurück zum Zitat Yeates KE, Morton AR. Vasopressin antagonists: role in the management of hyponatremia. Am J Nephrol 2006;26:348–355.PubMedCrossRef Yeates KE, Morton AR. Vasopressin antagonists: role in the management of hyponatremia. Am J Nephrol 2006;26:348–355.PubMedCrossRef
94.
Zurück zum Zitat Ghali JK, Koren MJ, Taylor JR, et al. Efficacy and safety of oral conivaptan: a V1A/V2 vasopressin receptor antagonist, assessed in a randomized, placebo-controlled trial in patients with euvolemic or hypervolemic hyponatremia. J Clin Endocrinol Metab 2006;91:2145–2152.PubMedCrossRef Ghali JK, Koren MJ, Taylor JR, et al. Efficacy and safety of oral conivaptan: a V1A/V2 vasopressin receptor antagonist, assessed in a randomized, placebo-controlled trial in patients with euvolemic or hypervolemic hyponatremia. J Clin Endocrinol Metab 2006;91:2145–2152.PubMedCrossRef
95.
Zurück zum Zitat Murphy T, Dhar R, Diringer M. Conivaptan bolus dosing for the correction of hyponatremia in the neurointensive care unit. Neurocrit Care 2009;11:14–19.PubMedCrossRef Murphy T, Dhar R, Diringer M. Conivaptan bolus dosing for the correction of hyponatremia in the neurointensive care unit. Neurocrit Care 2009;11:14–19.PubMedCrossRef
96.
Zurück zum Zitat Wright WL, Asbury WH, Gilmore JL, Samuels OB. Conivaptan for hyponatremia in the neurocritical care unit. Neurocrit Care 2009;11:6–13.PubMedCrossRef Wright WL, Asbury WH, Gilmore JL, Samuels OB. Conivaptan for hyponatremia in the neurocritical care unit. Neurocrit Care 2009;11:6–13.PubMedCrossRef
97.
Zurück zum Zitat László FA, Varga C, Dóczi T. Cerebral oedema after subarachnoid haemorrhage. Pathogenetic significance of vasopressin. Acta Neurochir (Wien) 1995;133:122–133.CrossRef László FA, Varga C, Dóczi T. Cerebral oedema after subarachnoid haemorrhage. Pathogenetic significance of vasopressin. Acta Neurochir (Wien) 1995;133:122–133.CrossRef
98.
Zurück zum Zitat Dhar R, Murphy-Human T. A bolus of conivaptan lowers intracranial pressure in a patient with hyponatremia after traumatic brain injury. Neurocrit Care 2011;14:97–102.PubMedCrossRef Dhar R, Murphy-Human T. A bolus of conivaptan lowers intracranial pressure in a patient with hyponatremia after traumatic brain injury. Neurocrit Care 2011;14:97–102.PubMedCrossRef
99.
Zurück zum Zitat Galton C, Deem S, Yanez ND, Souter M, Chesnut R, Dagal A, et al. Open-label randomized trial of the safety and efficacy of a single dose conivaptan to raise serum sodium in patients with traumatic brain injury. Neurocrit Care 2011;14:354–360.PubMedCrossRef Galton C, Deem S, Yanez ND, Souter M, Chesnut R, Dagal A, et al. Open-label randomized trial of the safety and efficacy of a single dose conivaptan to raise serum sodium in patients with traumatic brain injury. Neurocrit Care 2011;14:354–360.PubMedCrossRef
Metadaten
Titel
Novel Treatment Targets for Cerebral Edema
verfasst von
Brian P. Walcott
Kristopher T. Kahle
J. Marc Simard
Publikationsdatum
01.01.2012
Verlag
Springer-Verlag
Erschienen in
Neurotherapeutics / Ausgabe 1/2012
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-011-0087-4

Weitere Artikel der Ausgabe 1/2012

Neurotherapeutics 1/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.