Skip to main content
Erschienen in: Neurotherapeutics 4/2013

01.10.2013 | Review

Epigenetics and Psychiatry

verfasst von: Melissa Mahgoub, Lisa M. Monteggia

Erschienen in: Neurotherapeutics | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

Abstract

Psychiatric disorders including major depressive disorder, drug addiction, and schizophrenia are debilitating illnesses with a multitude of complex symptoms underlying each of these disorders. In recent years, it has become appreciated that the onset and development of these disorders goes beyond the one gene–one disease approach. Rather, the involvement of many genes is likely linked to these illnesses, and regulating the activation or silencing of gene function may play a crucial role in contributing to their pathophysiology. Epigenetic modifications such as histone acetylation and deacetylation, as well as DNA methylation can induce lasting and stable changes in gene expression, and have therefore been implicated in promoting the adaptive behavioral and neuronal changes that accompany each of these illnesses. In this review we will discuss some of the latest work implicating a potential role for epigenetics in psychiatric disorders, namely, depression, addiction, and schizophrenia as well as a possible role in treatment.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kendler KS. Twin studies of psychiatric illness: an update. Arch Gen Psychiatry 2001;58:1005–14.PubMedCrossRef Kendler KS. Twin studies of psychiatric illness: an update. Arch Gen Psychiatry 2001;58:1005–14.PubMedCrossRef
2.
Zurück zum Zitat Sapolsky RM. Depression, antidepressants, and the shrinking hippocampus. Proc Natl Acad Sci USA 2001;98:12320–2.PubMedCrossRef Sapolsky RM. Depression, antidepressants, and the shrinking hippocampus. Proc Natl Acad Sci USA 2001;98:12320–2.PubMedCrossRef
3.
Zurück zum Zitat Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 2002;34:13–25.PubMedCrossRef Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 2002;34:13–25.PubMedCrossRef
4.
Zurück zum Zitat McEwen BS. Effects of adverse experiences for brain structure and function. Biol Psychiatry 2000;48:721–31.PubMedCrossRef McEwen BS. Effects of adverse experiences for brain structure and function. Biol Psychiatry 2000;48:721–31.PubMedCrossRef
5.
Zurück zum Zitat Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science 1975;187:226–32.PubMedCrossRef Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science 1975;187:226–32.PubMedCrossRef
6.
Zurück zum Zitat Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33 Suppl:245–54.PubMedCrossRef Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33 Suppl:245–54.PubMedCrossRef
7.
Zurück zum Zitat Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell 2007;128:635–8.PubMedCrossRef Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell 2007;128:635–8.PubMedCrossRef
9.
Zurück zum Zitat Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P. Decoding the epigenetic language of neuronal plasticity. Neuron 2008;60:961–74.PubMedCrossRef Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P. Decoding the epigenetic language of neuronal plasticity. Neuron 2008;60:961–74.PubMedCrossRef
10.
11.
Zurück zum Zitat Bird AP, Wolffe AP. Methylation-induced repression--belts, braces, and chromatin. Cell 1999;99:451–4.PubMedCrossRef Bird AP, Wolffe AP. Methylation-induced repression--belts, braces, and chromatin. Cell 1999;99:451–4.PubMedCrossRef
12.
Zurück zum Zitat Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005;74:481–514.PubMedCrossRef Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005;74:481–514.PubMedCrossRef
13.
Zurück zum Zitat Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005;62:617–27.PubMedCrossRef Kessler RC, Chiu WT, Demler O, Merikangas KR, Walters EE. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch Gen Psychiatry 2005;62:617–27.PubMedCrossRef
16.
Zurück zum Zitat Castren E, Rantamaki T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Dev Neurobiol 2010;70:289–97.PubMedCrossRef Castren E, Rantamaki T. The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Dev Neurobiol 2010;70:289–97.PubMedCrossRef
17.
Zurück zum Zitat Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry 1997;54:597–606.PubMedCrossRef Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry 1997;54:597–606.PubMedCrossRef
18.
Zurück zum Zitat Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001;50:260–5.PubMedCrossRef Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001;50:260–5.PubMedCrossRef
19.
Zurück zum Zitat Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997;56:131–7.PubMedCrossRef Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Antidepressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997;56:131–7.PubMedCrossRef
20.
Zurück zum Zitat Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002;22:3251–61.PubMed Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 2002;22:3251–61.PubMed
21.
Zurück zum Zitat Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci USA 2004;101:10827–32.PubMedCrossRef Monteggia LM, Barrot M, Powell CM, Berton O, Galanis V, Gemelli T et al. Essential role of brain-derived neurotrophic factor in adult hippocampal function. Proc Natl Acad Sci USA 2004;101:10827–32.PubMedCrossRef
22.
Zurück zum Zitat Monteggia LM, Luikart B, Barrot M, Theobold D, Malkovska I, Nef S et al. Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol Psychiatry 2007;61:187–97.PubMedCrossRef Monteggia LM, Luikart B, Barrot M, Theobold D, Malkovska I, Nef S et al. Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol Psychiatry 2007;61:187–97.PubMedCrossRef
23.
Zurück zum Zitat Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM. Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 2008;63:642–9.PubMedCrossRef Adachi M, Barrot M, Autry AE, Theobald D, Monteggia LM. Selective loss of brain-derived neurotrophic factor in the dentate gyrus attenuates antidepressant efficacy. Biol Psychiatry 2008;63:642–9.PubMedCrossRef
24.
Zurück zum Zitat Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006;59:1116–27.PubMedCrossRef Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006;59:1116–27.PubMedCrossRef
25.
Zurück zum Zitat Sapolsky RM. Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress 1996;1:1–19.PubMedCrossRef Sapolsky RM. Stress, glucocorticoids, and damage to the nervous system: the current state of confusion. Stress 1996;1:1–19.PubMedCrossRef
26.
Zurück zum Zitat Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 1995;15:1768–77.PubMed Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 1995;15:1768–77.PubMed
27.
Zurück zum Zitat Nibuya M, Takahashi M, Russell DS, Duman RS. Repeated stress increases catalytic TrkB mRNA in rat hippocampus. Neurosci Lett 1999;267:81–4.PubMedCrossRef Nibuya M, Takahashi M, Russell DS, Duman RS. Repeated stress increases catalytic TrkB mRNA in rat hippocampus. Neurosci Lett 1999;267:81–4.PubMedCrossRef
28.
Zurück zum Zitat Roceri M, Cirulli F, Pessina C, Peretto P, Racagni G, Riva MA. Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol Psychiatry 2004;55:708–14.PubMedCrossRef Roceri M, Cirulli F, Pessina C, Peretto P, Racagni G, Riva MA. Postnatal repeated maternal deprivation produces age-dependent changes of brain-derived neurotrophic factor expression in selected rat brain regions. Biol Psychiatry 2004;55:708–14.PubMedCrossRef
29.
Zurück zum Zitat Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006;9:519–25.PubMedCrossRef Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006;9:519–25.PubMedCrossRef
30.
Zurück zum Zitat Onishchenko N, Karpova N, Sabri F, Castren E, Ceccatelli S. Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem 2008;106:1378–87.PubMedCrossRef Onishchenko N, Karpova N, Sabri F, Castren E, Ceccatelli S. Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J Neurochem 2008;106:1378–87.PubMedCrossRef
31.
Zurück zum Zitat Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 2006;311:864–8.PubMedCrossRef Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 2006;311:864–8.PubMedCrossRef
32.
Zurück zum Zitat Golden SA, Christoffel DJ, Heshmati M, Hodes GE, Magida J, Davis K et al. Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nat Med 2013;19:337–44.PubMedCrossRef Golden SA, Christoffel DJ, Heshmati M, Hodes GE, Magida J, Davis K et al. Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nat Med 2013;19:337–44.PubMedCrossRef
33.
Zurück zum Zitat Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 2012;18:1413–7.PubMedCrossRef Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med 2012;18:1413–7.PubMedCrossRef
34.
Zurück zum Zitat Nasca C, Xenos D, Barone Y, Caruso A, Scaccianoce S, Matrisciano F et al. L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proc Natl Acad Sci USA 2013;110:4804–9.PubMedCrossRef Nasca C, Xenos D, Barone Y, Caruso A, Scaccianoce S, Matrisciano F et al. L-acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proc Natl Acad Sci USA 2013;110:4804–9.PubMedCrossRef
35.
Zurück zum Zitat Chiechio S, Copani A, Zammataro M, Battaglia G, Gereau RWt, Nicoletti F. Transcriptional regulation of type-2 metabotropic glutamate receptors: an epigenetic path to novel treatments for chronic pain. Trends Pharmacol Sci 2010;31:153–60.PubMedCrossRef Chiechio S, Copani A, Zammataro M, Battaglia G, Gereau RWt, Nicoletti F. Transcriptional regulation of type-2 metabotropic glutamate receptors: an epigenetic path to novel treatments for chronic pain. Trends Pharmacol Sci 2010;31:153–60.PubMedCrossRef
36.
Zurück zum Zitat Overstreet DH, Friedman E, Mathe AA, Yadid G. The Flinders Sensitive Line rat: a selectively bred putative animal model of depression. Neurosci Biobehav Rev 2005;29:739–59.PubMedCrossRef Overstreet DH, Friedman E, Mathe AA, Yadid G. The Flinders Sensitive Line rat: a selectively bred putative animal model of depression. Neurosci Biobehav Rev 2005;29:739–59.PubMedCrossRef
37.
Zurück zum Zitat Matrisciano F, Caruso A, Orlando R, Marchiafava M, Bruno V, Battaglia G et al. Defective group-II metaboropic glutamate receptors in the hippocampus of spontaneously depressed rats. Neuropharmacology 2008;55:525–31.PubMedCrossRef Matrisciano F, Caruso A, Orlando R, Marchiafava M, Bruno V, Battaglia G et al. Defective group-II metaboropic glutamate receptors in the hippocampus of spontaneously depressed rats. Neuropharmacology 2008;55:525–31.PubMedCrossRef
38.
Zurück zum Zitat Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 2010;13:423–30.PubMedCrossRef Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 2010;13:423–30.PubMedCrossRef
39.
Zurück zum Zitat Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation. Neuron 2007;53:857–69.PubMedCrossRef Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation. Neuron 2007;53:857–69.PubMedCrossRef
40.
Zurück zum Zitat Levenson JM, Roth TL, Lubin FD, Miller CA, Huang IC, Desai P et al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 2006;281:15763–73.PubMedCrossRef Levenson JM, Roth TL, Lubin FD, Miller CA, Huang IC, Desai P et al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. J Biol Chem 2006;281:15763–73.PubMedCrossRef
41.
Zurück zum Zitat LaPlant Q, Vialou V, Covington HE, 3rd, Dumitriu D, Feng J, Warren BL et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 2010;13:1137–43.PubMedCrossRef LaPlant Q, Vialou V, Covington HE, 3rd, Dumitriu D, Feng J, Warren BL et al. Dnmt3a regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat Neurosci 2010;13:1137–43.PubMedCrossRef
42.
Zurück zum Zitat Nestler EJ. Molecular mechanisms of drug addiction. Neuropharmacology 2004;47 Suppl 1:24–32.PubMedCrossRef Nestler EJ. Molecular mechanisms of drug addiction. Neuropharmacology 2004;47 Suppl 1:24–32.PubMedCrossRef
43.
Zurück zum Zitat Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2001;2:119–28.PubMedCrossRef Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2001;2:119–28.PubMedCrossRef
44.
Zurück zum Zitat Graham DL, Edwards S, Bachtell RK, DiLeone RJ, Rios M, Self DW. Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 2007;10:1029–37.PubMedCrossRef Graham DL, Edwards S, Bachtell RK, DiLeone RJ, Rios M, Self DW. Dynamic BDNF activity in nucleus accumbens with cocaine use increases self-administration and relapse. Nat Neurosci 2007;10:1029–37.PubMedCrossRef
45.
Zurück zum Zitat Lu L, Dempsey J, Liu SY, Bossert JM, Shaham Y. A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J Neurosci 2004;24:1604–11.PubMedCrossRef Lu L, Dempsey J, Liu SY, Bossert JM, Shaham Y. A single infusion of brain-derived neurotrophic factor into the ventral tegmental area induces long-lasting potentiation of cocaine seeking after withdrawal. J Neurosci 2004;24:1604–11.PubMedCrossRef
46.
Zurück zum Zitat Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y. Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 2003;23:742–7.PubMed Grimm JW, Lu L, Hayashi T, Hope BT, Su TP, Shaham Y. Time-dependent increases in brain-derived neurotrophic factor protein levels within the mesolimbic dopamine system after withdrawal from cocaine: implications for incubation of cocaine craving. J Neurosci 2003;23:742–7.PubMed
47.
Zurück zum Zitat Im HI, Hollander JA, Bali P, Kenny PJ. MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 2010;13:1120–7.PubMedCrossRef Im HI, Hollander JA, Bali P, Kenny PJ. MeCP2 controls BDNF expression and cocaine intake through homeostatic interactions with microRNA-212. Nat Neurosci 2010;13:1120–7.PubMedCrossRef
48.
Zurück zum Zitat Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DE, Truong HT et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 2005;48:303–14.PubMedCrossRef Kumar A, Choi KH, Renthal W, Tsankova NM, Theobald DE, Truong HT et al. Chromatin remodeling is a key mechanism underlying cocaine-induced plasticity in striatum. Neuron 2005;48:303–14.PubMedCrossRef
49.
Zurück zum Zitat Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 2011;12:623–37.PubMedCrossRef Robison AJ, Nestler EJ. Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 2011;12:623–37.PubMedCrossRef
50.
Zurück zum Zitat Levine AA, Guan Z, Barco A, Xu S, Kandel ER, Schwartz JH. CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum. Proc Natl Acad Sci USA 2005;102:19186–91.PubMedCrossRef Levine AA, Guan Z, Barco A, Xu S, Kandel ER, Schwartz JH. CREB-binding protein controls response to cocaine by acetylating histones at the fosB promoter in the mouse striatum. Proc Natl Acad Sci USA 2005;102:19186–91.PubMedCrossRef
51.
Zurück zum Zitat Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009;10:32–42.PubMedCrossRef Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 2009;10:32–42.PubMedCrossRef
52.
Zurück zum Zitat Renthal W, Maze I, Krishnan V, Covington HE, 3rd, Xiao G, Kumar A et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 2007;56:517–29.PubMedCrossRef Renthal W, Maze I, Krishnan V, Covington HE, 3rd, Xiao G, Kumar A et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 2007;56:517–29.PubMedCrossRef
53.
Zurück zum Zitat Romieu P, Host L, Gobaille S, Sandner G, Aunis D, Zwiller J. Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats. J Neurosci 2008;28:9342–8.PubMedCrossRef Romieu P, Host L, Gobaille S, Sandner G, Aunis D, Zwiller J. Histone deacetylase inhibitors decrease cocaine but not sucrose self-administration in rats. J Neurosci 2008;28:9342–8.PubMedCrossRef
54.
Zurück zum Zitat Sun J, Wang L, Jiang B, Hui B, Lv Z, Ma L. The effects of sodium butyrate, an inhibitor of histone deacetylase, on the cocaine- and sucrose-maintained self-administration in rats. Neurosci Lett 2008;441:72–6.PubMedCrossRef Sun J, Wang L, Jiang B, Hui B, Lv Z, Ma L. The effects of sodium butyrate, an inhibitor of histone deacetylase, on the cocaine- and sucrose-maintained self-administration in rats. Neurosci Lett 2008;441:72–6.PubMedCrossRef
55.
Zurück zum Zitat Wang L, Lv Z, Hu Z, Sheng J, Hui B, Sun J et al. Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIalpha in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology 2010;35:913–28.PubMedCrossRef Wang L, Lv Z, Hu Z, Sheng J, Hui B, Sun J et al. Chronic cocaine-induced H3 acetylation and transcriptional activation of CaMKIIalpha in the nucleus accumbens is critical for motivation for drug reinforcement. Neuropsychopharmacology 2010;35:913–28.PubMedCrossRef
56.
Zurück zum Zitat Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J Neurosci 2003;23:9418–27.PubMed Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington's disease mice. J Neurosci 2003;23:9418–27.PubMed
57.
Zurück zum Zitat Kennedy PJ, Feng J, Robison AJ, Maze I, Badimon A, Mouzon E et al. Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nat Neurosci 2013;16:434–40.PubMedCrossRef Kennedy PJ, Feng J, Robison AJ, Maze I, Badimon A, Mouzon E et al. Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nat Neurosci 2013;16:434–40.PubMedCrossRef
58.
Zurück zum Zitat Regier DA, Narrow WE, Rae DS, Manderscheid RW, Locke BZ, Goodwin FK. The de facto US mental and addictive disorders service system. Epidemiologic catchment area prospective 1-year prevalence rates of disorders and services. Arch Gen Psychiatry 1993;50:85–94.PubMedCrossRef Regier DA, Narrow WE, Rae DS, Manderscheid RW, Locke BZ, Goodwin FK. The de facto US mental and addictive disorders service system. Epidemiologic catchment area prospective 1-year prevalence rates of disorders and services. Arch Gen Psychiatry 1993;50:85–94.PubMedCrossRef
60.
Zurück zum Zitat Tamminga CA, Holcomb HH. Phenotype of schizophrenia: a review and formulation. Mol Psychiatry 2005;10:27–39.PubMedCrossRef Tamminga CA, Holcomb HH. Phenotype of schizophrenia: a review and formulation. Mol Psychiatry 2005;10:27–39.PubMedCrossRef
61.
Zurück zum Zitat Owen MJ, Williams NM, O'Donovan MC. The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry 2004;9:14–27.PubMedCrossRef Owen MJ, Williams NM, O'Donovan MC. The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry 2004;9:14–27.PubMedCrossRef
62.
Zurück zum Zitat Costa E, Chen Y, Davis J, Dong E, Noh JS, Tremolizzo L et al. REELIN and schizophrenia: a disease at the interface of the genome and the epigenome. Mol Interv 2002;2:47–57.PubMedCrossRef Costa E, Chen Y, Davis J, Dong E, Noh JS, Tremolizzo L et al. REELIN and schizophrenia: a disease at the interface of the genome and the epigenome. Mol Interv 2002;2:47–57.PubMedCrossRef
63.
Zurück zum Zitat Huang HS, Akbarian S. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia. PLoS One 2007;2:e809.PubMedCrossRef Huang HS, Akbarian S. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia. PLoS One 2007;2:e809.PubMedCrossRef
64.
Zurück zum Zitat Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 2000;57:1061–9.PubMedCrossRef Guidotti A, Auta J, Davis JM, Di-Giorgi-Gerevini V, Dwivedi Y, Grayson DR et al. Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study. Arch Gen Psychiatry 2000;57:1061–9.PubMedCrossRef
65.
Zurück zum Zitat Chen Y, Sharma RP, Costa RH, Costa E, Grayson DR. On the epigenetic regulation of the human reelin promoter. Nucleic Acids Res 2002;30:2930–9.PubMedCrossRef Chen Y, Sharma RP, Costa RH, Costa E, Grayson DR. On the epigenetic regulation of the human reelin promoter. Nucleic Acids Res 2002;30:2930–9.PubMedCrossRef
66.
Zurück zum Zitat Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M et al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 2005;134B:60–6.PubMedCrossRef Abdolmaleky HM, Cheng KH, Russo A, Smith CL, Faraone SV, Wilcox M et al. Hypermethylation of the reelin (RELN) promoter in the brain of schizophrenic patients: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 2005;134B:60–6.PubMedCrossRef
67.
Zurück zum Zitat Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA 2005;102:9341–6.PubMedCrossRef Grayson DR, Jia X, Chen Y, Sharma RP, Mitchell CP, Guidotti A et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci USA 2005;102:9341–6.PubMedCrossRef
68.
Zurück zum Zitat Tremolizzo L, Carboni G, Ruzicka WB, Mitchell CP, Sugaya I, Tueting P et al. An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci USA 2002;99:17095–100.PubMedCrossRef Tremolizzo L, Carboni G, Ruzicka WB, Mitchell CP, Sugaya I, Tueting P et al. An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci USA 2002;99:17095–100.PubMedCrossRef
69.
Zurück zum Zitat Chen Y, Dong E, Grayson DR. Analysis of the GAD1 promoter: trans-acting factors and DNA methylation converge on the 5' untranslated region. Neuropharmacology 2011;60:1075–87.PubMedCrossRef Chen Y, Dong E, Grayson DR. Analysis of the GAD1 promoter: trans-acting factors and DNA methylation converge on the 5' untranslated region. Neuropharmacology 2011;60:1075–87.PubMedCrossRef
70.
Zurück zum Zitat Veldic M, Guidotti A, Maloku E, Davis JM, Costa E. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci USA 2005;102:2152–7.PubMedCrossRef Veldic M, Guidotti A, Maloku E, Davis JM, Costa E. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci USA 2005;102:2152–7.PubMedCrossRef
71.
Zurück zum Zitat Zhubi A, Veldic M, Puri NV, Kadriu B, Caruncho H, Loza I et al. An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes. Schizophr Res 2009;111:115–22.PubMedCrossRef Zhubi A, Veldic M, Puri NV, Kadriu B, Caruncho H, Loza I et al. An upregulation of DNA-methyltransferase 1 and 3a expressed in telencephalic GABAergic neurons of schizophrenia patients is also detected in peripheral blood lymphocytes. Schizophr Res 2009;111:115–22.PubMedCrossRef
72.
Zurück zum Zitat Dong E, Guidotti A, Grayson DR, Costa E. Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc Natl Acad Sci USA 2007;104:4676–81.PubMedCrossRef Dong E, Guidotti A, Grayson DR, Costa E. Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc Natl Acad Sci USA 2007;104:4676–81.PubMedCrossRef
73.
Zurück zum Zitat Kurita M, Holloway T, Garcia-Bea A, Kozlenkov A, Friedman AK, Moreno JL et al. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci 2012;15:1245–54.PubMedCrossRef Kurita M, Holloway T, Garcia-Bea A, Kozlenkov A, Friedman AK, Moreno JL et al. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci 2012;15:1245–54.PubMedCrossRef
Metadaten
Titel
Epigenetics and Psychiatry
verfasst von
Melissa Mahgoub
Lisa M. Monteggia
Publikationsdatum
01.10.2013
Verlag
Springer US
Erschienen in
Neurotherapeutics / Ausgabe 4/2013
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-013-0213-6

Weitere Artikel der Ausgabe 4/2013

Neurotherapeutics 4/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.