Skip to main content
Erschienen in: Neurotherapeutics 1/2019

01.01.2019 | Review

Focused Ultrasound for Neuromodulation

verfasst von: David P Darrow

Erschienen in: Neurotherapeutics | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

For more than 70 years, the promise of noninvasive neuromodulation using focused ultrasound has been growing while diagnostic ultrasound established itself as a foundation of clinical imaging. Significant technical challenges have been overcome to allow transcranial focused ultrasound to deliver spatially restricted energy into the nervous system at a wide range of intensities. High-intensity focused ultrasound produces reliable permanent lesions within the brain, and low-intensity focused ultrasound has been reported to both excite and inhibit neural activity reversibly. Despite intense interest in this promising new platform for noninvasive, highly focused neuromodulation, the underlying mechanism remains elusive, though recent studies provide further insight. Despite the barriers, the potential of focused ultrasound to deliver a range of permanent and reversible neuromodulation with seamless translation from bench to the bedside warrants unparalleled attention and scientific investment. Focused ultrasound boasts a number of key features such as multimodal compatibility, submillimeter steerable focusing, multifocal, high temporal resolution, coregistration, and the ability to monitor delivered therapy and temperatures in real time. Despite the technical complexity, the future of noninvasive focused ultrasound for neuromodulation as a neuroscience and clinical platform remains bright.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat O’Brien WD Jr. Ultrasound-biophysics mechanisms. Prog. Biophys. Mol. Biol. 2007;93:212–255.CrossRefPubMed O’Brien WD Jr. Ultrasound-biophysics mechanisms. Prog. Biophys. Mol. Biol. 2007;93:212–255.CrossRefPubMed
2.
Zurück zum Zitat Chan V, Perlas A. Basics of Ultrasound Imaging. In: Narouze SN, editor. Atlas of Ultrasound-Guided Procedures in Interventional Pain Management. New York, NY: Springer New York; 2011. p. 13–19.CrossRef Chan V, Perlas A. Basics of Ultrasound Imaging. In: Narouze SN, editor. Atlas of Ultrasound-Guided Procedures in Interventional Pain Management. New York, NY: Springer New York; 2011. p. 13–19.CrossRef
3.
Zurück zum Zitat Pinton G, Aubry J-F, Bossy E, et al. Attenuation, scattering, and absorption of ultrasound in the skull bone. Med. Phys. 2012;39:299–307.CrossRefPubMed Pinton G, Aubry J-F, Bossy E, et al. Attenuation, scattering, and absorption of ultrasound in the skull bone. Med. Phys. 2012;39:299–307.CrossRefPubMed
4.
Zurück zum Zitat Harary M, Segar DJ, Huang KT, et al. Focused ultrasound in neurosurgery: a historical perspective. Neurosurg. Focus. 2018;44:E2.CrossRefPubMed Harary M, Segar DJ, Huang KT, et al. Focused ultrasound in neurosurgery: a historical perspective. Neurosurg. Focus. 2018;44:E2.CrossRefPubMed
5.
6.
Zurück zum Zitat Liu D, Casper A, Haritonova A, et al. Adaptive lesion formation using dual mode ultrasound array system. AIP Conf. Proc. 2017;1821:060003.CrossRef Liu D, Casper A, Haritonova A, et al. Adaptive lesion formation using dual mode ultrasound array system. AIP Conf. Proc. 2017;1821:060003.CrossRef
7.
8.
Zurück zum Zitat Strowitzki M, Moringlane JR, Steudel W. Ultrasound-based navigation during intracranial burr hole procedures: experience in a series of 100 cases. Surg. Neurol. 2000;54:134–144.CrossRefPubMed Strowitzki M, Moringlane JR, Steudel W. Ultrasound-based navigation during intracranial burr hole procedures: experience in a series of 100 cases. Surg. Neurol. 2000;54:134–144.CrossRefPubMed
11.
Zurück zum Zitat Shankar H, Pagel PS. Potential Adverse Ultrasound-related Biological EffectsA Critical Review. Anesthesiology. 2011;115:1109–1124.CrossRefPubMed Shankar H, Pagel PS. Potential Adverse Ultrasound-related Biological EffectsA Critical Review. Anesthesiology. 2011;115:1109–1124.CrossRefPubMed
12.
13.
14.
Zurück zum Zitat Krasovitski B, Frenkel V, Shoham S, et al. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl. Acad. Sci. U. S. A. 2011;108:3258–3263.CrossRefPubMedPubMedCentral Krasovitski B, Frenkel V, Shoham S, et al. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl. Acad. Sci. U. S. A. 2011;108:3258–3263.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Sarvazyan AP, Rudenko OV, Nyborg WL. Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med. Biol. 2010;36:1379–1394.CrossRefPubMed Sarvazyan AP, Rudenko OV, Nyborg WL. Biomedical applications of radiation force of ultrasound: historical roots and physical basis. Ultrasound Med. Biol. 2010;36:1379–1394.CrossRefPubMed
16.
Zurück zum Zitat Baker KG, Robertson VJ, Duck FA. A review of therapeutic ultrasound: biophysical effects. Phys. Ther. 2001;81:1351–1358.PubMed Baker KG, Robertson VJ, Duck FA. A review of therapeutic ultrasound: biophysical effects. Phys. Ther. 2001;81:1351–1358.PubMed
17.
Zurück zum Zitat Rossmanna C, Haemmerich D. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit. Rev. Biomed. Eng. 2014;42:467–492.CrossRefPubMed Rossmanna C, Haemmerich D. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Crit. Rev. Biomed. Eng. 2014;42:467–492.CrossRefPubMed
18.
Zurück zum Zitat Wojcik G, Mould J, Abboud N, et al. Nonlinear modeling of therapeutic ultrasound. 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium. ieeexplore.ieee.org; 1995. p. 1617–1622 vol.2. Wojcik G, Mould J, Abboud N, et al. Nonlinear modeling of therapeutic ultrasound. 1995 IEEE Ultrasonics Symposium. Proceedings. An International Symposium. ieeexplore.ieee.​org; 1995. p. 1617–1622 vol.2.
19.
Zurück zum Zitat Pinton G, Pernot M, Bossy E, et al. Mechanisms of attenuation and heating dissipation of ultrasound in the skull bone: Comparison between simulation models and experiments. 2010 IEEE International Ultrasonics Symposium. 2010. p. 225–228. Pinton G, Pernot M, Bossy E, et al. Mechanisms of attenuation and heating dissipation of ultrasound in the skull bone: Comparison between simulation models and experiments. 2010 IEEE International Ultrasonics Symposium. 2010. p. 225–228.
20.
Zurück zum Zitat Seip R, Ebbini ES. Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound. IEEE Trans. Biomed. Eng. 1995;42:828–839.CrossRefPubMed Seip R, Ebbini ES. Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound. IEEE Trans. Biomed. Eng. 1995;42:828–839.CrossRefPubMed
21.
Zurück zum Zitat Krishna V, Sammartino F, Rezai A. A Review of the Current Therapies, Challenges, and Future Directions of Transcranial Focused Ultrasound Technology: Advances in Diagnosis and Treatment. JAMA Neurol. 2018;75:246–254.CrossRefPubMed Krishna V, Sammartino F, Rezai A. A Review of the Current Therapies, Challenges, and Future Directions of Transcranial Focused Ultrasound Technology: Advances in Diagnosis and Treatment. JAMA Neurol. 2018;75:246–254.CrossRefPubMed
22.
Zurück zum Zitat Smith NB, Webb AG, Ellis DS, et al. Experimental verification of theoretical in vivo ultrasound heating using cobalt detected magnetic resonance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1995;42:489–491.CrossRef Smith NB, Webb AG, Ellis DS, et al. Experimental verification of theoretical in vivo ultrasound heating using cobalt detected magnetic resonance. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1995;42:489–491.CrossRef
23.
Zurück zum Zitat Draper DO, Castel JC, Castel D. Rate of temperature increase in human muscle during 1 MHz and 3 MHz continuous ultrasound. J. Orthop. Sports Phys. Ther. 1995;22:142–150.CrossRefPubMed Draper DO, Castel JC, Castel D. Rate of temperature increase in human muscle during 1 MHz and 3 MHz continuous ultrasound. J. Orthop. Sports Phys. Ther. 1995;22:142–150.CrossRefPubMed
24.
Zurück zum Zitat Ng A, Swanevelder J. Resolution in ultrasound imaging. Contin Educ Anaesth Crit Care Pain. 2011;11:186–192.CrossRef Ng A, Swanevelder J. Resolution in ultrasound imaging. Contin Educ Anaesth Crit Care Pain. 2011;11:186–192.CrossRef
25.
Zurück zum Zitat Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1948;1:93–122.CrossRefPubMed Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1948;1:93–122.CrossRefPubMed
26.
Zurück zum Zitat Evans KD, Weiss B, Knopp M. High-Intensity Focused Ultrasound (HIFU) for Specific Therapeutic Treatments: A Literature Review. J. Diagn. Med. Sonogr. 2007;23:319–327.CrossRef Evans KD, Weiss B, Knopp M. High-Intensity Focused Ultrasound (HIFU) for Specific Therapeutic Treatments: A Literature Review. J. Diagn. Med. Sonogr. 2007;23:319–327.CrossRef
27.
Zurück zum Zitat Elias WJ, Huss D, Voss T, et al. A pilot study of focused ultrasound thalamotomy for essential tremor. N. Engl. J. Med. 2013;369:640–648.CrossRefPubMed Elias WJ, Huss D, Voss T, et al. A pilot study of focused ultrasound thalamotomy for essential tremor. N. Engl. J. Med. 2013;369:640–648.CrossRefPubMed
28.
Zurück zum Zitat Ikeda T, Yoshizawa S, Koizumi N, et al. Focused Ultrasound and Lithotripsy. Adv. Exp. Med. Biol. 2016;880:113–129.CrossRefPubMed Ikeda T, Yoshizawa S, Koizumi N, et al. Focused Ultrasound and Lithotripsy. Adv. Exp. Med. Biol. 2016;880:113–129.CrossRefPubMed
29.
Zurück zum Zitat Rinaldi PC, Jones JP, Reines F, et al. Modification by focused ultrasound pulses of electrically evoked responses from an in vitro hippocampal preparation. Brain Res. 1991;558:36–42.CrossRefPubMed Rinaldi PC, Jones JP, Reines F, et al. Modification by focused ultrasound pulses of electrically evoked responses from an in vitro hippocampal preparation. Brain Res. 1991;558:36–42.CrossRefPubMed
30.
Zurück zum Zitat Tufail Y, Matyushov A, Baldwin N, et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron. 2010;66:681–694.CrossRefPubMed Tufail Y, Matyushov A, Baldwin N, et al. Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron. 2010;66:681–694.CrossRefPubMed
31.
Zurück zum Zitat Wahab RA, Choi M, Liu Y, et al. Mechanical bioeffects of pulsed high intensity focused ultrasound on a simple neural model: Bioeffects of pulsed ultrasound on nerves. Med. Phys. 2012;39:4274–4283.CrossRefPubMed Wahab RA, Choi M, Liu Y, et al. Mechanical bioeffects of pulsed high intensity focused ultrasound on a simple neural model: Bioeffects of pulsed ultrasound on nerves. Med. Phys. 2012;39:4274–4283.CrossRefPubMed
33.
Zurück zum Zitat Barnett SB, Ter Haar GR, Ziskin MC, et al. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine. Ultrasound Med. Biol. 2000;26:355–366.CrossRefPubMed Barnett SB, Ter Haar GR, Ziskin MC, et al. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine. Ultrasound Med. Biol. 2000;26:355–366.CrossRefPubMed
34.
Zurück zum Zitat Nelson TR, Fowlkes JB, Abramowicz JS, et al. Ultrasound biosafety considerations for the practicing sonographer and sonologist. J. Ultrasound Med. 2009;28:139–150.CrossRefPubMed Nelson TR, Fowlkes JB, Abramowicz JS, et al. Ultrasound biosafety considerations for the practicing sonographer and sonologist. J. Ultrasound Med. 2009;28:139–150.CrossRefPubMed
35.
Zurück zum Zitat Dickson JA, Calderwood SK. Temperature range and selective sensitivity of tumors to hyperthermia: a critical review. Ann. N. Y. Acad. Sci. 1980;335:180–205.CrossRefPubMed Dickson JA, Calderwood SK. Temperature range and selective sensitivity of tumors to hyperthermia: a critical review. Ann. N. Y. Acad. Sci. 1980;335:180–205.CrossRefPubMed
36.
Zurück zum Zitat Kyriakou Z, Corral-Baques MI, Amat A, et al. HIFU-induced cavitation and heating in ex vivo porcine subcutaneous fat. Ultrasound Med. Biol. 2011;37:568–579.CrossRefPubMed Kyriakou Z, Corral-Baques MI, Amat A, et al. HIFU-induced cavitation and heating in ex vivo porcine subcutaneous fat. Ultrasound Med. Biol. 2011;37:568–579.CrossRefPubMed
37.
Zurück zum Zitat Tyler WJ, Lani SW, Hwang GM. Ultrasonic modulation of neural circuit activity. Curr. Opin. Neurobiol. 2018;50:222–231.CrossRefPubMed Tyler WJ, Lani SW, Hwang GM. Ultrasonic modulation of neural circuit activity. Curr. Opin. Neurobiol. 2018;50:222–231.CrossRefPubMed
38.
Zurück zum Zitat Neppiras EA. Acoustic cavitation series: part one: Acoustic cavitation: an introduction. Ultrasonics. 1984;22:25–28.CrossRef Neppiras EA. Acoustic cavitation series: part one: Acoustic cavitation: an introduction. Ultrasonics. 1984;22:25–28.CrossRef
39.
Zurück zum Zitat Izadifar Z, Babyn P, Chapman D. Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge. Ultrasound in Medicine and Biology. 2017;43:1085–1104.CrossRefPubMed Izadifar Z, Babyn P, Chapman D. Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge. Ultrasound in Medicine and Biology. 2017;43:1085–1104.CrossRefPubMed
40.
Zurück zum Zitat Church CC. Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound Med. Biol. 2002;28:1349–1364.CrossRefPubMed Church CC. Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound Med. Biol. 2002;28:1349–1364.CrossRefPubMed
41.
Zurück zum Zitat Holland CK, Deng CX, Apfel RE, et al. Direct evidence of cavitation in vivo from diagnostic ultrasound. Ultrasound Med. Biol. 1996;22:917–925.CrossRefPubMed Holland CK, Deng CX, Apfel RE, et al. Direct evidence of cavitation in vivo from diagnostic ultrasound. Ultrasound Med. Biol. 1996;22:917–925.CrossRefPubMed
42.
Zurück zum Zitat Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 2006;7:41.CrossRefPubMed Abbott NJ, Rönnbäck L, Hansson E. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 2006;7:41.CrossRefPubMed
43.
Zurück zum Zitat Bakay L, Ballantine HT Jr, Hueter TF, et al. Ultrasonically produced changes in the blood-brain barrier. AMA Arch. Neurol. Psychiatry. 1956;76:457–467.CrossRefPubMed Bakay L, Ballantine HT Jr, Hueter TF, et al. Ultrasonically produced changes in the blood-brain barrier. AMA Arch. Neurol. Psychiatry. 1956;76:457–467.CrossRefPubMed
44.
Zurück zum Zitat Patrick JT, Nolting MN, Goss SA, et al. Ultrasound and the blood-brain barrier. Adv. Exp. Med. Biol. 1990;267:369–381.CrossRefPubMed Patrick JT, Nolting MN, Goss SA, et al. Ultrasound and the blood-brain barrier. Adv. Exp. Med. Biol. 1990;267:369–381.CrossRefPubMed
45.
Zurück zum Zitat Ballantine HT Jr, Bell E, Manlapaz J. Progress and problems in the neurological applications of focused ultrasound. J. Neurosurg. 1960;17:858–876.CrossRefPubMed Ballantine HT Jr, Bell E, Manlapaz J. Progress and problems in the neurological applications of focused ultrasound. J. Neurosurg. 1960;17:858–876.CrossRefPubMed
46.
Zurück zum Zitat Hynynen K, McDannold N, Vykhodtseva N, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220:640–646.CrossRefPubMed Hynynen K, McDannold N, Vykhodtseva N, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220:640–646.CrossRefPubMed
47.
Zurück zum Zitat Yang F-Y, Lin Y-S, Kang K-H, et al. Reversible blood–brain barrier disruption by repeated transcranial focused ultrasound allows enhanced extravasation. J. Control. Release. 2011;150:111–116.CrossRefPubMed Yang F-Y, Lin Y-S, Kang K-H, et al. Reversible blood–brain barrier disruption by repeated transcranial focused ultrasound allows enhanced extravasation. J. Control. Release. 2011;150:111–116.CrossRefPubMed
48.
Zurück zum Zitat Airan RD, Meyer RA, Ellens NPK, et al. Noninvasive Targeted Transcranial Neuromodulation via Focused Ultrasound Gated Drug Release from Nanoemulsions. Nano Lett. 2017;17:652–659.CrossRefPubMedPubMedCentral Airan RD, Meyer RA, Ellens NPK, et al. Noninvasive Targeted Transcranial Neuromodulation via Focused Ultrasound Gated Drug Release from Nanoemulsions. Nano Lett. 2017;17:652–659.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Downs ME, Buch A, Karakatsani ME, et al. Blood-Brain Barrier Opening in Behaving Non-Human Primates via Focused Ultrasound with Systemically Administered Microbubbles. Sci. Rep. 2015;5:15076.CrossRefPubMedPubMedCentral Downs ME, Buch A, Karakatsani ME, et al. Blood-Brain Barrier Opening in Behaving Non-Human Primates via Focused Ultrasound with Systemically Administered Microbubbles. Sci. Rep. 2015;5:15076.CrossRefPubMedPubMedCentral
50.
51.
Zurück zum Zitat Mead B, Kim N, Negron K, et al. Intersections of neuromodulation, focused ultrasound, and gene delivery with brain-penetrating nanoparticles. J. Acoust. Soc. Am. 2017;142:2669–2669.CrossRef Mead B, Kim N, Negron K, et al. Intersections of neuromodulation, focused ultrasound, and gene delivery with brain-penetrating nanoparticles. J. Acoust. Soc. Am. 2017;142:2669–2669.CrossRef
52.
Zurück zum Zitat Rudenko OV, Sarvazyan AP, Emelianov SY. Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium. J. Acoust. Soc. Am. 1996;99:2791–2798.CrossRef Rudenko OV, Sarvazyan AP, Emelianov SY. Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium. J. Acoust. Soc. Am. 1996;99:2791–2798.CrossRef
53.
Zurück zum Zitat Tyler WJ, Tufail Y, Finsterwald M, et al. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One. 2008;3:e3511.CrossRefPubMedPubMedCentral Tyler WJ, Tufail Y, Finsterwald M, et al. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One. 2008;3:e3511.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Kubanek J, Shukla P, Das A, et al. Ultrasound Elicits Behavioral Responses through Mechanical Effects on Neurons and Ion Channels in a Simple Nervous System. J. Neurosci. 2018;38:3081–3091.CrossRefPubMedPubMedCentral Kubanek J, Shukla P, Das A, et al. Ultrasound Elicits Behavioral Responses through Mechanical Effects on Neurons and Ion Channels in a Simple Nervous System. J. Neurosci. 2018;38:3081–3091.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Duck FA. The Meaning of Thermal Index (TI) and Mechanical Index (MI) Values. BMUS Bulletin. 1997;5:36–40.CrossRef Duck FA. The Meaning of Thermal Index (TI) and Mechanical Index (MI) Values. BMUS Bulletin. 1997;5:36–40.CrossRef
57.
Zurück zum Zitat Humphrey VF. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging. Ultrasonics. 2000;38:267–272.CrossRefPubMed Humphrey VF. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging. Ultrasonics. 2000;38:267–272.CrossRefPubMed
58.
Zurück zum Zitat Zemp RJ, Tavakkoli J, Cobbold RSC. Modeling of nonlinear ultrasound propagation in tissue from array transducers. J. Acoust. Soc. Am. 2003;113:139–152.CrossRefPubMed Zemp RJ, Tavakkoli J, Cobbold RSC. Modeling of nonlinear ultrasound propagation in tissue from array transducers. J. Acoust. Soc. Am. 2003;113:139–152.CrossRefPubMed
60.
Zurück zum Zitat Hand JW, Shaw A, Sadhoo N, et al. A random phased array device for delivery of high intensity focused ultrasound. Phys. Med. Biol. 2009;54:5675–5693.CrossRefPubMed Hand JW, Shaw A, Sadhoo N, et al. A random phased array device for delivery of high intensity focused ultrasound. Phys. Med. Biol. 2009;54:5675–5693.CrossRefPubMed
62.
Zurück zum Zitat Ebbini ES, Yao H, Shrestha A. Dual-mode ultrasound phased arrays for image-guided surgery. Ultrason. Imaging. 2006;28:65–82.CrossRefPubMed Ebbini ES, Yao H, Shrestha A. Dual-mode ultrasound phased arrays for image-guided surgery. Ultrason. Imaging. 2006;28:65–82.CrossRefPubMed
63.
Zurück zum Zitat Mueller JK, Ai L, Bansal P, et al. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound. J. Neural Eng. 2017;14:066012.CrossRefPubMed Mueller JK, Ai L, Bansal P, et al. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound. J. Neural Eng. 2017;14:066012.CrossRefPubMed
64.
Zurück zum Zitat Magnin R, Rabusseau F, Salabartan F, et al. Magnetic resonance-guided motorized transcranial ultrasound system for blood-brain barrier permeabilization along arbitrary trajectories in rodents. J Ther Ultrasound. 2015;3:22.CrossRefPubMedPubMedCentral Magnin R, Rabusseau F, Salabartan F, et al. Magnetic resonance-guided motorized transcranial ultrasound system for blood-brain barrier permeabilization along arbitrary trajectories in rodents. J Ther Ultrasound. 2015;3:22.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Bystritsky A, Korb AS, Douglas PK, et al. A review of low-intensity focused ultrasound pulsation. Brain Stimul. 2011;4:125–136.CrossRefPubMed Bystritsky A, Korb AS, Douglas PK, et al. A review of low-intensity focused ultrasound pulsation. Brain Stimul. 2011;4:125–136.CrossRefPubMed
66.
Zurück zum Zitat Lynn JG, Zwemer RL, Chick AJ, et al. A new method for the generation and use of focused ultrasound in experimental biology. J. Gen. Physiol. 1942;26:179–193.CrossRefPubMedPubMedCentral Lynn JG, Zwemer RL, Chick AJ, et al. A new method for the generation and use of focused ultrasound in experimental biology. J. Gen. Physiol. 1942;26:179–193.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Ye G, Smith PP, Noble JA. Model-based ultrasound temperature visualization during and following HIFU exposure. Ultrasound Med. Biol. 2010;36:234–249.CrossRefPubMed Ye G, Smith PP, Noble JA. Model-based ultrasound temperature visualization during and following HIFU exposure. Ultrasound Med. Biol. 2010;36:234–249.CrossRefPubMed
68.
Zurück zum Zitat Gyöngy M, Coussios C-C. Passive spatial mapping of inertial cavitation during HIFU exposure. IEEE Trans. Biomed. Eng. 2010;57:48–56.CrossRefPubMed Gyöngy M, Coussios C-C. Passive spatial mapping of inertial cavitation during HIFU exposure. IEEE Trans. Biomed. Eng. 2010;57:48–56.CrossRefPubMed
69.
Zurück zum Zitat Miller NR, Bamber JC, ter Haar GR. Imaging of temperature-induced echo strain: preliminary in vitro study to assess feasibility for guiding focused ultrasound surgery. Ultrasound Med. Biol. 2004;30:345–356.CrossRefPubMed Miller NR, Bamber JC, ter Haar GR. Imaging of temperature-induced echo strain: preliminary in vitro study to assess feasibility for guiding focused ultrasound surgery. Ultrasound Med. Biol. 2004;30:345–356.CrossRefPubMed
70.
Zurück zum Zitat Simon C, Vanbaren P, Ebbini ES. Two-dimensional temperature estimation using diagnostic ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1998;45:1088–1099.CrossRefPubMed Simon C, Vanbaren P, Ebbini ES. Two-dimensional temperature estimation using diagnostic ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 1998;45:1088–1099.CrossRefPubMed
71.
72.
Zurück zum Zitat Takagi SF, Higashino S, Shibuya T, et al. The actions of ultrasound on the myelinated nerve, the spinal cord and the brain. Jpn. J. Physiol. 1960;10:183–193.CrossRefPubMed Takagi SF, Higashino S, Shibuya T, et al. The actions of ultrasound on the myelinated nerve, the spinal cord and the brain. Jpn. J. Physiol. 1960;10:183–193.CrossRefPubMed
73.
Zurück zum Zitat Tsui P-H, Wang S-H, Huang C-C. In vitro effects of ultrasound with different energies on the conduction properties of neural tissue. Ultrasonics. 2005;43:560–565.CrossRefPubMed Tsui P-H, Wang S-H, Huang C-C. In vitro effects of ultrasound with different energies on the conduction properties of neural tissue. Ultrasonics. 2005;43:560–565.CrossRefPubMed
74.
Zurück zum Zitat Legon W, Sato TF, Opitz A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat. Neurosci. 2014;17:322–329.CrossRefPubMed Legon W, Sato TF, Opitz A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat. Neurosci. 2014;17:322–329.CrossRefPubMed
75.
Zurück zum Zitat Gulick DW, Li T, Kleim JA, et al. Comparison of Electrical and Ultrasound Neurostimulation in Rat Motor Cortex. Ultrasound Med. Biol. 2017;43:2824–2833.CrossRefPubMed Gulick DW, Li T, Kleim JA, et al. Comparison of Electrical and Ultrasound Neurostimulation in Rat Motor Cortex. Ultrasound Med. Biol. 2017;43:2824–2833.CrossRefPubMed
76.
Zurück zum Zitat Daniels D, Sharabi S, Last D, et al. Focused Ultrasound-Induced Suppression of Auditory Evoked Potentials in Vivo. Ultrasound Med. Biol. 2018;44:1022–1030.CrossRefPubMed Daniels D, Sharabi S, Last D, et al. Focused Ultrasound-Induced Suppression of Auditory Evoked Potentials in Vivo. Ultrasound Med. Biol. 2018;44:1022–1030.CrossRefPubMed
77.
Zurück zum Zitat Min B-K, Bystritsky A, Jung K-I, et al. Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neurosci. 2011;12:23.CrossRefPubMedPubMedCentral Min B-K, Bystritsky A, Jung K-I, et al. Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neurosci. 2011;12:23.CrossRefPubMedPubMedCentral
78.
79.
Zurück zum Zitat Kim H, Park MY, Lee SD, et al. Suppression of EEG visual-evoked potentials in rats through neuromodulatory focused ultrasound. Neuroreport. 2015;26:211–215.CrossRefPubMedPubMedCentral Kim H, Park MY, Lee SD, et al. Suppression of EEG visual-evoked potentials in rats through neuromodulatory focused ultrasound. Neuroreport. 2015;26:211–215.CrossRefPubMedPubMedCentral
80.
Zurück zum Zitat Dallapiazza RF, Timbie KF, Holmberg S, et al. Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound. J. Neurosurg. 2017;1–10. Dallapiazza RF, Timbie KF, Holmberg S, et al. Noninvasive neuromodulation and thalamic mapping with low-intensity focused ultrasound. J. Neurosurg. 2017;1–10.
81.
Zurück zum Zitat Fry FJ, Ades HW, Fry WJ. Production of reversible changes in the central nervous system by ultrasound. Science. 1958;127:83–84.CrossRefPubMed Fry FJ, Ades HW, Fry WJ. Production of reversible changes in the central nervous system by ultrasound. Science. 1958;127:83–84.CrossRefPubMed
82.
Zurück zum Zitat Rezayat E, Toostani IG. A Review on Brain Stimulation Using Low Intensity Focused Ultrasound. Basic Clin Neurosci. 2016;7:187–194.PubMedPubMedCentral Rezayat E, Toostani IG. A Review on Brain Stimulation Using Low Intensity Focused Ultrasound. Basic Clin Neurosci. 2016;7:187–194.PubMedPubMedCentral
83.
Zurück zum Zitat Dinno MA, Dyson M, Young SR, et al. The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound. Phys. Med. Biol. 1989;34:1543–1552.CrossRefPubMed Dinno MA, Dyson M, Young SR, et al. The significance of membrane changes in the safe and effective use of therapeutic and diagnostic ultrasound. Phys. Med. Biol. 1989;34:1543–1552.CrossRefPubMed
85.
Zurück zum Zitat Kim H, Taghados SJ, Fischer K, et al. Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound. Ultrasound Med. Biol. 2012;38:1568–1575.CrossRefPubMedPubMedCentral Kim H, Taghados SJ, Fischer K, et al. Noninvasive transcranial stimulation of rat abducens nerve by focused ultrasound. Ultrasound Med. Biol. 2012;38:1568–1575.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Wright CJ, Rothwell J, Saffari N. Ultrasonic stimulation of peripheral nervous tissue: an investigation into mechanisms. J. Phys. Conf. Ser. 2015;581:012003.CrossRef Wright CJ, Rothwell J, Saffari N. Ultrasonic stimulation of peripheral nervous tissue: an investigation into mechanisms. J. Phys. Conf. Ser. 2015;581:012003.CrossRef
87.
Zurück zum Zitat Buzatu S. The temperature-induced changes in membrane potential. Riv. Biol. 2009;102:199–217.PubMed Buzatu S. The temperature-induced changes in membrane potential. Riv. Biol. 2009;102:199–217.PubMed
88.
Zurück zum Zitat Borrelli MJ, Bailey KI, Dunn F. Early ultrasonic effects upon mammalian CNS structures (chemical synapses). J. Acoust. Soc. Am. 1981;69:1514–1516.CrossRefPubMed Borrelli MJ, Bailey KI, Dunn F. Early ultrasonic effects upon mammalian CNS structures (chemical synapses). J. Acoust. Soc. Am. 1981;69:1514–1516.CrossRefPubMed
89.
Zurück zum Zitat Juan EJ, González R, Albors G, et al. Vagus Nerve Modulation Using Focused Pulsed Ultrasound: Potential Applications and Preliminary Observations in a Rat. Int. J. Imaging Syst. Technol. 2014;24:67–71.CrossRefPubMedPubMedCentral Juan EJ, González R, Albors G, et al. Vagus Nerve Modulation Using Focused Pulsed Ultrasound: Potential Applications and Preliminary Observations in a Rat. Int. J. Imaging Syst. Technol. 2014;24:67–71.CrossRefPubMedPubMedCentral
90.
Zurück zum Zitat Lele PP. Effects of focused ultrasonic radiation on peripheral nerve, with observations on local heating. Exp. Neurol. 1963;8:47–83.CrossRef Lele PP. Effects of focused ultrasonic radiation on peripheral nerve, with observations on local heating. Exp. Neurol. 1963;8:47–83.CrossRef
91.
92.
Zurück zum Zitat Ye J, Tang S, Meng L, et al. Ultrasonic Control of Neural Activity through Activation of the Mechanosensitive Channel MscL. Nano Lett. 2018;18:4148–4155.CrossRefPubMed Ye J, Tang S, Meng L, et al. Ultrasonic Control of Neural Activity through Activation of the Mechanosensitive Channel MscL. Nano Lett. 2018;18:4148–4155.CrossRefPubMed
93.
Zurück zum Zitat Plaksin M, Shoham S, Kimmel E. Intramembrane Cavitation as a Predictive Bio-Piezoelectric Mechanism for Ultrasonic Brain Stimulation. Phys. Rev. X. 2014;4:011004. Plaksin M, Shoham S, Kimmel E. Intramembrane Cavitation as a Predictive Bio-Piezoelectric Mechanism for Ultrasonic Brain Stimulation. Phys. Rev. X. 2014;4:011004.
94.
Zurück zum Zitat Sato T, Shapiro MG, Tsao DY. Ultrasonic Neuromodulation Causes Widespread Cortical Activation via an Indirect Auditory Mechanism. Neuron. 2018;98:1031–1041.e5.CrossRefPubMed Sato T, Shapiro MG, Tsao DY. Ultrasonic Neuromodulation Causes Widespread Cortical Activation via an Indirect Auditory Mechanism. Neuron. 2018;98:1031–1041.e5.CrossRefPubMed
95.
Zurück zum Zitat Guo H, Hamilton M 2nd, Offutt SJ, et al. Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway. Neuron. 2018;98:1020–1030.e4.CrossRefPubMed Guo H, Hamilton M 2nd, Offutt SJ, et al. Ultrasound Produces Extensive Brain Activation via a Cochlear Pathway. Neuron. 2018;98:1020–1030.e4.CrossRefPubMed
96.
97.
Zurück zum Zitat Tufail Y, Yoshihiro A, Pati S, et al. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat. Protoc. 2011;6:1453–1470.CrossRefPubMed Tufail Y, Yoshihiro A, Pati S, et al. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat. Protoc. 2011;6:1453–1470.CrossRefPubMed
98.
Zurück zum Zitat Khraiche ML, Phillips WB, Jackson N, et al. Ultrasound induced increase in excitability of single neurons. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008;2008:4246–4249.PubMed Khraiche ML, Phillips WB, Jackson N, et al. Ultrasound induced increase in excitability of single neurons. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008;2008:4246–4249.PubMed
99.
Zurück zum Zitat Legon W, Bansal P, Tyshynsky R, et al. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci. Rep. 2018;8:10007.CrossRefPubMedPubMedCentral Legon W, Bansal P, Tyshynsky R, et al. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci. Rep. 2018;8:10007.CrossRefPubMedPubMedCentral
100.
Zurück zum Zitat Legon W, Ai L, Bansal P, et al. Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum. Brain Mapp. 2018;39:1995–2006.CrossRefPubMed Legon W, Ai L, Bansal P, et al. Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum. Brain Mapp. 2018;39:1995–2006.CrossRefPubMed
101.
Zurück zum Zitat Filonenko EA, Khokhlova VA. Effect of acoustic nonlinearity on heating of biological tissue by high-intensity focused ultrasound. Acoust. Phys. 2001;47:468–475.CrossRef Filonenko EA, Khokhlova VA. Effect of acoustic nonlinearity on heating of biological tissue by high-intensity focused ultrasound. Acoust. Phys. 2001;47:468–475.CrossRef
102.
Zurück zum Zitat Miranda PC. Physics of effects of transcranial brain stimulation. Handb. Clin. Neurol. 2013;116:353–366.CrossRefPubMed Miranda PC. Physics of effects of transcranial brain stimulation. Handb. Clin. Neurol. 2013;116:353–366.CrossRefPubMed
103.
Zurück zum Zitat Hariz MI, Hariz G-M. Therapeutic stimulation versus ablation. Handb. Clin. Neurol. 2013;116:63–71.CrossRefPubMed Hariz MI, Hariz G-M. Therapeutic stimulation versus ablation. Handb. Clin. Neurol. 2013;116:63–71.CrossRefPubMed
104.
Zurück zum Zitat Van Ness P, Skarpaas TC, Morrell M. Long-Term Outcome of Adults with Medically Intractable Mesial Temporal Lobe Seizures Treated with Responsive Neurostimulation (S52.001). Neurology. 2016;86:S52.001. Van Ness P, Skarpaas TC, Morrell M. Long-Term Outcome of Adults with Medically Intractable Mesial Temporal Lobe Seizures Treated with Responsive Neurostimulation (S52.001). Neurology. 2016;86:S52.001.
106.
107.
Zurück zum Zitat Shukla ND, Ho AL, Pendharkar AV, et al. Laser interstitial thermal therapy for the treatment of epilepsy: evidence to date. Neuropsychiatr. Dis. Treat. 2017;13:2469–2475.CrossRefPubMedPubMedCentral Shukla ND, Ho AL, Pendharkar AV, et al. Laser interstitial thermal therapy for the treatment of epilepsy: evidence to date. Neuropsychiatr. Dis. Treat. 2017;13:2469–2475.CrossRefPubMedPubMedCentral
108.
Zurück zum Zitat Schramm J. Temporal lobe epilepsy surgery and the quest for optimal extent of resection: a review. Epilepsia. 2008;49:1296–1307.PubMed Schramm J. Temporal lobe epilepsy surgery and the quest for optimal extent of resection: a review. Epilepsia. 2008;49:1296–1307.PubMed
109.
Zurück zum Zitat Rath SA, Braun V, Soliman N, et al. Results of DREZ coagulations for pain related to plexus lesions, spinal cord injuries and postherpetic neuralgia. Acta Neurochir. . 1996;138:364–369.CrossRefPubMed Rath SA, Braun V, Soliman N, et al. Results of DREZ coagulations for pain related to plexus lesions, spinal cord injuries and postherpetic neuralgia. Acta Neurochir. . 1996;138:364–369.CrossRefPubMed
110.
Zurück zum Zitat Mullan S, Lichtor T. Percutaneous microcompression of the trigeminal ganglion for trigeminal neuralgia. J. Neurosurg. 1983;59:1007–1012.CrossRefPubMed Mullan S, Lichtor T. Percutaneous microcompression of the trigeminal ganglion for trigeminal neuralgia. J. Neurosurg. 1983;59:1007–1012.CrossRefPubMed
111.
Zurück zum Zitat Monteith SJ, Medel R, Kassell NF, et al. Transcranial magnetic resonance–guided focused ultrasound surgery for trigeminal neuralgia: a cadaveric and laboratory feasibility study. J. Neurosurg. 2013;118:319–328.CrossRefPubMed Monteith SJ, Medel R, Kassell NF, et al. Transcranial magnetic resonance–guided focused ultrasound surgery for trigeminal neuralgia: a cadaveric and laboratory feasibility study. J. Neurosurg. 2013;118:319–328.CrossRefPubMed
112.
Zurück zum Zitat Payne AH, Hawryluk GW, Anzai Y, et al. Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability. Neural Regeneration Res. 2017;12:2045–2049.CrossRef Payne AH, Hawryluk GW, Anzai Y, et al. Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability. Neural Regeneration Res. 2017;12:2045–2049.CrossRef
113.
Zurück zum Zitat Horodyckid C, Canney M, Vignot A, et al. Safe long-term repeated disruption of the blood-brain barrier using an implantable ultrasound device: a multiparametric study in a primate model. J. Neurosurg. 2017;126:1351–1361.CrossRefPubMed Horodyckid C, Canney M, Vignot A, et al. Safe long-term repeated disruption of the blood-brain barrier using an implantable ultrasound device: a multiparametric study in a primate model. J. Neurosurg. 2017;126:1351–1361.CrossRefPubMed
114.
Zurück zum Zitat Hwang GM, Lani SW, Rosenberg AP, et al. Forward-looking engineering concepts for ultrasonic modulation of neural circuit activity in humans. Micro- and Nanotechnology Sensors, Systems, and Applications X. International Society for Optics and Photonics; 2018. p. 106391J. Hwang GM, Lani SW, Rosenberg AP, et al. Forward-looking engineering concepts for ultrasonic modulation of neural circuit activity in humans. Micro- and Nanotechnology Sensors, Systems, and Applications X. International Society for Optics and Photonics; 2018. p. 106391J.
115.
Zurück zum Zitat Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys. Med. Biol. 2016;61:R206–R248.CrossRefPubMedPubMedCentral Hynynen K, Jones RM. Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy. Phys. Med. Biol. 2016;61:R206–R248.CrossRefPubMedPubMedCentral
116.
Zurück zum Zitat Rosnitskiy PB, Vysokanov BA, Gavrilov LR, et al. Method for Designing Multielement Fully Populated Random Phased Arrays for Ultrasound Surgery Applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018;65:630–637.CrossRefPubMedPubMedCentral Rosnitskiy PB, Vysokanov BA, Gavrilov LR, et al. Method for Designing Multielement Fully Populated Random Phased Arrays for Ultrasound Surgery Applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2018;65:630–637.CrossRefPubMedPubMedCentral
117.
Zurück zum Zitat Hynynen K, Clement GT, McDannold N, et al. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls. Magn. Reson. Med. 2004;52:100–107.CrossRefPubMed Hynynen K, Clement GT, McDannold N, et al. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls. Magn. Reson. Med. 2004;52:100–107.CrossRefPubMed
118.
Zurück zum Zitat Viessmann OM, Eckersley RJ, Christensen-Jeffries K, et al. Acoustic super-resolution with ultrasound and microbubbles. Phys. Med. Biol. 2013;58:6447–6458.CrossRefPubMed Viessmann OM, Eckersley RJ, Christensen-Jeffries K, et al. Acoustic super-resolution with ultrasound and microbubbles. Phys. Med. Biol. 2013;58:6447–6458.CrossRefPubMed
119.
Zurück zum Zitat Errico C, Pierre J, Pezet S, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature. 2015;527:499–502.CrossRefPubMed Errico C, Pierre J, Pezet S, et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature. 2015;527:499–502.CrossRefPubMed
120.
Zurück zum Zitat Hamani C, Richter E, Schwalb JM, et al. Bilateral subthalamic nucleus stimulation for Parkinson’s disease: a systematic review of the clinical literature. Neurosurgery. 2005;56:1313–1321; discussion 1321–1324.CrossRefPubMed Hamani C, Richter E, Schwalb JM, et al. Bilateral subthalamic nucleus stimulation for Parkinson’s disease: a systematic review of the clinical literature. Neurosurgery. 2005;56:1313–1321; discussion 1321–1324.CrossRefPubMed
121.
Zurück zum Zitat Rosin B, Slovik M, Mitelman R, et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72:370–384.CrossRefPubMed Rosin B, Slovik M, Mitelman R, et al. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 2011;72:370–384.CrossRefPubMed
122.
Metadaten
Titel
Focused Ultrasound for Neuromodulation
verfasst von
David P Darrow
Publikationsdatum
01.01.2019
Verlag
Springer International Publishing
Erschienen in
Neurotherapeutics / Ausgabe 1/2019
Print ISSN: 1933-7213
Elektronische ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-018-00691-3

Weitere Artikel der Ausgabe 1/2019

Neurotherapeutics 1/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.