Skip to main content
Erschienen in: European Journal of Trauma and Emergency Surgery 3/2022

Open Access 06.09.2021 | Original Article

Fracture fixation in extremity trauma with carbon fiber-reinforced polyetheretherketone (CFR-PEEK) plates: evidence today

verfasst von: George D. Chloros, Apostolos D. Prodromidis, Jo Wilson, Peter V. Giannoudis

Erschienen in: European Journal of Trauma and Emergency Surgery | Ausgabe 3/2022

Abstract

Purpose

To compare the CFR-PEEK plates with conventional plates in fracture fixation with regards to clinical and radiological outcomes and complications.

Methods

A systematic literature search was conducted in four online databases independently by two reviewers using the Cochrane methodology for systematic reviews. The identified relevant studies were assessed against predetermined inclusion/exclusion criteria. Independent data extraction and assessment of risk of bias and study quality was carried out.

Results

Nine studies (patient n = 361) out of 6594 records were included for analysis: 2 RCTs (n = 63), 3 prospective cohort studies (n = 151), and 4 retrospective cohort studies (n = 147). Studies were grouped per anatomic area of fixation. Four studies (n = 200) examined fixation of proximal humerus fractures. Two studies (n = 74) examined fixation of distal radius fractures. Two studies (n = 53) assessed outcomes of fixation of distal femur fractures. One study (n = 87) assessed the outcomes of fixation of ankle fractures. All nine studies reported very high union rates (from 91% in distal femur to 100% in upper limb) for the CFR-PEEK plate groups and low complication rates. There was no significant difference in clinical outcomes, and rate of complications as compared to the conventional plate groups.

Conclusion

CFR-PEEK plates have high union rates in extremity fracture fixation similar to conventional plates with comparable good clinical outcomes and a very low and comparable rate of complications. Considering their advantages, CFR-PEEK plates seem to be valid alternative to conventional plating.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s00068-021-01778-x.

Introduction

Carbon fibers are fibers of about 5–10 µm the majority of which is composed of carbon atoms. They have unique advantage properties, such as high stiffness, tensile strength, temperature tolerance, chemical resistance, and are lightweight [1, 2]. The widespread use of carbon fiber composites in many fields including aerospace, military, civil engineering, and sporting industries paved the way to expand its use in medicine [2], with numerous applications particularly in orthopaedics including spine, joint arthroplasty and orthopedic trauma [2, 3]. The use of carbon fiber-reinforced polyetheretherketone (CFR-PEEK) implants is an emerging field in orthopaedic surgery because of the numerous advantages this material offers compared to its conventional counterparts (e.g., stainless steel) and these can be summarized as follows: (1) modulus of elasticity close to bone, therefore avoiding stress-shielding and resultant bone resorption (2) radiolucency and therefore enhanced ability to accurately achieve fracture reduction and monitor healing, (3) decreased artefact in Magnetic Resonance Imaging Scans, (4) no metal allergy, and increased osteoinductive properties and biocompatibility with minimal implant-related inflammatory response, (5) absence of cold welding at the plate-screw interface, (4–11). Main disadvantages of these plates include: (1) They cannot be contoured intraoperatively (form memory property) [4, 5]; (2) the increased cost of production, although the commercial price is similar to the conventional metal implants [6]; and (3) radiolucency at the same time may compromise appropriate plate visualization which is crucial to assess position or hardware failure, however radiopaque tantalum markers have been developed as a remedy [7, 8].
However, despite those potential advantages and preliminary reports already dating back to the 1980s [9], and their use steadily increasing recently, limited amount of studies exist in the literature. There have been sporadic reviews on the subject [2, 3, 10], mostly reporting their general orthopedic applications throughout the body using a variety of implants but robust systematic reviews are missing. The purpose of this study therefore was to conduct a focused systematic review to report the outcomes and complications of CFR-PEEK plates used for the fixation of extremity fractures.

Methods

For this systematic review, the Cochrane methodology for systematic reviews was followed [11]. The work was conducted with reference to a predefined protocol, which was registered with the PROSPERO database (https://​www.​crd.​york.​ac.​uk/​prospero/​) (CRD42021245114). The strategy for the systematic literature search included: (i) searching of electronic bibliographic databases, and (ii) scrutiny of references of included studies and any identified systematic review. The following electronic bibliographic databases were searched on March 2021 with no publication year limit: MEDLINE—Interface: EBSCOhost; EMBASE—Interface: Ovidsp; CINAHL (1961 to present)—Interface: EBSCOhost; CENTRAL (1988 to present)—Interface: Cochrane Library. There was a language limit because of limited access to translators and resources. Therefore, only studies available in English language were included. Age was not set as a limit to the search because of the difficulty of setting specific search terms, but all titles and abstracts about children (age < 16 years) were excluded whilst screening. The search in all databases was performed with a combination of keywords in multiple searches. Keywords were combined with the Boolean operators OR and AND. The selected keywords and the strategy for combining these keywords in five searches are summarized in Table 1.
Table 1
Summary of strategy for search performed in all databases
Search
Set of keywords
 
Set of keywords
S1
Carbon fiber
OR
Carbon fibre
AND
Implant* OR material* OR biomaterial* OR polymer* OR composite*
S2
Carbon fiber-reinforced
OR
Carbon fibre-reinforced
AND
Implant* OR material* OR biomaterial* OR polymer* OR composite*
S3
PEEK
AND
Implant* OR material* OR biomaterial* OR polymer* OR composite*
S4
Carbon fiber
OR
Carbon fibre
AND
Orthop*
S5
PEEK
AND
Orthop*
The asterisk is a wildcard and is included in the search

Inclusion/exclusion criteria

  • Study designs: Any comparative study design was eligible. This included randomised controlled studies, prospective cohort studies, case control studies, and retrospective cohort studies. Excluded study designs included case reports, reviews, editorials, commentaries, personal opinions, surveys and retrospective case series.
  • Population: The population included in the review were adults with an upper or lower extremity fracture who had surgical fixation with carbon fiber-reinforced plates.
  • Intervention/Comparators: The intervention was surgical fixation of upper or lower extremity fractures with plate and screws and studies which compared outcomes of CFR plates with conventional plates were included.
  • Outcomes: Outcomes included clinical outcomes (scores), radiographic outcomes, union (rates and/or time to union), and complications.
Based on the above inclusion/exclusion criteria, the titles of studies identified by the searches were screened for inclusion. Duplicate studies were removed. The abstracts of potential studies were then further screened and the full manuscripts of those studies still considered eligible were retrieved. The full text of studies, where a decision regarding inclusion could not be made from the title and abstract, were also retrieved. The reference lists of all selected articles (and of any other systematic review) were also examined for any additional articles not identified through the database search. Two reviewers assessed the search outputs independently. Any disagreements for inclusion were discussed between reviewers and if still unresolved with the senior experienced author.

Data extraction and data analysis

Two reviewers extracted relevant data from the included studies using a standardised data extraction form and inputted onto an Excel spreadsheet. Where necessary, results were discussed with the senior author to decide for extraction. Extracted data included:
  • Characteristics of studies: study design, level of evidence, year, country, setting, number of patients.
  • Characteristics of included population: age, gender, body mass index (BMI), comorbidities.
  • Side of fracture (left or right / dominant or non-dominant).
  • Types of fractures and classification used.
  • Outcomes examined and compared including clinical outcomes (scores), radiographic outcomes, range of motion (ROM), union (rates and/or time to union), and complications.
  • Follow-up: duration and loss to follow-up.
Due to the inherent heterogeneity of the included studies and the different areas of fixation examined a meta-analysis could not be performed. A brief narrative analysis of the studies was performed, presenting study characteristics, populations, outcomes and measurements.

Assessment of methodological quality of studies and quality of evidence

The methodological quality of each study was assessed as appropriate to the study design. For randomised controlled trials (RCTs), the Cochrane Risk of Bias Tool was applied [12]. For prospective comparative (cohort) studies, the Newcastle–Ottawa Scale (NOS) was used [13]. For retrospective cohort studies the revised and validated version of Methodological Index for Non-Randomised Studies (MINORS criteria) was applied [14]. Quality of evidence for the body of literature in the systematic review was assessed by two raters independently using the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) approach [15]. GRADE assesses the quality of evidence as high, moderate, low, or very low based on risk of bias, directness, consistency, precision, and reporting of bias [15]. Observational studies are considered low quality evidence but may be downgraded or upgraded according to GRADE recommendations.

Results

Findings of database searches

The searches identified 6594 records by title in total. For screening of the results an automated software was used (https://​www.​covidence.​org/​). After removal of 3,510 duplicates, 3,084 titles were screened. The screening process led to the initial selection of 46 studies based on information gathered from the titles and abstracts. A full-text review of these 46 articles and a thorough search of their references were performed. Finally, nine studies met the inclusion criteria and were used for analysis. Figure 1 shows the Preferred Reporting Items for Systematic reviews and meta-analyses (PRISMA) flow diagram used for identification of eligible studies [16].

Characteristics of included studies

Table 2 summarizes the characteristics of the nine included studies, which were published between 2015 and 2020. The methodology of each study was classified according to Mathes and Pieper [17]. There were two randomised controlled trials (RCTs) (n = 63) [18, 19], and three prospective cohort studies (n = 151) [2022]. The remaining four were retrospective cohort studies (n = 147) [2326]. The total number of participants included in the analysis from these studies was 361. Comparison groups included a group of patients fixed with a carbon fibre-reinforced polyetheretherketone (CFR-PEEK) plate and a group of patients treated with a conventional stainless-steel plate. One study only had as a control group the contralateral uninjured extremity [21].
Table 2
Characteristics of all included studies in the systematic review
Lead author (year)
Study design
Level evidence
Country
Groups/implants/company
Sample size (n)
Gender
Age (years)
Side
Patient characteristics
Proximal humerus
 Ziegler (2019) [19]
RCT
Level I
Germany
Group 1
 PEEK Power Humeral Fracture Plate (Arthrex, Naples, Florida, USA)
Group 2
 Proximal Humerus Internal Locking System—PHILOS (Depuy Synthes, West Chester, PA, USA)
63
Overall
 13M: 50F
Group 1
 6M: 26F
Group 2
 7M: 24F
Group 1
 Mean: 61.8
 Range: 49.4–74.2
Group 2
 Mean: 60.9
 Range: 48.5–73.3
Overall
 32D:31ND
Group 1
 15D:14ND
Group 2
 17D:17ND
NSD: gender, age, BMI, ASA
 Padolino (2018) [25]
Retrospective cohort
Level III
Italy
Group 1
 Diphos H CFR-PEEK plate (Lima Corporate, Italy)
Group 2
 Proximal Humerus Internal Locking System—PHILOS (DePuy Synthes, Umkirch, Germany)
42
Overall
 16M: 26F
Group 1
 9M: 12F
Group 2
 7M: 14F
Group 1
 Mean: 57.4
 Range: 41.0–78.0
Group 2
 Mean: 55.8
 Range: 22.0–78.0
Overall
 39D:3ND
Group 1
 19D:2ND
Group 2
 20D:1ND
NSD: gender, age, BMI
 Katthagen (2017) [22]
Prospective cohort
Level II
Germany
Group 1
 PEEK Power Humeral Fracture Plate (Arthrex, Naples, Florida, USA)
Group 2
 Proximal Humerus Internal Locking System—PHILOS (DePuy Synthes, Umkirch, Germany)
42
Overall
 14M: 28F
Group 1
 7M: 14F
Group 2
 7M: 14F
Group 1
 Mean: 66.8
 Range: 56.9–76.7
Group 2
 Mean: 67.4
 Range: 57.7–77.1
Overall
 25D:17ND
Group 1
 12D:9ND
Group 2
 13D:8ND
NSD: gender, age
 Schliemann (2015) [26]
Retrospective cohort
Level III
Germany
Group 1
 Diphos H CFR-PEEK plate (Lima Corporate, Italy)
Group 2
 Proximal Humerus Internal Locking System—PHILOS (DePuy Synthes, Umkirch, Germany)
53
NE
N/E
NR
NR
Distal radius
 Guzzini (2018) [21]
Prospective cohort
Level II
Italy
“Piccolo” Distal Radius Plate (CarboFix® Orthopaedics Ltd, Israel)
22
Overall
 8M: 14F
Group 1
 8M: 14F
Group 2
 8M: 14F (contralateral)
Group 1
 Mean: 50.8
 Range
Group 2
 Mean: 50.8
 SD: 10.34
NR
NSD: gender, age
 Perugia (2017) [18]
RCT
Level I
Italy
Group 1
 CarboFix CFR-PEEK distal radius volar locking plate (CarboFix® Orthopaedics Ltd, Israel)
Group 2
 Acu-Lock Volar Distal Radius Plate (Acumed Ltd., USA)
30
Overall
 9M: 21F
Group 1
 5M: 10F
Group 2
 4M: 11F
Group 1
 Mean: 56.8
 Range: 32.0–71.0
Group 2
 Mean: 52.6
 Range: 35.0–64.0
Overall
 10D:20ND
Group 1
 4D:11ND
Group 2
 6D:9ND
NSD: gender, age
Distal femur
 Byun (2020) [23]
Retrospective cohort
Level III
USA
Group 1
 CarboFix CFR-PEEK distal femur locking plate
(CarboFix® Orthopaedics Ltd, Israel)
Group 2
 VA-LCP Curved Condylar Plate (DePuy Synthes, Paoli, PA)
30
Overall
 16M: 14F
Group 1
 6M: 3F
Group 2
 10M: 11F
Group 1
 Mean: 49.8
 Range: 23.0–80.0
Group 2
 Mean: 54.9
 Range: 18.0–89.0
NR
NSD: gender, age, BMI, smoking, diabetes
 Mitchell (2018) [24]
Retrospective cohort
Level III
USA
Group 1
 CarboFix CFR-PEEK distal femur locking plate (CarboFix® Orthopaedics Ltd, Israel)
Group 2
 VA-LCP Curved Condylar Plate (DePuy Synthes, Paoli, PA)
22
Overall
 6M: 16F
Group 1
 3M: 8F
Group 2
 3M: 8F
Group 1
 Mean: 71.7
 Range: 51.0–89.0
Group 2
 Mean: 57.3
 Range: 27.0–86.0
NR
NSD: gender, smoking, PVD
SSD: age, diabetes
Ankle
 Guzzini (2017) [20]
Prospective cohort
Level II
Italy
Group 1
 CFR-PEEK ankle radiolucent plate (not stated)
Group 2
 Stainless steel ankle plate
(not stated)
87
Overall
 25M: 62F
Group 1
 14M: 32F
Group 2
 11M: 30F
Group 1
 Mean: 56.8
 Range: 54.46–59.14
Group 2
 Mean: 58.3
 Range: 59.14–61.85
NR
NSD (calculated): gender, age
CFR-PEEK carbon fibre-reinforced polyetheretherketone, SD standard deviation, D dominant side, ND non-dominant side, NSD = Non significant difference (p > 0.05), BMI body mass index, ASA American Society of Anesthesiology Classification, PVD peripheral vascular disease, NR not reported, NE not extractable
Grouping the studies per anatomic area, generated four groups of studies:
(i)
Fixation of proximal humerus fractures [19, 22, 25, 26].
 
(ii)
Fixation of distal radius fractures [18, 21].
 
(iii)
Fixation of distal femur fractures [23, 24].
 
(iv)
Fixation of ankle fractures [20].
 
Analysing the patient characteristics, data for gender and age were available for almost all included studies (Table 2). Only for one study, data regarding age and gender were not extractable [26]. Eight studies that reported data for gender and age showed no significant difference between comparison groups. Four of the studies also reported data for patient comorbidities (BMI, smoking, diabetes, other medical problems) and comparison groups had no significant difference for the comorbidities reported (see Table 2) [19, 2325].

Methodological quality of studies and quality of evidence

There were two RCTs [18, 19] which were assessed for their methodological quality using the Cochrane Risk of Bias Tool [12]. The results of the assessment are shown in Table 3. One RCT had three key domains with unclear risk of bias (sequence generation, allocation concealment, blinding of the participants) [19]. The other study had adequate sequence generated, concealed allocation and blinding of participants without any other source of bias; hence, it can be classified as low risk of bias [18].
Table 3
Risk of bias of the RCTs with the Cochrane Risk of Bias Tool [10]
Lead author (year)
Sequence generation
Allocation concealment
Blinding of participants
Incomplete outcome data
Selective outcome reporting
Other source of bias
Total risk of bias
Ziegler (2019) [19]
Unclear
Unclear
Unclear
Yes
Yes
Yes
Unclear
Perugia (2017) [18]
Yes
Yes
Yes
Yes
Yes
Yes
Low
The Newcastle–Ottawa scale (NOS) was used to assess the methodological quality of the three prospective cohort studies included in the review [13]. The results are summarised in Table 4 below. All three studies were rated ‘good quality’ (for threshold see legend in Table 4), with two studies scoring the highest score of nine stars [20, 21]; and one study scoring seven stars [22].
Table 4
Risk of bias for prospective cohort studies using the Newcastle–Ottawa Scale (NOS) [11]
Lead Author (year)
Representativeness of cohort
Selection of non-exposed cohort
Ascertainment of exposure
Demonstration that outcome was not present at start of study
Comparability of cohorts
Assessment of outcome
Follow-up long enough for outcomes to occur
Adequacy of follow-up of cohorts
NOS score
Guzzini (2018) [21]
Truly representative*
Drawn from same community as the exposed cohort*
Secure record*
Yes*
Study controls for type of plate used*
Study controls for gender, age*
Independent blind assessment*
Yes*
Complete follow up for all subject accounted for*
9 stars
Guzzini (2017) [20]
Truly representative*
Drawn from same community as the exposed cohort*
Secure record*
Yes*
Study controls for type of plate used*
Study controls for gender, age*
Record linkage*
Yes*
Complete follow up for all subject accounted for*
9 stars
Katthagen (2017) [22]
Somewhat representative
Drawn from same community as the exposed cohort*
Secure record*
Yes*
Study controls for type of plate used*
Study controls for gender, age*
Record linkage*
No
Subjects lost to follow up unlikely to introduce bias (< 20% lost)*
7 stars
A study can be awarded a maximum of 1 star for each question and a maximum of 2 stars for comparability of cohorts. The more stars a study was awarded, the lower was the risk of bias
Threshold for “good quality”: 3 or 4 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 or 3 stars in outcome/exposure domain
The asterisks represent stars
The MINORS criteria were used to assess the methodological quality of the four retrospective cohort studies (Table 5) [14]. The lowest score was 18 out of 24 points for two of the studies [23, 26]. The highest score was 20 out of 24 points [25]. All studies clearly stated their aim, had adequate control and contemporary groups, and performed adequate statistical analysis. Three studies also included consecutive patients [2426].
Table 5
Assessment of methodological quality of the retrospective cohort studies using MINORS criteria [12]
Criteria
Byun [23]
Mitchell [24]
Padolino [25]
Schliemann [26]
A clearly stated aim
2
2
2
2
Inclusion of consecutive patients
0
1
1
1
Prospective collection of data
0
1
1
2
Endpoints appropriate to the aim of study
2
2
1
2
Unbiased assessment of the study endpoint
2
2
2
2
Follow-up period appropriate to the aim of study
2
1
2
1
Loss to follow-up < 5%
2
2
2
1
Prospective calculation of the study size
0
0
1
0
Adequate control group
2
2
2
2
Contemporary group
2
2
2
2
Baseline equivalence of groups
2
2
2
1
Adequate statistical analysis
2
2
2
2
Total
18
19
20
18
The items are scored 0 (not reported), 1 (reported but inadequate) or 2 (reported and adequate)
Maximum possible score being 24 for comparative studies
MINORS Methodological Index for Non-randomized Studies
The GRADE approach was used to assess the overall quality of evidence in this review and the following ratings are reported [15]. The review included two RCTs but also seven non-randomised studies, so the starting rating of the study was ‘low quality’ evidence. The study had some inconsistency with methodological and clinical heterogeneity, having three different study designs, different anatomic areas for fixation, and differences in some population characteristics, even amongst the same study designs. However, there was no significant variability in the reported results. Overall, there were no concerns for indirectness, publication bias and imprecision. Based on this assessment, evidence is rated as ‘low quality’.

Outcomes examined per anatomic area

Proximal humerus fractures

Four studies (patients n = 200) assessed outcomes of fixation of proximal humerus fractures and compared a CFR-PEEK humeral plate (Group 1) with a conventional Philos proximal humeral plate (Group 2/Control group) [19, 22, 25, 26]. One study was a RCT [19], one was a prospective cohort [22], and two were retrospective cohort studies [25, 26]. Two studies included 2-part, 3-part, and 4-part fractures (Neer classification [27]) in both groups [19, 22]. Interestingly, there were significantly more 3-part fractures fixed with the CFR-PEEK plate, whereas significantly more 4-part fractures were fixed with the conventional plate. The other two studies included only 3-part and 4-part fractures in both groups [25, 26]. The shorter radiological follow-up was 3 months [19]; the longest follow-up being 52.7 months (mean time) [25]. Outcomes are summarised in Table 6. There was no significant difference between comparison groups in clinical outcomes, ROM, and in the neck-shaft angle. Both groups in all studies had 100% union rate. With regards to complications there was no significant difference between two comparison groups. One study reported no complications in both groups [19]; one study reported the same complications (malunion, screw perforation, avascular necrosis, revision surgery) at almost the same low rate in both groups [25]. One study reported a lower rate of screw perforations and loss of fixations in the CFR-PEEK group as compared to the control group, although not significant [22]. Finally, one study reported again a lower rate of complications (malunions, AVN, revision surgery) in the CFR-PEEK group as compared to the control group, although not significant [26].
Table 6
Outcomes of studies examining proximal humerus fixation with CFR-PEEK plates
Lead author (year)
Comparison groups
Type of fractures (Neer) [13]
Clinical outcomes (Scores)
ROM
Radiographic outcomes
Union
Complications
Follow-up (months)/loss to follow-up
Ziegler (2019) [19]
Group 1 (n = 32)
 CFR-PEEK group
Group 2 (n = 31)
 Control group
2-part
 Group 1: 6
 Group 2: 5
 NSD
3-part
 Group 1: 22
 Group 2: 13
 p = 0.03
4-part
 Group 1: 4
 Group 2: 13
 p = 0.008
DASH score
 Group 1: 27.5 ± 20.5
 Group 2: 28.5 ± 17.9
Oxford score
 Group 1: 37.7 ± 8.8
 Group 2: 38.6 ± 6.8
SST
 Group 1: 62.5 ± 22.3
 Group 2: 65 ± 20.1
NR
Neck-shaft angle
 Group 1: 142.53° ± 6.45°
 Group 2: 138.81° ± 8.21°
Group 1
 32/32–100%
Group 2
 31/31–100%
Malunion: 0
Screw perforation: 0
Loss of fixation: 0
Displacement: 0
AVN: 0
Implant failure: 0
Revision surgery: 0
Infection: 0 (both groups)
Clinical: 6
 No loss
Radiological: 3
 Group 1: 28/31
 Group 2: 23/31
Padolino (2018) [25]
Group 1 (n = 21):
 CFR-PEEK group
Group 2 (n = 21):  Control group
3-part:
 Group 1: 14
 Group 2: 17
 NSD
4-part:
 Group 1: 7
 Group 2: 4
 NSD
Constant score
 Group 1: 66.3 ± 20.5
 Group 2: 63.3 ± 19.6
SST
 Group 1: 7 ± 2.25
 Group 2: 7 ± 2.16
Active AE (NSD)
 Group 1: 142.8°
 Group 2: 127.6°
Active LE (NSD)
 Group 1: 134.1°
 Group 2: 113.8°
Ext. rotation (NSD)
 Group 1: 32.6°
 Group 2: 36.6°
Int. rotation (NSD)
 Group 1: 2.8°
 Group 2: 2.4°
 
Group 1:
 21/21–100%
Group 2:
 21/21–100%
Malunion
 Group 1: 2/21 (9.5%)
 Group 2: 2/21 (9.5%)
Screw perforation:
 Group 1: 2/21 (9.5%)
 Group 2: 3/21 (14%)
AVN
 Group 1: 1/21 (4.8%)
 Group 2: 1/21 (4.8%)
Revision surgery-
 Group 1: 1/21 (4.8%)
 Group 2: 1/21 (4.8%)
Clinical/
Radiological
 Group 1:
 Mean: 30.7
 Range: 24–54
Group 2:
 Mean: 52.7
 Range: 29–77
 No loss
Katthagen (2017) [22]
Group 1 (n = 21):
 CFR-PEEK group
Group 2 (n = 21):  Control group
2-part:
 Group 1: 2
 Group 2: 2
 NSD
3-part:
 Group 1: 9
 Group 2: 12
 NSD
4-part:
 Group 1: 10
 Group 2: 7
 NSD
Constant score
 Group 1: 73.8 ± 15.4
 Group 2: 69.4 ± 18.5
p = 0.43
SSV:
Group 1: 0.74
VAS pain:
Group 1: 0.1 ± 0.4
Abduction
 Group 1: 124.3° ± 42°
 Group 2: NR
Neck-shaft angle:
 Group 1: 129.6° ± 8.7°
 Group 2: NR
Group 1: 17/17–100%
Group 2: NR
Malunion: 0 (both groups)
Screw perforation: (NSD)
 Group 1: 0/17
 Group 2: 5/19 (26%)
Loss of fixation: (NSD)
 Group 1: 0/17
 Group 2: 3/19 (16%)
Displacement
 Group 1: 0
 Group 2: NR
AVN:
 Group 1: 0
 Group 2: NR
Implant failure
 Group 1: 0
 Group 2: NR
Revision surgery: (NSD)
 Group 1: 4/21 (19%)
 Group 2: 5/21 (24%)
Clinical: 12
 Group 1: 20/21
 Group 2: 19/21
Radiological:
 Mean: 3.2
 Range: 1.5–5
 Group 1: 17/21
Schliemann (2015) [26]
Group 1 (n = 23):
 CFR-PEEK group
Group 2 (n = 30)
 Control group (historical)
3-part
4-part
Constant score (NSD)
 Age/Gender adjusted
 Group 1: 71.3 (44–97)
 Group 2: 59.2 (28–86)
DASH score (NSD)
 Group 1: 27.5 (7–48)
 Group 2: 28.5 (10.6–46.4)
Oxford score (NSD)
 Group 1: 27.4 (8–45)
 Group 2: 21.6 (9–43)
SST
 Group 1: 59
 Group 2: 48
Abduction
 Group 1: 145° (120°–150°)
 Group 2: NR
Active AE
 Group 1: 170° (150°–180°)
 Group 2: NR
Neck-shaft angle:
 Group 1: 139° (129°–146°)
Group 1: 100%
Group 2: 100%
Malunion: (NSD)
 Group 1: 4/23 (14%)
 Group 2: 7/30 (23%)
Screw perforation:
 0 (both groups)
Loss of fixation:
 0 (both groups)
Displacement
 0 (both groups)
AVN: (NSD)
 Group 1: 1/23 (4%)
 Group 2: 3/30 (10%)
Implant failure
 0 for both groups
Revision surgery: (NSD)
 Group 1: 7/23 (30%)
 Group 2: 8/30 (27%)
Clinical: 24
 Group 1: 23/29
Radiological: 6
 Group 1: 29/29
CFR-PEEK carbon fibre-reinforced polyetheretherketone, ROM range of motion, DASH disabilities of the arm, shoulder and hand, VAS Visual Analogue Scale, SSV Simple Shoulder Value, SST Simple Shoulder Test, NR not reported, NSD no significant difference, AE anterior elevation, AVN avascular necrosis
Statistically significant values are in bold

Distal radius fractures

Two studies (patients n = 74) assessed outcomes of fixation of distal radius fractures with a CFR-PEEK plate [18, 21]. One study (RCT) compared the CFR-PEEK volar locking plate (Group 1) with a conventional titanium volar locking plate (Group 2/Control group) [18]. The other study (prospective cohort) compared the operated side using the CFR-PEEK volar locking plate (Group 1) with the uninjured contralateral side (Group 2/Control group) [21]. The mean time for follow-up was 15.7 months for both studies. Outcomes are summarised in Table 7. One study reported that no patients in both groups had a significant difference of grip strength, hand grip and key pinch as compared to the contralateral side [18]. The DASH score, the time to return to activities of daily living (ADL), and the Visual Analogue Scale (VAS) for pain had no significant difference between comparison groups. There was no significant difference between groups in wrist ROM as well. All radiographic values (radial height, radial inclination, volar tilt, ulnar variance, articular step-off) showed no significant difference between groups. There were also no complications reported for both groups. The second study reported no significant difference for grip strength and hand grip as compared to the contralateral uninjured side [21]. ROM also had no significant difference as compared to the contralateral side. This study reported on union rates and all fractures treated with the CFR-PEEK volar locking plate were united (100%). There were no complications reported in both studies.
Table 7
Outcomes of studies examining distal radius fixation with CFR-PEEK plates
Lead author (year)
Comparison groups
Type of fractures (ΑΟ classification)
Clinical outcomes
ROM
Radiographic outcomes
Union
Complications
Follow-up (months)/loss to follow-up
Guzzini (2018) [21]
Group 1 (n = 22):
 CFR-PEEK group
Group 2 (n = 22):  Control group
NR
QuickDASH
 Group 1: 9.3 (2.5–15.9)
Hand Grip
 Group 1: 92.3%
 Mean: 19.5 kg
 Group 2: NSD
Key pinch
 Group 1: 90.4%
 Mean: 8.1 kg
 Group 2: NSD
Return to ADL
 Group 1: mean 4.2 weeks
VAS
 Group 1: 2.3 (0–3.5)
Extension
 Group 1: 65° (54°–76°)
 Group 2: NSD
Flexion
 Group 1: 70° (72°–80°)
 Group 2: NSD
Supination
 Group 1: 87° (82–90)
 Group 2: NSD
Pronation
 Group 1: mean 80°
 Group 2: NSD
Normal radial height
 Group 1: 70.6% (6.8–7.3 mm)
Normal radial inclination
 Group 1: 78.5% (15–27.5°)
Normal volar tilt
 Group 1: 93.2% (3–187°)
Ulnar variance
 Group 1: 89.5% (0.7–4.1 mm)
Articular step-off
 Group 1: 18%
Group 1: 22/22–100%
None
Clinical/radiological
 Mean: 15.7
 Range: 12–19
Perugia (2017) [18]
Group 1 (n = 15):
 CFR-PEEK group
Group 2 (n = 15):
 Control group
B1
 Group 1: 2
 Group 2: 1
 NSD
B2
 Group 1: 1
 Group 2: 0
 NSD
B3
 Group 1: 3
 Group 2: 1
 NSD
C1
 Group 1: 5
 Group 2: 4
 NSD
C2
 Group 1: 1
 Group 2: 3
 NSD
C3
 Group 1: 3
 Group 2: 6
 NSD
DASH (NSD)
 Group 1: 15.3 (2.5–58.9)
 Group 2: 12.2 (10.6–54.8)
Hand grip (NSD)
 Group 1: 92.3%
 Mean: 19.5 kg
 Group 2: 94.4%
 Mean: 22.4 kg
Key pinch (NSD)
 Group 1: 90.4%
 Mean: 8.1 kg
 Group 2: 90.7%
 Mean: 8.4 kg
Return to ADL (NSD)
 Group 1: mean 4.2 weeks
 Group 2: mean 3.8 weeks
VAS (NSD)
 Group 1: mean 3.6 (0–7)
 Group 2: mean 2.9 (0–6)
Extension (NSD)
 Group 1: 64° (44°–76°)
 Group 2: 61° (42°–75°)
Flexion (NSD)
 Group 1: 78° (59°–80°)
 Group 2: 80° (62°–80°)
Supination (NSD)
 Group 1: 87° (72°–90°)
 Group 2: 88° (70°–90°)
Pronation (NSD)
 Group 1: 80°
 Group 2: 77°
Normal radial height
 Group 1: 66.6% (6.8–17.3 mm)
 Group 2: 70% (6.3–18.2 mm)
Normal radial inclination
 Group 1: 75% (15–27.5°)
 Group 2: 73% (14–29°)
Normal volar tilt
 Group 1: 90.2% (3–187°)
 Group 2: 91.3% (5–185°)
Ulnar variance
 Group 1: 86.3% (0.7–4.1 mm)
 Group 2:85.8% (0.5–4.8 mm)
Articular step-off
 Group 1: 35.3%
 Group 2: 37%
 NSD for all values
Not reported
None
Clinical/
Radiological
 Group 1:
 Mean: 15.7
 Range: 12–19
 No loss to f/u
 Group 2:
 Mean: 16.1
 Range: 13–21
 No loss
CFR-PEEK carbon fibre-reinforced polyetheretherketone, DASH disabilities of the arm, shoulder and hand, ADL activities of daily living, VAS Visual Analogue Scale, NR not reported, NSD not significant difference

Distal femur fractures

Two studies (patients n = 53) assessed outcomes of fixation of distal femur fractures and compared a CFR-PEEK distal femur locking plate (Group 1) with a conventional stainless steel variable angle distal femur LCP plate (Group 2/Control group) (Table 8) [23, 24]. Both studies were retrospective cohort studies. There was no significant difference in the type/severity of fractures between groups (OTA Compendium classification). One study had a follow-up of 6 months [23], and the other study had a longer follow-up with a mean time of 12.25 months. Outcomes are summarised in Table 8. Regarding union of the fractures, one study used the modified RUST (mRUST) score with no significant difference between the two plates [23]. All the fractures were united in the CFR peek group, whereas the control group had three cases (14%) of non-union. The second study reported on the mean time to radiographic union which showed no significant difference between two plates [24]. The CFR-PEEK plate group had only one case of non-union, and the conventional stainless steel plate group had four cases of non-union, with the difference being not significant. Regarding complications, both studies showed no significant difference between groups in the few complications reported (hardware failure, reoperation, change in alignment).
Table 8
Outcomes of studies examining distal femur fixation with CFR-PEEK plates
Lead author (year)
Comparison groups
Type of fractures (OTA compendium classification)x
Union
Non-union
Mean time to FWB
Complications
Follow-up (months)/loss to follow-up
Byun (2020) [23]
Group 1 (n = 10):
 CFR-PEEK group
Group 2 (n = 21):
 Control group
Type C
 Group 1: 7
 Group 2: 14
 (p = 0.972)
Periprosthetic
 Group 1:2
 Group 2: 5
 (p > 0.05)
Open
 Group 1: 4
 Group 2: 9
 (p = 0.597)
Closed
 Group 1: 6
 Group 2: 12
 (p > 0.05)
mRUST score
 Group 1: 11.4 ± 2.6 (7.7–16)
 Group 2: 10.5 ± 2.5 (6.0–15.7)
 (p = 0.374)
Group 1: 0/10
Group 2: 3/21 (14%)
NR
Hardware failure
 0 in both groups
Reoperation
 Group 1: 0/10
 Group 2: 3/21
Change in alignment
 Group 1: 1/10 (10%)
 Group 2: 1/21 (4.8%)
 (p = 0.548)
Clinical/radiological
 6 months
 No loss
Mitchell (2018) [24]
Group 1 (n = 11):
 CFR-PEEK group
Group 2 (n = 11):
 Control group
Type C
 Group 1: 4
 Group 2: 5
 (p = 0.68)
mRUST score
 N/R
Mean time to radiographic union
 Group 1: 18.8 weeks
 Group 2: 12.4 weeks
(p = 0.14)
Group 1: 1/11 (9%)
Group 2: 4/11 (36%)
(p = 0.12)
Group 1: 9.8
Group 2: 11.7
(p = 0.12)
Hardware failure
 Group 1: 0/11
 Group 2: 2/11
 (p = 0.14)
Reoperation
 Group 1: 1/11 (9%)
 Group 2: 4/11 (36%)
 (p = 0.08)
Change in alignment
 NR
Clinical/
Radiological
 Group 1:
 Mean: 12.25
 Range: 2.5–15
 No loss
 Group 2:
 Mean: 11.5
 Range: 2.5–30.5
 No loss
 (p = 0.82)
CFR-PEEK carbon fibre-reinforced polyetheretherketone, OTA Orthopaedic Trauma Association, FWB full weight bearing, ROM range of motion, NR not reported, mRUST modified radiograph union score

Ankle fractures

One study (n = 87) assessed the outcomes of fixation of ankle fractures and compared a CFR-PEEK ankle plate (Group 1) with a conventional stainless steel ankle plate (Group 2/Control group) [20]. The mean time to follow-up was 14 months. Regarding clinical outcomes (Table 9), there was no significant difference between the comparison groups for all outcomes/scores reported (Olerud-Molander Ankle score, Ankle-Hind foot scale, VAS). All reported radiographic values (Talocrural angle, restoration of joint line) showed no significant difference between two groups. There was no significant difference reported between the two plates for the time to union, but the authors did not give any numbers. Three patients (6.5%) in the CFR-PEEK group and four patients (9.8%) in the control group required removal of metalwork with the difference being not significant.
Table 9
Outcomes of studies examining ankle fracture fixation with CFR-PEEK plates
Lead author (year)
Comparison groups
Clinical outcomes
Radiographic outcomes
Time to union
Removal of metalwork
Follow-up (months)/Loss to follow-up
Guzzini (2017) [20]
Group 1 (n = 46):
 CFR-PEEK group
Group 2 (n = 41):
 Control group
OMAS
 Group 1: 91.1 ± 4.16
 Range: 86–95.26
 Group 2: 88.7 ± 4.7
 Range 84–93.4
 NSD
AOFAS
 Group 1: 92.1 ± 4.16
 Range 87.94–96.26
 Group 2: 90.1 ± 4.7
 Range 85.4–94.7
 NSD
VAS
 Group 1: 1.4 ± 1.1
 Range 0.3–2.5
 Group 2: 1.5 ± 0.7
 Range 0.8–2.2
 NSD
Talocrural angle
 Group 1: 9.3 ± 0.9°
 Range 8.4–10.2°
 Group 2: 10.4 ± 0.8°
 Range 9.6–11.2°
 NSD
Restoration of joint line
 Group 1: 45/46
 Group 2: 39/41
 NSD
NSD between 2 groups
Group 1: 3/46 (6.5%)
Group 2: 4/41 (9.8%)
NSD
Clinical/radiological
 Mean: 14 ± 2
 Range: 6–24
 No loss
CFR-PEEK carbon fibre-reinforced polyetheretherketone, OMAS Olerud-Molander Ankle score, AOFAS Ankle-Hindfoot scale, VAS Visual Analogue Scale, NSD not significant difference

Discussion

Although CFR-PEEK implants have been around for years and have several advantages [4, 8, 1820, 23, 25, 26], they are slowly regaining popularity and have been used in a variety of orthopedic applications including trauma, infection, and tumors [5]. This is the first systematic review providing evidence regarding the use of CFR-PEEK plates in extremity trauma. Overall results indicate very high union rates similar to conventional plates when used for fixation of either upper or lower limb fractures with similarly good clinical outcomes/scores. The rate of complications is low and comparable to that reported in the literature for their conventional counterparts.
For this review only Level I–III evidence studies, both randomised and non-randomised, were included. However, there were enough retrospective case series studies (Level IV) that were excluded from the analysis. During screening of the available evidence, ten relevant retrospective case series studies were identified [4, 6, 8, 2834]. Acknowledging the limitations of such study designs, it is worth to summarise and note their findings on the use of CFR-PEEK plates in fracture fixation. The characteristics and the findings of these case series studies are summarised in Table 10.
Table 10
Characteristics and findings of excluded retrospective case series studies
Lead Author (year)
Implants/company/country
Sample size (n)
Gender
Age (years)
Type of fractures
Follow-up (months)/loss to follow-up
Union/time to union
Outcomes/complications
Proximal humerus
 Rotini (2015) [4]
Diphos H CFR-PEEK plate/Lima Corporate/Italy
160
41 M:119F
Mean:64
Range: 23–84
Neer (13)
 2-part: 55
 3-part: 76
 4-part: 29
Minimum f/u: 24
Lost to f/u: 12%
Union:
158/160 (99%)
Time: NR
Outcomes:
 Mean Constant Score: 76
 Mean DASH Score: 28
 Abduction: 129° ± 25°
 Active AE: 137° ± 28°
 Ext. rotation: 48° ± 19°
 Int. rotation: 56° ± 26°
Complications:
 Plate breakage (intraoperatively): 3/160 (2%) (1st generation plates)
 Screw perforation: 8/160 (5%)
 Loss of fixation: 5/160 (3%)
 Fragment displacement: 2/160 (1.3%)
 AVN: 13/160 (8%)
 Implant failure: 5/160 (3%)
 Revision surgery: 41/160 (25.6%)
Distal radius
 Tarallo (2020) [34]
Volar fixed angle plate DiPHOS-RM/Lima Corporate/Italy
110
33M:77F
Mean:56.8
Range: 23–84
AO:
 A3 (14). B3 (33), C1 (18), C2 (30), C3 (15)
Mean: 48
Range: 14–81
Lost to f/u: 9%
NR
Outcomes:
 Not reported (only analyzed adverse events)
Complications:
 Intraop plate ruptures: 4/110 (3.6%) (revised with new PEEK plate)
 FPL rupture: 1
 Revision surgery: 4/110 (3.6%)
 1 for post-op plate rupture
 2 for extensor irritation
 1 for infection
 Allemann (2019) [29]
2.7 mm CF/PEEK plate/Inc. Icotec, Altstätten/Switzerland
10
6M:4F
Mean: 53.3 ± 16.6
AO
 All type B fractures
Minimum f/u: 12
Loss to f/u: NR
Union: 10/10 (100%)
Time: NR
Outcomes:
 Wrist ROM: significant increase
 Return to ADLs without limitations:
10/10 (100%)
Complications:
 Intraop breakage of screws: 2 (20%)
 Di Maggio (2017) [8]
Piccolo Composite™ CFR-PEEK radiolucent volar plate/Unimedical Biomedical Technologies/Italy
64
38M:26F
Mean: 56.8
Range: 23–84
AO:
 B1 (6), B2 (13), B3 (15), C1 (10), C2 (7), C3 (10)
Minimum f/u: 12
Lost to f/u:
9.8%
Union:
64/64 (100%)
Time to union: 6 weeks
Outcomes:
 Modified Mayo wrist Score: 90.54 (range 75–100; 95% CI: 88.4–92.6)
 Return to ADLs without limitations: 64/64 (100%)
Complications:
 Plate removal: 1/64 (1.6%) (aseptic loosening of screw)
 Tarallo (2014) [6]
Volar fixed angle plate DiPHOS-RM/ Lima Corporate/Italy
40
16M:24F
Mean: 65
Range: 26–82
AO:
 B1 (2), B2 (6), C1 (21), C2 (9), C3 (2)
Minimum f/u: 12
Loss to f/u: NR
Union: 40/40 (100%)
Time: NR
Outcomes:
 Mean DASH: 6 (3–16)
 Grip strength: 92% of contralateral
 Return to ADLs without limitations: 40/40 (100%)
 Extension: 55°(40°–65°)
 Flexion: 65°(45°–80°)
 Supination: 75°(65°–90°)
 Pronation: 79° (60°–90°)
Complications:
 Plate removal: 1 (2.5%) (flexor tenosynovitis—technical error)
Distal femur
 Baker (2004) [30]
Distal femur carbon plate OrthoDesign/OrthoDynamics, UK
12
NR
Mean: 78
Range: 57–94
NR
NR
11/12 (85%)
Time to union: 4 months (3–6)
Outcomes:
 Return to pre-injury level of mobility: 11/12 (92%)
Complications:
 Νon-union: 1/12 (8%) (revised with long stem prosthesis)
 Al-Shawi (2002) [28]
NR/UK
5
5F
Mean: 74.8 Range: 69–83
NR
Mean: 30
Range: 18–42
Union: 5/5 (100%)
Time to union: 5 weeks–5 months (mean)
Outcomes:
 No residual pain
Complications:
 Malunion: 1 (clinically not significant)
 Pemberton (1994) [32]
Distal femur carbon plate OrthoDesign/OrthoDynamics/ UK
19
19F
Mean: 80
Range: 66–92
AO
 A2 (9), A3 (8), C2 (2)
Minimum f/u: 12
Loss to f/u: NR
17/19 (89%)
Time to union 2–5 months
Outcomes:
 Return to pre-injury level of mobility and independence: 17/17
Complications:
 Shortening (1–1.5 cm): 2/19 (10.5%)
 Union in 10° varus: 1/19 (5%)
 < 90° flexion: 2/19 (10.5%)
Ankle
 Pinter (2018) [33]
Piccolo CompositeTM Distal Fibula Plate/ Carbofix Orthopedic Ltd/Israel
30
12M:18F
Mean: 46.8
Range: 18–79
Weber B (27)
Weber C (3)
Mean: 20
Range: 12–27
Lost to f/u:
20%
23/24 (96%)
Outcomes:
 No outcome scores reported
Complications:
 Failure of syndesmosis fixation: 1/30 (3%)
 Infection: 1/30 (3%)
 Caforio (2014) [31]
Piccolo CompositeTM Distal Fibula Plate/Carbofix Orthopedic Ltd/Israel
27
14M:13F
Mean: 57.3
Range: 19–78
Monomalleolar: 4
Bimalleolar: 12
Trimalleolar: 11
Minimum f/u: 3
Loss to f/u: NR
NR
Outcomes:
 Full recovery of ROM: 26/27 (96%)
 No pain (at 2 months): 26/27 (96%)
Complications:
 Plate removal: 2 (7%)
 Skin discoloration: 1 (3.7%)
 Reduced ROM: 1 (3.7%)
UK United Kingdom, M males, F females, f/u follow-up, NR not reported, AE anterior elevation, int internal, ext external, AVN avascular necrosis, ROM range of motion, ADLs activities of daily living, FPL flexor pollicis longus

Proximal humerus fractures

The results reported herein, indicate that there is no significant difference in clinical outcomes, ROM and neck-shaft angle, and there is a 100% union rate [4, 19, 22, 25, 26] with a similar complication rate. In a retrospective study, a high union rate was also observed (Table 10) [8]. However, a higher incidence of complications was noted (plate breakage and revision surgery) but these findings can be attributed to the first generation of CFR-PEEK plates used. The proximal humerus has several particularities when conventional implants are used: The high-rigidity of titanium implants may lead to 8–12% secondary screw perforation, and subsequent loss of reduction with up to 20% revision rates, especially when the bone is osteoporotic [35, 36]. In addition, primary screw perforation has been reported in up to 8% of cases due to the intraoperative difficulty of visualizing the posterior humeral head as it is obscured by the radio-opaque hardware [3537]. In theory therefore, the use of a CFR-PEEK plate is advantageous. Indeed, two studies reported a trend with lower complications of CFR-PEEK plates, including screw perforation and loss of fixation [22], and malunions, AVN and revision surgeries [26], however this did not reach statistical significance. It can be concluded that the use of CFR-PEEK plates in the proximal humerus is justified with equivalent results and potentially lower complication rates, but further larger-scale studies are needed to confirm or dismiss those trends.

Distal radius fractures

The two studies included in the review, showed that the results of the CFR-PEEK plates are comparable to either the conventional implant (n = 44) [21] or to the contralateral side (n = 30) [18] respectively and reported no complications at a minimum of 12-month follow-up. However, four retrospective case series not included in this systematic review (n = 224) reported on distal radius fracture fixation with a volar CFR-PEEK plate with a minimum of 12-month of follow-up (Table 10) [6, 8, 29, 34]. One study had only ten patients [29]. The remaining three studies (n = 195) which reported on union of the fractures, showed 100% of union rate [6, 8, 29]. The same studies reported that all patients returned to activities of daily living (ADLs) with no limitations and had good clinical outcomes/scores (Mayo wrist score or DASH score) [6, 8, 29]. All studies reported a very small number of complications. Specifically relating to the CFR-PEEK plate, one study reported a rate of 3.6% of intraoperative plate rupture that was replaced with a new one without further complications as well as a rate of 0.9% of post-operative plate rupture requiring revision [34]. Of note, plate ruptures occurred when there was overtightening of a 3.5-mm cortical screw in the diaphyseal elliptical hole or a 2.7-mm locking screw on the radial side where the plate is weaker as there is a K-wire hole there. The authors thus recommended careful technique to avoid overtightening the screws [34]. This is backed up by a biomechanical study where the CFR-PEEK plate was found to have lower tolerance to plastic deformation induced by compressive forces compared to titanium or stainless-steel distal radius plates [38].
In the distal radius area in particular, the radiolucent nature of the CFR-PEEK plate is helpful for adequate intraoperative anatomical fracture reduction, especially when multiple fragments are involved, and in addition, the lack of MRI artefact would be useful in better assessing soft-tissue pathology that is close to the plate [8, 34] and frequently associated with these fractures (e.g., TFC tears) [39]. It can be concluded that overall, the use of CFR-PEEK plates in distal radius fractures is supported in the literature with excellent outcomes and similar complications to conventional plating, with the need of further studies to confirm it. Although plate rupture is a rare phenomenon, knowledge of the biomechanical properties described above and careful technique is of paramount importance to avoid plate rupture.

Distal femur fractures

Fractures in this region are challenging to treat with non-union rates using a lateral locking plate of up to 20% [40], despite different attempts to modify hardware and technique to achieve some micro-motion at the fracture site [24]. Therefore, CFR-PEEK plates with a modulus of elasticity closer to bone may offer this advantage and optimize union rates. In the two studies analyzed herein (Table 8), there was an incidence of 14% non-union for the control group vs 0% in the CFR-PEEK group in one [23], and 36% versus 9% respectively in the other study, as well as decreased time to union, although these did not reach statistical significance [24]. Similarly, there were trends with higher implant failure and rates of reoperation in the control group versus the CFR-PEEK group, but again non-significant [24]. Three retrospective case series (n = 36) (Table 10) reported on distal femur fracture fixation with a carbon fiber plate [28, 30, 32]; with one study having only five female patients [28]. Union rates ranged from 85% in one study [30], to 100% in another study [28]. Time to union ranged from 5 weeks to 5 months with a low number of complications reported. Implant failure is extremely rare with only two cases reported in the literature [7, 30]. It may be concluded that the use of CFR-PEEK plates for distal femoral fractures is justified having a low complication rate and is particularly promising with regards to lowering non-union rates. However, the trends found in the literature should be confirmed by higher quality studies.

Ankle fractures

Ankle fractures are sometimes challenging to treat and in particular when dealing with complex trimalleolar fractures, a radiolucent CFR-PEEK plate has the advantage of adequate visualization of the posterior malleolus after fixation of the fibula to ensure anatomical reduction of the joint surface [31]. In the study reported herein (n = 87) [20], a CFR-PEEK plate fixation of the lateral malleolus showed equivalent clinical and radiographic results to the control group at 6 months minimum follow-up. In addition, two retrospective case series (n = 57) (Table 10) evaluated ankle fracture fixation with a distal fibula carbon fiber plate [31, 33]. Both studies reported very low number of complications not specific to the implant. One study had excellent outcomes (full recovery of ROM and no pain) with a minimum follow-up of 3 months [31]. The other study reported an excellent rate of union (96%) [33]. It may be concluded that, with their added advantages, the use of CFR-PEEK fibular plates in the ankle is recommended, with outcomes and complications similar to the conventional implants.
This study has its own limitations. The overall quality of evidence in this review is limited to ‘low quality’ by the low quality of the included studies and data. There were three different study designs with an overlap of prospective and retrospective data with heterogeneous studies examining different anatomical areas (proximal humerus, distal radius distal femur, ankle) and with small numbers, making a meta-analysis impossible. These limitations are expected since the use of CFR-PEEK plates in extremity trauma has only recently received more attention. Nonetheless, we followed all the principles governing systematic review design and evaluation the heterogeneity and risk of bias components.
There are several strengths of this study. Firstly, only level III and above comparative studies were included, and the majority of them were level I or II. It is comprehensive as the ten retrospective case series that were excluded from the analysis, are presented in the discussion section by comparing and contrasting their findings with the included studies to ensure an adequate overview of the subject. Finally, it is the only study focusing exclusively on plates for extremity fracture fixation, in contrast to previous more generic publications [2, 3, 5], and will serve as a complete, up-to-date reference for their current status.

Conclusions

Our study compared the outcomes and complications of fracture fixation with CFR-PEEK plates versus conventional plates in the proximal humerus, distal radius, distal femur, and ankle. CFR-PEEK plates have major advantages over conventional plates, include a modulus of elasticity comparable to bone, radiolucency, decreased artefact on CT and MRI, higher biocompatibility with absence of allergies and inflammatory reactions and no cold-welding. Our findings show that CFR-PEEK plates have very high union rates in extremity fracture fixation similar to conventional plates with comparable good clinical outcomes and a very low and comparable rate of complications. Future larger scale prospective studies could provide further robust evidence of their benefits. Considering their advantages, which are reflected in favourable not yet statistically significant trends across different anatomical regions, CFR-PEEK plates seem to be a valid alternative to conventional plating.

Declarations

Conflicts of interest

No conflicts of interest to declare.

Ethics approval

Not applicable.
Not applicable.
Not applicable.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Neuer Inhalt

Print-Titel

Anhänge

Supplementary Information

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Bhatt P, Goe A. Carbon fibres: production, properties and potential use. Mater Sci Res India. 2017;14(1):52–7.CrossRef Bhatt P, Goe A. Carbon fibres: production, properties and potential use. Mater Sci Res India. 2017;14(1):52–7.CrossRef
2.
Zurück zum Zitat Hillock R, Howard S. Utility of carbon fiber implants in orthopedic surgery: literature review. Reconstr Rev. 2014;4(1):23–32. Hillock R, Howard S. Utility of carbon fiber implants in orthopedic surgery: literature review. Reconstr Rev. 2014;4(1):23–32.
3.
Zurück zum Zitat Li CS, Vannabouathong C, Sprague S, Bhandari M. The use of carbon-fiber-reinforced (CFR) PEEK material in orthopedic implants: a systematic review. Clin Med Insights Arthritis Musculoskelet Disord. 2015;8:33–45.CrossRef Li CS, Vannabouathong C, Sprague S, Bhandari M. The use of carbon-fiber-reinforced (CFR) PEEK material in orthopedic implants: a systematic review. Clin Med Insights Arthritis Musculoskelet Disord. 2015;8:33–45.CrossRef
4.
Zurück zum Zitat Rotini R, Cavaciocchi M, Fabbri D, Bettelli G, Catani F, Campochiaro G, et al. Proximal humeral fracture fixation: multicenter study with carbon fiber peek plate. Musculoskelet Surg. 2015;99(1):1–8.CrossRef Rotini R, Cavaciocchi M, Fabbri D, Bettelli G, Catani F, Campochiaro G, et al. Proximal humeral fracture fixation: multicenter study with carbon fiber peek plate. Musculoskelet Surg. 2015;99(1):1–8.CrossRef
5.
Zurück zum Zitat Lindeque BGP, Hak DJ, Mauffrey C, Seligson D, Lindeque B. Use of carbon–fiber-reinforced composite implants in orthopedic surgery. Orthopedics. 2014;37(12):825–30.CrossRef Lindeque BGP, Hak DJ, Mauffrey C, Seligson D, Lindeque B. Use of carbon–fiber-reinforced composite implants in orthopedic surgery. Orthopedics. 2014;37(12):825–30.CrossRef
6.
Zurück zum Zitat Tarallo L, Mugnai R, Adani R, Zambianchi F, Catani F. A new volar plate made of carbon–fiber-reinforced polyetheretherketon for distal radius fracture: analysis of 40 cases. J Orthop Traumatol. 2014;15(4):277–83.CrossRef Tarallo L, Mugnai R, Adani R, Zambianchi F, Catani F. A new volar plate made of carbon–fiber-reinforced polyetheretherketon for distal radius fracture: analysis of 40 cases. J Orthop Traumatol. 2014;15(4):277–83.CrossRef
7.
Zurück zum Zitat Goudriaan WA, Tordoir RL, Broekhuis D, van der Wal RJP. Early failure of a carbon–fiber-reinforced polyetheretherketone distal femur plate: a case report. JBJS Case Connect. 2020;10(3):e2000041.CrossRef Goudriaan WA, Tordoir RL, Broekhuis D, van der Wal RJP. Early failure of a carbon–fiber-reinforced polyetheretherketone distal femur plate: a case report. JBJS Case Connect. 2020;10(3):e2000041.CrossRef
8.
Zurück zum Zitat Di Maggio B, Sessa P, Mantelli P, Maniscalco P, Rivera F, Calori GM, et al. PEEK radiolucent plate for distal radius fractures: multicentre clinical results at 12 months follow up. Injury. 2017;48:S34–8.CrossRef Di Maggio B, Sessa P, Mantelli P, Maniscalco P, Rivera F, Calori GM, et al. PEEK radiolucent plate for distal radius fractures: multicentre clinical results at 12 months follow up. Injury. 2017;48:S34–8.CrossRef
9.
Zurück zum Zitat Tayton K, Johnson-Nurse C, McKibbin B, Bradley J, Hastings G. The use of semi-rigid carbon–fibre-reinforced plastic plates for fixation of human fractures. Results of preliminary trials. J Bone Jt Surg Br. 1982;64(1):105–11.CrossRef Tayton K, Johnson-Nurse C, McKibbin B, Bradley J, Hastings G. The use of semi-rigid carbon–fibre-reinforced plastic plates for fixation of human fractures. Results of preliminary trials. J Bone Jt Surg Br. 1982;64(1):105–11.CrossRef
10.
Zurück zum Zitat Hak DJ, Mauffrey C, Seligson D, Lindeque B. Use of carbon–fiber-reinforced composite implants in orthopedic surgery. Orthopedics. 2014;37(12):825–30.CrossRef Hak DJ, Mauffrey C, Seligson D, Lindeque B. Use of carbon–fiber-reinforced composite implants in orthopedic surgery. Orthopedics. 2014;37(12):825–30.CrossRef
11.
12.
Zurück zum Zitat Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRef Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.CrossRef
14.
Zurück zum Zitat Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73(9):712–6.CrossRef Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003;73(9):712–6.CrossRef
15.
Zurück zum Zitat Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6.CrossRef Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924–6.CrossRef
16.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.CrossRef Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.CrossRef
17.
Zurück zum Zitat Mathes T, Pieper D. Clarifying the distinction between case series and cohort studies in systematic reviews of comparative studies: potential impact on body of evidence and workload. BMC Med Res Methodol. 2017;17(1):107.CrossRef Mathes T, Pieper D. Clarifying the distinction between case series and cohort studies in systematic reviews of comparative studies: potential impact on body of evidence and workload. BMC Med Res Methodol. 2017;17(1):107.CrossRef
18.
Zurück zum Zitat Perugia D, Guzzini M, Mazza D, Iorio C, Civitenga C, Ferretti A. Comparison between carbon-peek volar locking plates and titanium volar locking plates in the treatment of distal radius fractures. Injury. 2017;48:S24–9.CrossRef Perugia D, Guzzini M, Mazza D, Iorio C, Civitenga C, Ferretti A. Comparison between carbon-peek volar locking plates and titanium volar locking plates in the treatment of distal radius fractures. Injury. 2017;48:S24–9.CrossRef
19.
Zurück zum Zitat Ziegler P, Maier S, Stockle U, Guhring M, Stuby FM. The treatment of proximal humerus fracture using internal fixation with fixed-angle plates. Dtsch Arztebl Int. 2019;116(45):757–63.PubMedPubMedCentral Ziegler P, Maier S, Stockle U, Guhring M, Stuby FM. The treatment of proximal humerus fracture using internal fixation with fixed-angle plates. Dtsch Arztebl Int. 2019;116(45):757–63.PubMedPubMedCentral
20.
Zurück zum Zitat Guzzini M, Lanzetti RM, Lupariello D, Morelli F, Princi G, Perugia D, et al. Comparison between carbon-peek plate and conventional stainless steal plate in ankle fractures. A prospective study of two years follow up. Injury. 2017;48(6):1249–52.CrossRef Guzzini M, Lanzetti RM, Lupariello D, Morelli F, Princi G, Perugia D, et al. Comparison between carbon-peek plate and conventional stainless steal plate in ankle fractures. A prospective study of two years follow up. Injury. 2017;48(6):1249–52.CrossRef
21.
Zurück zum Zitat Guzzini M, Lupariello D, Lanzetti RM, Mazza D, Ferretti A. Preliminary experience with triangular CarboFix “Piccolo” distal radius plate in wrist fractures. Clinical and radiological results. Acta Biomed. 2018;90(1S):61–6.PubMed Guzzini M, Lupariello D, Lanzetti RM, Mazza D, Ferretti A. Preliminary experience with triangular CarboFix “Piccolo” distal radius plate in wrist fractures. Clinical and radiological results. Acta Biomed. 2018;90(1S):61–6.PubMed
22.
Zurück zum Zitat Katthagen JC, Ellwein A, Lutz O, Voigt C, Lill H. Outcomes of proximal humeral fracture fixation with locked CFR-PEEK plating. Eur J Orthop Surg Traumatol. 2017;27(3):351–8.CrossRef Katthagen JC, Ellwein A, Lutz O, Voigt C, Lill H. Outcomes of proximal humeral fracture fixation with locked CFR-PEEK plating. Eur J Orthop Surg Traumatol. 2017;27(3):351–8.CrossRef
23.
Zurück zum Zitat Byun SE, Vintimilla DR, Bedeir YH, Dean CS, Parry JA, Hak DJ, et al. Evaluation of callus formation in distal femur fractures after carbon fiber composite versus stainless steel plate fixation. Eur J Orthop Surg Traumatol. 2020;30(6):1103–7.CrossRef Byun SE, Vintimilla DR, Bedeir YH, Dean CS, Parry JA, Hak DJ, et al. Evaluation of callus formation in distal femur fractures after carbon fiber composite versus stainless steel plate fixation. Eur J Orthop Surg Traumatol. 2020;30(6):1103–7.CrossRef
24.
Zurück zum Zitat Mitchell PM, Lee AK, Collinge CA, Ziran BH, Hartley KG, Jahangir AA. Early comparative outcomes of carbon fiber-reinforced polymer plate in the fixation of distal femur fractures. J Orthop Trauma. 2018;32(8):386–90.CrossRef Mitchell PM, Lee AK, Collinge CA, Ziran BH, Hartley KG, Jahangir AA. Early comparative outcomes of carbon fiber-reinforced polymer plate in the fixation of distal femur fractures. J Orthop Trauma. 2018;32(8):386–90.CrossRef
25.
Zurück zum Zitat Padolino A, Porcellini G, Guollo B, Fabbri E, Kiran Kumar GN, Paladini P, et al. Comparison of CFR-PEEK and conventional titanium locking plates for proximal humeral fractures: a retrospective controlled study of patient outcomes. Musculoskelet Surg. 2018;102(Suppl 1):49–56.CrossRef Padolino A, Porcellini G, Guollo B, Fabbri E, Kiran Kumar GN, Paladini P, et al. Comparison of CFR-PEEK and conventional titanium locking plates for proximal humeral fractures: a retrospective controlled study of patient outcomes. Musculoskelet Surg. 2018;102(Suppl 1):49–56.CrossRef
26.
Zurück zum Zitat Schliemann B, Hartensuer R, Koch T, Theisen C, Raschke MJ, Kosters C, et al. Treatment of proximal humerus fractures with a CFR-PEEK plate: 2-year results of a prospective study and comparison to fixation with a conventional locking plate. J Shoulder Elbow Surg. 2015;24(8):1282–8.CrossRef Schliemann B, Hartensuer R, Koch T, Theisen C, Raschke MJ, Kosters C, et al. Treatment of proximal humerus fractures with a CFR-PEEK plate: 2-year results of a prospective study and comparison to fixation with a conventional locking plate. J Shoulder Elbow Surg. 2015;24(8):1282–8.CrossRef
27.
Zurück zum Zitat Neer CS 2nd. Displaced proximal humeral fractures. I. Classification and evaluation. J Bone Jt Surg Am. 1970;52(6):1077–89.CrossRef Neer CS 2nd. Displaced proximal humeral fractures. I. Classification and evaluation. J Bone Jt Surg Am. 1970;52(6):1077–89.CrossRef
28.
Zurück zum Zitat Al-Shawi AK, Smith SP, Anderson GH. The use of a carbon fiber plate for periprosthetic supracondylar femoral fractures. J Arthroplasty. 2002;17(3):320–4.CrossRef Al-Shawi AK, Smith SP, Anderson GH. The use of a carbon fiber plate for periprosthetic supracondylar femoral fractures. J Arthroplasty. 2002;17(3):320–4.CrossRef
29.
Zurück zum Zitat Allemann F, Halvachizadeh S, Rauer T, Pape HC. Clinical outcomes after carbon-plate osteosynthesis in patients with distal radius fractures. Patient Saf Surg. 2019;13:30.CrossRef Allemann F, Halvachizadeh S, Rauer T, Pape HC. Clinical outcomes after carbon-plate osteosynthesis in patients with distal radius fractures. Patient Saf Surg. 2019;13:30.CrossRef
30.
Zurück zum Zitat Baker D, Kadambande SS, Alderman PM. Carbon fibre plates in the treatment of femoral periprosthetic fractures. Injury. 2004;35(6):596–8.CrossRef Baker D, Kadambande SS, Alderman PM. Carbon fibre plates in the treatment of femoral periprosthetic fractures. Injury. 2004;35(6):596–8.CrossRef
31.
Zurück zum Zitat Caforio M, Perugia D, Colombo M, Calori GM, Maniscalco P. Preliminary experience with Piccolo Composite, a radiolucent distal fibula plate, in ankle fractures. Injury. 2014;45(Suppl 6):S36–8.CrossRef Caforio M, Perugia D, Colombo M, Calori GM, Maniscalco P. Preliminary experience with Piccolo Composite, a radiolucent distal fibula plate, in ankle fractures. Injury. 2014;45(Suppl 6):S36–8.CrossRef
32.
Zurück zum Zitat Pemberton DJ, Evans PD, Grant A, McKibbin B. Fractures of the distal femur in the elderly treated with a carbon fibre supracondylar plate. Injury. 1994;25(5):317–21.CrossRef Pemberton DJ, Evans PD, Grant A, McKibbin B. Fractures of the distal femur in the elderly treated with a carbon fibre supracondylar plate. Injury. 1994;25(5):317–21.CrossRef
33.
Zurück zum Zitat Pinter ZW, Smith KS, Hudson PW, Jones CW, Hadden R, Elattar O, et al. A retrospective case series of carbon fiber plate fixation of ankle fractures. Foot Ankle Spec. 2018;11(3):223–9.CrossRef Pinter ZW, Smith KS, Hudson PW, Jones CW, Hadden R, Elattar O, et al. A retrospective case series of carbon fiber plate fixation of ankle fractures. Foot Ankle Spec. 2018;11(3):223–9.CrossRef
34.
Zurück zum Zitat Tarallo L, Giorgini A, Novi M, Zambianchi F, Porcellini G, Catani F. Volar PEEK plate for distal radius fracture: analysis of adverse events. Eur J Orthop Surg Traumatol. 2020;30(7):1293–8.CrossRef Tarallo L, Giorgini A, Novi M, Zambianchi F, Porcellini G, Catani F. Volar PEEK plate for distal radius fracture: analysis of adverse events. Eur J Orthop Surg Traumatol. 2020;30(7):1293–8.CrossRef
35.
Zurück zum Zitat Sproul RC, Iyengar JJ, Devcic Z, Feeley BT. A systematic review of locking plate fixation of proximal humerus fractures. Injury. 2011;42(4):408–13.CrossRef Sproul RC, Iyengar JJ, Devcic Z, Feeley BT. A systematic review of locking plate fixation of proximal humerus fractures. Injury. 2011;42(4):408–13.CrossRef
36.
Zurück zum Zitat Thanasas C, Kontakis G, Angoules A, Limb D, Giannoudis P. Treatment of proximal humerus fractures with locking plates: a systematic review. J Shoulder Elbow Surg. 2009;18(6):837–44.CrossRef Thanasas C, Kontakis G, Angoules A, Limb D, Giannoudis P. Treatment of proximal humerus fractures with locking plates: a systematic review. J Shoulder Elbow Surg. 2009;18(6):837–44.CrossRef
37.
Zurück zum Zitat Lowe JB, Monazzam S, Walton B, Nelson E, Wolinsky PR. How to use fluoroscopic imaging to prevent intraarticular screw perforation during locked plating of proximal humerus fractures: a cadaveric study. J Orthop Trauma. 2015;29(10):e401–7.CrossRef Lowe JB, Monazzam S, Walton B, Nelson E, Wolinsky PR. How to use fluoroscopic imaging to prevent intraarticular screw perforation during locked plating of proximal humerus fractures: a cadaveric study. J Orthop Trauma. 2015;29(10):e401–7.CrossRef
38.
Zurück zum Zitat Mugnai R, Tarallo L, Capra F, Catani F. Biomechanical comparison between stainless steel, titanium and carbon–fiber reinforced polyetheretherketone volar locking plates for distal radius fractures. Orthop Traumatol Surg Res. 2018;104(6):877–82.CrossRef Mugnai R, Tarallo L, Capra F, Catani F. Biomechanical comparison between stainless steel, titanium and carbon–fiber reinforced polyetheretherketone volar locking plates for distal radius fractures. Orthop Traumatol Surg Res. 2018;104(6):877–82.CrossRef
39.
Zurück zum Zitat Chloros GD, Wiesler ER, Poehling GG. Current concepts in wrist arthroscopy. Arthroscopy. 2008;24(3):343–54.CrossRef Chloros GD, Wiesler ER, Poehling GG. Current concepts in wrist arthroscopy. Arthroscopy. 2008;24(3):343–54.CrossRef
40.
Zurück zum Zitat Ricci WM, Streubel PN, Morshed S, Collinge CA, Nork SE, Gardner MJ. Risk factors for failure of locked plate fixation of distal femur fractures: an analysis of 335 cases. J Orthop Trauma. 2014;28(2):83–9.CrossRef Ricci WM, Streubel PN, Morshed S, Collinge CA, Nork SE, Gardner MJ. Risk factors for failure of locked plate fixation of distal femur fractures: an analysis of 335 cases. J Orthop Trauma. 2014;28(2):83–9.CrossRef
Metadaten
Titel
Fracture fixation in extremity trauma with carbon fiber-reinforced polyetheretherketone (CFR-PEEK) plates: evidence today
verfasst von
George D. Chloros
Apostolos D. Prodromidis
Jo Wilson
Peter V. Giannoudis
Publikationsdatum
06.09.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Trauma and Emergency Surgery / Ausgabe 3/2022
Print ISSN: 1863-9933
Elektronische ISSN: 1863-9941
DOI
https://doi.org/10.1007/s00068-021-01778-x

Weitere Artikel der Ausgabe 3/2022

European Journal of Trauma and Emergency Surgery 3/2022 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

TEP mit Roboterhilfe führt nicht zu größerer Zufriedenheit

15.05.2024 Knie-TEP Nachrichten

Der Einsatz von Operationsrobotern für den Einbau von Totalendoprothesen des Kniegelenks hat die Präzision der Eingriffe erhöht. Für die postoperative Zufriedenheit der Patienten scheint das aber unerheblich zu sein, wie eine Studie zeigt.

Lever-Sign-Test hilft beim Verdacht auf Kreuzbandriss

15.05.2024 Vordere Kreuzbandruptur Nachrichten

Mit dem Hebelzeichen-Test lässt sich offenbar recht zuverlässig feststellen, ob ein vorderes Kreuzband gerissen ist. In einer Metaanalyse war die Vorhersagekraft vor allem bei positivem Testergebnis hoch.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.