Skip to main content
Erschienen in: Diabetologia 11/2016

Open Access 27.08.2016 | Article

Effective endothelial cell and human pluripotent stem cell interactions generate functional insulin-producing beta cells

verfasst von: Dodanim Talavera-Adame, Orison O. Woolcott, Joseph Ignatius-Irudayam, Vaithilingaraja Arumugaswami, David H. Geller, Donald C. Dafoe

Erschienen in: Diabetologia | Ausgabe 11/2016

Abstract

Aims/hypothesis

Endothelial cells (ECs) play an essential role in pancreatic organogenesis. We hypothesise that effective in vitro interactions between human microvascular endothelial cells (HMECs) and human pluripotent stem cells (hPSCs) results in the generation of functional pancreatic beta cells.

Methods

Embryoid bodies (EBs) derived from hPSCs were cultured alone (controls) or with ECs in collagen gels. Subsequently, cells were analysed for pancreatic beta cell markers, and then isolated and expanded. Insulin secretion in response to glucose was evaluated in vitro by static and dynamic (perifusion) assays, and in vivo by EB transplantation into immunodeficient mice.

Results

Co-cultured EBs had a higher expression of mature beta cells markers and enhanced insulin secretion in vitro, compared with controls. In mice, transplanted EBs had higher levels of human C-peptide secretion with a significant reduction in hyperglycaemia after the selective destruction of native pancreatic beta cells. In addition, there was significant in vitro upregulation of bone morphogenetic proteins 2 and 4 (BMP-2, 4) in co-cultured cells, compared with controls.

Conclusions/interpretation

ECs provide essential signalling in vitro, such as activation of the BMP pathway, for derivation of functional insulin-producing beta cells from hPSCs.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s00125-016-4078-1) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
An erratum to this article is available at http://​dx.​doi.​org/​10.​1007/​s00125-016-4137-7.
Abkürzungen
BMP
Bone morphogenetic protein
DE
Definitive endoderm
EB
Embryoid bodies
EC
Endothelial cells
GFP
Green fluorescent protein
HMEC
Human microvascular endothelial cell
hPSC
Human pluripotent stem cell
IHC
Immunohistochemical
iPSC
Induced pluripotent stem cell
PDX1
Pancreatic and duodenal homeobox 1
SCID
Severe combined immunodeficiency
SMAD
Mothers against decapentaplegic homologue
STZ
Streptozotocin
UCN3
Urocortin-3

Introduction

The worldwide number of patients with diabetes is projected to increase to 440 million by 2030 [1]. One promising approach for the treatment of this disease is transplantation of insulin-producing cells derived from human pluripotent stem cells (hPSCs) [24]. Novel protocols have been described to derive functional beta cells in culture [5]. However, these protocols are complex and do not enable the expansion of pure beta cells. Most reports describe the derivation of mouse, monkey and human beta cells from stem cells, but only immature cells are produced and in low numbers [68]. In vitro hPSCs generate endocrine pancreatic precursors more readily than mature beta cells [6, 9]. Mature beta cells have been identified in vivo several weeks after murine transplantation of pancreatic progenitors that express pancreatic and duodenal homeobox 1 (PDX1) or homeobox protein Nkx-6.1 (NKX6.1) [9, 10]. hPSC-derived insulin-producing cells do not express the mature beta cell marker, urocortin-3 (UCN3), and have a low glucose threshold for insulin release [11, 12]. However, they acquire a higher, more physiological threshold and amplified insulin release upon glucose challenge after transplantation [12]. These facts strongly suggest that complex signals (the nature of which are currently unknown) may be essential to generate fully differentiated beta cells in vivo.
Endothelial cells (ECs) are major components of the pancreatic niche [13, 14]. ECs play a key role in organogenesis [8, 13, 1518]; after induction from the notochord, pancreatic bud cells interact with ECs from the aorta and the dorsal vein to induce the formation of pancreas progenitors [13, 14, 19]. Aortic ECs are crucial for the survival of the pancreatic mesenchyme, including Islet-1+ cells, which signal to induce the expression of PDX1, a master regulator of pancreatic organogenesis [20]. The islet itself is one of the most highly vascularised structures in the body and components from the vascular basement membrane, as well as EC-derived factors, are essential for insulin gene expression in vitro and in vivo [19, 2126]. Furthermore, the increase in islet microvasculature density coincides with the growth of islet endocrine cells observed after birth, suggesting a pivotal role for ECs in postnatal endocrine cell maturation [27]. Signals from ECs promote upregulation of bone morphogenetic protein 2 (BMP-2) and BMP-4 in mouse models, leading to the differentiation of several organs including the pancreas [8, 26]. Receptor activation of BMPs promotes mothers against decapentaplegic homologue (SMAD)-1, 5 and 8 phosphorylation and translocation to the nucleus, where they function as transcription factors [28]. Importantly, BMP-4 variants have been associated with a modest risk of type 2 diabetes mellitus, suggesting that BMPs may be fundamental to the integrity of beta cell function [29, 30]. In the present work, we used embryoid bodies (EBs), derived from reprogrammed or embryonic hPSCs, to investigate whether ECs enhance the in vitro generation of functional insulin-producing cells cultured in collagen–laminin scaffolds [21, 22, 3133]. After labelling, isolating, expanding and characterising these cells, we tested their ability to release insulin in vitro, and also in vivo after transplantation under the kidney capsule of streptozotocin (STZ)-treated severe combined immunodeficient (SCID) mice [34, 35]. Additionally, we found consistent upregulation of BMP 2 and BMP4 only in EBs co-cultured with ECs, suggesting an important role for these peptides in the differentiation process.

Methods

Cells and reagents
The hPSC cell line, 83iCTR-n1, and the human embryonic stem cell line, H9 were obtained from the induced pluripotent stem cell (iPSC) core laboratory, Cedars-Sinai Regenerative Medicine Institute. These cells were negative for mycoplasma in the same facility before being used for differentiation experiments. At the core laboratory, hPSC derivation from human fibroblasts was performed according to published protocols [31, 32]. The hPSC line was used at passage 40–50; H9 cells were used at passage 20–30. Both cell lines were cultured in a feeder-free system with mTeSR1 basal medium plus 5× supplement (Invitrogen, Carlsbad, CA, USA), 200 μmol/l l-alanyl-l-glutamine (American Type Culture Collection [ATCC], Manassas, VA, USA) and 0.1 mmol/l β-mercaptoethanol (STEMCELL Technologies, Vancouver, BC, Canada). EBs were generated according to the manufacturer’s instructions and maintained in AggreWell medium (STEMCELL Technologies) supplemented with 10 μmol/l rho-associated protein kinase (ROCK) inhibitor (Sigma-Aldrich, St Louis, MO, USA). The human microvascular EC (HMEC) line was purchased from E. Ades and F. J. Candal (Centers for Disease Control and Prevention, Atlanta, GA, USA), and T. Lawley (Emory University, Atlanta, GA, USA). HMECs were negative for mycoplasma and were grown at 37°C under 5% CO2 and maintained in MCDB131 medium (Invitrogen) supplemented with 1% l-alanyl-glutamine (vol./vol.) (ATCC), 10% FBS (vol./vol.) (Omega Scientific, Tarzana, CA, USA) and 100 μg/ml endothelial cell growth supplement (Millipore, Hayward, CA, USA), for use at passages 20–25. For co-culture experiments, 100 EBs were picked up with a glass Pasteur pipette and 5 × 105 HMECs inactivated with 100 μl/ml mitomicyn C (Sigma-Aldrich) were added to collagen I solution (BD Bioscience, Franklin Lakes, NJ, USA) with 1× minimum essential media (MEM), 1 mol/l 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer, 7.5% bicarbonate solution (vol./vol.) (Life Technologies, Grand Island, NY, USA), 0.1 mmol/l NaOH, 1 mg/ml laminin I and 1 mg/ml collagen IV (R&D Systems, Minneapolis, MN, USA) and placed on ice. Then, 10 × 100 μl drops of cell suspension were placed into Petri dishes (60 × 20 mm; VWR, Cerritos, CA, USA) and solidified at 37°C for 10–20 min, after which, medium containing pancreatic differentiation factors including activin A, Wnt3a, retinoic acid (RA), fibroblast growth factor 7 (FGF7), epidermal growth factor (EGF), SB461542, hepatocyte growth factor (HGF), insulin-like growth factor-1 (IGF-1), and nicotinamide was added at different time points of EB development [7]. EB controls were cultured in gel without ECs but treated with the same pancreatic differentiation factors. After 20 days, cells were harvested using 5% collagenase I (wt/vol.) (Worthington, Lakewood, NJ, USA) and maintained in CMRL 1066 medium with CIT modification (Mediatech, Manassas, VA, USA), supplemented with 10 ml of 25% human serum albumin (HSA; NOVA Biologics, Oceanside, CA, USA) to a final concentration of 0.5% (vol./vol.), and 50 μl of a 1 mg/ml stock of IGF-1 (R&D Systems) at a final concentration of 10 ng/ml (vol./vol.). To generate definitive endoderm (DE) cells, undifferentiated iPSCs were cultured in a feeder-free system and culture medium, as described above. Subsequently, cells were transferred into six wells of a 24-well plate. At 90% confluency, RPMI 1640 (Life Technologies) containing 100 ng/ml activin A (Peprotech, Rocky Hill, NJ, USA) and 25 ng/ml Wnt3a (R&D Systems) was added to DE cells for the first day. On the second and third days, the cell medium was changed to RPMI 1640 containing only 100 ng/ml activin A. The DE cells were plated in collagen gel (as described above) with or without ECs, and pancreas differentiation factors were added [7]. The human hepatoma cell line and beta-TC-6 cells (ATCC) were both negative for mycoplasma.
Immunocytochemistry
Cells were fixed with 4% paraformaldehyde (vol./vol.) (Polysciences, Warrington, PA, USA), permeabilised with 0.3% Triton X-100 (vol./vol.) in PBS and then incubated with primary antibodies, as outlined in the electronic supplementary material (ESM Table 1). The antibodies were validated by the providers and in our laboratory by staining frozen sections of human or mouse pancreases (positive controls) and hepatoma cell lines (negative controls) (data not shown). Images were acquired using a multipurpose zoom microscope (Nikon AZ 100; Nikon Instruments, Melville, NY, USA) attached to a DS-Qi1 high-sensitivity charge-coupled device (CCD) camera and analysed using NIS-Elements AR 3.10 (Nikon Instruments) and ImageJ 1.30v (National Institutes of Health, Bethesda, MD, USA) imaging software.

FACS

Differentiated cells were harvested and stained with primary, secondary or isotype control antibodies (ESM Table 2). Cells were then analysed in a BD LSRFortessa cell analyser (BD Biosciences, San Jose, CA, USA) using fluorescence excitation at 360 nm and emission at 565 nm.
Quantitative real-time reverse transcription-PCR analysis
Total RNA was isolated from cells using an RNeasy mini kit (Qiagen, Valencia, CA, USA). The QuantiTect reverse transcription kit (Qiagen) was used to synthesise cDNA and quantitative real-time reverse transcription PCR (qRT-PCR) analysis was performed using a SYBR Green RT-PCR kit (Qiagen) and a LightCycler instrument (Applied Biosystems, Foster City, CA, USA). PCR cycle conditions are shown in ESM Table 3. Analysis was performed using 7300 Sequence Detection Software (SDS) version 1.3 (Software Core Application, Applied Biosystems). Primer details are shown in ESM Table 4.
Lentiviral plasmid construction and infection
A lentiviral reporter plasmid obtained from a viral core laboratory at Cedars-Sinai Regenerative Medicine Institute was constructed, containing a rat insulin minimal promoter that was amplified via PCR using the forward primer, 5′-CCCTCTAGACCGGCTGAGCTAAGAATCCAG-3′ (the XbaI sequence is underlined) and the reverse primer, 5′-GGCGACCGGTGCGGGAGTTACTGGGTCTCCACTAG-3′ (the AgeI sequence is underlined). After XbaI and AgeI restriction enzyme digestion, the PCR product was cloned into XbaI–AgeI sites upstream of the mCherry reporter gene in a self-inactivating second generation lentiviral vector containing a constitutively expressed hrGFP-NLS reporter under the control of the human ubiquitin C promoter. Following the differentiation protocol, 5 × 104 insulin-producing cells/ml at passage 0 were plated into gelatin pre-coated 48-well plates. At 60% confluence, cells were transduced with the rat INS-mCherry lentiviral vector. Transduction efficiency was quantified as the number of cells expressing the hrGFP-NLS reporter.
hPSC-derived beta-like cell isolation and expansion
After cell expansion, 1 × 106 labelled cells at passage 1–2 were harvested to obtain a cell suspension for sorting using a BD FACSAria III cell sorter (BD Biosciences) with fluorescence excitation at 360 nm and emission at 565 nm to detect mCherry (red fluorescence signal) and green fluorescent protein (GFP; green fluorescence signal) expression. After sorting, cells were plated and passaged 3–7 times in CMRL 1066 media with CIT modification (Mediatech), supplemented with 10 ml of 25% HSA (wt/vol.) (NOVA Biologics) and 50 μl of 1 mg/ml IGF-1 (R&D Systems) for maintenance.
Quinacrine secretion assay
Insulin-producing cells were plated onto 24-well plates at 1 × 105 cells/ml and cultured at 37°C, 5% CO2 for 24 h. The complete medium was then replaced with medium containing 100 nmol/l quinacrine dihydrochloride (Sigma-Aldrich, St. Louis, MO, USA) and cells were incubated at 37°C, 5% CO2 for 30 min. Images were obtained by fluorescence microscopy at 360 nm excitation and 500 nm emission (Nikon AZ 100; Nikon Instruments). After washing with PBS, cells were incubated in RPMI 1640 supplemented with 0.1% BSA (wt/vol.) and different concentrations of glucose (0.5 mmol/l, 1.0 mmol/l, 2.8 mmol/l, 5.6 mmol/l or 16.5 mmol/l). Cell images were taken after 1 h with a DS-Qi1 high-sensitivity charge-coupled device (CCD) camera and analysed using ImageJ 1.30v (National Institutes of Health, MD, USA) software.
Human insulin and C-peptide measurement
Human insulin and C-peptide were measured by ultrasensitive ELISA (Mercodia, Winston-Salem, NC, USA). The detection limits were 0.42 pmol/l for insulin and <2.5 pmol/l for C-peptide.
Perifusion assay
Perifusion assays were performed using beta-TC-6 (positive control) or insulin-producing cells derived from co-cultures or controls [36]. Cells were perifused at 100 μl/min with Krebs-Ringer bicarbonate buffer (KRBH) containing 3 mmol/l glucose. After a 60 min equilibrium period (−60 to 0 min), cells were stimulated with 15 mmol/l glucose for 40 min, after which the perifusion solution was switched to 3 mmol/l glucose. Samples were collected every minute from −5 to 10 min; thereafter, samples were collected every 2 min from 12 to 26 min. Beta cell function was expressed as pmol/l insulin and as the percentage increase in insulin release relative to baseline.
Cell transplantation in SCID mice
Animal experiments were approved by the Cedars-Sinai Animal Care and Use Committee. Thirty male SCID mice of the C.B-17/IcrHsd-Prkdc scid Lyst bg-J strain (Envigo, Indianapolis, IN, USA) were divided into three groups of ten mice. Animal care was undertaken by the Comparative Medicine department in agreement with the committee. The cages were housed in random order and physical randomisation was performed to assign mouse treatment (e.g. a piece of paper labelled with the animal ID number was withdrawn from a receptacle that was shaken and a treatment was assigned to this animal). All outcome assessments were carried out in random order by an investigator who was blind to the treatment groups. In the first group, 3 × 106 insulin-producing cells derived from EBs co-cultured with ECs were transplanted under the kidney capsule. The second group received insulin-producing cells derived from EBs cultured alone. The third (control) group were injected with an equivalent volume of PBS. After 90 days, all mice underwent an IPGTT with 30% dextrose (wt/vol.) at 3 g/kg body weight. Blood samples were taken before glucose challenge and at 0, 30 and 60 min after injection. At 105 days after transplantation, mice were i.p. injected with STZ (Sigma-Aldrich) for 5 consecutive days (total dose: 350 mg/kg). A second IPGTT was performed 2 weeks after STZ treatment. Mice were euthanised approximately 126 days after transplantation (21 days after STZ treatment) and the left kidneys (harbouring the transplanted cells) were removed for immunohistochemical (IHC) analysis. The data from two animals from the control group and one animal transplanted with cells derived from EBs alone were excluded as the animals were euthanised due to moribund aspect after STZ injections.

Immunohistochemistry

Insulin, glucagon and somatostatin levels were detected in kidney sections using a Leica DM 750 HD Digital Microscope (Leica Microsystems, Buffalo Grove, IL, USA) and commercially available primary antibodies (ESM Table 5) , after microwave heat-induced epitope retrieval using an automated detection system: either a Leica BOND-MAX (Leica Microsystems) or a Dako autostainer (Dako, Carpinteria, CA, USA).
Statistical analysis
Data are expressed as the mean ± SE of three independent experiments. Student’s t-tests were used to identify significant differences between test groups (GraphPad Prism, La Jolla, CA, USA)

Results

ECs promote differentiation of hPSCs to insulin-producing cells
EBs cultured alone in collagen–laminin gels and not treated with growth factors were used as controls and compared with EBs co-cultured with ECs. EBs alone expressed lower levels of proinsulin and PDX1 (Fig. 1a–c). In contrast, co-cultured EBs (Fig. 1d) expressed a higher level of proinsulin and PDX1 (Fig. 1e) that was enhanced by the addition of growth factors (Fig. 1f). Tube-like structures were observed to surround co-cultured EBs (Fig. 1d) and a rich network of endogenous blood vessels expressing CD31 appeared contiguous with nascent insulin-producing cells (Fig. 1g–i). After harvesting, cells derived from co-cultures had increased expression of beta cell markers, such as proinsulin (Fig. 2a), UCN3 (Fig. 2b), and Nkx6.1 (Fig. 2c), compared with controls (Fig. 2d–f). Gene expression data corroborated the immunocytochemical observations, indicating a significantly higher level of beta cell marker expression in sorted cells derived from co-cultures at passage 3 (Fig. 2g) than in cells not co-cultured. Sorted cells also had significantly lower glucagon and somatostatin expression than insulin expression (Fig. 2g). FACS analysis showed that about 70% of cells from co-cultures were positive for proinsulin, in contrast to about 10% of growth factor-treated controls (ESM Fig.1a–f).
Insulin-producing cells derived from EB–EC co-cultures can be labelled, isolated and expanded in vitro
Labelled insulin-producing cells from co-cultured EBs expressed mCherry (Fig. 3a–d). These cells proliferated in vitro and formed islet-like clusters (Fig. 3e, f). Although they proliferated slowly, islet-like cluster formation became more frequent at later passages in cells plated in collagen-laminin gels (e.g. passage 3, as shown in ESM Fig 1g–j). In contrast, we observed very few viable cells expressing mCherry from EBs treated with growth factor in the absence of ECs (Fig. 3g, h). The human hepatoma cell line and beta-TC-6 cells were used as negative (Fig. 3i–l) or positive control (Fig. 3m–p) respectively.
Insulin-producing cells derived from co-cultures respond efficiently to in vitro glucose challenge
Quinacrine accumulates within insulin granules after 30 min; maximum fluorescence was detected in sorted cells derived from co-cultures (Fig. 4a), in contrast to low/no fluorescence in controls (Fig. 4a, inset). A significant decrease in fluorescence was observed after adding 1.0 mmol/l glucose and then increasing the concentration to 16.5 mmol/l (Fig. 4b, c). A threefold increase in human C-peptide levels was found in the medium from insulin-producing cells derived from co-cultures following challenge with 3 to 17 mmol/l glucose (Fig. 4d). In contrast, no C-peptide production was seen in EBs cultured alone (Fig. 4d). The kinetics of insulin secretion was quantified using a perifusion assay. Beta-TC-6 cells had an initial fast response followed by a slow response and oscillations (Fig. 4e). Human induced PSCs (hiPSCs) at passage 1 responded to glucose with an increasing amplitude in insulin oscillations that occurred with a frequency of about one oscillation every 12–14 min (Fig. 4f). At passage 3, the same cells showed more frequent oscillations with lower insulin peaks (Fig. 4g). Similarly, insulin-producing cells derived from the H9 human embryonic stem cell line exhibited a clear oscillatory response to glucose challenge, with higher insulin levels with more frequent oscillations at passage 7 (Fig. 4h) and lower insulin levels with less frequent oscillations at passage 15 (Fig. 4i).
Pancreatic beta cells derived from EB–EC co-cultures respond to glucose challenge in vivo
Sorted hPSC-derived insulin-producing cells, capable of responding to glucose in vitro, were expanded in culture. About 5 × 106 cells at passage 3–4 were transplanted under the kidney capsule of SCID mice. Ninety days after transplantation, an IPGTT was performed. Following glucose challenge, the blood glucose level in control mice grafted with cells derived from EBs cultured alone ranged from 8 to 21 mmol/l with negligible human C-peptide detected (Fig. 5a, b). Concurrently, mice grafted with cells derived from co-cultures demonstrated nearly identical blood glucose levels but human C-peptide levels rose from 43 pmol/l at baseline to 100 pmol/l at 30 min and 69 pmol/l at 60 min (Fig. 5a, b). Mice were then treated with STZ to destroy native beta cells and glucose levels were measured 15 days later (Fig. 5c). Blood glucose levels were significantly lower in mice transplanted with co-cultured EBs (16.3 ± 6.1 mmol/l) compared with controls (30.3 ± 2.5 mmol/l, p = 0.0165) when assessed 2 weeks after STZ treatment. IHC analysis showed plentiful insulin-expressing cells in the kidney capsule of mice grafted with cells derived from co-cultures (Fig. 5d, black arrows); in contrast, there was no evidence of insulin expression in control mice (Fig. 5e).

Discussion

During fetal development, a pancreatic beta cell mass results from islet neogenesis [36]. However, the factors involved in beta cell maturation in vivo are not completely understood. ECs are key components of the pancreatic niche and their absence can result in pancreatic agenesis [17, 21, 37]. In the present study, we used EBs and ECs to derive functional insulin-producing cells in vitro. We focused on promoting cell–cell interactions in vitro between ECs and human EBs, which are structures composed of cells derived from all three germ layers [38]. Our results indicate that insulin-producing cells are generated in vitro in EBs surrounded by ECs. These insulin-producing cells responded to glucose both in vitro and in vivo. Within the EBs, some ECs were located close to insulin-producing cells, suggesting that paracrine effects may also be essential to maintain the beta cell phenotype [8]. This hypothesis is supported by previous observations in mouse embryonic stem cells, where ECs promote beta cell maturation [8]. Beta cells also secrete soluble factors that affect the EC phenotype [39]. Islet ECs correspond to fenestrated endothelium [40]. Interestingly, beta cells exhibit polarity, with an apical and basolateral membrane and a greater density of insulin vesicles in the apical region close to ECs [14, 19]. These facts suggest that signals from beta cells and ECs are essential for beta cell function. For instance, insulin promotes an increase in nitric oxide synthase and vascular endothelial growth factor (VEGF)-A induces cell proliferation and maintains fenestrations in ECs [40]. In our experiments, these cell–cell interactions led to a higher yield and improved survival of insulin-producing cells and improved cellular function. We isolated, expanded and labelled these insulin-producing cells and found that the expression of mCherry (driven by the insulin promoter) decreased as the expression of GFP (driven by the ubiquitin C promoter) increased, suggesting that ubiquitination may interfere with insulin promoter activation, and thus limit the number of isolated insulin-producing cells [4143]. Insulin-producing cells expressed markers of mature beta cells (UCN3, proinsulin, INS, PDX1, NKX6-1, KCNJ11, ABCC8, GCK, PCSK1, PKD2 and SLC2A1). Some sorted cells also expressed islet cell markers (GCG, SST), suggesting that, following differentiation, the cell population included pancreas progenitors. In agreement with previous observations, insulin-producing cells from co-cultures proliferated in vitro [44]. However, decreased insulin expression resembling levels in islet cells was observed after in vitro expansion [45, 46]. Insulin-producing cells derived from co-cultures retained secretory ability, as assessed by quinacrine assay [47]. Perfusion assays and a threefold increase in C-peptide secretion after a glucose challenge in static cultures corroborated the beta cell phenotype in vitro. Additionally, we found oscillations in insulin secretion at higher glucose concentrations. This oscillatory secretion is essential for maintaining glucose homeostasis and a suitable insulin response in target cells [48]. Previous studies have also demonstrated an insulin secretion pattern in human beta cells derived from human embryonic stem cells [49]. Higher levels of C-peptide in vivo after glucose challenge and control of hyperglycaemia in STZ-treated mice strongly suggest that insulin-producing cells derived from the interactions between EBs and ECs maintain their functional capacity after transplantation in SCID mice. This finding could be relevant for the use of these cells as an alternative treatment for type 1 diabetes mellitus. In co-cultured EBs, we observed cell clusters that co-expressed p-SMAD1, 5 and 8, and a significant increase in BMP expression (ESM Fig. 2). Analysis of EC-conditioned medium showed that a higher level of BMP-2 and BMP4 expression was induced at stage three of differentiation in co-cultured EBs (ESM Fig. 3). Furthermore, the use of EC-conditioned medium improved the proliferation and survival of insulin-producing cells at various stages of differentiation (ESM Fig. 3). In contrast, less proliferation and more cell death was observed in EBs cultured alone. Thus, EC-derived factors in concert with pancreatic differentiation factors may potentiate cell survival, differentiation, proliferation and maturation in vitro. Finally, the effects of ECs were mimicked by adding a combination of BMP-2 and BMP-4 to DE cells that expressed CXCR4 and became insulin-producing cells (ESM Fig. 4).
In this study, we demonstrate that human dermal ECs provide essential signals for in vitro derivation of functional insulin-producing cells from hPSCs. These insulin-producing cells can be labelled, isolated and expanded, and maintain insulin secretion in vitro and in vivo. Optimised EB–EC interactions promote upregulation of BMPs that may be essential for the beta cell differentiation process. Long-term studies in animal models of diabetes are required to evaluate the capacity of these insulin-producing cells to maintain glucose homeostasis, for use in the treatment of type 1 diabetes mellitus.

Acknowledgements

We thank P. Lin for flow cytometry assistance, K. L. Chaiboonma for technical assistance and K. Wawrowsky for assisting us with confocal microscope imaging at Cedars-Sinai Medical Center. We also thank I. Al-Abdullah for islet culture assistance (City of Hope, Duarte, CA, USA).

Compliance with ethical standards

Funding

This work was funded by an Eris M. Filed Endowment for Diabetes Research granted to DCD.

Duality of interest statement

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

DT-A, DHG and DCD conceived and designed the study; DT-A, OOW, VA and JI-I contributed to data acquisition; DT-A, DHG and DCD analysed the data; all authors interpreted the data, drafted the article, revised it critically for important intellectual content and approved the final version to be published. DT-A is responsible for the integrity of the work as a whole.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

e.Med Allgemeinmedizin

Kombi-Abonnement

Mit e.Med Allgemeinmedizin erhalten Sie Zugang zu allen CME-Fortbildungen und Premium-Inhalten der allgemeinmedizinischen Zeitschriften, inklusive einer gedruckten Allgemeinmedizin-Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
Zurück zum Zitat Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin 87:4–14CrossRef Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin 87:4–14CrossRef
2.
Zurück zum Zitat Lock LT, Tzanakakis ES (2007) Stem/progenitor cell sources of insulin-producing cells for the treatment of diabetes. Tissue Eng 13:1399–1412CrossRefPubMed Lock LT, Tzanakakis ES (2007) Stem/progenitor cell sources of insulin-producing cells for the treatment of diabetes. Tissue Eng 13:1399–1412CrossRefPubMed
3.
Zurück zum Zitat Matveyenko AV, Georgia S, Bhushan A, Butler PC (2010) Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats. Am J Physiol Endocrinol Metab 299:E713–E720CrossRefPubMedPubMedCentral Matveyenko AV, Georgia S, Bhushan A, Butler PC (2010) Inconsistent formation and nonfunction of insulin-positive cells from pancreatic endoderm derived from human embryonic stem cells in athymic nude rats. Am J Physiol Endocrinol Metab 299:E713–E720CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Wu Y, Persaud SJ, Jones PM (2011) Stem cells and the endocrine pancreas. Br Med Bull 100:1–13CrossRef Wu Y, Persaud SJ, Jones PM (2011) Stem cells and the endocrine pancreas. Br Med Bull 100:1–13CrossRef
6.
Zurück zum Zitat D’Amour KA, Bang AG, Eliazer S et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401CrossRefPubMed D’Amour KA, Bang AG, Eliazer S et al (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401CrossRefPubMed
7.
Zurück zum Zitat Zhu FF, Zhang PB, Zhang DH, et al. (2011) Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells. Diabetologia 2325–2336. Zhu FF, Zhang PB, Zhang DH, et al. (2011) Generation of pancreatic insulin-producing cells from rhesus monkey induced pluripotent stem cells. Diabetologia 2325–2336.
8.
Zurück zum Zitat Talavera-Adame D, Wu G, He Y et al (2011) Endothelial cells in co-culture enhance embryonic stem cell differentiation to pancreatic progenitors and insulin-producing cells through BMP signaling. Stem Cell Rev 7:532–543CrossRefPubMedPubMedCentral Talavera-Adame D, Wu G, He Y et al (2011) Endothelial cells in co-culture enhance embryonic stem cell differentiation to pancreatic progenitors and insulin-producing cells through BMP signaling. Stem Cell Rev 7:532–543CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Kroon E, Martinson LA, Kadoya K et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452CrossRefPubMed Kroon E, Martinson LA, Kadoya K et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452CrossRefPubMed
10.
Zurück zum Zitat Rezania A, Je B, Xu J et al (2013) Enrichment of human embryonic stem cell-derived NKX6. 1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31:2432–2442CrossRefPubMed Rezania A, Je B, Xu J et al (2013) Enrichment of human embryonic stem cell-derived NKX6. 1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem Cells 31:2432–2442CrossRefPubMed
11.
Zurück zum Zitat van der Meulen T, Xie R, Kelly OG et al (2012) Urocortin 3 marks mature human primary and embryonic stem cell-derived pancreatic alpha and beta cells. PLoS One 7:e52181CrossRefPubMedPubMedCentral van der Meulen T, Xie R, Kelly OG et al (2012) Urocortin 3 marks mature human primary and embryonic stem cell-derived pancreatic alpha and beta cells. PLoS One 7:e52181CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Blum B, Hrvatin S, Schuetz C et al (2012) Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nat Biotechnol 30:261–264CrossRefPubMedPubMedCentral Blum B, Hrvatin S, Schuetz C et al (2012) Functional beta-cell maturation is marked by an increased glucose threshold and by expression of urocortin 3. Nat Biotechnol 30:261–264CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science (New York, NY) 294:564–567CrossRef Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science (New York, NY) 294:564–567CrossRef
14.
15.
Zurück zum Zitat Talavera-Adame D, Ng TT, Gupta A et al (2011) Characterization of microvascular endothelial cells isolated from the dermis of adult mouse tails. Microvasc Res 82:97–104CrossRefPubMed Talavera-Adame D, Ng TT, Gupta A et al (2011) Characterization of microvascular endothelial cells isolated from the dermis of adult mouse tails. Microvasc Res 82:97–104CrossRefPubMed
16.
Zurück zum Zitat Talavera-Adame D, Dafoe DC, Ng TT et al (2009) Enhancement of embryonic stem cell differentiation promoted by avian chorioallantoic membranes. Tissue Eng Part A 15:3193–3200CrossRefPubMed Talavera-Adame D, Dafoe DC, Ng TT et al (2009) Enhancement of embryonic stem cell differentiation promoted by avian chorioallantoic membranes. Tissue Eng Part A 15:3193–3200CrossRefPubMed
17.
Zurück zum Zitat Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science (New York, NY) 294:559–563CrossRef Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science (New York, NY) 294:559–563CrossRef
18.
Zurück zum Zitat Crivellato E, Nico B, Ribatti D (2007) Contribution of endothelial cells to organogenesis: a modern reappraisal of an old Aristotelian concept. J Anat 211:415–427PubMedPubMedCentral Crivellato E, Nico B, Ribatti D (2007) Contribution of endothelial cells to organogenesis: a modern reappraisal of an old Aristotelian concept. J Anat 211:415–427PubMedPubMedCentral
19.
Zurück zum Zitat Nikolova G, Lammert E (2003) Interdependent development of blood vessels and organs. Cell Tissue Res 314:33–42CrossRefPubMed Nikolova G, Lammert E (2003) Interdependent development of blood vessels and organs. Cell Tissue Res 314:33–42CrossRefPubMed
20.
Zurück zum Zitat Jacquemin P, Yoshitomi H, Kashima Y et al (2006) An endothelial–mesenchymal relay pathway regulates early phases of pancreas development. Dev Biol 290:189–199CrossRefPubMed Jacquemin P, Yoshitomi H, Kashima Y et al (2006) An endothelial–mesenchymal relay pathway regulates early phases of pancreas development. Dev Biol 290:189–199CrossRefPubMed
21.
Zurück zum Zitat Nikolova G, Strilic B, Lammert E (2007) The vascular niche and its basement membrane. Trends Cell Biol 17:19–25CrossRefPubMed Nikolova G, Strilic B, Lammert E (2007) The vascular niche and its basement membrane. Trends Cell Biol 17:19–25CrossRefPubMed
22.
Zurück zum Zitat Nikolova G, Jabs N, Konstantinova I et al (2006) The vascular basement membrane: a niche for insulin gene expression and Beta cell proliferation. Dev Cell 10:397–405CrossRefPubMed Nikolova G, Jabs N, Konstantinova I et al (2006) The vascular basement membrane: a niche for insulin gene expression and Beta cell proliferation. Dev Cell 10:397–405CrossRefPubMed
23.
Zurück zum Zitat Sneddon JB, Borowiak M, Melton DA (2012) Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme. Nature 491:765–768PubMed Sneddon JB, Borowiak M, Melton DA (2012) Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme. Nature 491:765–768PubMed
24.
25.
Zurück zum Zitat Sabra G, Vermette P (2012) A 3D cell culture system: separation distance between INS-1 cell and endothelial cell monolayers co-cultured in fibrin influences INS-1 cells insulin secretion. Biotechnol Bioeng 110:619–627CrossRefPubMed Sabra G, Vermette P (2012) A 3D cell culture system: separation distance between INS-1 cell and endothelial cell monolayers co-cultured in fibrin influences INS-1 cells insulin secretion. Biotechnol Bioeng 110:619–627CrossRefPubMed
26.
Zurück zum Zitat Talavera-Adame D, Gupta A, Kurtovic S et al (2013) Bone morphogenetic protein-2/-4 upregulation promoted by endothelial cells in coculture enhances mouse embryoid body differentiation. Stem Cells Dev 22(24):3252–3260CrossRefPubMedPubMedCentral Talavera-Adame D, Gupta A, Kurtovic S et al (2013) Bone morphogenetic protein-2/-4 upregulation promoted by endothelial cells in coculture enhances mouse embryoid body differentiation. Stem Cells Dev 22(24):3252–3260CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Johansson M, Andersson A, Carlsson P-O, Jansson L (2006) Perinatal development of the pancreatic islet microvasculature in rats. J Anat 208:191–196CrossRefPubMedPubMedCentral Johansson M, Andersson A, Carlsson P-O, Jansson L (2006) Perinatal development of the pancreatic islet microvasculature in rats. J Anat 208:191–196CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Bragdon B, Moseychuk O, Saldanha S et al (2011) Bone morphogenetic proteins: a critical review. Cell Signal 23:609–620CrossRefPubMed Bragdon B, Moseychuk O, Saldanha S et al (2011) Bone morphogenetic proteins: a critical review. Cell Signal 23:609–620CrossRefPubMed
29.
Zurück zum Zitat Tang S, Zhang R, Yu W et al (2013) Association of genetic variants of BMP4 with type 2 diabetes mellitus and clinical traits in a Chinese Han population. BioMed Res Int 2013:238150PubMedPubMedCentral Tang S, Zhang R, Yu W et al (2013) Association of genetic variants of BMP4 with type 2 diabetes mellitus and clinical traits in a Chinese Han population. BioMed Res Int 2013:238150PubMedPubMedCentral
30.
Zurück zum Zitat Goulley J, Dahl U, Baeza N et al (2007) BMP4-BMPR1A signaling in beta cells is required for and augments glucose-stimulated insulin secretion. Cell Metab 5:207–219CrossRefPubMed Goulley J, Dahl U, Baeza N et al (2007) BMP4-BMPR1A signaling in beta cells is required for and augments glucose-stimulated insulin secretion. Cell Metab 5:207–219CrossRefPubMed
31.
Zurück zum Zitat Nakagawa M, Yamanaka S (2010) Chapter 14 Reprogramming of somatic cells to pluripotency. In: The cell biology of stem cells 695:215–224 Nakagawa M, Yamanaka S (2010) Chapter 14 Reprogramming of somatic cells to pluripotency. In: The cell biology of stem cells 695:215–224
32.
Zurück zum Zitat Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMed Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676CrossRefPubMed
33.
Zurück zum Zitat Pan X, Xue W, Li Y et al (2011) Islet graft survival and function: concomitant culture and transplantation with vascular endothelial cells in diabetic rats. Transplantation 92:1208–1214CrossRefPubMed Pan X, Xue W, Li Y et al (2011) Islet graft survival and function: concomitant culture and transplantation with vascular endothelial cells in diabetic rats. Transplantation 92:1208–1214CrossRefPubMed
34.
Zurück zum Zitat Montanucci P, Basta G, Calafiore R (2009) In vitro-cultured human islet cell monolayers: stemness markers and insulin recovery upon streptozotocin exposure. Tissue Eng Part A 15:3931–3942CrossRefPubMed Montanucci P, Basta G, Calafiore R (2009) In vitro-cultured human islet cell monolayers: stemness markers and insulin recovery upon streptozotocin exposure. Tissue Eng Part A 15:3931–3942CrossRefPubMed
35.
Zurück zum Zitat Oo W, Rn B, Jm R et al (2012) Simplified method to isolate highly pure canine pancreatic islets. Pancreas 41:1–2CrossRef Oo W, Rn B, Jm R et al (2012) Simplified method to isolate highly pure canine pancreatic islets. Pancreas 41:1–2CrossRef
36.
Zurück zum Zitat Rosenberg L, Lipsett M, Yoon J-W et al (2004) A pentadecapeptide fragment of islet neogenesis-associated protein increases beta-cell mass and reverses diabetes in C57BL/6J mice. Ann Surg 240:875–884CrossRefPubMedPubMedCentral Rosenberg L, Lipsett M, Yoon J-W et al (2004) A pentadecapeptide fragment of islet neogenesis-associated protein increases beta-cell mass and reverses diabetes in C57BL/6J mice. Ann Surg 240:875–884CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Lammert E, Cleaver O, Melton D (2003) Role of endothelial cells in early pancreas and liver development. Mech Dev 120:59–64CrossRefPubMed Lammert E, Cleaver O, Melton D (2003) Role of endothelial cells in early pancreas and liver development. Mech Dev 120:59–64CrossRefPubMed
38.
Zurück zum Zitat Karbanová J, Mokrý J (2002) Histological and histochemical analysis of embryoid bodies. Acta Histochem 104:361–365CrossRefPubMed Karbanová J, Mokrý J (2002) Histological and histochemical analysis of embryoid bodies. Acta Histochem 104:361–365CrossRefPubMed
39.
Zurück zum Zitat Banerjee I, Sharma N, Yarmush M (2011) Impact of co-culture on pancreatic differentiation of embryonic stem cells. J Tissue Eng Regen Med 5(4):313–323CrossRefPubMed Banerjee I, Sharma N, Yarmush M (2011) Impact of co-culture on pancreatic differentiation of embryonic stem cells. J Tissue Eng Regen Med 5(4):313–323CrossRefPubMed
40.
Zurück zum Zitat Peiris H, Bonder SC, Toby P, Coates H, Keating DJ, Jessup FC (2014) The b-Cell/EC axis: how do islet cells talk to each other. Diabetes 63:3–11CrossRefPubMed Peiris H, Bonder SC, Toby P, Coates H, Keating DJ, Jessup FC (2014) The b-Cell/EC axis: how do islet cells talk to each other. Diabetes 63:3–11CrossRefPubMed
41.
Zurück zum Zitat Claiborn KC, Sachdeva MM, Cannon CE et al (2010) Pcif1 modulates Pdx1 protein stability and pancreatic β cell function and survival in mice. J Clin Invest 120:3713–3721CrossRefPubMedPubMedCentral Claiborn KC, Sachdeva MM, Cannon CE et al (2010) Pcif1 modulates Pdx1 protein stability and pancreatic β cell function and survival in mice. J Clin Invest 120:3713–3721CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Liu A, Desai BM, Stoffers DA (2004) Identification of PCIF1, a POZ domain protein that inhibits PDX-1 (MODY4) transcriptional activity. Mol Cell Biol 24:4372–4383CrossRefPubMedPubMedCentral Liu A, Desai BM, Stoffers DA (2004) Identification of PCIF1, a POZ domain protein that inhibits PDX-1 (MODY4) transcriptional activity. Mol Cell Biol 24:4372–4383CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Kawaguchi M, Minami K, Nagashima K, Seino S (2006) Essential role of ubiquitin-proteasome system in normal regulation of insulin secretion. J Biol Chem 281:13015–13020CrossRefPubMed Kawaguchi M, Minami K, Nagashima K, Seino S (2006) Essential role of ubiquitin-proteasome system in normal regulation of insulin secretion. J Biol Chem 281:13015–13020CrossRefPubMed
44.
Zurück zum Zitat Johansson M, Mattsson G, Andersson A et al (2006) Islet endothelial cells and pancreatic beta-cell proliferation: studies in vitro and during pregnancy in adult rats. Endocrinology 147:2315–2324CrossRefPubMed Johansson M, Mattsson G, Andersson A et al (2006) Islet endothelial cells and pancreatic beta-cell proliferation: studies in vitro and during pregnancy in adult rats. Endocrinology 147:2315–2324CrossRefPubMed
45.
Zurück zum Zitat Kutlu B, Kayali AG, Jung S et al (2009) Meta-analysis of gene expression in human pancreatic islets after in vitro expansion. Physiol Genomics 39:72–81CrossRefPubMed Kutlu B, Kayali AG, Jung S et al (2009) Meta-analysis of gene expression in human pancreatic islets after in vitro expansion. Physiol Genomics 39:72–81CrossRefPubMed
46.
Zurück zum Zitat Kayali AG, Flores LE, Lopez AD et al (2007) Limited capacity of human adult islets expanded in vitro to redifferentiate into insulin-producing beta-cells. Diabetes 56:703–708CrossRefPubMed Kayali AG, Flores LE, Lopez AD et al (2007) Limited capacity of human adult islets expanded in vitro to redifferentiate into insulin-producing beta-cells. Diabetes 56:703–708CrossRefPubMed
47.
Zurück zum Zitat Tan DC, Roy P (2009) Glucose-dependent functional heterogeneity in β-TC-6 murine insulinoma. Int J Biol Biomol Agri Food Biotech Eng 3:174–177 Tan DC, Roy P (2009) Glucose-dependent functional heterogeneity in β-TC-6 murine insulinoma. Int J Biol Biomol Agri Food Biotech Eng 3:174–177
48.
Zurück zum Zitat Tengholm A, Gylfe E (2009) Oscillatory control of insulin secretion. Mol Cell Enocrinol 297:58–72CrossRef Tengholm A, Gylfe E (2009) Oscillatory control of insulin secretion. Mol Cell Enocrinol 297:58–72CrossRef
49.
Zurück zum Zitat Assady S, Maor G, Amit M et al (2001) Insulin production by human embryonic stem cells. Diabetes 50:1691–1697CrossRefPubMed Assady S, Maor G, Amit M et al (2001) Insulin production by human embryonic stem cells. Diabetes 50:1691–1697CrossRefPubMed
Metadaten
Titel
Effective endothelial cell and human pluripotent stem cell interactions generate functional insulin-producing beta cells
verfasst von
Dodanim Talavera-Adame
Orison O. Woolcott
Joseph Ignatius-Irudayam
Vaithilingaraja Arumugaswami
David H. Geller
Donald C. Dafoe
Publikationsdatum
27.08.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 11/2016
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-016-4078-1

Weitere Artikel der Ausgabe 11/2016

Diabetologia 11/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.