Skip to main content
Erschienen in: Skeletal Radiology 10/2007

Open Access 01.10.2007 | Scientific Article

MR imaging characteristics in primary lymphoma of bone with emphasis on non-aggressive appearance

verfasst von: Fenna H. Heyning, Herman M. J. A. Kroon, Pancras C. W. Hogendoorn, Antonie H. M. Taminiau, Henk-Jan van der Woude

Erschienen in: Skeletal Radiology | Ausgabe 10/2007

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Purpose

To assess the heterogeneity of magnetic resonance (MR) imaging characteristics in primary lymphoma of bone (PLB), in particular the non-aggressive appearance.

Subjects and methods

In a retrospective study, MR imaging features were analyzed in 29 patients with histologically proven PLB. The following parameters were evaluated: tumor size, bone marrow and extension into soft tissues, signal characteristics of bone marrow and soft-tissue components, including enhancement, and involvement of cortical bone (complete disruption, focal destruction, permeative destruction and cortical thickening).

Results

PLB presented with extension into the soft tissue in 22 (76%) of 29 patients, was only subtle in three of these 22 patients, and was absent in seven patients. Signal intensity (SI) of the soft-tissue part was most frequently homogeneously isointense with muscle on T1-weighted images (90%) and high on T2-weighted images (91%). Enhancement was predominantly homogeneous and diffuse (82%). In 93% of patients cortical bone appeared abnormal: among those patients complete cortical disruption was seen in 28%, with extension into soft tissues in all but one patient; a permeative pattern of destruction was present in 52% of patients, 66% of these had an associated soft-tissue mass. Two patients with normal-appearing cortical bone had no extension into soft tissues. In two patients focal cortical destruction was noticed; in one patient cortical bone was homogeneously thickened, and in one patient PLB was selectively localized within the cortical bone. SI of the bone marrow tumor component was more frequently heterogeneous (in 54%), compared with the soft-tissue component, being high on T2-weighted images in 89%, intermediate in 7% and low in 4%. Similarly, enhancement was heterogeneous in 59%.

Conclusion

The MR imaging appearance of PLB is variable. In 31% of PLB patients, the tumor was intra-osseous, with linear cortical signal abnormalities or even normal-appearing or thickened cortical bone without soft-tissue mass, and, as such, PLB may not infrequently look non-aggressive on MR imaging.

Introduction

Primary lymphoma of bone (PLB) is a rare disease, accounting for less than 1% of all non-Hodgkin’s lymphoma (NHL) cases and 3–5% of all extra-nodal lymphoma cases [13]. According to the World Health Organization (WHO) classification of hematological malignancies, it is a distinct clinico-pathological subtype of extra-nodal, diffuse, large B-cell lymphoma (DLBCL) with a relatively homogeneous pathological and clinical presentation [4, 5]. Almost all tumors are of the large B-cell type, morphologically composed of large centroblastic cells, frequently with multi-lobated nuclei [58]. The prognosis of PLB, depending on staging and histologic classification, is favorable following combined modality (chemo- and radiation) therapy, with a 5-year overall survival rate that extends to 88% [7, 912].
Debates are ongoing as to whether there is a uniform imaging pattern in PLB, in particular on the magnetic resonance (MR) imaging characteristics of PLB. Some authors have stated that a tumor with normal-appearing cortical bone and a substantial soft-tissue mass is likely to be a non-Hodgkin’s lymphoma [13, 14]. One study focused on the hypointense signal intensities on T2-weighted images as a feature that may be characteristic of PLB as opposed to other malignant tumors [15]. In other studies MR findings were found to be non-specific and not useful for differentiating PLB from other small, blue, round cell tumors, including Ewing’s sarcoma and small cell osteosarcoma and (in older age groups) tumors such as metastases of carcinoma and plasmacytoma [16]. In addition, the plain radiographic appearance of PLB differs from virtually normal to a severely permeative pattern of bone destruction with a blastic, lytic or mixed appearance, and, as such, is also non-specific [1719].
The order of differential diagnosis is, therefore, mainly based on the patient’s age, race and clinical features.
To assess the homogeneity or heterogeneity of MR imaging characteristics in PLB, and to assess the rate of a non-aggressive MR imaging appearance, we evaluated various features known from the literature, with emphasis on cortical bone manifestation and marrow and soft-tissue signal characteristics, in 29 patients in the present retrospective imaging study.

Subjects and methods

The files of 29 patients with a histologically proven diagnosis of PLB, and MR imaging studies available at the time of diagnosis, were retrieved from the archive of the Netherlands Committee on Bone Tumors, representing the period between 1989 and 2004. All histological diagnosis were re-assured for this study.

Patients’ characteristics

The study group consisted of 29 patients, 14 female and 15 male. In the majority of the patients the tumors were located in the femur (n = 13) or humerus (n = 6).
Other tumor sites included the ilium (n = 4), scapula (n = 2), tibia, acetabulum, lumbar vertebra and mandibula (one patient each). The age of the patients ranged from 19–81 years (median 40 years).

MRI

Since the Netherlands Committee on Bone Tumors serves as a consulting medium for the entire country, MRI studies were performed on different imagers with field strengths between 0.5 T and 1.5 T. T1-weighted spin echo (SE) sequences were available for 28 patients; TRs varied from 400–800 ms, with TEs from 12–25 ms. T2-weighted (fast) SE sequences were available for 29 patients, with fat-selective pre-saturation sequences for 14 patients. TRs varied from 2,000–7,000 ms, with TEs from 70–130 ms. Contrast-enhanced, T1-weighted, SE series after intravenous injection of 0.2 mmol gadopentetate dimeglumine (Gd-DTPA) were available for 25 of 29 patients, with fat-selective pre-saturation sequences for ten patients. A dynamic contrast-enhanced sequence was used for only three patients. For all patients a combination of axial and longitudinal (either coronal or sagittal) images was available for evaluation.

Imaging evaluation

The following parameters were evaluated in consensus by two experienced musculoskeletal radiologists:
Tumor size
Tumor dimensions were established by measuring length, width and depth, assessed from the combination of axial and longitudinal images.
Extension into the soft tissues
Presence or absence of a soft-tissue component, defined as a mass beyond the margins of cortical bone and periosteum, was determined.
Soft-tissue edema
Soft-tissue edema was considered to be present when areas of peri-lesional high signal intensity (SI) were noticed on T2-weighted sequences and/or contrast-enhanced T1-weighted sequences in an ill-defined feathery pattern, without disruption of the fascial planes.
Signal intensities of soft-tissue part
SIs were defined as predominantly high, intermediate, low or mixed, relative to muscle SI, assessed on both T1- and T2-weighted sequences. Furthermore, homogeneity or heterogeneity of the SI on T2-weighted images was assessed.
Enhancement of soft-tissue part
The pattern of tumoral enhancement on T1-weighted Gd-DTPA-enhanced sequences (absent, peripheral or diffuse) was recorded, as well as the homogeneity or heterogeneity.
Cortical bone destruction
Appearance of the cortical bone was determined as normal or abnormal on both T1- and T2-weighted images. Abnormal cortical bone appearance was subdivided into complete cortical destruction (normal low SI, completely replaced by high signal intensity of tumor), focal destruction (normal low signal intensity, partially replaced by high SI of tumor with focal disturbance of cortical integrity), permeative destruction (fine linear pattern of intracortical high SI, without disturbance of cortical integrity) or cortical thickening (thickening of cortical bone, without signal abnormalities).
Bone marrow involvement
SIs of the bone marrow component and homogeneity were assessed on T1- and T2-weighted sequences, compared with muscle SI (higher, equal/intermediate, lower, mixed) and opposed to the high SI of normal bone marrow. Tumor margins were defined as sharp or unsharp.
Enhancement of bone marrow component
The presence or absence of intra-osseous tumoral enhancement and the pattern (homogeneous, heterogeneous, focal, diffuse) of enhancement on static T1-weighted Gd-DTPA-enhanced sequences were determined.
Histological classification and immunohistochemistry
The pathology diagnosis was established according to the World Health Organization classification on biopsy material, using standard histological criteria and immunohistochemistry using antibodies directed against vimentin, CD45, CD3, CD20, CD79a, and CD99. Immunohistochemical staining was performed on 4 μm sections of formalin-fixed, paraffin-embedded tissues, using standard procedures. In this study, all tumors were of the large B-cell type.

Results

Tumor size
The mean maximum tumor diameter was 11 cm (range 3–18 cm).
Extension into the soft tissues
Tumor extension into the soft tissues was apparent in 22 of the 29 patients (Fig. 1) (76%), in three of these patients this was very discrete (Fig. 2). In the remaining seven patients (24%), the tumor was entirely confined to the intramedullary and/or cortical compartment (Fig. 3).
Soft-tissue edema
Peri-lesional soft-tissue edema was encountered in approximately half of the patients (15 out of 29, 52%), whereas, in the other 14 patients, it was absent.
Signal intensities of soft-tissue part
Appearance on T1-weighted sequences could be assessed for 21 patients bearing tumors with extension into the soft-tissues: in 19 (90%) of these 21 patients the SI was intermediate and equal to that of muscle. In two patients the SI was higher than for muscle. In 22 patients the SI on T2-weighted sequences could be assessed, being high (higher than that of muscle, lower than that of fat) in 20 patients (91%). This high signal was predominantly homogeneous in 18 of those 20 patients and heterogeneous in the other four.
Enhancement of soft-tissue part
Enhancement of the soft-tissue component of the tumor could be determined in 17 patients; for the other 12 patients contrast-enhanced studies were not available. Enhancement of the soft-tissue part occurred in all evaluable patients, being predominantly homogeneous and diffuse in 14 (82%) patients and heterogeneous in the other three patients (Fig. 1).
Cortical bone destruction
For two of the 29 patients the entire cortical bone was scored as normal. In those two patients there was also no extension into soft-tissue (Fig. 3). In 27 patients (93%) the cortical bone was abnormal. A permeative cortical destruction pattern was noticed for a small majority of patients (15 of 29, 52%). In ten of these 15 patients, an associated soft-tissue mass was apparent (Fig. 4); however, in two patients, this was absent. In the remaining three patients only limited extra-cortical abnormalities were present (Fig. 2). Complete cortical disruption was found in eight patients (Fig. 1) (28%). All but one of these eight patients had significant extension into the soft-tissue. Focal destruction was seen in two patients, and homogeneous cortical thickening in one patient. Moreover, selective intracortical tumor localization was encountered in one other patient.
Bone marrow involvement
Signal intensity of the intraosseous tumor component on T1-weighted images could be assessed in 26 patients being predominantly intermediate (equal to muscle) in 25 patients (Figs. 1, 4) and predominantly low (lower than muscle) in one patient. In three patients (12%) of the former group, a combination of intermediate and low signal intensity was found. Demarcation in the longitudinal extent was scored as sharp in 11 and shaded in nine patients. On T2-weighted images (available in 28 patients) the SI of the bone marrow compartment was high in 25 patients (89%), intermediate in two patients (7%) and low in one patient. The SI of the bone marrow tumor component was homogeneous in 13 of 28 patients (46%), however, inhomogeneous in 15 patients (54%). (Figs. 2, 5).
Enhancement of bone marrow component
Enhancement of the bone marrow tumor component could be assessed in 23 patients. No enhancement was noticed in only one patient. The other 22 patients showed enhancement, which was homogeneous in nine patients (41%), and heterogeneous in 13 patients (59%) (Figs. 2, 3, 5).

Discussion

Primary non-Hodgkin’s lymphoma of bone (PLB) is a rare entity among musculoskeletal tumors, and it is also uncommon among extra-nodal sites of NHL. The morphology of these lymphomas is identical to that of lymphomas at other sites, but the clinical course is often more protracted. Prognosis of PLB depends mainly on staging and on histological classification, but, generally, the clinical outcome, after treatment with combined chemo- and radiation therapy, is favorable, with a 5-year overall survival rate rising to 88% [15, 911, 18, 20]. On the other hand, Lewis et al. reported a 5-year survival rate of 58% and no statistically significant difference between PLB and systemic bone lymphoma [6]. With regard to histological subtype, tumor localization and clinical presentation, patients with PLB display homogeneous clinicopathological features [4, 5]. Almost all tumors are localized in long bones (particularly the femur, tibia, pelvis and humerus), and patients present with pain and/or a palpable mass. The literature describes a significant male preponderance, which is not confirmed in this present study. Although PLB presents in a wide age range of patients, evenly distributed among the second through eighth decades of life, in general, it is more frequently encountered in patients over 30 years of age, with a peak incidence in the fifth decade, in contrast to that of Ewing’s sarcoma and osteosarcoma [6, 8, 10, 11, 13, 14, 18]. In the latter patient group, a significant decrease in incidence is found beyond the third decade. In our study group of 29 patients a broad range of ages at presentation was also found (19–81 years); the median age was 40 years.
Plain radiographs of PLB often show destructive bone lesions, generally with periosteal layering and cortical disruption. On the other hand, plain radiographs of PLB may appear virtually normal or non-specific and can be overlooked as being normal. As such, there is no specific conventional radiographic pattern, and the radiographic differential diagnosis of PLB includes a broad spectrum of both benign (including osteomyelitis) and malignant (such as osteosarcoma, Ewing’s sarcoma) lesions [8, 1619]. These tumors and tumor-like lesions may demonstrate similar radiographic features but warrant different types of therapy. In this respect PLB is associated with a better prognostic outcome than that for other small round cell tumors. Literature on the presentation of MR imaging features of PLB is relatively scarce and contradictory. These studies, frequently with limited numbers of patients, mainly focused on the appearance of the cortical bone, relative to associated soft-tissue abnormalities, and on SI characteristics [1316, 18, 19, 21, 22]. Low SI on T2-weighted sequences has been mentioned as a feature of PLB, probably due to a high content of fibrous tissue [15]. We could not confirm this feature to a great extent in our population. Low SI on T1- or T2-weighted sequences was present in only one patient each. Almost all tumors showed a non-specific combination of intermediate (equal to that of muscle) SI on T1-weighted sequences and high SI on T2-weighted sequences.
Several studies on PLB and MR imaging focused on the pattern of cortical destruction in order to use it as a differentiating criterion. It was stated that a tumor with a normal (appearing) cortex and a substantial soft-tissue mass is likely to be lymphoma [13, 14]. MR imaging may show small linear foci of intermediate or high SI on T2-weighted sequences, penetrating the cortical bone. This MR pattern of permeative cortical destruction is, however, not specific to lymphoma. It can be seen in other small round cell tumors (in the younger age group) as well as in different metabolic and inflammatory processes, including hyperparathyroidism and osteomyelitis and, for instance, myeloma or metastatic carcinoma (in the older age group) [13, 14]. In our study, cortical abnormalities were present in 93% of patients, and extension into the soft tissue was found in 76%, but various types of destruction and combinations with or without such extension were recognized (Table 1). A pattern of permeative cortical destruction with linear foci of abnormal SI was noticed in 15 of the 29 (52%) patients. Ten of these 15 patients had a definite soft-tissue mass. In five patients, however, this was minimal or even absent. In 28% of our patient population complete cortical disruption could be appreciated; in all but one patient it was accompanied by a large soft-tissue mass. In another two patients, the cortical bone appeared to be completely normal, and in these patients there was no associated soft-tissue mass. In one patient with histologically confirmed PLB the tumor was selectively located within the cortical bone, without further extension into the soft tissue and/or bone marrow involvement. In one patient the cortical bone was homogeneously thickened, a feature that can also be encountered in reactive processes (after trauma or infection). Peri-osteal or cortical lymphoma without medullary involvement is a very rare manifestation of NHL, but it has been previously described [23]. In this respect, it can be concluded that in patients with PLB the pattern of cortical destruction is heterogeneous and non-specific.
Table 1
Relationship between MR imaging appearance of cortical bone and extension into the soft tissue in 29 patients with PLB
Cortex appearance
Extension into soft-tissue substantial
Extension into soft-tissue limited
Extension into soft-tissue absent
Total
Normal
0
0
2
2
Permeative destruction
10
3
2
15
Focal disruption
2
0
0
2
Complete disruption
7
0
1
8
Cortex thickening
0
0
1
1
Tumor within cortex only
0
0
1
1
Total
19
3
7
29
MR imaging is the optimal modality to demonstrate the extent of bone marrow replacement by PLB, particularly using T1-weighted sequences [14, 24]. Multi-centric bone marrow disease is likely to be detected by longitudinal series with a large field of view. Signal intensities of the bone marrow component were non-specific in the present series, being intermediate on T1-weighted sequences and high on T2-weighted sequences in almost all patients. In only three patients a combination of intermediate and low signal intensity was found. Demarcation in the longitudinal extent was scored as sharp in 11 and unsharp in nine patients. The SI of the bone marrow tumor component was homogeneous in 13 of 28 patients (46%); however, it was inhomogeneous in 15 patients (54%), which can be explained by the intermingling of normal bone marrow between areas of tumor. Contrast-enhanced images of the bone marrow showed a similar distribution; enhancement was diffuse and homogeneous in 41% and heterogeneous in 59% of the patients whose condition was eligible for evaluation. Opposed to the bone marrow component, the soft- tissue component, if present, was far more homogeneous, both on T1-weighted contrast-enhanced images (82%) and as high SI on T2-weighted images (82%).
The data obtained in this retrospective study demonstrate that, in contrast to the relatively homogeneous clinical and pathological presentation, the MR imaging features are not uniform in patients with PLB. Although the majority of our patients displayed a combination of definite cortical abnormalities (either permeative destruction or complete disruption) and extension into soft-tissue, lymphoma may show different appearances. Particularly, intra-osseous lesions with linear cortical signal abnormalities without substantial soft-tissue mass, or even normal-appearing or thickened cortical bone without soft-tissue mass, may look non-aggressive and even benign. In the present study no fewer than nine of 29 patients (31%) with PLB presented in that manner. Radiologists should thus be aware of that in the right clinical context.
There are several limitations concerning this retrospective and largely descriptive study. The data obtained were collected from various institutions that had used different MR imaging systems, field strengths and protocols. In order to collect a larger number of patients, given the rarity of PLB, we could not avoid this. The assessment of heterogeneity or homogeneity of signal characteristics is quite subjective; however, for the goal of this study it was of minor importance. Fast dynamic contrast-enhanced sequences were used only incidentally. Nowadays, these acquisitions are widely used to assess the biologic behavior of primary bone and soft-tissue tumors and to determine the response to chemo- and/or radiation therapy. With regard to PLB, the rapid decrease of tumor volume and the complete disappearance of the soft-tissue component on MR imaging has been described as a significant indicator of good response to treatment [24]. In this respect, MR imaging has a direct impact on individual patient care, which is however, outside the scope of this study. We could not determine how MR imaging had caused any change in clinical approach in the patients with PLB described here. Differentiating PLB from other malignant small round cell tumors, on the one hand, or reactive processes, on the other hand, based on (MR) imaging criteria only, is, in our opinion, not possible and not useful, which stresses the need for accurate core biopsy, which is definitely crucial for both diagnosis and staging purposes.
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License ( https://​creativecommons.​org/​licenses/​by-nc/​2.​0 ), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Radiologie

Kombi-Abonnement

Mit e.Med Radiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Radiologie, den Premium-Inhalten der radiologischen Fachzeitschriften, inklusive einer gedruckten Radiologie-Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Huvos AG. Skeletal manifestations of malignant lymphomas and leukemias. In: Bone tumors: diagnosis, treatment, and prognosis. Philadelphia: Saunders; 1979. Huvos AG. Skeletal manifestations of malignant lymphomas and leukemias. In: Bone tumors: diagnosis, treatment, and prognosis. Philadelphia: Saunders; 1979.
2.
Zurück zum Zitat Mulder JD, Kroon HM, Schutte HE, Taconis WK. Non-Hodgkin’s lymphoma. In: Radiologic atlas of bone tumors. Amsterdam, The Netherlands: Elsevier; 1993. Mulder JD, Kroon HM, Schutte HE, Taconis WK. Non-Hodgkin’s lymphoma. In: Radiologic atlas of bone tumors. Amsterdam, The Netherlands: Elsevier; 1993.
3.
Zurück zum Zitat Mirra JM, Picci P, Gold RH. Skeletal manifestations of malignant lymphomas and leukemias. In: Bone tumors: clinical, radiologic and pathologic correlations. Philadelphia, PA: Lea and Febiger; 1989. Mirra JM, Picci P, Gold RH. Skeletal manifestations of malignant lymphomas and leukemias. In: Bone tumors: clinical, radiologic and pathologic correlations. Philadelphia, PA: Lea and Febiger; 1989.
4.
Zurück zum Zitat Fletcher CD, Unni KK, Merlens F. WHO classification of tumours. Pathology and genetics of tumours of soft tissue and bone. Lyon: IARC press; 2002. Fletcher CD, Unni KK, Merlens F. WHO classification of tumours. Pathology and genetics of tumours of soft tissue and bone. Lyon: IARC press; 2002.
5.
Zurück zum Zitat Heyning FH, Hogendoorn PCW, Kramer MHH, et al. Primary non-Hodgkin’s lymphoma of bone: a clinicopathologic investigation of 60 cases. Leukemia 1999; 13: 2094–2098.PubMedCrossRef Heyning FH, Hogendoorn PCW, Kramer MHH, et al. Primary non-Hodgkin’s lymphoma of bone: a clinicopathologic investigation of 60 cases. Leukemia 1999; 13: 2094–2098.PubMedCrossRef
6.
Zurück zum Zitat Lewis V, Primus G, Anastasi J, et al. Oncologic outcomes of primary lymphoma of bone in adults. Clin Orthop Relat Res 2003; 415: 90–97.PubMedCrossRef Lewis V, Primus G, Anastasi J, et al. Oncologic outcomes of primary lymphoma of bone in adults. Clin Orthop Relat Res 2003; 415: 90–97.PubMedCrossRef
7.
Zurück zum Zitat Barbieri E, Cammelli S, Mauro F, et al. Primary non-Hodgkin’s lymphoma of the bone: treatment and analysis of prognostic factors for stage I and stage II. Int J Radiat Oncol Biol Phys 2004; 59: 760–764.PubMedCrossRef Barbieri E, Cammelli S, Mauro F, et al. Primary non-Hodgkin’s lymphoma of the bone: treatment and analysis of prognostic factors for stage I and stage II. Int J Radiat Oncol Biol Phys 2004; 59: 760–764.PubMedCrossRef
8.
Zurück zum Zitat de Camargo O, dos Santos Machado T, Croci A, et al. Primary bone lymphoma in 24 patients treated between 1955 and 1999. Clin Orthop Relat Res 2002; 397: 271–280.PubMedCrossRef de Camargo O, dos Santos Machado T, Croci A, et al. Primary bone lymphoma in 24 patients treated between 1955 and 1999. Clin Orthop Relat Res 2002; 397: 271–280.PubMedCrossRef
9.
Zurück zum Zitat Vasallo J, Roessner A, Vollmer E, Grundmann E. Malignant lymphomas with primary bone manifestation. Pathol Res Pract 1987; 182: 381–389. Vasallo J, Roessner A, Vollmer E, Grundmann E. Malignant lymphomas with primary bone manifestation. Pathol Res Pract 1987; 182: 381–389.
10.
Zurück zum Zitat Baar J, Burkes RL, Bell R, Blackstein ME, Fernandes B, Langer F. Primary non-Hodgkin’s lymphoma of bone. A clinicopathologic study. Cancer 1994; 73: 1194–1199.PubMedCrossRef Baar J, Burkes RL, Bell R, Blackstein ME, Fernandes B, Langer F. Primary non-Hodgkin’s lymphoma of bone. A clinicopathologic study. Cancer 1994; 73: 1194–1199.PubMedCrossRef
11.
Zurück zum Zitat Beal K, Allen L, Yahalom J. Primary lymphoma of bone: treatment results and prognostic factors with long-term follow-up of 82 patients. Cancer 2006; 106: 2652–2656.PubMedCrossRef Beal K, Allen L, Yahalom J. Primary lymphoma of bone: treatment results and prognostic factors with long-term follow-up of 82 patients. Cancer 2006; 106: 2652–2656.PubMedCrossRef
12.
Zurück zum Zitat Baar J, Burkes L, Gospodarowicz M. Primary non-Hodgkin’s lymphoma of bone. Semin Oncol 1999; 26: 270–275.PubMed Baar J, Burkes L, Gospodarowicz M. Primary non-Hodgkin’s lymphoma of bone. Semin Oncol 1999; 26: 270–275.PubMed
13.
Zurück zum Zitat Mulligan ME, McRae GA, Murphey MD. Imaging features of primary lymphoma of bone. AJR Am J Roentgenol 1999; 173: 1691–1697.PubMed Mulligan ME, McRae GA, Murphey MD. Imaging features of primary lymphoma of bone. AJR Am J Roentgenol 1999; 173: 1691–1697.PubMed
14.
Zurück zum Zitat Krishnan A, Shirkhoda A, Tehranzadeh J, Armin AR, Irwin R, Les K. Primary bone lymphoma: radiographic–MR imaging correlation. Radiographics 2003; 23: 1371–1383.PubMedCrossRef Krishnan A, Shirkhoda A, Tehranzadeh J, Armin AR, Irwin R, Les K. Primary bone lymphoma: radiographic–MR imaging correlation. Radiographics 2003; 23: 1371–1383.PubMedCrossRef
15.
Zurück zum Zitat Stiglbauer R, Augustin I, Kramer J, Schurawitzki H, Imhof H, Radaszkiewicz. MRI in the diagnosis of primary lymphoma of bone: correlation with histopathology. J Comput Assist Tomogr 1992; 16: 248–253.PubMedCrossRef Stiglbauer R, Augustin I, Kramer J, Schurawitzki H, Imhof H, Radaszkiewicz. MRI in the diagnosis of primary lymphoma of bone: correlation with histopathology. J Comput Assist Tomogr 1992; 16: 248–253.PubMedCrossRef
16.
Zurück zum Zitat Hicks DG, Gokan T, O’Keefe RJ, et al. Primary lymphoma of bone; correlation of magnetic resonance imaging features with cytokine production by tumor cells. Cancer 1995; 75: 973–980.PubMedCrossRef Hicks DG, Gokan T, O’Keefe RJ, et al. Primary lymphoma of bone; correlation of magnetic resonance imaging features with cytokine production by tumor cells. Cancer 1995; 75: 973–980.PubMedCrossRef
17.
Zurück zum Zitat Mendenhall NP, Jones, Kramer BS, et al. The management of primary lymphoma of bone. Radiother Oncol 1987; 9: 137–145.PubMedCrossRef Mendenhall NP, Jones, Kramer BS, et al. The management of primary lymphoma of bone. Radiother Oncol 1987; 9: 137–145.PubMedCrossRef
18.
Zurück zum Zitat Manaster BJ. Primary bone lymphoma: radiographic-MR imaging correlation. Invited commentary. Radiographics 2003; 23: 1384–1386.CrossRef Manaster BJ. Primary bone lymphoma: radiographic-MR imaging correlation. Invited commentary. Radiographics 2003; 23: 1384–1386.CrossRef
19.
Zurück zum Zitat Clayton F, Butler JJ, Ayala A, Ro JY, Zornoza J. Non-Hodgkin’s lymphoma in bone: pathologic and radiologic features with clinical correlates. Cancer 1987; 60: 2494–2501.PubMedCrossRef Clayton F, Butler JJ, Ayala A, Ro JY, Zornoza J. Non-Hodgkin’s lymphoma in bone: pathologic and radiologic features with clinical correlates. Cancer 1987; 60: 2494–2501.PubMedCrossRef
20.
Zurück zum Zitat Yuste A, Segura A, Lopez-Tendero P, Girones R, Montalar J, Gomez-Codina J. Primary lymphoma of bone: a clinico-pathologic review and analysis of prognostic factors. Leuk Lymphoma 2004; 45: 853–855.PubMedCrossRef Yuste A, Segura A, Lopez-Tendero P, Girones R, Montalar J, Gomez-Codina J. Primary lymphoma of bone: a clinico-pathologic review and analysis of prognostic factors. Leuk Lymphoma 2004; 45: 853–855.PubMedCrossRef
21.
Zurück zum Zitat Haussler MD, Fenstermacher MJ, Johnston DA, Harle TS. MRI of primary lymphoma of bone: cortical disorder as a criterion for differential diagnosis. J Magn Reson Imaging 1999; 9: 93–100.PubMedCrossRef Haussler MD, Fenstermacher MJ, Johnston DA, Harle TS. MRI of primary lymphoma of bone: cortical disorder as a criterion for differential diagnosis. J Magn Reson Imaging 1999; 9: 93–100.PubMedCrossRef
22.
Zurück zum Zitat Salter M, Sollacio RJ, Bernreuter WK, Weppelmann B. Primary lymphoma of bone: the use of MRI in pretreatment evaluation. Am J Clin Oncol 1989; 12: 101–105.PubMedCrossRef Salter M, Sollacio RJ, Bernreuter WK, Weppelmann B. Primary lymphoma of bone: the use of MRI in pretreatment evaluation. Am J Clin Oncol 1989; 12: 101–105.PubMedCrossRef
23.
Zurück zum Zitat Campbell S, Filzen T, Bezzant S, et al. Primary periosteal lymphoma: an unusual presentation of NHL. Skeletal Radiol 2003; 32: 231–235.PubMedCrossRef Campbell S, Filzen T, Bezzant S, et al. Primary periosteal lymphoma: an unusual presentation of NHL. Skeletal Radiol 2003; 32: 231–235.PubMedCrossRef
24.
Zurück zum Zitat Mengiardi B, Honegger H, Hodler J, Exner U, Csherhati M, Bruhlmann W. Primary lymphoma of bone: MRI and CT characteristics during and after successful treatment. AJR Am J Roentgenol 2005; 184: 185–192.PubMed Mengiardi B, Honegger H, Hodler J, Exner U, Csherhati M, Bruhlmann W. Primary lymphoma of bone: MRI and CT characteristics during and after successful treatment. AJR Am J Roentgenol 2005; 184: 185–192.PubMed
Metadaten
Titel
MR imaging characteristics in primary lymphoma of bone with emphasis on non-aggressive appearance
verfasst von
Fenna H. Heyning
Herman M. J. A. Kroon
Pancras C. W. Hogendoorn
Antonie H. M. Taminiau
Henk-Jan van der Woude
Publikationsdatum
01.10.2007
Verlag
Springer-Verlag
Erschienen in
Skeletal Radiology / Ausgabe 10/2007
Print ISSN: 0364-2348
Elektronische ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-007-0335-1

Weitere Artikel der Ausgabe 10/2007

Skeletal Radiology 10/2007 Zur Ausgabe

Browser's Notes

Browser’s notes

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.