Skip to main content
Erschienen in: Abdominal Radiology 9/2022

25.08.2021 | Special Section: Quantitative Imaging

Radiomics: a primer on high-throughput image phenotyping

verfasst von: Kyle J. Lafata, Yuqi Wang, Brandon Konkel, Fang-Fang Yin, Mustafa R. Bashir

Erschienen in: Abdominal Radiology | Ausgabe 9/2022

Einloggen, um Zugang zu erhalten

Abstract

Radiomics is a high-throughput approach to image phenotyping. It uses computer algorithms to extract and analyze a large number of quantitative features from radiological images. These radiomic features collectively describe unique patterns that can serve as digital fingerprints of disease. They may also capture imaging characteristics that are difficult or impossible to characterize by the human eye. The rapid development of this field is motivated by systems biology, facilitated by data analytics, and powered by artificial intelligence. Here, as part of Abdominal Radiology’s special issue on Quantitative Imaging, we provide an introduction to the field of radiomics. The technique is formally introduced as an advanced application of data analytics, with illustrating examples in abdominal radiology. Artificial intelligence is then presented as the main driving force of radiomics, and common techniques are defined and briefly compared. The complete step-by-step process of radiomic phenotyping is then broken down into five key phases. Potential pitfalls of each phase are highlighted, and recommendations are provided to reduce sources of variation, non-reproducibility, and error associated with radiomics.

Graphic abstract

Literatur
1.
Zurück zum Zitat Tavassoly, I., J. Goldfarb, and R. Iyengar, Systems biology primer: the basic methods and approaches. Essays Biochem, 2018. 62(4): p. 487-500.PubMedCrossRef Tavassoly, I., J. Goldfarb, and R. Iyengar, Systems biology primer: the basic methods and approaches. Essays Biochem, 2018. 62(4): p. 487-500.PubMedCrossRef
2.
Zurück zum Zitat Mason, C.E., S.G. Porter, and T.M. Smith, Characterizing multi-omic data in systems biology. Adv Exp Med Biol, 2014. 799: p. 15-38.PubMedCrossRef Mason, C.E., S.G. Porter, and T.M. Smith, Characterizing multi-omic data in systems biology. Adv Exp Med Biol, 2014. 799: p. 15-38.PubMedCrossRef
3.
Zurück zum Zitat Mato, J.M., M.L. Martínez-Chantar, and S.C. Lu, Systems biology for hepatologists. Hepatology, 2014. 60(2): p. 736-43.PubMedCrossRef Mato, J.M., M.L. Martínez-Chantar, and S.C. Lu, Systems biology for hepatologists. Hepatology, 2014. 60(2): p. 736-43.PubMedCrossRef
4.
Zurück zum Zitat Lambin, P., et al., Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012. 48(4): p. 441-6.PubMedPubMedCentralCrossRef Lambin, P., et al., Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012. 48(4): p. 441-6.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Gillies, R.J., P.E. Kinahan, and H. Hricak, Radiomics: Images Are More than Pictures, They Are Data. Radiology, 2016. 278(2): p. 563-77.PubMedCrossRef Gillies, R.J., P.E. Kinahan, and H. Hricak, Radiomics: Images Are More than Pictures, They Are Data. Radiology, 2016. 278(2): p. 563-77.PubMedCrossRef
8.
Zurück zum Zitat Aerts, H.J., et al., Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 2014. 5: p. 4006.PubMedCrossRef Aerts, H.J., et al., Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun, 2014. 5: p. 4006.PubMedCrossRef
9.
Zurück zum Zitat Wu, G., et al., Structural and functional radiomics for lung cancer. Eur J Nucl Med Mol Imaging, 2021. Wu, G., et al., Structural and functional radiomics for lung cancer. Eur J Nucl Med Mol Imaging, 2021.
10.
11.
Zurück zum Zitat Mannil, M., et al., Texture Analysis and Machine Learning for Detecting Myocardial Infarction in Noncontrast Low-Dose Computed Tomography: Unveiling the Invisible. Invest Radiol, 2018. 53(6): p. 338-343.PubMedCrossRef Mannil, M., et al., Texture Analysis and Machine Learning for Detecting Myocardial Infarction in Noncontrast Low-Dose Computed Tomography: Unveiling the Invisible. Invest Radiol, 2018. 53(6): p. 338-343.PubMedCrossRef
12.
Zurück zum Zitat Banerjee, S., et al., A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma. Hepatology, 2015. 62(3): p. 792-800.PubMedCrossRef Banerjee, S., et al., A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma. Hepatology, 2015. 62(3): p. 792-800.PubMedCrossRef
13.
Zurück zum Zitat Jeong, W.K., et al., Radiomics and radiogenomics of primary liver cancers. Clin Mol Hepatol, 2019. 25(1): p. 21-29.PubMedCrossRef Jeong, W.K., et al., Radiomics and radiogenomics of primary liver cancers. Clin Mol Hepatol, 2019. 25(1): p. 21-29.PubMedCrossRef
14.
Zurück zum Zitat Kodama, F., Learning Mode and Strategic Concept for the 4th Industrial Revolution. J. Open Innov. Technol. Mark. Complex., 2018. 4(32). Kodama, F., Learning Mode and Strategic Concept for the 4th Industrial Revolution. J. Open Innov. Technol. Mark. Complex., 2018. 4(32).
15.
Zurück zum Zitat Pessôa, M.B., JMJ, Research in Engineering Design, 2020. 31: p. 175–195. Pessôa, M.B., JMJ, Research in Engineering Design, 2020. 31: p. 175–195.
16.
Zurück zum Zitat Currie, G., et al., Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. J Med Imaging Radiat Sci, 2019. 50(4): p. 477-487.PubMedCrossRef Currie, G., et al., Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. J Med Imaging Radiat Sci, 2019. 50(4): p. 477-487.PubMedCrossRef
17.
Zurück zum Zitat Lambin, P., et al., Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 2017. 14(12): p. 749-762.PubMedCrossRef Lambin, P., et al., Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol, 2017. 14(12): p. 749-762.PubMedCrossRef
18.
Zurück zum Zitat Mintz, Y. and R. Brodie, Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol, 2019. 28(2): p. 73-81.PubMedCrossRef Mintz, Y. and R. Brodie, Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol, 2019. 28(2): p. 73-81.PubMedCrossRef
22.
Zurück zum Zitat Wakabayashi, T., et al., Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int, 2019. 13(5): p. 546-559.PubMedCrossRef Wakabayashi, T., et al., Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int, 2019. 13(5): p. 546-559.PubMedCrossRef
23.
Zurück zum Zitat Saini, A., et al., Radiogenomics and Radiomics in Liver Cancers. Diagnostics (Basel), 2018. 9(1). Saini, A., et al., Radiogenomics and Radiomics in Liver Cancers. Diagnostics (Basel), 2018. 9(1).
24.
Zurück zum Zitat Fiz, F., et al., Radiomics of Liver Metastases: A Systematic Review. Cancers (Basel), 2020. 12(10). Fiz, F., et al., Radiomics of Liver Metastases: A Systematic Review. Cancers (Basel), 2020. 12(10).
26.
Zurück zum Zitat Miranda Magalhaes Santos, J.M., et al., State-of-the-art in radiomics of hepatocellular carcinoma: a review of basic principles, applications, and limitations. Abdom Radiol (NY), 2020. 45(2): p. 342–353. Miranda Magalhaes Santos, J.M., et al., State-of-the-art in radiomics of hepatocellular carcinoma: a review of basic principles, applications, and limitations. Abdom Radiol (NY), 2020. 45(2): p. 342–353.
27.
Zurück zum Zitat Hu, W., et al., Radiomics based on artificial intelligence in liver diseases: where we are? Gastroenterol Rep (Oxf), 2020. 8(2): p. 90-97.CrossRef Hu, W., et al., Radiomics based on artificial intelligence in liver diseases: where we are? Gastroenterol Rep (Oxf), 2020. 8(2): p. 90-97.CrossRef
28.
Zurück zum Zitat Kocak, B., et al., Machine Learning in Radiomic Renal Mass Characterization: Fundamentals, Applications, Challenges, and Future Directions. AJR Am J Roentgenol, 2020. 215(4): p. 920-928.PubMedCrossRef Kocak, B., et al., Machine Learning in Radiomic Renal Mass Characterization: Fundamentals, Applications, Challenges, and Future Directions. AJR Am J Roentgenol, 2020. 215(4): p. 920-928.PubMedCrossRef
29.
Zurück zum Zitat Lubner, M.G., Radiomics and Artificial Intelligence for Renal Mass Characterization. Radiol Clin North Am, 2020. 58(5): p. 995-1008.PubMedCrossRef Lubner, M.G., Radiomics and Artificial Intelligence for Renal Mass Characterization. Radiol Clin North Am, 2020. 58(5): p. 995-1008.PubMedCrossRef
30.
Zurück zum Zitat Kocak, B., et al., Radiomics of Renal Masses: Systematic Review of Reproducibility and Validation Strategies. AJR Am J Roentgenol, 2020. 214(1): p. 129-136.PubMedCrossRef Kocak, B., et al., Radiomics of Renal Masses: Systematic Review of Reproducibility and Validation Strategies. AJR Am J Roentgenol, 2020. 214(1): p. 129-136.PubMedCrossRef
31.
Zurück zum Zitat Ursprung, S., et al., Radiomics of computed tomography and magnetic resonance imaging in renal cell carcinoma-a systematic review and meta-analysis. Eur Radiol, 2020. 30(6): p. 3558-3566.PubMedPubMedCentralCrossRef Ursprung, S., et al., Radiomics of computed tomography and magnetic resonance imaging in renal cell carcinoma-a systematic review and meta-analysis. Eur Radiol, 2020. 30(6): p. 3558-3566.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat de Leon, A.D., P. Kapur, and I. Pedrosa, Radiomics in Kidney Cancer: MR Imaging. Magn Reson Imaging Clin N Am, 2019. 27(1): p. 1-13.PubMedCrossRef de Leon, A.D., P. Kapur, and I. Pedrosa, Radiomics in Kidney Cancer: MR Imaging. Magn Reson Imaging Clin N Am, 2019. 27(1): p. 1-13.PubMedCrossRef
33.
Zurück zum Zitat Suarez-Ibarrola, R., et al., Radiomics Applications in Renal Tumor Assessment: A Comprehensive Review of the Literature. Cancers (Basel), 2020. 12(6). Suarez-Ibarrola, R., et al., Radiomics Applications in Renal Tumor Assessment: A Comprehensive Review of the Literature. Cancers (Basel), 2020. 12(6).
34.
Zurück zum Zitat Abunahel, B.M., et al., Pancreas image mining: a systematic review of radiomics. Eur Radiol, 2021. 31(5): p. 3447-3467.PubMedCrossRef Abunahel, B.M., et al., Pancreas image mining: a systematic review of radiomics. Eur Radiol, 2021. 31(5): p. 3447-3467.PubMedCrossRef
35.
Zurück zum Zitat Dalal, V., et al., Radiomics in stratification of pancreatic cystic lesions: Machine learning in action. Cancer Lett, 2020. 469: p. 228-237.PubMedCrossRef Dalal, V., et al., Radiomics in stratification of pancreatic cystic lesions: Machine learning in action. Cancer Lett, 2020. 469: p. 228-237.PubMedCrossRef
36.
Zurück zum Zitat Bartoli, M., et al., CT and MRI of pancreatic tumors: an update in the era of radiomics. Jpn J Radiol, 2020. 38(12): p. 1111-1124.PubMedCrossRef Bartoli, M., et al., CT and MRI of pancreatic tumors: an update in the era of radiomics. Jpn J Radiol, 2020. 38(12): p. 1111-1124.PubMedCrossRef
37.
Zurück zum Zitat Bezzi, C., et al., Radiomics in pancreatic neuroendocrine tumors: methodological issues and clinical significance. Eur J Nucl Med Mol Imaging, 2021. Bezzi, C., et al., Radiomics in pancreatic neuroendocrine tumors: methodological issues and clinical significance. Eur J Nucl Med Mol Imaging, 2021.
38.
Zurück zum Zitat Codd, E.F., A Relational Model of Data for Large Shared Data Banks. Communications of the ACM, 1970. 13(6): p. 377-387.CrossRef Codd, E.F., A Relational Model of Data for Large Shared Data Banks. Communications of the ACM, 1970. 13(6): p. 377-387.CrossRef
39.
Zurück zum Zitat Shropshire, E.L., et al., LI-RADS Treatment Response Algorithm: Performance and Diagnostic Accuracy. Radiology, 2019. 292(1): p. 226-234.PubMedCrossRef Shropshire, E.L., et al., LI-RADS Treatment Response Algorithm: Performance and Diagnostic Accuracy. Radiology, 2019. 292(1): p. 226-234.PubMedCrossRef
40.
Zurück zum Zitat Lehman-Wilzig, S.N., Frankenstein unbound: Towards a legal definition of artificial intelligence. Futures, 1981. 13(6): p. 442-457.CrossRef Lehman-Wilzig, S.N., Frankenstein unbound: Towards a legal definition of artificial intelligence. Futures, 1981. 13(6): p. 442-457.CrossRef
41.
Zurück zum Zitat Goodfellow, I., Y. Bengio, and A. Courville, Deep Learning. 2016: MIT Press. Goodfellow, I., Y. Bengio, and A. Courville, Deep Learning. 2016: MIT Press.
43.
44.
Zurück zum Zitat Gandomi, A. and M. Haider, Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 2015. 35(2): p. 137-144.CrossRef Gandomi, A. and M. Haider, Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 2015. 35(2): p. 137-144.CrossRef
45.
Zurück zum Zitat Afshar, P., et al., From Handcrafted to Deep-Learning-Based Cancer Radiomics: Challenges and Opportunities. IEEE Signal Processing Magazine, 2019. 36(4): p. 132-160.CrossRef Afshar, P., et al., From Handcrafted to Deep-Learning-Based Cancer Radiomics: Challenges and Opportunities. IEEE Signal Processing Magazine, 2019. 36(4): p. 132-160.CrossRef
46.
Zurück zum Zitat Wang, X., et al., Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Sci Rep, 2017. 7(1): p. 15415.PubMedPubMedCentralCrossRef Wang, X., et al., Searching for prostate cancer by fully automated magnetic resonance imaging classification: deep learning versus non-deep learning. Sci Rep, 2017. 7(1): p. 15415.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Wang, H., et al., Decoding COVID-19 pneumonia: comparison of deep learning and radiomics CT image signatures. Eur J Nucl Med Mol Imaging, 2021. 48(5): p. 1478-1486.PubMedCrossRef Wang, H., et al., Decoding COVID-19 pneumonia: comparison of deep learning and radiomics CT image signatures. Eur J Nucl Med Mol Imaging, 2021. 48(5): p. 1478-1486.PubMedCrossRef
48.
Zurück zum Zitat Zwanenburg, A., et al., The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology, 2020. 295(2): p. 328-338.PubMedCrossRef Zwanenburg, A., et al., The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology, 2020. 295(2): p. 328-338.PubMedCrossRef
49.
Zurück zum Zitat Lafata, K., et al., Spatial-temporal variability of radiomic features and its effect on the classification of lung cancer histology. Phys Med Biol, 2018. 63(22): p. 225003. Lafata, K., et al., Spatial-temporal variability of radiomic features and its effect on the classification of lung cancer histology. Phys Med Biol, 2018. 63(22): p. 225003.
50.
Zurück zum Zitat Lu, L., et al., Reliability of Radiomic Features Across Multiple Abdominal CT Image Acquisition Settings: A Pilot Study Using ACR CT Phantom. Tomography, 2019. 5(1): p. 226-231.PubMedPubMedCentralCrossRef Lu, L., et al., Reliability of Radiomic Features Across Multiple Abdominal CT Image Acquisition Settings: A Pilot Study Using ACR CT Phantom. Tomography, 2019. 5(1): p. 226-231.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Baeßler, B., K. Weiss, and D. Pinto Dos Santos, Robustness and Reproducibility of Radiomics in Magnetic Resonance Imaging: A Phantom Study. Invest Radiol, 2019. 54(4): p. 221–228. Baeßler, B., K. Weiss, and D. Pinto Dos Santos, Robustness and Reproducibility of Radiomics in Magnetic Resonance Imaging: A Phantom Study. Invest Radiol, 2019. 54(4): p. 221–228.
52.
Zurück zum Zitat Yamashita, R., et al., Radiomic feature reproducibility in contrast-enhanced CT of the pancreas is affected by variabilities in scan parameters and manual segmentation. Eur Radiol, 2020. 30(1): p. 195-205.PubMedCrossRef Yamashita, R., et al., Radiomic feature reproducibility in contrast-enhanced CT of the pancreas is affected by variabilities in scan parameters and manual segmentation. Eur Radiol, 2020. 30(1): p. 195-205.PubMedCrossRef
53.
Zurück zum Zitat Gruzdev, I.S., et al., Reproducibility of CT texture features of pancreatic neuroendocrine neoplasms. Eur J Radiol, 2020. 133: p. 109371. Gruzdev, I.S., et al., Reproducibility of CT texture features of pancreatic neuroendocrine neoplasms. Eur J Radiol, 2020. 133: p. 109371.
54.
Zurück zum Zitat Perrin, T., et al., Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging. Abdom Radiol (NY), 2018. 43(12): p. 3271-3278.CrossRef Perrin, T., et al., Short-term reproducibility of radiomic features in liver parenchyma and liver malignancies on contrast-enhanced CT imaging. Abdom Radiol (NY), 2018. 43(12): p. 3271-3278.CrossRef
55.
56.
Zurück zum Zitat Zhao, B., et al., Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer. Radiology, 2009. 252(1): p. 263-72.PubMedPubMedCentralCrossRef Zhao, B., et al., Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer. Radiology, 2009. 252(1): p. 263-72.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Fiset, S., et al., Repeatability and reproducibility of MRI-based radiomic features in cervical cancer. Radiother Oncol, 2019. 135: p. 107-114.PubMedCrossRef Fiset, S., et al., Repeatability and reproducibility of MRI-based radiomic features in cervical cancer. Radiother Oncol, 2019. 135: p. 107-114.PubMedCrossRef
60.
Zurück zum Zitat Mühlberg, A., et al., The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research. Sci Rep, 2020. 10(1): p. 1103.PubMedPubMedCentralCrossRef Mühlberg, A., et al., The Technome - A Predictive Internal Calibration Approach for Quantitative Imaging Biomarker Research. Sci Rep, 2020. 10(1): p. 1103.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Scalco, E., et al., T2w-MRI signal normalization affects radiomics features reproducibility. Med Phys, 2020. 47(4): p. 1680-1691.PubMedCrossRef Scalco, E., et al., T2w-MRI signal normalization affects radiomics features reproducibility. Med Phys, 2020. 47(4): p. 1680-1691.PubMedCrossRef
62.
Zurück zum Zitat Kociołek, M., M. Strzelecki, and R. Obuchowicz, Does image normalization and intensity resolution impact texture classification? Comput Med Imaging Graph, 2020. 81: p. 101716. Kociołek, M., M. Strzelecki, and R. Obuchowicz, Does image normalization and intensity resolution impact texture classification? Comput Med Imaging Graph, 2020. 81: p. 101716.
63.
Zurück zum Zitat González, R.C. and R.E. Woods, Digital Image Processing. 2007: Prentice Hall. González, R.C. and R.E. Woods, Digital Image Processing. 2007: Prentice Hall.
64.
Zurück zum Zitat Budai, B.K., et al., Three-dimensional CT texture analysis of anatomic liver segments can differentiate between low-grade and high-grade fibrosis. BMC Med Imaging, 2020. 20(1): p. 108.PubMedPubMedCentralCrossRef Budai, B.K., et al., Three-dimensional CT texture analysis of anatomic liver segments can differentiate between low-grade and high-grade fibrosis. BMC Med Imaging, 2020. 20(1): p. 108.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Cui, E., et al., Predicting the stages of liver fibrosis with multiphase CT radiomics based on volumetric features. Abdom Radiol (NY), 2021. Cui, E., et al., Predicting the stages of liver fibrosis with multiphase CT radiomics based on volumetric features. Abdom Radiol (NY), 2021.
66.
Zurück zum Zitat Park, H.J., et al., Radiomics Analysis of Gadoxetic Acid-enhanced MRI for Staging Liver Fibrosis. Radiology, 2019. 290(2): p. 380-387.PubMedCrossRef Park, H.J., et al., Radiomics Analysis of Gadoxetic Acid-enhanced MRI for Staging Liver Fibrosis. Radiology, 2019. 290(2): p. 380-387.PubMedCrossRef
67.
Zurück zum Zitat Wang, J.C., et al., A radiomics-based model on non-contrast CT for predicting cirrhosis: make the most of image data. Biomark Res, 2020. 8: p. 47.PubMedPubMedCentralCrossRef Wang, J.C., et al., A radiomics-based model on non-contrast CT for predicting cirrhosis: make the most of image data. Biomark Res, 2020. 8: p. 47.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Homayounieh, F., et al., Prediction of burden and management of renal calculi from whole kidney radiomics: a multicenter study. Abdom Radiol (NY), 2020: p. 1–10. Homayounieh, F., et al., Prediction of burden and management of renal calculi from whole kidney radiomics: a multicenter study. Abdom Radiol (NY), 2020: p. 1–10.
69.
Zurück zum Zitat Deng, Y., et al., DTI-based radiomics signature for the detection of early diabetic kidney damage. Abdom Radiol (NY), 2020. 45(8): p. 2526-2531.CrossRef Deng, Y., et al., DTI-based radiomics signature for the detection of early diabetic kidney damage. Abdom Radiol (NY), 2020. 45(8): p. 2526-2531.CrossRef
70.
Zurück zum Zitat Mohammadinejad, P., et al., Automated radiomic analysis of CT images to predict likelihood of spontaneous passage of symptomatic renal stones. Emerg Radiol, 2021. Mohammadinejad, P., et al., Automated radiomic analysis of CT images to predict likelihood of spontaneous passage of symptomatic renal stones. Emerg Radiol, 2021.
71.
Zurück zum Zitat De Perrot, T., et al., Differentiating kidney stones from phleboliths in unenhanced low-dose computed tomography using radiomics and machine learning. Eur Radiol, 2019. 29(9): p. 4776-4782.PubMedCrossRef De Perrot, T., et al., Differentiating kidney stones from phleboliths in unenhanced low-dose computed tomography using radiomics and machine learning. Eur Radiol, 2019. 29(9): p. 4776-4782.PubMedCrossRef
72.
Zurück zum Zitat Frøkjær, J.B., et al., Pancreatic magnetic resonance imaging texture analysis in chronic pancreatitis: a feasibility and validation study. Abdom Radiol (NY), 2020. 45(5): p. 1497-1506.CrossRef Frøkjær, J.B., et al., Pancreatic magnetic resonance imaging texture analysis in chronic pancreatitis: a feasibility and validation study. Abdom Radiol (NY), 2020. 45(5): p. 1497-1506.CrossRef
73.
Zurück zum Zitat Mashayekhi, R., et al., Radiomic features of the pancreas on CT imaging accurately differentiate functional abdominal pain, recurrent acute pancreatitis, and chronic pancreatitis. Eur J Radiol, 2020. 123: p. 108778. Mashayekhi, R., et al., Radiomic features of the pancreas on CT imaging accurately differentiate functional abdominal pain, recurrent acute pancreatitis, and chronic pancreatitis. Eur J Radiol, 2020. 123: p. 108778.
74.
Zurück zum Zitat Ji, G.W., et al., Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study. EBioMedicine, 2019. 50: p. 156-165.PubMedPubMedCentralCrossRef Ji, G.W., et al., Machine-learning analysis of contrast-enhanced CT radiomics predicts recurrence of hepatocellular carcinoma after resection: A multi-institutional study. EBioMedicine, 2019. 50: p. 156-165.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Kim, S., et al., Radiomics on Gadoxetic Acid-Enhanced Magnetic Resonance Imaging for Prediction of Postoperative Early and Late Recurrence of Single Hepatocellular Carcinoma. Clin Cancer Res, 2019. 25(13): p. 3847-3855.PubMedCrossRef Kim, S., et al., Radiomics on Gadoxetic Acid-Enhanced Magnetic Resonance Imaging for Prediction of Postoperative Early and Late Recurrence of Single Hepatocellular Carcinoma. Clin Cancer Res, 2019. 25(13): p. 3847-3855.PubMedCrossRef
76.
Zurück zum Zitat Tan, S., et al., Adaptive region-growing with maximum curvature strategy for tumor segmentation in (18)F-FDG PET. Phys Med Biol, 2017. 62(13): p. 5383-5402.PubMedPubMedCentralCrossRef Tan, S., et al., Adaptive region-growing with maximum curvature strategy for tumor segmentation in (18)F-FDG PET. Phys Med Biol, 2017. 62(13): p. 5383-5402.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Rafiei, S., et al., Liver Segmentation in Abdominal CT Images Using Probabilistic Atlas and Adaptive 3D Region Growing. Annu Int Conf IEEE Eng Med Biol Soc, 2019. 2019: p. 6310-6313.PubMed Rafiei, S., et al., Liver Segmentation in Abdominal CT Images Using Probabilistic Atlas and Adaptive 3D Region Growing. Annu Int Conf IEEE Eng Med Biol Soc, 2019. 2019: p. 6310-6313.PubMed
78.
Zurück zum Zitat Duan, H.H., et al., Segmentation of pulmonary vascular tree by incorporating vessel enhancement filter and variational region-growing. J Xray Sci Technol, 2019. 27(2): p. 343-360.PubMed Duan, H.H., et al., Segmentation of pulmonary vascular tree by incorporating vessel enhancement filter and variational region-growing. J Xray Sci Technol, 2019. 27(2): p. 343-360.PubMed
79.
Zurück zum Zitat Zeng, Y.Z., et al., Automatic liver vessel segmentation using 3D region growing and hybrid active contour model. Comput Biol Med, 2018. 97: p. 63-73.PubMedCrossRef Zeng, Y.Z., et al., Automatic liver vessel segmentation using 3D region growing and hybrid active contour model. Comput Biol Med, 2018. 97: p. 63-73.PubMedCrossRef
80.
Zurück zum Zitat Ren, H., et al., An unsupervised semi-automated pulmonary nodule segmentation method based on enhanced region growing. Quant Imaging Med Surg, 2020. 10(1): p. 233-242.PubMedPubMedCentralCrossRef Ren, H., et al., An unsupervised semi-automated pulmonary nodule segmentation method based on enhanced region growing. Quant Imaging Med Surg, 2020. 10(1): p. 233-242.PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Jiang, X., et al., Level Set Based Hippocampus Segmentation in MR Images with Improved Initialization Using Region Growing. Comput Math Methods Med, 2017. 2017: p. 5256346.PubMedPubMedCentralCrossRef Jiang, X., et al., Level Set Based Hippocampus Segmentation in MR Images with Improved Initialization Using Region Growing. Comput Math Methods Med, 2017. 2017: p. 5256346.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Chung, M., et al., Accurate liver vessel segmentation via active contour model with dense vessel candidates. Comput Methods Programs Biomed, 2018. 166: p. 61-75.PubMedCrossRef Chung, M., et al., Accurate liver vessel segmentation via active contour model with dense vessel candidates. Comput Methods Programs Biomed, 2018. 166: p. 61-75.PubMedCrossRef
83.
Zurück zum Zitat Guo, X., L.H. Schwartz, and B. Zhao, Automatic liver segmentation by integrating fully convolutional networks into active contour models. Med Phys, 2019. 46(10): p. 4455-4469.PubMedCrossRef Guo, X., L.H. Schwartz, and B. Zhao, Automatic liver segmentation by integrating fully convolutional networks into active contour models. Med Phys, 2019. 46(10): p. 4455-4469.PubMedCrossRef
84.
Zurück zum Zitat Zareei, A. and A. Karimi, Liver segmentation with new supervised method to create initial curve for active contour. Comput Biol Med, 2016. 75: p. 139-50.PubMedCrossRef Zareei, A. and A. Karimi, Liver segmentation with new supervised method to create initial curve for active contour. Comput Biol Med, 2016. 75: p. 139-50.PubMedCrossRef
85.
Zurück zum Zitat Middleton, I. and R.I. Damper, Segmentation of magnetic resonance images using a combination of neural networks and active contour models. Med Eng Phys, 2004. 26(1): p. 71-86.PubMedCrossRef Middleton, I. and R.I. Damper, Segmentation of magnetic resonance images using a combination of neural networks and active contour models. Med Eng Phys, 2004. 26(1): p. 71-86.PubMedCrossRef
86.
Zurück zum Zitat Yuan, Y., et al., Hybrid method combining superpixel, random walk and active contour model for fast and accurate liver segmentation. Comput Med Imaging Graph, 2018. 70: p. 119-134.PubMedCrossRef Yuan, Y., et al., Hybrid method combining superpixel, random walk and active contour model for fast and accurate liver segmentation. Comput Med Imaging Graph, 2018. 70: p. 119-134.PubMedCrossRef
87.
Zurück zum Zitat da Silva, G.L.F., et al., Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans. Med Biol Eng Comput, 2020. 58(9): p. 1947-1964.PubMedCrossRef da Silva, G.L.F., et al., Superpixel-based deep convolutional neural networks and active contour model for automatic prostate segmentation on 3D MRI scans. Med Biol Eng Comput, 2020. 58(9): p. 1947-1964.PubMedCrossRef
88.
Zurück zum Zitat Datta, E., et al., Gray matter segmentation of the spinal cord with active contours in MR images. Neuroimage, 2017. 147: p. 788-799.PubMedCrossRef Datta, E., et al., Gray matter segmentation of the spinal cord with active contours in MR images. Neuroimage, 2017. 147: p. 788-799.PubMedCrossRef
89.
Zurück zum Zitat Foruzan, A.H., et al., Liver segmentation by intensity analysis and anatomical information in multi-slice CT images. Int J Comput Assist Radiol Surg, 2009. 4(3): p. 287-97.PubMedCrossRef Foruzan, A.H., et al., Liver segmentation by intensity analysis and anatomical information in multi-slice CT images. Int J Comput Assist Radiol Surg, 2009. 4(3): p. 287-97.PubMedCrossRef
90.
Zurück zum Zitat Sandmair, M., et al., Semiautomatic segmentation of the kidney in magnetic resonance images using unimodal thresholding. BMC Res Notes, 2016. 9(1): p. 489.PubMedPubMedCentralCrossRef Sandmair, M., et al., Semiautomatic segmentation of the kidney in magnetic resonance images using unimodal thresholding. BMC Res Notes, 2016. 9(1): p. 489.PubMedPubMedCentralCrossRef
91.
92.
Zurück zum Zitat Yushkevich, P.A., G. Yang, and G. Gerig, ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images. Annu Int Conf IEEE Eng Med Biol Soc, 2016. 2016: p. 3342-3345.PubMed Yushkevich, P.A., G. Yang, and G. Gerig, ITK-SNAP: An interactive tool for semi-automatic segmentation of multi-modality biomedical images. Annu Int Conf IEEE Eng Med Biol Soc, 2016. 2016: p. 3342-3345.PubMed
93.
Zurück zum Zitat Qiu, Q., et al., Reproducibility and non-redundancy of radiomic features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability. Quant Imaging Med Surg, 2019. 9(3): p. 453-464.PubMedPubMedCentralCrossRef Qiu, Q., et al., Reproducibility and non-redundancy of radiomic features extracted from arterial phase CT scans in hepatocellular carcinoma patients: impact of tumor segmentation variability. Quant Imaging Med Surg, 2019. 9(3): p. 453-464.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Belli, M.L., et al., Quantifying the robustness of [(18)F]FDG-PET/CT radiomic features with respect to tumor delineation in head and neck and pancreatic cancer patients. Phys Med, 2018. 49: p. 105-111.PubMedCrossRef Belli, M.L., et al., Quantifying the robustness of [(18)F]FDG-PET/CT radiomic features with respect to tumor delineation in head and neck and pancreatic cancer patients. Phys Med, 2018. 49: p. 105-111.PubMedCrossRef
95.
Zurück zum Zitat Kocak, B., et al., Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas. Eur Radiol, 2019. 29(9): p. 4765-4775.PubMedCrossRef Kocak, B., et al., Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas. Eur Radiol, 2019. 29(9): p. 4765-4775.PubMedCrossRef
96.
Zurück zum Zitat Kocak, B., et al., Reliability of Single-Slice-Based 2D CT Texture Analysis of Renal Masses: Influence of Intra- and Interobserver Manual Segmentation Variability on Radiomic Feature Reproducibility. AJR Am J Roentgenol, 2019. 213(2): p. 377-383.PubMedCrossRef Kocak, B., et al., Reliability of Single-Slice-Based 2D CT Texture Analysis of Renal Masses: Influence of Intra- and Interobserver Manual Segmentation Variability on Radiomic Feature Reproducibility. AJR Am J Roentgenol, 2019. 213(2): p. 377-383.PubMedCrossRef
97.
Zurück zum Zitat Simpson, G., et al., Impact of quantization algorithm and number of gray level intensities on variability and repeatability of low field strength magnetic resonance image-based radiomics texture features. Phys Med, 2020. 80: p. 209-220.PubMedCrossRef Simpson, G., et al., Impact of quantization algorithm and number of gray level intensities on variability and repeatability of low field strength magnetic resonance image-based radiomics texture features. Phys Med, 2020. 80: p. 209-220.PubMedCrossRef
98.
Zurück zum Zitat Bousabarah, K., et al., Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning. Abdom Radiol (NY), 2021. 46(1): p. 216-225.CrossRef Bousabarah, K., et al., Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning. Abdom Radiol (NY), 2021. 46(1): p. 216-225.CrossRef
99.
Zurück zum Zitat Haarburger, C., et al., Radiomics feature reproducibility under inter-rater variability in segmentations of CT images. Sci Rep, 2020. 10(1): p. 12688.PubMedPubMedCentralCrossRef Haarburger, C., et al., Radiomics feature reproducibility under inter-rater variability in segmentations of CT images. Sci Rep, 2020. 10(1): p. 12688.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Panda, A., et al., Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Med Phys, 2021. Panda, A., et al., Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset. Med Phys, 2021.
101.
Zurück zum Zitat Zheng, R., et al., Feasibility of automatic detection of small hepatocellular carcinoma (≤2 cm) in cirrhotic liver based on pattern matching and deep learning. Phys Med Biol, 2021. 66(8). Zheng, R., et al., Feasibility of automatic detection of small hepatocellular carcinoma (≤2 cm) in cirrhotic liver based on pattern matching and deep learning. Phys Med Biol, 2021. 66(8).
102.
Zurück zum Zitat Zwanenburg A, L.S., Vallieres M, Lock S., Image biomarker standardisation initiative reference manual. arXiv preprint arXiv:1612.07003. Zwanenburg A, L.S., Vallieres M, Lock S., Image biomarker standardisation initiative reference manual. arXiv preprint arXiv:​1612.​07003.
103.
Zurück zum Zitat van Griethuysen, J.J.M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., Fillon-Robin, J. C., Pieper, S., Aerts, H. J. W. L., Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research, 2017. 77(12): p. e104–e107.PubMedPubMedCentralCrossRef van Griethuysen, J.J.M., Fedorov, A., Parmar, C., Hosny, A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H., Fillon-Robin, J. C., Pieper, S., Aerts, H. J. W. L., Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Research, 2017. 77(12): p. e104–e107.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Apte, A.P., et al., Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research. Med Phys, 2018. Apte, A.P., et al., Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research. Med Phys, 2018.
105.
Zurück zum Zitat Zhang, L., et al., IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys, 2015. 42(3): p. 1341-53.PubMedPubMedCentralCrossRef Zhang, L., et al., IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys, 2015. 42(3): p. 1341-53.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Szczypiński, P.M., et al., MaZda--a software package for image texture analysis. Comput Methods Programs Biomed, 2009. 94(1): p. 66-76.PubMedCrossRef Szczypiński, P.M., et al., MaZda--a software package for image texture analysis. Comput Methods Programs Biomed, 2009. 94(1): p. 66-76.PubMedCrossRef
107.
Zurück zum Zitat Nioche, C., et al., LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res, 2018. 78(16): p. 4786-4789.PubMedCrossRef Nioche, C., et al., LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res, 2018. 78(16): p. 4786-4789.PubMedCrossRef
108.
Zurück zum Zitat Collewet, G., M. Strzelecki, and F. Mariette, Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging, 2004. 22(1): p. 81-91.PubMedCrossRef Collewet, G., M. Strzelecki, and F. Mariette, Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging, 2004. 22(1): p. 81-91.PubMedCrossRef
109.
Zurück zum Zitat Vallières, M., et al., A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol, 2015. 60(14): p. 5471-96.PubMedCrossRef Vallières, M., et al., A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol, 2015. 60(14): p. 5471-96.PubMedCrossRef
110.
Zurück zum Zitat Duron, L., et al., Gray-level discretization impacts reproducible MRI radiomics texture features. PLoS One, 2019. 14(3): p. e0213459. Duron, L., et al., Gray-level discretization impacts reproducible MRI radiomics texture features. PLoS One, 2019. 14(3): p. e0213459.
111.
Zurück zum Zitat Leijenaar, R.T., et al., The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep, 2015. 5: p. 11075.PubMedPubMedCentralCrossRef Leijenaar, R.T., et al., The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep, 2015. 5: p. 11075.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Loi, S., et al., Robustness of CT radiomic features against image discretization and interpolation in characterizing pancreatic neuroendocrine neoplasms. Phys Med, 2020. 76: p. 125-133.PubMedCrossRef Loi, S., et al., Robustness of CT radiomic features against image discretization and interpolation in characterizing pancreatic neuroendocrine neoplasms. Phys Med, 2020. 76: p. 125-133.PubMedCrossRef
113.
114.
Zurück zum Zitat Hausdorff, F.M. 2nd ed. 1927, Berlin and Leipzig: Walter de Gruyter. Hausdorff, F.M. 2nd ed. 1927, Berlin and Leipzig: Walter de Gruyter.
115.
Zurück zum Zitat Voronoi, G., Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. Journal für die reine und angewandte Mathematik (Crelles Journal), 1908. 133: p. 97–102. Voronoi, G., Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. Journal für die reine und angewandte Mathematik (Crelles Journal), 1908. 133: p. 97–102.
116.
Zurück zum Zitat Wiener, H., Structural determination of paraffin boiling points. Journal of the American Chemical Society, 1947. 1(69): p. 17-20.CrossRef Wiener, H., Structural determination of paraffin boiling points. Journal of the American Chemical Society, 1947. 1(69): p. 17-20.CrossRef
117.
Zurück zum Zitat Haralick, R.M., Statistical and structural approaches to texture. Proceedings of the IEEE, 1979. 67(5): p. 786-804.CrossRef Haralick, R.M., Statistical and structural approaches to texture. Proceedings of the IEEE, 1979. 67(5): p. 786-804.CrossRef
118.
Zurück zum Zitat Tang, X., Texture information in run-length matrices. IEEE Trans Image Process, 1998. 7(11): p. 1602-9.PubMedCrossRef Tang, X., Texture information in run-length matrices. IEEE Trans Image Process, 1998. 7(11): p. 1602-9.PubMedCrossRef
119.
Zurück zum Zitat Thibault, G., et al., Texture Indexes and Gray Level Size Zone Matrix. Application to Cell Nuclei Classification. Pattern Recognition and Information Processing (PRIP), 2009: p. 140–145. Thibault, G., et al., Texture Indexes and Gray Level Size Zone Matrix. Application to Cell Nuclei Classification. Pattern Recognition and Information Processing (PRIP), 2009: p. 140–145.
120.
Zurück zum Zitat Haar, A., Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen, 1909. 69(3): p. 331-371.CrossRef Haar, A., Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen, 1909. 69(3): p. 331-371.CrossRef
121.
Zurück zum Zitat Gabor, D., Theory of Communication, Part 1: The analysis of information. Radio and Communication, 1946. 93: p. 429. Gabor, D., Theory of Communication, Part 1: The analysis of information. Radio and Communication, 1946. 93: p. 429.
122.
Zurück zum Zitat Mandelbrot, B., How long is the coast of britain? Statistical self-similarity and fractional dimension. Science, 1967. 156(3775): p. 636-8.PubMedCrossRef Mandelbrot, B., How long is the coast of britain? Statistical self-similarity and fractional dimension. Science, 1967. 156(3775): p. 636-8.PubMedCrossRef
123.
Zurück zum Zitat Kramer, M.A., Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal, 1991. 37(2): p. 233–243.CrossRef Kramer, M.A., Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal, 1991. 37(2): p. 233–243.CrossRef
124.
Zurück zum Zitat He, K., et al., Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: p. 770–778. He, K., et al., Deep Residual Learning for Image Recognition. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016: p. 770–778.
125.
Zurück zum Zitat Chang, Y., et al., Digital phantoms for characterizing inconsistencies among radiomics extraction toolboxes. Biomed Phys Eng Express, 2020. 6(2): p. 025016. Chang, Y., et al., Digital phantoms for characterizing inconsistencies among radiomics extraction toolboxes. Biomed Phys Eng Express, 2020. 6(2): p. 025016.
126.
Zurück zum Zitat Chang, Y., et al., Development of realistic multi-contrast textured XCAT (MT-XCAT) phantoms using a dual-discriminator conditional-generative adversarial network (D-CGAN). Phys Med Biol, 2020. 65(6): p. 065009. Chang, Y., et al., Development of realistic multi-contrast textured XCAT (MT-XCAT) phantoms using a dual-discriminator conditional-generative adversarial network (D-CGAN). Phys Med Biol, 2020. 65(6): p. 065009.
127.
128.
Zurück zum Zitat Yang, F., et al., Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: A simulation study utilizing ground truth. Phys Med, 2018. 50: p. 26-36.PubMedCrossRef Yang, F., et al., Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: A simulation study utilizing ground truth. Phys Med, 2018. 50: p. 26-36.PubMedCrossRef
129.
130.
Zurück zum Zitat Chang, Y., et al., An investigation of machine learning methods in delta-radiomics feature analysis. PLoS One, 2019. 14(12): p. e0226348. Chang, Y., et al., An investigation of machine learning methods in delta-radiomics feature analysis. PLoS One, 2019. 14(12): p. e0226348.
132.
Zurück zum Zitat Jeon, S.H., et al., Delta-radiomics signature predicts treatment outcomes after preoperative chemoradiotherapy and surgery in rectal cancer. Radiat Oncol, 2019. 14(1): p. 43.PubMedPubMedCentralCrossRef Jeon, S.H., et al., Delta-radiomics signature predicts treatment outcomes after preoperative chemoradiotherapy and surgery in rectal cancer. Radiat Oncol, 2019. 14(1): p. 43.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Triantafyllidis, A.K. and A. Tsanas, Applications of Machine Learning in Real-Life Digital Health Interventions: Review of the Literature. J Med Internet Res, 2019. 21(4): p. e12286. Triantafyllidis, A.K. and A. Tsanas, Applications of Machine Learning in Real-Life Digital Health Interventions: Review of the Literature. J Med Internet Res, 2019. 21(4): p. e12286.
136.
Zurück zum Zitat Erickson, B.J., et al., Machine Learning for Medical Imaging. Radiographics, 2017. 37(2): p. 505-515.PubMedCrossRef Erickson, B.J., et al., Machine Learning for Medical Imaging. Radiographics, 2017. 37(2): p. 505-515.PubMedCrossRef
137.
Zurück zum Zitat Baştanlar, Y. and M. Ozuysal, Introduction to machine learning. Methods Mol Biol, 2014. 1107: p. 105-28.PubMedCrossRef Baştanlar, Y. and M. Ozuysal, Introduction to machine learning. Methods Mol Biol, 2014. 1107: p. 105-28.PubMedCrossRef
139.
Zurück zum Zitat Singh A, T.N., and Sharma A, A review of supervised machine learning algorithms. 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 2016: p. 1310–1315. Singh A, T.N., and Sharma A, A review of supervised machine learning algorithms. 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 2016: p. 1310–1315.
140.
Zurück zum Zitat Kotsiantis SB, Z.I., Pintelas P, Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering, 2007. 160(1): p. 3–24. Kotsiantis SB, Z.I., Pintelas P, Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering, 2007. 160(1): p. 3–24.
141.
Zurück zum Zitat Usama M, Q.J., Raza A, et al., Unsupervised machine learning for networking: Techniques, applications and research challenges. IEEE Access, 2019. 7: p. 65579–65615. Usama M, Q.J., Raza A, et al., Unsupervised machine learning for networking: Techniques, applications and research challenges. IEEE Access, 2019. 7: p. 65579–65615.
142.
Zurück zum Zitat Lafata, K., Zhou, Z., Liu, J.G., Yin, F.F., Data clustering based on Langevin annealing with a self-consistent potential. Quarterly of Applied Mathematics, 2019. 77(3): p. 591–613. Lafata, K., Zhou, Z., Liu, J.G., Yin, F.F., Data clustering based on Langevin annealing with a self-consistent potential. Quarterly of Applied Mathematics, 2019. 77(3): p. 591–613.
143.
Zurück zum Zitat Lu, H., et al., A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat Commun, 2019. 10(1): p. 764.PubMedPubMedCentralCrossRef Lu, H., et al., A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat Commun, 2019. 10(1): p. 764.PubMedPubMedCentralCrossRef
144.
146.
Zurück zum Zitat Krishan, A. and D. Mittal, Effective segmentation and classification of tumor on liver MRI and CT images using multi-kernel K-means clustering. Biomed Tech (Berl), 2020. 65(3): p. 301-313.CrossRef Krishan, A. and D. Mittal, Effective segmentation and classification of tumor on liver MRI and CT images using multi-kernel K-means clustering. Biomed Tech (Berl), 2020. 65(3): p. 301-313.CrossRef
147.
Zurück zum Zitat Xu, M., et al., Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Biomed Eng Online, 2019. 18(1): p. 2.PubMedPubMedCentralCrossRef Xu, M., et al., Segmentation of lung parenchyma in CT images using CNN trained with the clustering algorithm generated dataset. Biomed Eng Online, 2019. 18(1): p. 2.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Zheng, X., et al., PWLS-ULTRA: An Efficient Clustering and Learning-Based Approach for Low-Dose 3D CT Image Reconstruction. IEEE Trans Med Imaging, 2018. 37(6): p. 1498-1510.PubMedPubMedCentralCrossRef Zheng, X., et al., PWLS-ULTRA: An Efficient Clustering and Learning-Based Approach for Low-Dose 3D CT Image Reconstruction. IEEE Trans Med Imaging, 2018. 37(6): p. 1498-1510.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Kalendralis, P., et al., FAIR-compliant clinical, radiomics and DICOM metadata of RIDER, interobserver, Lung1 and head-Neck1 TCIA collections. Med Phys, 2020. 47(11): p. 5931-5940.PubMedCrossRef Kalendralis, P., et al., FAIR-compliant clinical, radiomics and DICOM metadata of RIDER, interobserver, Lung1 and head-Neck1 TCIA collections. Med Phys, 2020. 47(11): p. 5931-5940.PubMedCrossRef
151.
Zurück zum Zitat Lafata, K.J., et al., Association of pre-treatment radiomic features with lung cancer recurrence following stereotactic body radiation therapy. Phys Med Biol, 2019. 64(2): p. 025007. Lafata, K.J., et al., Association of pre-treatment radiomic features with lung cancer recurrence following stereotactic body radiation therapy. Phys Med Biol, 2019. 64(2): p. 025007.
152.
Zurück zum Zitat Welch, M.L., et al., Vulnerabilities of radiomic signature development: The need for safeguards. Radiother Oncol, 2019. 130: p. 2–9.PubMedCrossRef Welch, M.L., et al., Vulnerabilities of radiomic signature development: The need for safeguards. Radiother Oncol, 2019. 130: p. 2–9.PubMedCrossRef
154.
Zurück zum Zitat Fournier, L., et al., Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers. Eur Radiol, 2021. 31(8): p. 6001-6012.PubMedPubMedCentralCrossRef Fournier, L., et al., Incorporating radiomics into clinical trials: expert consensus endorsed by the European Society of Radiology on considerations for data-driven compared to biologically driven quantitative biomarkers. Eur Radiol, 2021. 31(8): p. 6001-6012.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Abadi, E., et al., Virtual clinical trials in medical imaging: a review. J Med Imaging (Bellingham), 2020. 7(4): p. 042805. Abadi, E., et al., Virtual clinical trials in medical imaging: a review. J Med Imaging (Bellingham), 2020. 7(4): p. 042805.
156.
Zurück zum Zitat Madabhushi, A. and C.C. Reyes-Aldasoro, Special issue on computational pathology: An overview. Med Image Anal, 2021. 73: p. 102151. Madabhushi, A. and C.C. Reyes-Aldasoro, Special issue on computational pathology: An overview. Med Image Anal, 2021. 73: p. 102151.
157.
Zurück zum Zitat Tian, J., et al., ASO Author Reflections: Radiopathomics Strategy of Combing Multi-scale Tumor Information on Pretreatment to Predict the Pathologic Response to Neoadjuvant Therapy. Ann Surg Oncol, 2020. 27(11): p. 4307-4308.PubMedPubMedCentralCrossRef Tian, J., et al., ASO Author Reflections: Radiopathomics Strategy of Combing Multi-scale Tumor Information on Pretreatment to Predict the Pathologic Response to Neoadjuvant Therapy. Ann Surg Oncol, 2020. 27(11): p. 4307-4308.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Shao, L., et al., Multiparametric MRI and Whole Slide Image-Based Pretreatment Prediction of Pathological Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer: A Multicenter Radiopathomic Study. Ann Surg Oncol, 2020. 27(11): p. 4296-4306.PubMedPubMedCentralCrossRef Shao, L., et al., Multiparametric MRI and Whole Slide Image-Based Pretreatment Prediction of Pathological Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer: A Multicenter Radiopathomic Study. Ann Surg Oncol, 2020. 27(11): p. 4296-4306.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat McGarry, S.D., et al., Radio-pathomic mapping model generated using annotations from five pathologists reliably distinguishes high-grade prostate cancer. J Med Imaging (Bellingham), 2020. 7(5): p. 054501. McGarry, S.D., et al., Radio-pathomic mapping model generated using annotations from five pathologists reliably distinguishes high-grade prostate cancer. J Med Imaging (Bellingham), 2020. 7(5): p. 054501.
160.
Zurück zum Zitat Alvarez-Jimenez, C., et al., Identifying Cross-Scale Associations between Radiomic and Pathomic Signatures of Non-Small Cell Lung Cancer Subtypes: Preliminary Results. Cancers (Basel), 2020. 12(12). Alvarez-Jimenez, C., et al., Identifying Cross-Scale Associations between Radiomic and Pathomic Signatures of Non-Small Cell Lung Cancer Subtypes: Preliminary Results. Cancers (Basel), 2020. 12(12).
161.
Zurück zum Zitat Sun, R., et al., [Artificial intelligence, radiomics and pathomics to predict response and survival of patients treated with radiations]. Cancer Radiother, 2021. Sun, R., et al., [Artificial intelligence, radiomics and pathomics to predict response and survival of patients treated with radiations]. Cancer Radiother, 2021.
162.
Zurück zum Zitat Bera, K., et al., Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol, 2019. 16(11): p. 703-715.PubMedPubMedCentralCrossRef Bera, K., et al., Artificial intelligence in digital pathology - new tools for diagnosis and precision oncology. Nat Rev Clin Oncol, 2019. 16(11): p. 703-715.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Melo, R.C.N., et al., Whole Slide Imaging and Its Applications to Histopathological Studies of Liver Disorders. Front Med (Lausanne), 2019. 6: p. 310.CrossRef Melo, R.C.N., et al., Whole Slide Imaging and Its Applications to Histopathological Studies of Liver Disorders. Front Med (Lausanne), 2019. 6: p. 310.CrossRef
Metadaten
Titel
Radiomics: a primer on high-throughput image phenotyping
verfasst von
Kyle J. Lafata
Yuqi Wang
Brandon Konkel
Fang-Fang Yin
Mustafa R. Bashir
Publikationsdatum
25.08.2021
Verlag
Springer US
Erschienen in
Abdominal Radiology / Ausgabe 9/2022
Print ISSN: 2366-004X
Elektronische ISSN: 2366-0058
DOI
https://doi.org/10.1007/s00261-021-03254-x

Weitere Artikel der Ausgabe 9/2022

Abdominal Radiology 9/2022 Zur Ausgabe

Special Section: Quantitative Imaging

Liver fibrosis assessment: MR and US elastography

Special Section: Quantitative Imaging

Sarcopenia: imaging assessment and clinical application

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.