Skip to main content
Erschienen in: European Radiology 9/2019

12.02.2019 | Imaging Informatics and Artificial Intelligence

Differentiating kidney stones from phleboliths in unenhanced low-dose computed tomography using radiomics and machine learning

verfasst von: Thomas De Perrot, Jeremy Hofmeister, Simon Burgermeister, Steve P. Martin, Gregoire Feutry, Jacques Klein, Xavier Montet

Erschienen in: European Radiology | Ausgabe 9/2019

Einloggen, um Zugang zu erhalten

Abstract

Objectives

Distinguishing between kidney stones and phleboliths can constitute a diagnostic challenge in patients undergoing unenhanced low-dose CT (LDCT) for acute flank pain. We sought to investigate the accuracy of radiomics and a machine-learning classifier in differentiating between kidney stones and phleboliths on LDCT.

Methods

Radiomics features were extracted following a semi-automatic segmentation of kidney stones and phleboliths for two independent consecutive cohorts of patients undergoing LDCT for acute flank pain.
Radiomics features from the first cohort of patients (n = 369) were ultimately used to train a machine-learning model designed to distinguish kidney stones (n = 211) from phleboliths (n = 201). Classification performance was assessed on the second independent cohort (i.e., testing set) (kidney stones n = 24; phleboliths n = 23) using positive and negative predictive values (PPV and NPV), area under the receiver operating curves (AUC), and permutation testing.

Results

Our machine-learning classification model trained on radiomics features achieved an overall accuracy of 85.1% on the independent testing set, with an AUC of 0.902, PPV of 81.5%, and NPV of 90.0%. Classification accuracy was significantly better than chance on permutation testing (p < 0.05, permutation p value).

Conclusion

Radiomics and machine learning enable accurate differentiation between kidney stones and phleboliths on LDCT in patients presenting with acute flank pain.

Key Points

Combining a machine-learning algorithm with radiomics features extracted for abdominopelvic calcification on LDCT offers a highly accurate method for discriminating phleboliths from kidney stones.
Our radiomics and machine-learning model proved robust for CT acquisition and reconstruction protocol when tested in comparison with an external independent cohort of patients with acute flank pain.
The high performance of the radiomics-based automatic classification model in differentiating phleboliths from kidney stones indicates its potential as a future diagnostic tool for equivocal abdominopelvic calcifications in the setting of suspected renal colic.
Literatur
2.
Zurück zum Zitat Poletti PA, Platon A, Rutschmann OT, Schmidlin FR, Iselin CE, Becker CD (2007) Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol 188:927–933CrossRefPubMed Poletti PA, Platon A, Rutschmann OT, Schmidlin FR, Iselin CE, Becker CD (2007) Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol 188:927–933CrossRefPubMed
3.
Zurück zum Zitat Luk AC, Cleaveland P, Olson L, Neilson D, Srirangam SJ (2017) Pelvic phlebolith: a trivial pursuit for the urologist? J Endourol 31:342–347CrossRefPubMed Luk AC, Cleaveland P, Olson L, Neilson D, Srirangam SJ (2017) Pelvic phlebolith: a trivial pursuit for the urologist? J Endourol 31:342–347CrossRefPubMed
4.
Zurück zum Zitat Traubici J, Neitlich JD, Smith RC (1999) Distinguishing pelvic phleboliths from distal ureteral stones on routine unenhanced helical CT: is there a radiolucent center? AJR Am J Roentgenol 172:13–17CrossRefPubMed Traubici J, Neitlich JD, Smith RC (1999) Distinguishing pelvic phleboliths from distal ureteral stones on routine unenhanced helical CT: is there a radiolucent center? AJR Am J Roentgenol 172:13–17CrossRefPubMed
6.
Zurück zum Zitat Williams JC Jr, McAteer JA, Evan AP, Lingeman JE (2010) Micro-computed tomography for analysis of urinary calculi. Urol Res 38:477–484CrossRefPubMed Williams JC Jr, McAteer JA, Evan AP, Lingeman JE (2010) Micro-computed tomography for analysis of urinary calculi. Urol Res 38:477–484CrossRefPubMed
7.
Zurück zum Zitat Prien EL, Prien EL Jr (1968) Composition and structure of urinary stone. Am J Med 45:654–672CrossRefPubMed Prien EL, Prien EL Jr (1968) Composition and structure of urinary stone. Am J Med 45:654–672CrossRefPubMed
10.
Zurück zum Zitat Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W (2017) Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol 90:20160665CrossRefPubMedPubMedCentral Larue RT, Defraene G, De Ruysscher D, Lambin P, van Elmpt W (2017) Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures. Br J Radiol 90:20160665CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRefPubMed Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006CrossRefPubMed
12.
Zurück zum Zitat Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3:610–621 Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3:610–621
13.
Zurück zum Zitat van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107CrossRefPubMedPubMedCentral van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Cawley GC, Talbot NLC (2010) On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res 11:2079–2107 Cawley GC, Talbot NLC (2010) On over-fitting in model selection and subsequent selection bias in performance evaluation. J Mach Learn Res 11:2079–2107
15.
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830 Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
16.
Zurück zum Zitat Kim JC (2001) Central lucency of pelvic phleboliths: comparison of radiographs and noncontrast helical CT. Clin Imaging 25:122–125CrossRefPubMed Kim JC (2001) Central lucency of pelvic phleboliths: comparison of radiographs and noncontrast helical CT. Clin Imaging 25:122–125CrossRefPubMed
17.
Zurück zum Zitat Williams JC Jr, Lingeman JE, Coe FL, Worcester EM, Evan AP (2015) Micro-CT imaging of Randall’s plaques. Urolithiasis 43(Suppl 1):13–17CrossRefPubMed Williams JC Jr, Lingeman JE, Coe FL, Worcester EM, Evan AP (2015) Micro-CT imaging of Randall’s plaques. Urolithiasis 43(Suppl 1):13–17CrossRefPubMed
18.
Zurück zum Zitat Zarse CA, McAteer JA, Tann M et al (2004) Helical computed tomography accurately reports urinary stone composition using attenuation values: in vitro verification using high-resolution micro-computed tomography calibrated to fourier transform infrared microspectroscopy. Urology 63:828–833CrossRefPubMed Zarse CA, McAteer JA, Tann M et al (2004) Helical computed tomography accurately reports urinary stone composition using attenuation values: in vitro verification using high-resolution micro-computed tomography calibrated to fourier transform infrared microspectroscopy. Urology 63:828–833CrossRefPubMed
19.
Zurück zum Zitat Boridy IC, Nikolaidis P, Kawashima A, Goldman SM, Sandler CM (1999) Ureterolithiasis: value of the tail sign in differentiating phleboliths from ureteral calculi at nonenhanced helical CT. Radiology 211:619–621CrossRefPubMed Boridy IC, Nikolaidis P, Kawashima A, Goldman SM, Sandler CM (1999) Ureterolithiasis: value of the tail sign in differentiating phleboliths from ureteral calculi at nonenhanced helical CT. Radiology 211:619–621CrossRefPubMed
20.
Zurück zum Zitat Heneghan JP, Dalrymple NC, Verga M, Rosenfield AT, Smith RC (1997) Soft-tissue “rim” sign in the diagnosis of ureteral calculi with use of unenhanced helical CT. Radiology 202:709–711CrossRefPubMed Heneghan JP, Dalrymple NC, Verga M, Rosenfield AT, Smith RC (1997) Soft-tissue “rim” sign in the diagnosis of ureteral calculi with use of unenhanced helical CT. Radiology 202:709–711CrossRefPubMed
21.
Zurück zum Zitat Beig N, Patel J, Prasanna P et al (2018) Radiogenomic analysis of hypoxia pathway is predictive of overall survival in glioblastoma. Sci Rep 8(7) Beig N, Patel J, Prasanna P et al (2018) Radiogenomic analysis of hypoxia pathway is predictive of overall survival in glioblastoma. Sci Rep 8(7)
22.
Zurück zum Zitat Thawani R, McLane M, Beig N et al (2018) Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer 115:34–41CrossRefPubMed Thawani R, McLane M, Beig N et al (2018) Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer 115:34–41CrossRefPubMed
24.
Zurück zum Zitat Parmar C, Rios Velazquez E, Leijenaar R et al (2014) Robust Radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 9:e102107CrossRefPubMedPubMedCentral Parmar C, Rios Velazquez E, Leijenaar R et al (2014) Robust Radiomics feature quantification using semiautomatic volumetric segmentation. PLoS One 9:e102107CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Incoronato M, Aiello M, Infante T et al (2017) Radiogenomic analysis of oncological data: a technical survey. Int J Mol Sci 18 Incoronato M, Aiello M, Infante T et al (2017) Radiogenomic analysis of oncological data: a technical survey. Int J Mol Sci 18
Metadaten
Titel
Differentiating kidney stones from phleboliths in unenhanced low-dose computed tomography using radiomics and machine learning
verfasst von
Thomas De Perrot
Jeremy Hofmeister
Simon Burgermeister
Steve P. Martin
Gregoire Feutry
Jacques Klein
Xavier Montet
Publikationsdatum
12.02.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 9/2019
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-019-6004-7

Weitere Artikel der Ausgabe 9/2019

European Radiology 9/2019 Zur Ausgabe

Screening-Mammografie offenbart erhöhtes Herz-Kreislauf-Risiko

26.04.2024 Mammografie Nachrichten

Routinemäßige Mammografien helfen, Brustkrebs frühzeitig zu erkennen. Anhand der Röntgenuntersuchung lassen sich aber auch kardiovaskuläre Risikopatientinnen identifizieren. Als zuverlässiger Anhaltspunkt gilt die Verkalkung der Brustarterien.

S3-Leitlinie zu Pankreaskrebs aktualisiert

23.04.2024 Pankreaskarzinom Nachrichten

Die Empfehlungen zur Therapie des Pankreaskarzinoms wurden um zwei Off-Label-Anwendungen erweitert. Und auch im Bereich der Früherkennung gibt es Aktualisierungen.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

„Nur wer sich gut aufgehoben fühlt, kann auch für Patientensicherheit sorgen“

13.04.2024 Klinik aktuell Kongressbericht

Die Teilnehmer eines Forums beim DGIM-Kongress waren sich einig: Fehler in der Medizin sind häufig in ungeeigneten Prozessen und mangelnder Kommunikation begründet. Gespräche mit Patienten und im Team können helfen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.