Skip to main content
Erschienen in: European Radiology 11/2012

01.11.2012 | Musculoskeletal

Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels

verfasst von: R. Guggenberger, S. Winklhofer, G. Osterhoff, G. A. Wanner, M. Fortunati, G. Andreisek, H. Alkadhi, P. Stolzmann

Erschienen in: European Radiology | Ausgabe 11/2012

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To evaluate optimal monoenergetic dual-energy computed tomography (DECT) settings for artefact reduction of posterior spinal fusion implants of various vendors and spine levels.

Methods

Posterior spinal fusion implants of five vendors for cervical, thoracic and lumbar spine were examined ex vivo with single-energy (SE) CT (120 kVp) and DECT (140/100 kVp). Extrapolated monoenergetic DECT images at 64, 69, 88, 105 keV and individually adjusted monoenergy for optimised image quality (OPTkeV) were generated. Two independent radiologists assessed quantitative and qualitative image parameters for each device and spine level.

Results

Inter-reader agreements of quantitative and qualitative parameters were high (ICC = 0.81–1.00, κ = 0.54–0.77). HU values of spinal fusion implants were significantly different among vendors (P < 0.001), spine levels (P < 0.01) and among SECT, monoenergetic DECT of 64, 69, 88, 105 keV and OPTkeV (P < 0.01). Image quality was significantly (P < 0.001) different between datasets and improved with higher monoenergies of DECT compared with SECT (V = 0.58, P < 0.001). Artefacts decreased significantly (V = 0.51, P < 0.001) at higher monoenergies. OPTkeV values ranged from 123–141 keV. OPTkeV according to vendor and spine level are presented herein.

Conclusions

Monoenergetic DECT provides significantly better image quality and less metallic artefacts from implants than SECT. Use of individual keV values for vendor and spine level is recommended.

Key Points

Artefacts pose problems for CT following posterior spinal fusion implants.
CT images are interpreted better with monoenergetic extrapolation using dual-energy (DE) CT.
DECT extrapolation improves image quality and reduces metallic artefacts over SECT.
There were considerable differences in monoenergy values among vendors and spine levels.
Use of individualised monoenergy values is indicated for different metallic hardware devices.
Literatur
1.
Zurück zum Zitat Ponnusamy KE, Iyer S, Gupta G, Khanna AJ (2011) Instrumentation of the osteoporotic spine: biomechanical and clinical considerations. Spine J 11:54–63PubMedCrossRef Ponnusamy KE, Iyer S, Gupta G, Khanna AJ (2011) Instrumentation of the osteoporotic spine: biomechanical and clinical considerations. Spine J 11:54–63PubMedCrossRef
2.
Zurück zum Zitat Cheng JS, Lee MJ, Massicotte E et al (2011) Clinical guidelines and payer policies on fusion for the treatment of chronic low back pain. Spine (Phila Pa 1976) 36:S144–S163CrossRef Cheng JS, Lee MJ, Massicotte E et al (2011) Clinical guidelines and payer policies on fusion for the treatment of chronic low back pain. Spine (Phila Pa 1976) 36:S144–S163CrossRef
3.
Zurück zum Zitat Willems P, de Bie R, Oner C, Castelein R, de Kleuver M (2011) Clinical decision making in spinal fusion for chronic low back pain. Results of a nationwide survey among spine surgeons. BMJ Open 1:e000391PubMedCrossRef Willems P, de Bie R, Oner C, Castelein R, de Kleuver M (2011) Clinical decision making in spinal fusion for chronic low back pain. Results of a nationwide survey among spine surgeons. BMJ Open 1:e000391PubMedCrossRef
4.
Zurück zum Zitat Wood KB, Fritzell P, Dettori JR, Hashimoto R, Lund T, Shaffrey C (2011) Effectiveness of spinal fusion versus structured rehabilitation in chronic low back pain patients with and without isthmic spondylolisthesis: a systematic review. Spine (Phila Pa 1976) 36:S110–S119CrossRef Wood KB, Fritzell P, Dettori JR, Hashimoto R, Lund T, Shaffrey C (2011) Effectiveness of spinal fusion versus structured rehabilitation in chronic low back pain patients with and without isthmic spondylolisthesis: a systematic review. Spine (Phila Pa 1976) 36:S110–S119CrossRef
5.
Zurück zum Zitat Sucato DJ (2010) Management of severe spinal deformity: scoliosis and kyphosis. Spine (Phila Pa 1976) 35:2186–2192CrossRef Sucato DJ (2010) Management of severe spinal deformity: scoliosis and kyphosis. Spine (Phila Pa 1976) 35:2186–2192CrossRef
6.
Zurück zum Zitat Young PM, Berquist TH, Bancroft LW, Peterson JJ (2007) Complications of spinal instrumentation. Radiographics 27:775–789PubMedCrossRef Young PM, Berquist TH, Bancroft LW, Peterson JJ (2007) Complications of spinal instrumentation. Radiographics 27:775–789PubMedCrossRef
7.
Zurück zum Zitat Murtagh RD, Quencer RM, Castellvi AE, Yue JJ (2011) New techniques in lumbar spinal instrumentation: what the radiologist needs to know. Radiology 260:317–330PubMedCrossRef Murtagh RD, Quencer RM, Castellvi AE, Yue JJ (2011) New techniques in lumbar spinal instrumentation: what the radiologist needs to know. Radiology 260:317–330PubMedCrossRef
8.
Zurück zum Zitat Douglas-Akinwande AC, Buckwalter KA, Rydberg J, Rankin JL, Choplin RH (2006) Multichannel CT: evaluating the spine in postoperative patients with orthopedic hardware. Radiographics 26:S97–S110PubMedCrossRef Douglas-Akinwande AC, Buckwalter KA, Rydberg J, Rankin JL, Choplin RH (2006) Multichannel CT: evaluating the spine in postoperative patients with orthopedic hardware. Radiographics 26:S97–S110PubMedCrossRef
9.
Zurück zum Zitat Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24:1679–1691PubMedCrossRef Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radiographics 24:1679–1691PubMedCrossRef
10.
Zurück zum Zitat Buckwalter KA, Parr JA, Choplin RH, Capello WN (2006) Multichannel CT imaging of orthopedic hardware and implants. Semin Musculoskelet Radiol 10:86–97PubMedCrossRef Buckwalter KA, Parr JA, Choplin RH, Capello WN (2006) Multichannel CT imaging of orthopedic hardware and implants. Semin Musculoskelet Radiol 10:86–97PubMedCrossRef
11.
Zurück zum Zitat Kachelriess M, Watzke O, Kalender WA (2001) Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys 28:475–490PubMedCrossRef Kachelriess M, Watzke O, Kalender WA (2001) Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Med Phys 28:475–490PubMedCrossRef
12.
Zurück zum Zitat Veldkamp WJ, Joemai RM, van der Molen AJ, Geleijns J (2010) Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT. Med Phys 37:620–628PubMedCrossRef Veldkamp WJ, Joemai RM, van der Molen AJ, Geleijns J (2010) Development and validation of segmentation and interpolation techniques in sinograms for metal artifact suppression in CT. Med Phys 37:620–628PubMedCrossRef
13.
Zurück zum Zitat Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRef Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRef
14.
Zurück zum Zitat Yu H, Zeng K, Bharkhada DK et al (2007) A segmentation-based method for metal artifact reduction. Acad Radiol 14:495–504PubMedCrossRef Yu H, Zeng K, Bharkhada DK et al (2007) A segmentation-based method for metal artifact reduction. Acad Radiol 14:495–504PubMedCrossRef
15.
Zurück zum Zitat Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21:1424–1429PubMedCrossRef Bamberg F, Dierks A, Nikolaou K, Reiser MF, Becker CR, Johnson TR (2011) Metal artifact reduction by dual energy computed tomography using monoenergetic extrapolation. Eur Radiol 21:1424–1429PubMedCrossRef
16.
Zurück zum Zitat Zhou C, Zhao YE, Luo S et al (2011) Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol 18:1252–1257PubMedCrossRef Zhou C, Zhao YE, Luo S et al (2011) Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol 18:1252–1257PubMedCrossRef
18.
Zurück zum Zitat Stolzmann P, Leschka S, Scheffel H et al (2010) Characterization of urinary stones with dual-energy CT: improved differentiation using a tin filter. Invest Radiol 45:1–6PubMedCrossRef Stolzmann P, Leschka S, Scheffel H et al (2010) Characterization of urinary stones with dual-energy CT: improved differentiation using a tin filter. Invest Radiol 45:1–6PubMedCrossRef
19.
Zurück zum Zitat Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRef Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRef
20.
Zurück zum Zitat Haramati N, Staron RB, Mazel-Sperling K et al (1994) CT scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph 18:429–434PubMedCrossRef Haramati N, Staron RB, Mazel-Sperling K et al (1994) CT scans through metal scanning technique versus hardware composition. Comput Med Imaging Graph 18:429–434PubMedCrossRef
21.
Zurück zum Zitat Lee MJ, Kim S, Lee SA et al (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 27:791–803PubMedCrossRef Lee MJ, Kim S, Lee SA et al (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 27:791–803PubMedCrossRef
Metadaten
Titel
Metallic artefact reduction with monoenergetic dual-energy CT: systematic ex vivo evaluation of posterior spinal fusion implants from various vendors and different spine levels
verfasst von
R. Guggenberger
S. Winklhofer
G. Osterhoff
G. A. Wanner
M. Fortunati
G. Andreisek
H. Alkadhi
P. Stolzmann
Publikationsdatum
01.11.2012
Verlag
Springer-Verlag
Erschienen in
European Radiology / Ausgabe 11/2012
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-012-2501-7

Weitere Artikel der Ausgabe 11/2012

European Radiology 11/2012 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.