Skip to main content
Erschienen in: European Journal of Applied Physiology 2/2007

01.01.2007 | Original Article

Causes of differences in exercise-induced changes of base excess and blood lactate

verfasst von: Dieter Böning, Carola Klarholz, Bärbel Himmelsbach, Matthias Hütler, Norbert Maassen

Erschienen in: European Journal of Applied Physiology | Ausgabe 2/2007

Einloggen, um Zugang zu erhalten

Abstract

It has been concluded from comparisons of base excess (BE) and lactic acid (La) concentration changes in blood during exercise-induced acidosis that more H+ than La leave the muscle and enter interstitial fluid and blood. To examine this, we performed incremental cycle tests in 13 untrained males and measured acid–base status and [La] in arterialized blood, plasma, and red cells until 21 min after exhaustion. The decrease of actual BE (−ΔABE) was 2.2 ± 0.5 (SEM) mmol l−1 larger than the increase of [La]blood at exhaustion, and the difference rose to 4.8 ± 0.5 mmol l−1 during the first minutes of recovery. The decrease of standard BE (SBE), a measure of mean BE of interstitial fluid (if) and blood, however, was smaller than the increase of [La] in the corresponding volume (Δ[La]if+blood) during exercise and only slightly larger during recovery. The discrepancy between −ΔABE and Δ[La]blood mainly results from the Donnan effect hindering the rise of [La]erythrocyte to equal values like [La]plasma. The changing Donnan effect during acidosis causes that Cl from the interstitial fluid enter plasma and erythrocytes in exchange for HCO 3 . A corresponding amount of La remains outside the blood. SBE is not influenced by ion shifts among these compartments and therefore is a rather exact measure of acid movements across tissue cell membranes, but changes have been compared previously to Δ[La]blood instead to Δ[La]if+blood. When performing correct comparisons and considering Cl/HCO 3 exchange between erythrocytes and extracellular fluid, neither the use of ΔABE nor of ΔSBE provides evidence for differences in H+ and La transport across the tissue cell membranes.
Literatur
Zurück zum Zitat Bangsbo J, Johansen L, Graham T, Saltin B (1993) Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise. J Physiol 462:115–133PubMed Bangsbo J, Johansen L, Graham T, Saltin B (1993) Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise. J Physiol 462:115–133PubMed
Zurück zum Zitat Bangsbo J, Juel C, Hellsten Y, Saltin B (1997) Dissociation between lactate and proton exchange in muscle during intense exercise in man. J Physiol 504:489–499PubMedCrossRef Bangsbo J, Juel C, Hellsten Y, Saltin B (1997) Dissociation between lactate and proton exchange in muscle during intense exercise in man. J Physiol 504:489–499PubMedCrossRef
Zurück zum Zitat Beecher HK, Murphy AJ (1950) Acidosis during thoracic sugery. J Thorac Cardiovasc Surg 19:50–70 Beecher HK, Murphy AJ (1950) Acidosis during thoracic sugery. J Thorac Cardiovasc Surg 19:50–70
Zurück zum Zitat Böning D (1974) The “in vivo” and “in vitro” CO2-equilibration curves of blood during acute hypercapnia and hypocapnia. II. Theoretical considerations. Pflügers Arch 350:213–222PubMedCrossRef Böning D (1974) The “in vivo” and “in vitro” CO2-equilibration curves of blood during acute hypercapnia and hypocapnia. II. Theoretical considerations. Pflügers Arch 350:213–222PubMedCrossRef
Zurück zum Zitat Böning D, Schweigart U, Nutz V, Stegemann J (1974) The “in vivo” and “in vitro” CO2-equilibration curves of blood during acute hypercapnia and hypocapnia. I. Experimental investigations. Pflügers Arch 350:201–212PubMedCrossRef Böning D, Schweigart U, Nutz V, Stegemann J (1974) The “in vivo” and “in vitro” CO2-equilibration curves of blood during acute hypercapnia and hypocapnia. I. Experimental investigations. Pflügers Arch 350:201–212PubMedCrossRef
Zurück zum Zitat Böning D, Hollnagel Ch, Boecker A, Göke St (1991) Bohr shift by lactic acid and the supply of O2 to skeletal muscle. Respir Physiol 85:231–243PubMedCrossRef Böning D, Hollnagel Ch, Boecker A, Göke St (1991) Bohr shift by lactic acid and the supply of O2 to skeletal muscle. Respir Physiol 85:231–243PubMedCrossRef
Zurück zum Zitat Böning D, Maassen N (1983) Blood osmolality in vitro: dependence on PCO2, lactic acid concentration, and O2 saturation. J Appl Physiol Respir 54:118–122 Böning D, Maassen N (1983) Blood osmolality in vitro: dependence on PCO2, lactic acid concentration, and O2 saturation. J Appl Physiol Respir 54:118–122
Zurück zum Zitat Böning D, Maassen N, Thomas A, Steinacker J-M (2001) Extracellular pH defense against lactic acid in normoxia and hypoxia before and after a Himalayan expedition. Eur J Appl Physiol 84:78–86PubMedCrossRef Böning D, Maassen N, Thomas A, Steinacker J-M (2001) Extracellular pH defense against lactic acid in normoxia and hypoxia before and after a Himalayan expedition. Eur J Appl Physiol 84:78–86PubMedCrossRef
Zurück zum Zitat Böning D, Strobel G, Beneke R, Maassen N (2005) Lactic acid still remains the real cause of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 289:R902–R903PubMed Böning D, Strobel G, Beneke R, Maassen N (2005) Lactic acid still remains the real cause of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 289:R902–R903PubMed
Zurück zum Zitat Böning D, Tibes U, Schweigart U (1976) Red cell hemoglobin, hydrogen ion and electrolyte concentrations during exercise in trained and untrained subjects. Eur J Appl Physiol 35:243–249CrossRef Böning D, Tibes U, Schweigart U (1976) Red cell hemoglobin, hydrogen ion and electrolyte concentrations during exercise in trained and untrained subjects. Eur J Appl Physiol 35:243–249CrossRef
Zurück zum Zitat Bouhuys A, Pool J, Binkhorst RA, Leeuwen van P (1966) Metabolic acidosis of exercise in healthy males. J Appl Physiol 21:1040–1046PubMed Bouhuys A, Pool J, Binkhorst RA, Leeuwen van P (1966) Metabolic acidosis of exercise in healthy males. J Appl Physiol 21:1040–1046PubMed
Zurück zum Zitat Cerretelli P, Samaja M (2003) Acid-base balance at exercise in normoxia and in chronic hypoxia. Revisiting the “lactate paradox”. Eur J Appl Physiol 90:431–448PubMedCrossRef Cerretelli P, Samaja M (2003) Acid-base balance at exercise in normoxia and in chronic hypoxia. Revisiting the “lactate paradox”. Eur J Appl Physiol 90:431–448PubMedCrossRef
Zurück zum Zitat Christiansen TF (1981) An algorithm for calculating the concentration of the base excess of blood. In: Siggaard-Andersen O (ed) Proceedings of the IFCC expert panel on pH and blood gases held at Herved Hospital 1980. Radiometer A/S, Copenhagen, pp77–81 Christiansen TF (1981) An algorithm for calculating the concentration of the base excess of blood. In: Siggaard-Andersen O (ed) Proceedings of the IFCC expert panel on pH and blood gases held at Herved Hospital 1980. Radiometer A/S, Copenhagen, pp77–81
Zurück zum Zitat Dell RD, Winters RW (1970) A model for the in vivo CO2 equilibration curve. Am J Physiol 219:37–44PubMed Dell RD, Winters RW (1970) A model for the in vivo CO2 equilibration curve. Am J Physiol 219:37–44PubMed
Zurück zum Zitat Dill DB, Talbott JH, Edward HT (1930) Studies in muscular activity. VI. Response of several individuals to a fixed task. J Physiol 69:267–305PubMed Dill DB, Talbott JH, Edward HT (1930) Studies in muscular activity. VI. Response of several individuals to a fixed task. J Physiol 69:267–305PubMed
Zurück zum Zitat Durand F, Mucci P, Hayot M, Couret I, Bonnardet A, Prefaut C (2004) Attenuated ANF response to exercise in athletes with exercise-induced hypoxemia. Int J Sports Med 25:252–256PubMedCrossRef Durand F, Mucci P, Hayot M, Couret I, Bonnardet A, Prefaut C (2004) Attenuated ANF response to exercise in athletes with exercise-induced hypoxemia. Int J Sports Med 25:252–256PubMedCrossRef
Zurück zum Zitat Forster RE, Crandall ED (1975) Time course of exchanges between red cells and extracellular fluid during CO2 uptake. J Appl Physiol 38:710–718PubMed Forster RE, Crandall ED (1975) Time course of exchanges between red cells and extracellular fluid during CO2 uptake. J Appl Physiol 38:710–718PubMed
Zurück zum Zitat Gebert G, Friedman SM (1973) An implantable glass electrode used for pH measurement in working skeletal muscle. J Appl Physiol 34:122–124PubMed Gebert G, Friedman SM (1973) An implantable glass electrode used for pH measurement in working skeletal muscle. J Appl Physiol 34:122–124PubMed
Zurück zum Zitat Gladden BL (1996) Lactate transport and exchange during exercise. In: Handbook of physiology. Auburn University, AL, pp 614–648 Gladden BL (1996) Lactate transport and exchange during exercise. In: Handbook of physiology. Auburn University, AL, pp 614–648
Zurück zum Zitat Gladden LB (2004) Lactate metabolism: a new paradigm for the third millenium. J Physiol 558:5–30PubMedCrossRef Gladden LB (2004) Lactate metabolism: a new paradigm for the third millenium. J Physiol 558:5–30PubMedCrossRef
Zurück zum Zitat Henderson LJ (1928) Blood—a study in general physiology. Yale University Press, H. Milford, Oxford University Press, New Haven, London Henderson LJ (1928) Blood—a study in general physiology. Yale University Press, H. Milford, Oxford University Press, New Haven, London
Zurück zum Zitat Hildebrand A, Lormes W, Emmert J, Liu Y, Lehmann M, Steinacker JM (2000) Lactate concentration in plasma and red blood cells during incremental exercise. Int J Sports Med 21:463–468PubMedCrossRef Hildebrand A, Lormes W, Emmert J, Liu Y, Lehmann M, Steinacker JM (2000) Lactate concentration in plasma and red blood cells during incremental exercise. Int J Sports Med 21:463–468PubMedCrossRef
Zurück zum Zitat Johnson RE, Edwards HT, Dill DB, Wilson JW (1945) Blood as a physicochemical system. XIII. The distribution of lactate. J Biol Chem 157:461–473 Johnson RE, Edwards HT, Dill DB, Wilson JW (1945) Blood as a physicochemical system. XIII. The distribution of lactate. J Biol Chem 157:461–473
Zurück zum Zitat Juel C, Bangsbo J, Graham T, Saltin B (1990) Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise. Acta Physiol Scand 140:147–159PubMed Juel C, Bangsbo J, Graham T, Saltin B (1990) Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise. Acta Physiol Scand 140:147–159PubMed
Zurück zum Zitat Juel C, Hellsten Y, Saltin B, Bangsbo J (1999) Potassium fluxes in contracting human skeletal muscle and red blood cells. Am J Physiol 276:R184–R188PubMed Juel C, Hellsten Y, Saltin B, Bangsbo J (1999) Potassium fluxes in contracting human skeletal muscle and red blood cells. Am J Physiol 276:R184–R188PubMed
Zurück zum Zitat Juel C, Klarskov C, NJJ, Krustrup P, Mohr M, Bangsbo J (2004) Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol Endocrinol Metab 286:E245–E251 Juel C, Klarskov C, NJJ, Krustrup P, Mohr M, Bangsbo J (2004) Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle. Am J Physiol Endocrinol Metab 286:E245–E251
Zurück zum Zitat Kemp G (2005) Lactate accumulation, proton buffering, and pH change in ischemically exercising muscle. Am J Physiol Regul Integr Comp Physiol 289:R895–R901PubMed Kemp G (2005) Lactate accumulation, proton buffering, and pH change in ischemically exercising muscle. Am J Physiol Regul Integr Comp Physiol 289:R895–R901PubMed
Zurück zum Zitat Koeslag JH (1982) Post-exercise ketosis and the hormone response to exercise: a review. Med Sci Sports Exerc 14:327–334PubMedCrossRef Koeslag JH (1982) Post-exercise ketosis and the hormone response to exercise: a review. Med Sci Sports Exerc 14:327–334PubMedCrossRef
Zurück zum Zitat Kofstad J (2001) Base excess: a historical review-has the calculation of base excess been more standardised the last 20 years? Clin Chim Acta 307:193–195PubMedCrossRef Kofstad J (2001) Base excess: a historical review-has the calculation of base excess been more standardised the last 20 years? Clin Chim Acta 307:193–195PubMedCrossRef
Zurück zum Zitat Krötz F, Riexinger T, Buerkle MA, Nithipatikom K, Gloe T, Sohn HY, Campbell WB, Pohl U (2004) Membrane-potential-dependent inhibition of platelet adhesion to endothelial cells by epoxyeicosatrienoic acids. Arterioscler Thromb Vasc Biol 24:595–600PubMedCrossRef Krötz F, Riexinger T, Buerkle MA, Nithipatikom K, Gloe T, Sohn HY, Campbell WB, Pohl U (2004) Membrane-potential-dependent inhibition of platelet adhesion to endothelial cells by epoxyeicosatrienoic acids. Arterioscler Thromb Vasc Biol 24:595–600PubMedCrossRef
Zurück zum Zitat Lindinger MI, Heigenhauser JF, McKelvie RS, Jones NL (1992) Blood ion regulation during repeated maximal exercise and recovery in humans. Am J Physiol 262:126–136 Lindinger MI, Heigenhauser JF, McKelvie RS, Jones NL (1992) Blood ion regulation during repeated maximal exercise and recovery in humans. Am J Physiol 262:126–136
Zurück zum Zitat Lindinger MI, Horn PL, Grudzien SP (1999) Exercise-induced stimulation of K+ transport in human erythrocytes. J Appl Physiol 87:2157–2167PubMed Lindinger MI, Horn PL, Grudzien SP (1999) Exercise-induced stimulation of K+ transport in human erythrocytes. J Appl Physiol 87:2157–2167PubMed
Zurück zum Zitat Lundvall J, Mellander S, Westling H, White T (1972) Fluid transfer between blood and tissues during exercise. Acta Physiol Scand 85:258–269PubMedCrossRef Lundvall J, Mellander S, Westling H, White T (1972) Fluid transfer between blood and tissues during exercise. Acta Physiol Scand 85:258–269PubMedCrossRef
Zurück zum Zitat Maassen N, Foerster M, Mairbaurl H (1998) Red blood cells do not contribute to removal of K+ released from exhaustively working forearm muscle. J Appl Physiol 85:326–332PubMed Maassen N, Foerster M, Mairbaurl H (1998) Red blood cells do not contribute to removal of K+ released from exhaustively working forearm muscle. J Appl Physiol 85:326–332PubMed
Zurück zum Zitat MacLean DA, Bangsbo J, Saltin B (1999) Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis. J Appl Physiol 87:1483–1490PubMed MacLean DA, Bangsbo J, Saltin B (1999) Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by microdialysis. J Appl Physiol 87:1483–1490PubMed
Zurück zum Zitat Medbo JI, Sejersted OM (1985) Acid-base and electrolyte balance after exhausting exercise in endurance-trained and sprint-trained subjects. Acta Physiol Scand 125:97–109PubMed Medbo JI, Sejersted OM (1985) Acid-base and electrolyte balance after exhausting exercise in endurance-trained and sprint-trained subjects. Acta Physiol Scand 125:97–109PubMed
Zurück zum Zitat Mourtzakis M, Graham TE (2002) Glutamate ingestion and its effects at rest and during exercise in humans. J Appl Physiol 93:1251–1259PubMed Mourtzakis M, Graham TE (2002) Glutamate ingestion and its effects at rest and during exercise in humans. J Appl Physiol 93:1251–1259PubMed
Zurück zum Zitat Osnes JB, Hermansen L (1972) Acid-base balance after maximal exercise of short duration. J Appl Physiol 32:59–63PubMed Osnes JB, Hermansen L (1972) Acid-base balance after maximal exercise of short duration. J Appl Physiol 32:59–63PubMed
Zurück zum Zitat Putman CT, Jones NL, Heigenhauser GJ (2003) Effects of short-term training on plasma acid-base balance during incremental exercise in man. J Physiol 550:585–603PubMedCrossRef Putman CT, Jones NL, Heigenhauser GJ (2003) Effects of short-term training on plasma acid-base balance during incremental exercise in man. J Physiol 550:585–603PubMedCrossRef
Zurück zum Zitat Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287:R502–R516PubMed Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287:R502–R516PubMed
Zurück zum Zitat Rowlands DS (2005) Model for the behaviour of compartmental CO2 stores during incremental exercise. Eur J Appl Physiol 93:555–568PubMedCrossRef Rowlands DS (2005) Model for the behaviour of compartmental CO2 stores during incremental exercise. Eur J Appl Physiol 93:555–568PubMedCrossRef
Zurück zum Zitat Sahlin K (1978) Intracellular pH and energy metabolism in skeletal muscle of man. With special reference to exercise. Acta Physiol Scand 445(Suppl):1–56 Sahlin K (1978) Intracellular pH and energy metabolism in skeletal muscle of man. With special reference to exercise. Acta Physiol Scand 445(Suppl):1–56
Zurück zum Zitat Schmidt W, Brabant G, Kröger C, Strauch S, Hilgendorf A (1990) Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions. Eur J Physiol 61:398–407CrossRef Schmidt W, Brabant G, Kröger C, Strauch S, Hilgendorf A (1990) Atrial natriuretic peptide during and after maximal and submaximal exercise under normoxic and hypoxic conditions. Eur J Physiol 61:398–407CrossRef
Zurück zum Zitat Siggaard-Andersen O (1974) The acid-base status of the blood. Munksgaard, Copenhagen Siggaard-Andersen O (1974) The acid-base status of the blood. Munksgaard, Copenhagen
Zurück zum Zitat Sjögaard G, Saltin B (1982) Extra- and intracellular water spaces in muscles of man at rest and with dynamic exercise. Am J Physiol 243:R271–R280PubMed Sjögaard G, Saltin B (1982) Extra- and intracellular water spaces in muscles of man at rest and with dynamic exercise. Am J Physiol 243:R271–R280PubMed
Zurück zum Zitat Smith EW, Skelton MS, Kremer DE, Pascoe DD, Gladden LB (1997) Lactate distribution in the blood during progressive exercise. Med Sci Sports Exerc 29:654–660PubMed Smith EW, Skelton MS, Kremer DE, Pascoe DD, Gladden LB (1997) Lactate distribution in the blood during progressive exercise. Med Sci Sports Exerc 29:654–660PubMed
Zurück zum Zitat Tibes U, Hemmer B, Schweigart U, Böning D, Fotescu D (1974) Exercise acidosis as cause of electrolyte changes in femoral venous blood of trained and untrained man. Pflügers Arch 347:145–158PubMedCrossRef Tibes U, Hemmer B, Schweigart U, Böning D, Fotescu D (1974) Exercise acidosis as cause of electrolyte changes in femoral venous blood of trained and untrained man. Pflügers Arch 347:145–158PubMedCrossRef
Zurück zum Zitat Wasserman K, Beaver WL, Whipp BJ (1986) Mechanisms and patterns of blood lactate increase during exercise in man. Med Sci Sports Exerc 18(3):344–352PubMedCrossRef Wasserman K, Beaver WL, Whipp BJ (1986) Mechanisms and patterns of blood lactate increase during exercise in man. Med Sci Sports Exerc 18(3):344–352PubMedCrossRef
Metadaten
Titel
Causes of differences in exercise-induced changes of base excess and blood lactate
verfasst von
Dieter Böning
Carola Klarholz
Bärbel Himmelsbach
Matthias Hütler
Norbert Maassen
Publikationsdatum
01.01.2007
Verlag
Springer-Verlag
Erschienen in
European Journal of Applied Physiology / Ausgabe 2/2007
Print ISSN: 1439-6319
Elektronische ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-006-0328-0

Weitere Artikel der Ausgabe 2/2007

European Journal of Applied Physiology 2/2007 Zur Ausgabe

Neu im Fachgebiet Arbeitsmedizin

Elterliches Belastungserleben, Unaufmerksamkeits‑/Hyperaktivitätssymptome und elternberichtete ADHS bei Kindern und Jugendlichen: Ergebnisse aus der KiGGS-Studie

Open Access ADHS Leitthema

Die Aufmerksamkeitsdefizit‑/Hyperaktivitätsstörung (ADHS) ist eine der häufigsten psychischen Störungen im Kindes- und Jugendalter [ 1 ]. In Deutschland beträgt die Prävalenz einer elternberichteten ADHS-Diagnose bei Kindern und Jugendlichen 4,4 % …

Substanzkonsum und Nutzung von sozialen Medien, Computerspielen und Glücksspielen unter Auszubildenden an beruflichen Schulen

Open Access Leitthema

Die Begrenzung von Schäden durch Substanzkonsum und andere abhängige Verhaltensweisen von Jugendlichen und jungen Erwachsenen ist ein wichtiges Anliegen der öffentlichen Gesundheit. Der Übergang von der Adoleszenz zum jungen Erwachsenenalter ist …

Berufsbelastung und Stressbewältigung von weiblichen und männlichen Auszubildenden

Leitthema

In der Öffentlichkeit wird die berufliche Ausbildung oftmals unter ökonomischen Gesichtspunkten diskutiert: Mit den geburtenstarken Jahrgängen gehen erfahrene Fachkräfte in Rente und von nachfolgenden Generationen rücken zu wenige Arbeitskräfte …

Rauschtrinken in der frühen Adoleszenz

COVID-19 Leitthema

Alkohol ist in Deutschland die mit Abstand am häufigsten konsumierte psychoaktive Substanz. Mehr als 2 Drittel aller Erwachsenen im Alter von 18 bis 64 Jahren (70,5 %) hat 2021 in den letzten 30 Tagen Alkohol konsumiert [ 1 ]. Von diesen …