Skip to main content
Erschienen in: Brain Structure and Function 3/2013

01.05.2013 | Original Article

Structural covariance of the neostriatum with regional gray matter volumes

verfasst von: C. Soriano-Mas, B. J. Harrison, J. Pujol, M. López-Solà, R. Hernández-Ribas, P. Alonso, O. Contreras-Rodríguez, M. Giménez, L. Blanco-Hinojo, H. Ortiz, J. Deus, J. M. Menchón, N. Cardoner

Erschienen in: Brain Structure and Function | Ausgabe 3/2013

Einloggen, um Zugang zu erhalten

Abstract

The caudate and putamen nuclei have been traditionally divided into dorsal and ventral territories based on their segregated patterns of functional and anatomical connectivity with distributed cortical regions. Activity-dependent structural plasticity may potentially lead to the development of regional volume correlations, or structural covariance, between the different components of each cortico-striatal circuit. Here, we studied the whole-brain structural covariance patterns of four neostriatal regions belonging to distinct cortico-striatal circuits. We also assessed the potential modulating influence of laterality, age and gender. T1-weighted three-dimensional magnetic resonance images were obtained from ninety healthy participants (50 females). Following data pre-processing, the mean signal value per hemisphere was calculated for the ‘seed’ regions of interest, located in the dorsal and ventral caudate and the dorsal–caudal and ventral–rostral putamen. Statistical parametric mapping was used to estimate whole-brain voxel-wise structural covariance patterns for each striatal region, controlling for the shared anatomical variance between regions in order to obtain maximally specific structural covariance patterns. As predicted, segregated covariance patterns were observed. Age was found to be a relevant modulator of the covariance patterns of the right caudate regions, while laterality effects were observed for the dorsal–caudal putamen. Gender effects were only observed via an interaction with age. The different patterns of structural covariance are discussed in detail, as well as their similarities with the functional and anatomical connectivity patterns reported for the same striatal regions in other studies. Finally, the potential mechanisms underpinning the phenomenon of volume correlations between distant cortico-striatal structures are also discussed.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRef Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedCrossRef
Zurück zum Zitat Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 118:341–358PubMedCrossRef Allen JS, Damasio H, Grabowski TJ (2002) Normal neuroanatomical variation in the human brain: an MRI-volumetric study. Am J Phys Anthropol 118:341–358PubMedCrossRef
Zurück zum Zitat Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17:2859–2868PubMed Andrews TJ, Halpern SD, Purves D (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci 17:2859–2868PubMed
Zurück zum Zitat Barbas H, De Olmos J (1990) Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J Comp Neurol 300:549–571PubMedCrossRef Barbas H, De Olmos J (1990) Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey. J Comp Neurol 300:549–571PubMedCrossRef
Zurück zum Zitat Bi G, Poo M (1999) Distributed synaptic modification in neural networks induced by patterned stimulation. Nature 401:792–796PubMedCrossRef Bi G, Poo M (1999) Distributed synaptic modification in neural networks induced by patterned stimulation. Nature 401:792–796PubMedCrossRef
Zurück zum Zitat Bostan AC, Strick PL (2010) The cerebellum and basal ganglia are interconnected. Neuropsychol Rev 20:261–270PubMedCrossRef Bostan AC, Strick PL (2010) The cerebellum and basal ganglia are interconnected. Neuropsychol Rev 20:261–270PubMedCrossRef
Zurück zum Zitat Brett MA, Anton JL, Valabregue R, Poline J (2002) Region of interest analysis using an SPM toolbox. Neuroimage 16:497 (abstract) Brett MA, Anton JL, Valabregue R, Poline J (2002) Region of interest analysis using an SPM toolbox. Neuroimage 16:497 (abstract)
Zurück zum Zitat Butz M, Wörgötter F, van Ooyen A (2009) Activity-dependent structural plasticity. Brain Res Rev 60:287–305PubMedCrossRef Butz M, Wörgötter F, van Ooyen A (2009) Activity-dependent structural plasticity. Brain Res Rev 60:287–305PubMedCrossRef
Zurück zum Zitat Cardoner N, Soriano-Mas C, Pujol J, Alonso P, Harrison BJ, Deus J, Hernández-Ribas R, Menchón JM, Vallejo J (2007) Brain structural correlates of depressive comorbidity in obsessive-compulsive disorder. Neuroimage 38:413–421PubMedCrossRef Cardoner N, Soriano-Mas C, Pujol J, Alonso P, Harrison BJ, Deus J, Hernández-Ribas R, Menchón JM, Vallejo J (2007) Brain structural correlates of depressive comorbidity in obsessive-compulsive disorder. Neuroimage 38:413–421PubMedCrossRef
Zurück zum Zitat Caviness VS Jr, Lange NT, Makris N, Herbert MR, Kennedy DN (1999) MRI-based brain volumetrics: emergence of a developmental brain science. Brain Dev 21:289–295PubMedCrossRef Caviness VS Jr, Lange NT, Makris N, Herbert MR, Kennedy DN (1999) MRI-based brain volumetrics: emergence of a developmental brain science. Brain Dev 21:289–295PubMedCrossRef
Zurück zum Zitat Cohen MX, Lombardo MV, Blumenfeld RS (2008) Covariance-based subdivision of the human striatum using T1-weighted MRI. Eur J Neurosci 27:1534–1546PubMedCrossRef Cohen MX, Lombardo MV, Blumenfeld RS (2008) Covariance-based subdivision of the human striatum using T1-weighted MRI. Eur J Neurosci 27:1534–1546PubMedCrossRef
Zurück zum Zitat Colibazzi T, Zhu H, Bansal R, Schultz RT, Wang Z, Peterson BS (2008) Latent volumetric structure of the human brain: exploratory factor analysis and structural equation modeling of gray matter volumes in healthy children and adults. Hum Brain Mapp 29:1302–1312PubMedCrossRef Colibazzi T, Zhu H, Bansal R, Schultz RT, Wang Z, Peterson BS (2008) Latent volumetric structure of the human brain: exploratory factor analysis and structural equation modeling of gray matter volumes in healthy children and adults. Hum Brain Mapp 29:1302–1312PubMedCrossRef
Zurück zum Zitat Crittenden JR, Graybiel AM (2011) Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 5:59PubMedCrossRef Crittenden JR, Graybiel AM (2011) Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front Neuroanat 5:59PubMedCrossRef
Zurück zum Zitat Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213:525–533PubMedCrossRef Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213:525–533PubMedCrossRef
Zurück zum Zitat Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP (2008) Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18:2735–2747PubMedCrossRef Di Martino A, Scheres A, Margulies DS, Kelly AM, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP (2008) Functional connectivity of human striatum: a resting state FMRI study. Cereb Cortex 18:2735–2747PubMedCrossRef
Zurück zum Zitat Di Martino A, Kelly C, Grzadzinski R, Zuo XN, Mennes M, Mairena MA, Lord C, Castellanos FX, Milham MP (2011) Aberrant striatal functional connectivity in children with autism. Biol Psychiatry 69:847–856PubMedCrossRef Di Martino A, Kelly C, Grzadzinski R, Zuo XN, Mennes M, Mairena MA, Lord C, Castellanos FX, Milham MP (2011) Aberrant striatal functional connectivity in children with autism. Biol Psychiatry 69:847–856PubMedCrossRef
Zurück zum Zitat Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361PubMedCrossRef Dosenbach NU, Nardos B, Cohen AL, Fair DA, Power JD, Church JA, Nelson SM, Wig GS, Vogel AC, Lessov-Schlaggar CN, Barnes KA, Dubis JW, Feczko E, Coalson RS, Pruett JR Jr, Barch DM, Petersen SE, Schlaggar BL (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361PubMedCrossRef
Zurück zum Zitat Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427:311–312PubMedCrossRef Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A (2004) Neuroplasticity: changes in grey matter induced by training. Nature 427:311–312PubMedCrossRef
Zurück zum Zitat Draganski B, Kherif F, Klöppel S, Cook PA, Alexander DC, Parker GJ, Deichmann R, Ashburner J, Frackowiak RS (2008) Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. J Neurosci 28:7143–7152PubMedCrossRef Draganski B, Kherif F, Klöppel S, Cook PA, Alexander DC, Parker GJ, Deichmann R, Ashburner J, Frackowiak RS (2008) Evidence for segregated and integrative connectivity patterns in the human Basal Ganglia. J Neurosci 28:7143–7152PubMedCrossRef
Zurück zum Zitat Fitzgerald KD, Welsh RC, Stern ER, Angstadt M, Hanna GL, Abelson JL, Taylor SF (2011) Developmental alterations of frontal–striatal–thalamic connectivity in obsessive–compulsive disorder. J Am Acad Child Adolesc Psychiatry 50:938–948.e3PubMedCrossRef Fitzgerald KD, Welsh RC, Stern ER, Angstadt M, Hanna GL, Abelson JL, Taylor SF (2011) Developmental alterations of frontal–striatal–thalamic connectivity in obsessive–compulsive disorder. J Am Acad Child Adolesc Psychiatry 50:938–948.e3PubMedCrossRef
Zurück zum Zitat Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, Vaituzis AC, Vauss YC, Hamburger SD, Kaysen D, Rapoport JL (1996) Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 6:551–560PubMedCrossRef Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL, Vaituzis AC, Vauss YC, Hamburger SD, Kaysen D, Rapoport JL (1996) Quantitative magnetic resonance imaging of human brain development: ages 4–18. Cereb Cortex 6:551–560PubMedCrossRef
Zurück zum Zitat Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC (2009) Age- and gender-related differences in the cortical anatomical network. J Neurosci 29:15684–15693PubMedCrossRef Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC (2009) Age- and gender-related differences in the cortical anatomical network. J Neurosci 29:15684–15693PubMedCrossRef
Zurück zum Zitat Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36PubMedCrossRef Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS (2001) A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14(1 Pt 1):21–36PubMedCrossRef
Zurück zum Zitat Graybiel AM (2005) The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol 15:638–644PubMedCrossRef Graybiel AM (2005) The basal ganglia: learning new tricks and loving it. Curr Opin Neurobiol 15:638–644PubMedCrossRef
Zurück zum Zitat Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330PubMedCrossRef Haber SN (2003) The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat 26:317–330PubMedCrossRef
Zurück zum Zitat Haber SN, Calzavara R (2009) The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull 78:69–74PubMedCrossRef Haber SN, Calzavara R (2009) The cortico-basal ganglia integrative network: the role of the thalamus. Brain Res Bull 78:69–74PubMedCrossRef
Zurück zum Zitat Harrison BJ, Soriano-Mas C, Pujol J, Ortiz H, López-Solà M, Hernández-Ribas R, Deus J, Alonso P, Yücel M, Pantelis C, Menchon JM, Cardoner N (2009) Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch Gen Psychiatry 66:1189–1200PubMedCrossRef Harrison BJ, Soriano-Mas C, Pujol J, Ortiz H, López-Solà M, Hernández-Ribas R, Deus J, Alonso P, Yücel M, Pantelis C, Menchon JM, Cardoner N (2009) Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch Gen Psychiatry 66:1189–1200PubMedCrossRef
Zurück zum Zitat Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8:1491–1493PubMedCrossRef Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8:1491–1493PubMedCrossRef
Zurück zum Zitat Huttenlocher PR (1979) Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 163:195–205PubMedCrossRef Huttenlocher PR (1979) Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res 163:195–205PubMedCrossRef
Zurück zum Zitat Kaspárek T, Marecek R, Schwarz D, Prikryl R, Vanícek J, Mikl M, Cesková E (2010) Source-based morphometry of gray matter volume in men with first-episode schizophrenia. Hum Brain Mapp 31:300–310PubMed Kaspárek T, Marecek R, Schwarz D, Prikryl R, Vanícek J, Mikl M, Cesková E (2010) Source-based morphometry of gray matter volume in men with first-episode schizophrenia. Hum Brain Mapp 31:300–310PubMed
Zurück zum Zitat Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138PubMedCrossRef Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138PubMedCrossRef
Zurück zum Zitat Kelly C, de Zubicaray G, Di Martino A, Copland DA, Reiss PT, Klein DF, Castellanos FX, Milham MP, McMahon K (2009) l-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J Neurosci 29:7364–7378PubMedCrossRef Kelly C, de Zubicaray G, Di Martino A, Copland DA, Reiss PT, Klein DF, Castellanos FX, Milham MP, McMahon K (2009) l-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study. J Neurosci 29:7364–7378PubMedCrossRef
Zurück zum Zitat Kennedy DN, Lange N, Makris N, Bates J, Meyer J, Caviness VS Jr (1998) Gyri of the human neocortex: an MRI-based analysis of volume and variance. Cereb Cortex 8:372–384PubMedCrossRef Kennedy DN, Lange N, Makris N, Bates J, Meyer J, Caviness VS Jr (1998) Gyri of the human neocortex: an MRI-based analysis of volume and variance. Cereb Cortex 8:372–384PubMedCrossRef
Zurück zum Zitat Kier EL, Staib LH, Davis LM, Bronen RA (2004) MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiation. AJNR Am J Neuroradiol 25:677–691PubMed Kier EL, Staib LH, Davis LM, Bronen RA (2004) MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipitofrontal fasciculus, and Meyer’s loop of the optic radiation. AJNR Am J Neuroradiol 25:677–691PubMed
Zurück zum Zitat Kolb B, Gorny G, Söderpalm AH, Robinson TE (2003) Environmental complexity has different effects on the structure of neurons in the prefrontal cortex versus the parietal cortex or nucleus accumbens. Synapse 48:149–153PubMedCrossRef Kolb B, Gorny G, Söderpalm AH, Robinson TE (2003) Environmental complexity has different effects on the structure of neurons in the prefrontal cortex versus the parietal cortex or nucleus accumbens. Synapse 48:149–153PubMedCrossRef
Zurück zum Zitat Kunishio K, Haber SN (1994) Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J Comp Neurol 350:337–356PubMedCrossRef Kunishio K, Haber SN (1994) Primate cingulostriatal projection: limbic striatal versus sensorimotor striatal input. J Comp Neurol 350:337–356PubMedCrossRef
Zurück zum Zitat Kwak Y, Peltier S, Bohnen NI, Müller ML, Dayalu P, Seidler RD (2010) Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease. Front Syst Neurosci 4:143PubMedCrossRef Kwak Y, Peltier S, Bohnen NI, Müller ML, Dayalu P, Seidler RD (2010) Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease. Front Syst Neurosci 4:143PubMedCrossRef
Zurück zum Zitat Lawrence AD, Sahakian BJ, Robbins TW (1998) Cognitive functions and corticostriatal circuits: insights from Huntington’s disease. Trends Cogn Sci 2:379–388PubMedCrossRef Lawrence AD, Sahakian BJ, Robbins TW (1998) Cognitive functions and corticostriatal circuits: insights from Huntington’s disease. Trends Cogn Sci 2:379–388PubMedCrossRef
Zurück zum Zitat Lehéricy S, Ducros M, Van de Moortele PF, Francois C, Thivard L, Poupon C, Swindale N, Ugurbil K, Kim DS (2004) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55:522–529PubMedCrossRef Lehéricy S, Ducros M, Van de Moortele PF, Francois C, Thivard L, Poupon C, Swindale N, Ugurbil K, Kim DS (2004) Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. Ann Neurol 55:522–529PubMedCrossRef
Zurück zum Zitat Lerch JP, Worsley K, Shaw WP, Greenstein DK, Lenroot RK, Giedd J, Evans AC (2006) Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage 31:993–1003PubMedCrossRef Lerch JP, Worsley K, Shaw WP, Greenstein DK, Lenroot RK, Giedd J, Evans AC (2006) Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage 31:993–1003PubMedCrossRef
Zurück zum Zitat May A, Gaser C (2006) Magnetic resonance-based morphometry: a window into structural plasticity of the brain. Curr Opin Neurol 19:407–411PubMedCrossRef May A, Gaser C (2006) Magnetic resonance-based morphometry: a window into structural plasticity of the brain. Curr Opin Neurol 19:407–411PubMedCrossRef
Zurück zum Zitat McFarland NR, Haber SN (2000) Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci 20:3798–3813PubMed McFarland NR, Haber SN (2000) Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J Neurosci 20:3798–3813PubMed
Zurück zum Zitat McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22:8117–8132PubMed McFarland NR, Haber SN (2002) Thalamic relay nuclei of the basal ganglia form both reciprocal and nonreciprocal cortical connections, linking multiple frontal cortical areas. J Neurosci 22:8117–8132PubMed
Zurück zum Zitat Mechelli A, Friston KJ, Frackowiak RS, Price CJ (2005) Structural covariance in the human cortex. J Neurosci 25:8303–8310PubMedCrossRef Mechelli A, Friston KJ, Frackowiak RS, Price CJ (2005) Structural covariance in the human cortex. J Neurosci 25:8303–8310PubMedCrossRef
Zurück zum Zitat Meyer-Lindenberg A (2009) Neural connectivity as an intermediate phenotype: brain networks under genetic control. Hum Brain Mapp 30:1938–1946PubMedCrossRef Meyer-Lindenberg A (2009) Neural connectivity as an intermediate phenotype: brain networks under genetic control. Hum Brain Mapp 30:1938–1946PubMedCrossRef
Zurück zum Zitat Middleton FA, Strick PL (2000) Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42:183–200PubMedCrossRef Middleton FA, Strick PL (2000) Basal ganglia output and cognition: evidence from anatomical, behavioral, and clinical studies. Brain Cogn 42:183–200PubMedCrossRef
Zurück zum Zitat Mitelman SA, Brickman AM, Shihabuddin L, Newmark R, Chu KW, Buchsbaum MS (2005a) Correlations between MRI-assessed volumes of the thalamus and cortical Brodmann’s areas in schizophrenia. Schizophr Res 75:265–281PubMedCrossRef Mitelman SA, Brickman AM, Shihabuddin L, Newmark R, Chu KW, Buchsbaum MS (2005a) Correlations between MRI-assessed volumes of the thalamus and cortical Brodmann’s areas in schizophrenia. Schizophr Res 75:265–281PubMedCrossRef
Zurück zum Zitat Mitelman SA, Buchsbaum MS, Brickman AM, Shihabuddin L (2005b) Cortical intercorrelations of frontal area volumes in schizophrenia. Neuroimage 27:753–770PubMedCrossRef Mitelman SA, Buchsbaum MS, Brickman AM, Shihabuddin L (2005b) Cortical intercorrelations of frontal area volumes in schizophrenia. Neuroimage 27:753–770PubMedCrossRef
Zurück zum Zitat Mitelman SA, Shihabuddin L, Brickman AM, Buchsbaum MS (2005c) Cortical intercorrelations of temporal area volumes in schizophrenia. Schizophr Res 76:207–229PubMedCrossRef Mitelman SA, Shihabuddin L, Brickman AM, Buchsbaum MS (2005c) Cortical intercorrelations of temporal area volumes in schizophrenia. Schizophr Res 76:207–229PubMedCrossRef
Zurück zum Zitat Modinos G, Vercammen A, Mechelli A, Knegtering H, McGuire PK, Aleman A (2009) Structural covariance in the hallucinating brain: a voxel-based morphometry study. J Psychiatry Neurosci 34:465–469PubMed Modinos G, Vercammen A, Mechelli A, Knegtering H, McGuire PK, Aleman A (2009) Structural covariance in the hallucinating brain: a voxel-based morphometry study. J Psychiatry Neurosci 34:465–469PubMed
Zurück zum Zitat Nakano K, Kayahara T, Tsutsumi T, Ushiro H (2000) Neural circuits and functional organization of the striatum. J Neurol 247(Suppl 5):V1–V15PubMedCrossRef Nakano K, Kayahara T, Tsutsumi T, Ushiro H (2000) Neural circuits and functional organization of the striatum. J Neurol 247(Suppl 5):V1–V15PubMedCrossRef
Zurück zum Zitat Neufeld J, Teuchert-Noodt G, Grafen K, Winter Y, Witte AV (2009) Synapse plasticity in motor, sensory, and limbo-prefrontal cortex areas as measured by degrading axon terminals in an environment model of gerbils (Meriones unguiculatus). Neural Plast 2009:281561PubMedCrossRef Neufeld J, Teuchert-Noodt G, Grafen K, Winter Y, Witte AV (2009) Synapse plasticity in motor, sensory, and limbo-prefrontal cortex areas as measured by degrading axon terminals in an environment model of gerbils (Meriones unguiculatus). Neural Plast 2009:281561PubMedCrossRef
Zurück zum Zitat Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2:417–424PubMedCrossRef Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2:417–424PubMedCrossRef
Zurück zum Zitat Pennartz CM, Berke JD, Graybiel AM, Ito R, Lansink CS, van der Meer M, Redish AD, Smith KS, Voorn P (2009) Corticostriatal Interactions during learning, memory processing, and decision making. J Neurosci 29:12831–12838PubMedCrossRef Pennartz CM, Berke JD, Graybiel AM, Ito R, Lansink CS, van der Meer M, Redish AD, Smith KS, Voorn P (2009) Corticostriatal Interactions during learning, memory processing, and decision making. J Neurosci 29:12831–12838PubMedCrossRef
Zurück zum Zitat Portas CM, Goldstein JM, Shenton ME, Hokama HH, Wible CG, Fischer I, Kikinis R, Donnino R, Jolesz FA, McCarley RW (1998) Volumetric evaluation of the thalamus in schizophrenic male patients using magnetic resonance imaging. Biol Psychiatry 43:649–659PubMedCrossRef Portas CM, Goldstein JM, Shenton ME, Hokama HH, Wible CG, Fischer I, Kikinis R, Donnino R, Jolesz FA, McCarley RW (1998) Volumetric evaluation of the thalamus in schizophrenic male patients using magnetic resonance imaging. Biol Psychiatry 43:649–659PubMedCrossRef
Zurück zum Zitat Postuma RB, Dagher A (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex 16:1508–1521PubMedCrossRef Postuma RB, Dagher A (2006) Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex 16:1508–1521PubMedCrossRef
Zurück zum Zitat Price JL, Drevets WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35:192–216PubMedCrossRef Price JL, Drevets WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35:192–216PubMedCrossRef
Zurück zum Zitat Pujol J, Vendrell P, Junqué C, Martí-Vilalta JL, Capdevila A (1993) When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann Neurol 34:71–75PubMedCrossRef Pujol J, Vendrell P, Junqué C, Martí-Vilalta JL, Capdevila A (1993) When does human brain development end? Evidence of corpus callosum growth up to adulthood. Ann Neurol 34:71–75PubMedCrossRef
Zurück zum Zitat Pujol J, Soriano-Mas C, Alonso P, Cardoner N, Menchón JM, Deus J, Vallejo J (2004) Mapping structural brain alterations in obsessive-compulsive disorder. Arch Gen Psychiatry 61:720–730PubMedCrossRef Pujol J, Soriano-Mas C, Alonso P, Cardoner N, Menchón JM, Deus J, Vallejo J (2004) Mapping structural brain alterations in obsessive-compulsive disorder. Arch Gen Psychiatry 61:720–730PubMedCrossRef
Zurück zum Zitat Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15:1676–1689PubMedCrossRef Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, Dahle C, Gerstorf D, Acker JD (2005) Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 15:1676–1689PubMedCrossRef
Zurück zum Zitat Sakai Y, Narumoto J, Nishida S, Nakamae T, Yamada K, Nishimura T, Fukui K (2011) Corticostriatal functional connectivity in non-medicated patients with obsessive-compulsive disorder. Eur Psychiatry 26:463–469PubMedCrossRef Sakai Y, Narumoto J, Nishida S, Nakamae T, Yamada K, Nishimura T, Fukui K (2011) Corticostriatal functional connectivity in non-medicated patients with obsessive-compulsive disorder. Eur Psychiatry 26:463–469PubMedCrossRef
Zurück zum Zitat Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52PubMedCrossRef Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52PubMedCrossRef
Zurück zum Zitat Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S (2004) Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci 7:887–893PubMedCrossRef Tanaka SC, Doya K, Okada G, Ueda K, Okamoto Y, Yamawaki S (2004) Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nat Neurosci 7:887–893PubMedCrossRef
Zurück zum Zitat Witte AV, Savli M, Holik A, Kasper S, Lanzenberger R (2010) Regional sex differences in grey matter volume are associated with sex hormones in the young adult human brain. Neuroimage 49:1205–1212PubMedCrossRef Witte AV, Savli M, Holik A, Kasper S, Lanzenberger R (2010) Regional sex differences in grey matter volume are associated with sex hormones in the young adult human brain. Neuroimage 49:1205–1212PubMedCrossRef
Zurück zum Zitat Wright IC, Sharma T, Ellison ZR, McGuire PK, Friston KJ, Brammer MJ, Murray RM, Bullmore ET (1999) Supra-regional brain systems and the neuropathology of schizophrenia. Cereb Cortex 9:366–378PubMedCrossRef Wright IC, Sharma T, Ellison ZR, McGuire PK, Friston KJ, Brammer MJ, Murray RM, Bullmore ET (1999) Supra-regional brain systems and the neuropathology of schizophrenia. Cereb Cortex 9:366–378PubMedCrossRef
Zurück zum Zitat Xu L, Groth KM, Pearlson G, Schretlen DJ, Calhoun VD (2009) Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum Brain Mapp 30:711–724PubMedCrossRef Xu L, Groth KM, Pearlson G, Schretlen DJ, Calhoun VD (2009) Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Hum Brain Mapp 30:711–724PubMedCrossRef
Zurück zum Zitat Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70 Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford, pp 3–70
Zurück zum Zitat Yan C, Gong G, Wang J, Wang D, Liu D, Zhu C, Chen ZJ, Evans A, Zang Y, He Y (2010) Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study. Cereb Cortex 21:449–458PubMedCrossRef Yan C, Gong G, Wang J, Wang D, Liu D, Zhu C, Chen ZJ, Evans A, Zang Y, He Y (2010) Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study. Cereb Cortex 21:449–458PubMedCrossRef
Zurück zum Zitat Zielinski BA, Gennatas ED, Zhou J, Seeley WW (2010) Network-level structural covariance in the developing brain. Proc Natl Acad Sci USA 107:18191–18196PubMedCrossRef Zielinski BA, Gennatas ED, Zhou J, Seeley WW (2010) Network-level structural covariance in the developing brain. Proc Natl Acad Sci USA 107:18191–18196PubMedCrossRef
Metadaten
Titel
Structural covariance of the neostriatum with regional gray matter volumes
verfasst von
C. Soriano-Mas
B. J. Harrison
J. Pujol
M. López-Solà
R. Hernández-Ribas
P. Alonso
O. Contreras-Rodríguez
M. Giménez
L. Blanco-Hinojo
H. Ortiz
J. Deus
J. M. Menchón
N. Cardoner
Publikationsdatum
01.05.2013
Verlag
Springer-Verlag
Erschienen in
Brain Structure and Function / Ausgabe 3/2013
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-012-0422-5

Weitere Artikel der Ausgabe 3/2013

Brain Structure and Function 3/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.