Skip to main content
Erschienen in: Brain Structure and Function 1/2018

08.12.2017 | Letter to the Editor

Respiration-coupled rhythms in prefrontal cortex: beyond if, to when, how, and why

verfasst von: Bernat Kocsis, Benjamin R. Pittman-Polletta, Alexis Roy

Erschienen in: Brain Structure and Function | Ausgabe 1/2018

Einloggen, um Zugang zu erhalten

Excerpt

Dear Editor …
Literatur
Zurück zum Zitat Adhikari A, Topiwala MA, Gordon JA (2010) Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65:257–269CrossRefPubMedPubMedCentral Adhikari A, Topiwala MA, Gordon JA (2010) Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65:257–269CrossRefPubMedPubMedCentral
Zurück zum Zitat Andino-Pavlovsky V, Souza AC, Scheffer-Teixera R, Tort ABL, Etchenique R, Ribiero S (2017) Dopamine modulates delta-gamma phase-amplitude coupling in the prefrontal cortex of behaving rats. Front Neural Circuits 11:29CrossRefPubMedPubMedCentral Andino-Pavlovsky V, Souza AC, Scheffer-Teixera R, Tort ABL, Etchenique R, Ribiero S (2017) Dopamine modulates delta-gamma phase-amplitude coupling in the prefrontal cortex of behaving rats. Front Neural Circuits 11:29CrossRefPubMedPubMedCentral
Zurück zum Zitat Bagur S, Benchenane K (2017) Taming the oscillatory zoo in the hippocampus and neo-cortex: a review of Lockammn and Tort on Roy et al. Brain Struct Funct. (in press) Bagur S, Benchenane K (2017) Taming the oscillatory zoo in the hippocampus and neo-cortex: a review of Lockammn and Tort on Roy et al. Brain Struct Funct. (in press)
Zurück zum Zitat Bower JM (1995) Reverse engineering the nervous system: an in vivo, in vitro, and in compute approach to understanding the mammalian olfactory system. In: Zornetzer S, Davis J, Lau C (eds) An introduction to neurl and electronic networks. Academic Press, New York, pp 3–28 Bower JM (1995) Reverse engineering the nervous system: an in vivo, in vitro, and in compute approach to understanding the mammalian olfactory system. In: Zornetzer S, Davis J, Lau C (eds) An introduction to neurl and electronic networks. Academic Press, New York, pp 3–28
Zurück zum Zitat Dejean C, Courtin J, Karalis N, Chaudun F, Wurtz H, Bienvenu TC, Herry C (2016) Prefrontal neuronal assemblies temporally control fear behaviour. Nature 535:420–424CrossRefPubMed Dejean C, Courtin J, Karalis N, Chaudun F, Wurtz H, Bienvenu TC, Herry C (2016) Prefrontal neuronal assemblies temporally control fear behaviour. Nature 535:420–424CrossRefPubMed
Zurück zum Zitat Fontanini A, Spano P, Bower JM (2003) Ketamine-xylazine-induced slow (< 1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J Neurosci 23:7993–8001PubMed Fontanini A, Spano P, Bower JM (2003) Ketamine-xylazine-induced slow (< 1.5 Hz) oscillations in the rat piriform (olfactory) cortex are functionally correlated with respiration. J Neurosci 23:7993–8001PubMed
Zurück zum Zitat Gebber GL, Barman SM (1977) Brain stem vasomotor circuits involved in the genesis and entrainment of sympathetic nervous rhythms. Prog Brain Res 47:61–75CrossRefPubMed Gebber GL, Barman SM (1977) Brain stem vasomotor circuits involved in the genesis and entrainment of sympathetic nervous rhythms. Prog Brain Res 47:61–75CrossRefPubMed
Zurück zum Zitat Gebber GL, Barman SM (1981) Sympathetic-related activity of brain stem neurons in baroreceptor-denervated cats. Am J Physiol 240:R348–R355PubMed Gebber GL, Barman SM (1981) Sympathetic-related activity of brain stem neurons in baroreceptor-denervated cats. Am J Physiol 240:R348–R355PubMed
Zurück zum Zitat Gebber GL, Barman SM, Kocsis B (1990) Coherence of medullary unit activity and sympathetic nerve discharge. Am J Physiol 259:R561–R571PubMed Gebber GL, Barman SM, Kocsis B (1990) Coherence of medullary unit activity and sympathetic nerve discharge. Am J Physiol 259:R561–R571PubMed
Zurück zum Zitat Hunt MJ, Raynaud B, Garcia R (2006) Ketamine dose-dependently induces high-frequency oscillations in the nucleus accumbens in freely moving rats. Biol Psychiatry 60:1206–1214CrossRefPubMed Hunt MJ, Raynaud B, Garcia R (2006) Ketamine dose-dependently induces high-frequency oscillations in the nucleus accumbens in freely moving rats. Biol Psychiatry 60:1206–1214CrossRefPubMed
Zurück zum Zitat Kafetzopoulos V, Kokras N, Sotiropoulos I, Oliveira JF, Leite-Almeida H, Vasalou A, Sardinha VM, Papadopoulou-Daifoti Z, Almeida OF, Antoniou K, Sousa N, Dalla C (2017) The nucleus reuniens: a key node in the neurocircuitry of stress and depression. Mol Psychiatry 11:1–8 (Epub ahead of print) Kafetzopoulos V, Kokras N, Sotiropoulos I, Oliveira JF, Leite-Almeida H, Vasalou A, Sardinha VM, Papadopoulou-Daifoti Z, Almeida OF, Antoniou K, Sousa N, Dalla C (2017) The nucleus reuniens: a key node in the neurocircuitry of stress and depression. Mol Psychiatry 11:1–8 (Epub ahead of print)
Zurück zum Zitat Kang D, Ding M, Topchiy I, Kocsis (2017) Reciprocal interactions between medial septum and hippocampus in theta generation: granger causality decomposition of mixed spike-field recordings. Front Neuroanat. 11:120 Kang D, Ding M, Topchiy I, Kocsis (2017) Reciprocal interactions between medial septum and hippocampus in theta generation: granger causality decomposition of mixed spike-field recordings. Front Neuroanat. 11:120
Zurück zum Zitat Karalis N, Dejean C, Chaudun F, Khoder S, Rozeske RR, Wurtz H, Bagur S, Benchenane K, Sirota A, Courtin J, Herry C (2016) 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat Neurosci 19:605–612CrossRefPubMedPubMedCentral Karalis N, Dejean C, Chaudun F, Khoder S, Rozeske RR, Wurtz H, Bagur S, Benchenane K, Sirota A, Courtin J, Herry C (2016) 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior. Nat Neurosci 19:605–612CrossRefPubMedPubMedCentral
Zurück zum Zitat Kittelberger K, Hur EE, Sazegar S, Keshavan V, Kocsis B (2012) Comparison of the effects of acute and chronic administration of ketamine on hippocampal oscillations: relevance for the NMDA receptor hypofunction model of schizophrenia. Brain Struct Funct 217:395–409CrossRefPubMed Kittelberger K, Hur EE, Sazegar S, Keshavan V, Kocsis B (2012) Comparison of the effects of acute and chronic administration of ketamine on hippocampal oscillations: relevance for the NMDA receptor hypofunction model of schizophrenia. Brain Struct Funct 217:395–409CrossRefPubMed
Zurück zum Zitat Kocsis K, Kaminski M (2006) Dynamic changes in the direction of the theta rhythmic drive between supramammillary nucleus and the septohippocampal system. Hippocampus 16:531–540CrossRefPubMed Kocsis K, Kaminski M (2006) Dynamic changes in the direction of the theta rhythmic drive between supramammillary nucleus and the septohippocampal system. Hippocampus 16:531–540CrossRefPubMed
Zurück zum Zitat Lockmann ALV, Tort ABL (2017) Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents. Brain Struct Funct. (in press) Lockmann ALV, Tort ABL (2017) Nasal respiration entrains delta-frequency oscillations in the prefrontal cortex and hippocampus of rodents. Brain Struct Funct. (in press)
Zurück zum Zitat Lockmann AL, Laplagne DA, Leao RN, Tort AB (2016) A respiration-coupled rhythm in the rat hippocampus independent of theta and slow oscillations. J Neurosci 36:5338–5352CrossRefPubMed Lockmann AL, Laplagne DA, Leao RN, Tort AB (2016) A respiration-coupled rhythm in the rat hippocampus independent of theta and slow oscillations. J Neurosci 36:5338–5352CrossRefPubMed
Zurück zum Zitat Ly S, Pishdari B, Lok LL, Hajos M, Kocsis B (2013) Activation of 5-HT6 receptors modulates sleep-wake activity and hippocampal theta oscillation. ACS Chem Neurosci 4:191–199CrossRefPubMed Ly S, Pishdari B, Lok LL, Hajos M, Kocsis B (2013) Activation of 5-HT6 receptors modulates sleep-wake activity and hippocampal theta oscillation. ACS Chem Neurosci 4:191–199CrossRefPubMed
Zurück zum Zitat Pittman-Polletta BR, Kocsis B, Viayan S, Whittington MA, Kopell NJ (2015) Brain rhythms connect impaired inhibition to altered cognition in schizophrenia. Biol Psychiatry 77:1020–1030CrossRefPubMedPubMedCentral Pittman-Polletta BR, Kocsis B, Viayan S, Whittington MA, Kopell NJ (2015) Brain rhythms connect impaired inhibition to altered cognition in schizophrenia. Biol Psychiatry 77:1020–1030CrossRefPubMedPubMedCentral
Zurück zum Zitat Pittman-Polletta BR, Hu K, Kocsis B (2017) Modeling the schizophrenias: subunit-specific NMDAR antagonism dissociates oscillatory signatures of frontal hypofunction and hippocampal hyperfunction. BioRxiv. https://doi.org/10.1101/191882 Pittman-Polletta BR, Hu K, Kocsis B (2017) Modeling the schizophrenias: subunit-specific NMDAR antagonism dissociates oscillatory signatures of frontal hypofunction and hippocampal hyperfunction. BioRxiv. https://​doi.​org/​10.​1101/​191882
Zurück zum Zitat Roy A, Svensson FP, Mazeh A, Kocsis B (2017) Prefrontal-hippocampal coupling by theta rhythm and by 2–5 Hz oscillation in the delta band: The role of the nucleus reuniens of the thalamus. Brain Struct Funct 222:2819–2830CrossRefPubMed Roy A, Svensson FP, Mazeh A, Kocsis B (2017) Prefrontal-hippocampal coupling by theta rhythm and by 2–5 Hz oscillation in the delta band: The role of the nucleus reuniens of the thalamus. Brain Struct Funct 222:2819–2830CrossRefPubMed
Zurück zum Zitat Tort AB, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H (2009) Theta-gamma coupling increases during the learning of item-context associations. Proc Natl Acad Sci USA 106:20942–20947CrossRefPubMedPubMedCentral Tort AB, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H (2009) Theta-gamma coupling increases during the learning of item-context associations. Proc Natl Acad Sci USA 106:20942–20947CrossRefPubMedPubMedCentral
Zurück zum Zitat Viczko J, Sharma AV, Pagliardini S, Wolansky T, Dickson CT (2014) Lack of respiratory coupling with neocortical and hippocampal slow oscillations. J Neurosci 34:3937–3946CrossRefPubMed Viczko J, Sharma AV, Pagliardini S, Wolansky T, Dickson CT (2014) Lack of respiratory coupling with neocortical and hippocampal slow oscillations. J Neurosci 34:3937–3946CrossRefPubMed
Zurück zum Zitat Zhong W, Ciatipis M, Wolfenstetter T, Jessberger J, Muller C, Ponsel S, Yanovsky Y, Brankack J, Tort ALB, Draguhn A (2017) Selective entrainment of gamma subbands by different slow network oscillations. Proc Natl Acad Sci USA 114:4519–4524CrossRefPubMedPubMedCentral Zhong W, Ciatipis M, Wolfenstetter T, Jessberger J, Muller C, Ponsel S, Yanovsky Y, Brankack J, Tort ALB, Draguhn A (2017) Selective entrainment of gamma subbands by different slow network oscillations. Proc Natl Acad Sci USA 114:4519–4524CrossRefPubMedPubMedCentral
Metadaten
Titel
Respiration-coupled rhythms in prefrontal cortex: beyond if, to when, how, and why
verfasst von
Bernat Kocsis
Benjamin R. Pittman-Polletta
Alexis Roy
Publikationsdatum
08.12.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 1/2018
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-017-1587-8

Weitere Artikel der Ausgabe 1/2018

Brain Structure and Function 1/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.