Skip to main content
Erschienen in: Pediatric Nephrology 11/2012

01.11.2012 | Educational Review

Phosphate homeostasis and its role in bone health

verfasst von: Maria Goretti M. G. Penido, Uri S. Alon

Erschienen in: Pediatric Nephrology | Ausgabe 11/2012

Einloggen, um Zugang zu erhalten

Abstract

Phosphate is one of the most abundant minerals in the body, and its serum levels are regulated by a complex set of processes occurring in the intestine, skeleton, and kidneys. The currently known main regulators of phosphate homeostasis include parathyroid hormone (PTH), calcitriol, and a number of peptides collectively known as the “phosphatonins” of which fibroblast growth factor-23 (FGF-23) has been best defined. Maintenance of extracellular and intracellular phosphate levels within a narrow range is important for many biological processes, including energy metabolism, cell signaling, regulation of protein synthesis, skeletal development, and bone integrity. The presence of adequate amounts of phosphate is critical for the process of apoptosis of mature chondrocytes in the growth plate. Without the presence of this mineral in high enough quantities, chondrocytes will not go into apoptosis, and the normal physiological chain of events that includes invasion of blood vessels and the generation of new bone will be blocked, resulting in rickets and delayed growth. In the rest of the skeleton, hypophosphatemia will result in osteomalacia due to an insufficient formation of hydroxyapatite. This review will address phosphate metabolism and its role in bone health.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Marks J, Edward S, Debnam ES, Unwi RJ (2010) Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol 299:F285–F296PubMedCrossRef Marks J, Edward S, Debnam ES, Unwi RJ (2010) Phosphate homeostasis and the renal-gastrointestinal axis. Am J Physiol Renal Physiol 299:F285–F296PubMedCrossRef
2.
Zurück zum Zitat Berndt T, Thomas LF, Craig TA, Sommer S, Li X, Bergstralh EJ, Kumar R (2007) Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci USA 104:11085–11090PubMedCrossRef Berndt T, Thomas LF, Craig TA, Sommer S, Li X, Bergstralh EJ, Kumar R (2007) Evidence for a signaling axis by which intestinal phosphate rapidly modulates renal phosphate reabsorption. Proc Natl Acad Sci USA 104:11085–11090PubMedCrossRef
3.
Zurück zum Zitat Shaikh A, Berndt T, Kumar R (2008) Regulation of phosphate homeostasis by the phosphatonins and other novel mediators. Pediatr Nephrol 23:1203–1210PubMedCrossRef Shaikh A, Berndt T, Kumar R (2008) Regulation of phosphate homeostasis by the phosphatonins and other novel mediators. Pediatr Nephrol 23:1203–1210PubMedCrossRef
4.
Zurück zum Zitat Giral H, Caldas Y, Sutherland E, Wilson P, Breusegem SY, Barry N, Blaine J, Jiang T, Wang XX, Levi M (2009) Regulation of the rat intestinal Na-dependent phosphate transporters by dietary phosphate. Am J Physiol Renal Physiol 297:F1466–F1475PubMedCrossRef Giral H, Caldas Y, Sutherland E, Wilson P, Breusegem SY, Barry N, Blaine J, Jiang T, Wang XX, Levi M (2009) Regulation of the rat intestinal Na-dependent phosphate transporters by dietary phosphate. Am J Physiol Renal Physiol 297:F1466–F1475PubMedCrossRef
5.
Zurück zum Zitat Reining SC, Liesegang A, Betz H, Biber J, Murer H, Hernando N (2010) Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP. Pflügers Arch 460:201–217CrossRef Reining SC, Liesegang A, Betz H, Biber J, Murer H, Hernando N (2010) Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP. Pflügers Arch 460:201–217CrossRef
6.
Zurück zum Zitat Ramon I, Kleynen P, Jean-Jacques Body J, Karmali R (2010) Fibroblast growth factor 23 and its role in phosphate homeostasis. Eur J Endocrinol 162:1–10PubMedCrossRef Ramon I, Kleynen P, Jean-Jacques Body J, Karmali R (2010) Fibroblast growth factor 23 and its role in phosphate homeostasis. Eur J Endocrinol 162:1–10PubMedCrossRef
7.
Zurück zum Zitat Gattineni J, Baum M (2010) Regulation of phosphate transport by fibroblast growth factor 23 (FGF-23): implications for disorders of phosphate metabolism. Pediatr Nephrol 25:591–601PubMedCrossRef Gattineni J, Baum M (2010) Regulation of phosphate transport by fibroblast growth factor 23 (FGF-23): implications for disorders of phosphate metabolism. Pediatr Nephrol 25:591–601PubMedCrossRef
8.
Zurück zum Zitat Amanzadeh J, Reilly RF Jr (2006) Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Pract Nephrol 2:136–148PubMedCrossRef Amanzadeh J, Reilly RF Jr (2006) Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Pract Nephrol 2:136–148PubMedCrossRef
9.
Zurück zum Zitat Tiosano D, Hochberg Z (2009) Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 27:392–401PubMedCrossRef Tiosano D, Hochberg Z (2009) Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 27:392–401PubMedCrossRef
10.
Zurück zum Zitat Berndt TJ, Schiavi S, Kumar R (2005) “Phosphatonins” and the regulation of phosphorus homeostasis. Am J Physiol Renal Physiol 289:F1170–F1182PubMedCrossRef Berndt TJ, Schiavi S, Kumar R (2005) “Phosphatonins” and the regulation of phosphorus homeostasis. Am J Physiol Renal Physiol 289:F1170–F1182PubMedCrossRef
11.
Zurück zum Zitat Alizadeh Naderi AS, Reilly RF (2010) Hereditary disorders of renal phosphate wasting. Nat Rev Nephrol 6:657–665PubMedCrossRef Alizadeh Naderi AS, Reilly RF (2010) Hereditary disorders of renal phosphate wasting. Nat Rev Nephrol 6:657–665PubMedCrossRef
12.
Zurück zum Zitat Farrow EG, White KE (2010) Recent advances in renal phosphate handling. Nat Rev Nephrol 6:207–217PubMedCrossRef Farrow EG, White KE (2010) Recent advances in renal phosphate handling. Nat Rev Nephrol 6:207–217PubMedCrossRef
13.
Zurück zum Zitat Bergwitz C, Huppner H (2010) Regulation of phosphate homeostasis by PTH, vitamin D and FGF-23. Annu Rev Med 61:91–104PubMedCrossRef Bergwitz C, Huppner H (2010) Regulation of phosphate homeostasis by PTH, vitamin D and FGF-23. Annu Rev Med 61:91–104PubMedCrossRef
14.
Zurück zum Zitat Alon US (2011) Clinical practice: Fibroblast growth factor (FGF)23: a new hormone. Eur J Pediatr 170:545–554PubMedCrossRef Alon US (2011) Clinical practice: Fibroblast growth factor (FGF)23: a new hormone. Eur J Pediatr 170:545–554PubMedCrossRef
15.
Zurück zum Zitat Xu H, Bai L, Collins JF, Ghishan FK (2002) Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)2 vitamin D3. Am J Physiol Cell Physiol 282:C487–C493PubMed Xu H, Bai L, Collins JF, Ghishan FK (2002) Age-dependent regulation of rat intestinal type IIb sodium-phosphate cotransporter by 1,25-(OH)2 vitamin D3. Am J Physiol Cell Physiol 282:C487–C493PubMed
16.
Zurück zum Zitat Tenenhouse HS (2005) Regulation of phosphorus homeostasis by the type IIa Na/phosphate cotransporter. Annu Rev Nutr 25:197–214PubMedCrossRef Tenenhouse HS (2005) Regulation of phosphorus homeostasis by the type IIa Na/phosphate cotransporter. Annu Rev Nutr 25:197–214PubMedCrossRef
18.
Zurück zum Zitat Xu H, Collins JF, Bai L, Kiela PR, Ghishan FK (2001) Regulation of the human sodium-phosphate cotransporter NaPi-IIb gene promoter by epidermal growth factor. Am J Physiol Cell Physiol 280:C628–C636PubMed Xu H, Collins JF, Bai L, Kiela PR, Ghishan FK (2001) Regulation of the human sodium-phosphate cotransporter NaPi-IIb gene promoter by epidermal growth factor. Am J Physiol Cell Physiol 280:C628–C636PubMed
19.
Zurück zum Zitat Arima K, Hines ER, Kiela PR, Drees JB, Collins JF, Ghishan FK (2002) Glucocorticoid regulation and glycosylation of mouse intestinal type IIb Na-Pi cotransporter during ontogeny. Am J Physiol Gastrointest Liver Physiol 283:G426–G434PubMed Arima K, Hines ER, Kiela PR, Drees JB, Collins JF, Ghishan FK (2002) Glucocorticoid regulation and glycosylation of mouse intestinal type IIb Na-Pi cotransporter during ontogeny. Am J Physiol Gastrointest Liver Physiol 283:G426–G434PubMed
20.
Zurück zum Zitat Xu H, Uno JK, Inouye M, Xu L, Drees JB, Collins JF, Ghishan FK (2003) Regulation of intestinal NaPi-IIb cotransporter gene expression by estrogen. Am J Physiol Gastrointest Liver Physiol 285:G1317–G1324PubMed Xu H, Uno JK, Inouye M, Xu L, Drees JB, Collins JF, Ghishan FK (2003) Regulation of intestinal NaPi-IIb cotransporter gene expression by estrogen. Am J Physiol Gastrointest Liver Physiol 285:G1317–G1324PubMed
21.
Zurück zum Zitat Stauber A, Radanovic T, Stange G, Murer H, Wagner CA, Biber J (2005) Regulation of intestinal phosphate transport. II. Metabolic acidosis stimulates Na+−dependent phosphate absorption and expression of the Na+−Pi cotransporter NaPi-IIb in small intestine. Am J Physiol Gastrointest Liver Physiol 288:G501–G506PubMedCrossRef Stauber A, Radanovic T, Stange G, Murer H, Wagner CA, Biber J (2005) Regulation of intestinal phosphate transport. II. Metabolic acidosis stimulates Na+−dependent phosphate absorption and expression of the Na+−Pi cotransporter NaPi-IIb in small intestine. Am J Physiol Gastrointest Liver Physiol 288:G501–G506PubMedCrossRef
22.
Zurück zum Zitat Murer H, Forster I, Biber J (2004) The sodium phosphate cotransporter family SLC34. Pflügers Arch 447:763–767PubMedCrossRef Murer H, Forster I, Biber J (2004) The sodium phosphate cotransporter family SLC34. Pflügers Arch 447:763–767PubMedCrossRef
23.
Zurück zum Zitat Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, Kato S, Miyamoto K (2004) Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol 287:F39–F47PubMedCrossRef Segawa H, Kaneko I, Yamanaka S, Ito M, Kuwahata M, Inoue Y, Kato S, Miyamoto K (2004) Intestinal Na-P(i) cotransporter adaptation to dietary P(i) content in vitamin D receptor null mice. Am J Physiol Renal Physiol 287:F39–F47PubMedCrossRef
24.
Zurück zum Zitat Capuano P, Radanovic T, Wagner CA, Bacic D, Kato S, Uchiyama Y, St Arnoud R, Murer H, Biber J (2005) Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1 OHase-deficient mice. Am J Physiol Cell Physiol 288:C429–C434PubMedCrossRef Capuano P, Radanovic T, Wagner CA, Bacic D, Kato S, Uchiyama Y, St Arnoud R, Murer H, Biber J (2005) Intestinal and renal adaptation to a low-Pi diet of type II NaPi cotransporters in vitamin D receptor- and 1 OHase-deficient mice. Am J Physiol Cell Physiol 288:C429–C434PubMedCrossRef
25.
Zurück zum Zitat Magne D, Bluteau G, Faucheux C, Palmer G, Vignes-Colombeix C, Pilet P, Rouillon T, Caverzasio J, Weiss P, Daculsi G, Guicheux J (2003) Phosphate is a specific signal for ATDC5 chondrocyte maturation and apoptosis-associated mineralization: possible implication of apoptosis in the regulation of endochondral ossification. J Bone Miner Res 18:1430–1442PubMedCrossRef Magne D, Bluteau G, Faucheux C, Palmer G, Vignes-Colombeix C, Pilet P, Rouillon T, Caverzasio J, Weiss P, Daculsi G, Guicheux J (2003) Phosphate is a specific signal for ATDC5 chondrocyte maturation and apoptosis-associated mineralization: possible implication of apoptosis in the regulation of endochondral ossification. J Bone Miner Res 18:1430–1442PubMedCrossRef
26.
Zurück zum Zitat Antoniucci DM, Yamashita T, Portale AA (2006) Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab 91:3144–3149PubMedCrossRef Antoniucci DM, Yamashita T, Portale AA (2006) Dietary phosphorus regulates serum fibroblast growth factor-23 concentrations in healthy men. J Clin Endocrinol Metab 91:3144–3149PubMedCrossRef
27.
Zurück zum Zitat Bacic D, Lehir M, Biber J, Kaissling B, Murer H, Wagner CA (2006) The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int 69:495–503PubMedCrossRef Bacic D, Lehir M, Biber J, Kaissling B, Murer H, Wagner CA (2006) The renal Na+/phosphate cotransporter NaPi-IIa is internalized via the receptor-mediated endocytic route in response to parathyroid hormone. Kidney Int 69:495–503PubMedCrossRef
28.
Zurück zum Zitat Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC (2009) The Na+−Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol 296:F691–F699PubMedCrossRef Villa-Bellosta R, Ravera S, Sorribas V, Stange G, Levi M, Murer H, Biber J, Forster IC (2009) The Na+−Pi cotransporter PiT-2 (SLC20A2) is expressed in the apical membrane of rat renal proximal tubules and regulated by dietary Pi. Am J Physiol Renal Physiol 296:F691–F699PubMedCrossRef
29.
Zurück zum Zitat Biber J, Hernando N, Forster I, Murer H (2009) Regulation of phosphate transport in proximal tubules. Pflügers Arch 458:39–52PubMedCrossRef Biber J, Hernando N, Forster I, Murer H (2009) Regulation of phosphate transport in proximal tubules. Pflügers Arch 458:39–52PubMedCrossRef
30.
Zurück zum Zitat Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/P i cotransporter. J Biol Chem 277:19665–19672PubMedCrossRef Segawa H, Kaneko I, Takahashi A, Kuwahata M, Ito M, Ohkido I, Tatsumi S, Miyamoto K (2002) Growth-related renal type II Na/P i cotransporter. J Biol Chem 277:19665–19672PubMedCrossRef
31.
Zurück zum Zitat Prie D, Urena TP, Friedlander G (2009) Latest findings in phosphate homeostasis. Kidney Int 75:882–889PubMedCrossRef Prie D, Urena TP, Friedlander G (2009) Latest findings in phosphate homeostasis. Kidney Int 75:882–889PubMedCrossRef
32.
Zurück zum Zitat Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, Miyamoto K (2005) Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Renal Physiol 288:F587–F596PubMedCrossRef Segawa H, Yamanaka S, Ito M, Kuwahata M, Shono M, Yamamoto T, Miyamoto K (2005) Internalization of renal type IIc Na-Pi cotransporter in response to a high-phosphate diet. Am J Physiol Renal Physiol 288:F587–F596PubMedCrossRef
33.
Zurück zum Zitat Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, Tomoe Y, Aranami F, Matsumoto N, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K (2009) Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol 20:104–113PubMedCrossRef Segawa H, Onitsuka A, Kuwahata M, Hanabusa E, Furutani J, Kaneko I, Tomoe Y, Aranami F, Matsumoto N, Ito M, Matsumoto M, Li M, Amizuka N, Miyamoto K (2009) Type IIc sodium-dependent phosphate transporter regulates calcium metabolism. J Am Soc Nephrol 20:104–113PubMedCrossRef
34.
Zurück zum Zitat Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (2006) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 78:179–192PubMedCrossRef Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M, Abu-Zahra H, Frappier D, Burkett K, Carpenter TO, Anderson D, Garabedian M, Sermet I, Fujiwara TM, Morgan K, Tenenhouse HS, Juppner H (2006) SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am J Hum Genet 78:179–192PubMedCrossRef
35.
Zurück zum Zitat Villa-Bellosta R, Sorribas V (2010) Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Pflügers Arch 459:499–508PubMedCrossRef Villa-Bellosta R, Sorribas V (2010) Compensatory regulation of the sodium/phosphate cotransporters NaPi-IIc (SCL34A3) and Pit-2 (SLC20A2) during Pi deprivation and acidosis. Pflügers Arch 459:499–508PubMedCrossRef
36.
Zurück zum Zitat Silver J, Naveh-Many T (2010) FGF-23 and the parathyroid glands. Pediatr Nephrol 25:2241–2245PubMedCrossRef Silver J, Naveh-Many T (2010) FGF-23 and the parathyroid glands. Pediatr Nephrol 25:2241–2245PubMedCrossRef
37.
38.
Zurück zum Zitat Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD (2006) Pathogenic role of FGF-23 in Hyp mice. Am J Physiol Endocrinol Metab 291:38–49CrossRef Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD (2006) Pathogenic role of FGF-23 in Hyp mice. Am J Physiol Endocrinol Metab 291:38–49CrossRef
39.
Zurück zum Zitat Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiela PR, Collins JF, Haussler MR, Ghishan FK (2005) 1 α,25-Dihydroxyvitamin D3 upregulates FGF-23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289:G1036–G1042PubMedCrossRef Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiela PR, Collins JF, Haussler MR, Ghishan FK (2005) 1 α,25-Dihydroxyvitamin D3 upregulates FGF-23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol 289:G1036–G1042PubMedCrossRef
40.
Zurück zum Zitat Yoshiko Y, Wang H, Minamizaki T, Ijuin C, Yamamoto R, Suemune S, Kozai K, Tanne K, Aubin JE, Maeda N (2007) Mineralized tissue cells are a principal source of FGF-23. Bone 40:1565–1573PubMedCrossRef Yoshiko Y, Wang H, Minamizaki T, Ijuin C, Yamamoto R, Suemune S, Kozai K, Tanne K, Aubin JE, Maeda N (2007) Mineralized tissue cells are a principal source of FGF-23. Bone 40:1565–1573PubMedCrossRef
41.
Zurück zum Zitat Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of FGF-23 demonstrates an essential physiological role of FGF-23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568PubMed Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of FGF-23 demonstrates an essential physiological role of FGF-23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568PubMed
42.
Zurück zum Zitat Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF-23. Nature 444:770–774PubMedCrossRef Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, Fujita T, Fukumoto S, Yamashita T (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF-23. Nature 444:770–774PubMedCrossRef
43.
Zurück zum Zitat Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, Ono K, Kakitani M, Tomizuka K, Fujita T, Fukumoto S, Yamashita T (2005) Vitamin D receptor-independent FGF-23 actions in regulation phosphate and vitamin D metabolism. Am J Physiol Renal Physiol 289:F1088–F1095PubMedCrossRef Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, Ono K, Kakitani M, Tomizuka K, Fujita T, Fukumoto S, Yamashita T (2005) Vitamin D receptor-independent FGF-23 actions in regulation phosphate and vitamin D metabolism. Am J Physiol Renal Physiol 289:F1088–F1095PubMedCrossRef
44.
Zurück zum Zitat Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, Aubin JE, Maeda N (2008) Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res 23:939–948PubMedCrossRef Wang H, Yoshiko Y, Yamamoto R, Minamizaki T, Kozai K, Tanne K, Aubin JE, Maeda N (2008) Overexpression of fibroblast growth factor 23 suppresses osteoblast differentiation and matrix mineralization in vitro. J Bone Miner Res 23:939–948PubMedCrossRef
45.
Zurück zum Zitat Hunter WL, Arsenault AL, Hodsman AB (1991) Rearrangement of the metaphyseal vasculature of the rat growth plate in rickets and rachitic reversal: a model of vascular arrest and angiogenesis renewed. Anat Rec 229:453–461PubMedCrossRef Hunter WL, Arsenault AL, Hodsman AB (1991) Rearrangement of the metaphyseal vasculature of the rat growth plate in rickets and rachitic reversal: a model of vascular arrest and angiogenesis renewed. Anat Rec 229:453–461PubMedCrossRef
46.
Zurück zum Zitat Chang W, Tu C, Pratt S, Chen TH, Shoback D (2002) Extracellular Ca(2+)-sensing receptors modulate matrix production and mineralization in chondrogenic RCJ3.1C5.18 cells. Endocrinology 143:1467–1474PubMedCrossRef Chang W, Tu C, Pratt S, Chen TH, Shoback D (2002) Extracellular Ca(2+)-sensing receptors modulate matrix production and mineralization in chondrogenic RCJ3.1C5.18 cells. Endocrinology 143:1467–1474PubMedCrossRef
47.
Zurück zum Zitat Sabbagh Y, Carpenter TO, Demay MB (2005) Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA 102:9637–9642PubMedCrossRef Sabbagh Y, Carpenter TO, Demay MB (2005) Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci USA 102:9637–9642PubMedCrossRef
48.
Zurück zum Zitat Li YC, Amling M, Pirro AE, Priemel M, Meuse J, Baron R, Delling G, Demay MB (1998) Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology 139:4391–4396PubMedCrossRef Li YC, Amling M, Pirro AE, Priemel M, Meuse J, Baron R, Delling G, Demay MB (1998) Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology 139:4391–4396PubMedCrossRef
49.
Zurück zum Zitat Dardenne O, Prud’homme J, Glorieux FH, St-Arnaud R (2007) Rescue of the phenotype of CYP27B1 (1alpha-hydroxylase)-deficient mice. J Steroid Biochem Mol Biol 89–90:327–330 Dardenne O, Prud’homme J, Glorieux FH, St-Arnaud R (2007) Rescue of the phenotype of CYP27B1 (1alpha-hydroxylase)-deficient mice. J Steroid Biochem Mol Biol 89–90:327–330
50.
Zurück zum Zitat Miedlich SU, Zalutskaya A, Zhu ED, Demay MB (2010) Phosphate-induced apoptosis of hypertrophic chondrocytes is associated with a decrease in mitochondrial membrane potential and is dependent upon Erk1/2 phosphorylation. J Biol Chem 285:18270–18275PubMedCrossRef Miedlich SU, Zalutskaya A, Zhu ED, Demay MB (2010) Phosphate-induced apoptosis of hypertrophic chondrocytes is associated with a decrease in mitochondrial membrane potential and is dependent upon Erk1/2 phosphorylation. J Biol Chem 285:18270–18275PubMedCrossRef
Metadaten
Titel
Phosphate homeostasis and its role in bone health
verfasst von
Maria Goretti M. G. Penido
Uri S. Alon
Publikationsdatum
01.11.2012
Verlag
Springer-Verlag
Erschienen in
Pediatric Nephrology / Ausgabe 11/2012
Print ISSN: 0931-041X
Elektronische ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-012-2175-z

Weitere Artikel der Ausgabe 11/2012

Pediatric Nephrology 11/2012 Zur Ausgabe

Neuer Typ-1-Diabetes bei Kindern am Wochenende eher übersehen

23.04.2024 Typ-1-Diabetes Nachrichten

Wenn Kinder an Werktagen zum Arzt gehen, werden neu auftretender Typ-1-Diabetes und diabetische Ketoazidosen häufiger erkannt als bei Arztbesuchen an Wochenenden oder Feiertagen.

Neue Studienergebnisse zur Myopiekontrolle mit Atropin

22.04.2024 Fehlsichtigkeit Nachrichten

Augentropfen mit niedrig dosiertem Atropin können helfen, das Fortschreiten einer Kurzsichtigkeit bei Kindern zumindest zu verlangsamen, wie die Ergebnisse einer aktuellen Studie mit verschiedenen Dosierungen zeigen.

Spinale Muskelatrophie: Neugeborenen-Screening lohnt sich

18.04.2024 Spinale Muskelatrophien Nachrichten

Seit 2021 ist die Untersuchung auf spinale Muskelatrophie Teil des Neugeborenen-Screenings in Deutschland. Eine Studie liefert weitere Evidenz für den Nutzen der Maßnahme.

Fünf Dinge, die im Kindernotfall besser zu unterlassen sind

18.04.2024 Pädiatrische Notfallmedizin Nachrichten

Im Choosing-Wisely-Programm, das für die deutsche Initiative „Klug entscheiden“ Pate gestanden hat, sind erstmals Empfehlungen zum Umgang mit Notfällen von Kindern erschienen. Fünf Dinge gilt es demnach zu vermeiden.

Update Pädiatrie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.