Skip to main content
Erschienen in: Journal of Anesthesia 5/2016

01.07.2016 | Original Article

Roles of endotracheal tubes and slip joints in respiratory pressure loss: a laboratory study

verfasst von: Yoshihiro Takasugi, Koichi Futagawa, Kouhei Kazuhara, Satoshi Morishita, Takahiko Okuda

Erschienen in: Journal of Anesthesia | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The endotracheal tube (ETT) constitutes a significant component of total airway resistance. However, a discrepancy between measured and theoretical values has been reported in airway resistance through ETTs. The causes of the discrepancy were estimated by physical and rheological simulations.

Methods

The pressure losses through total lengths of ETTs and slip joints under a volumetric flow rate of 30 L/min were measured, and the pressure losses through the tubular parts of ETTs with internal diameters (IDs) of 6.0-, 6.5-, 7.0-, 7.5-, and 8.0 mm were measured. The Reynolds number of each setting was calculated, and the pressure losses through the total length of the ETT, the tubular part, and the slip joint of each size of tube were estimated.

Results

The Reynolds numbers were >5000 in all sizes of ETTs. Measured pressure losses were larger in small sized ETTs than in large sized ETTs—520.9 Pascals (Pa) in 6.0-mm ID and 136.4 Pa in 8.0-mm ID tubes. The measured pressure losses through the tubular part were comparable to the predicted values. The measured pressure losses through the slip joints were larger than the predicted values, and they accounted for approximately 25–40% of total pressure losses of the ETTs.

Conclusion

Especially in small sized tubes, the pressure loss through the slip joint accounts for a large percentage of the total pressure loss through the ETT. The pressure loss through the slip joint may play a role in the discrepancy between measured and theoretical pressure losses through ETTs.
Literatur
1.
Zurück zum Zitat Fabry B, Haberthür C, Zappe D, Guttmann J, Kuhlen R, Stocker R, Breathing pattern and additional work of breathing in spontaneously breathing patients with different ventilatory demands during inspiratory pressure support and automatic tube compensation. Intensive Care Med. 1997;23:545–52.CrossRefPubMed Fabry B, Haberthür C, Zappe D, Guttmann J, Kuhlen R, Stocker R, Breathing pattern and additional work of breathing in spontaneously breathing patients with different ventilatory demands during inspiratory pressure support and automatic tube compensation. Intensive Care Med. 1997;23:545–52.CrossRefPubMed
2.
Zurück zum Zitat Messinger G, Banner MJ, Blanch PB, Layon AJ. Using tracheal pressure to trigger the ventilator and control airway pressure during continuous positive airway pressure decreases work of breathing. Chest. 1995;108:509–14.CrossRefPubMed Messinger G, Banner MJ, Blanch PB, Layon AJ. Using tracheal pressure to trigger the ventilator and control airway pressure during continuous positive airway pressure decreases work of breathing. Chest. 1995;108:509–14.CrossRefPubMed
3.
Zurück zum Zitat Brochard L, Rua F, Lorino H, Lemaire F, Harf A. Inspiratory pressure support compensates for the additional work of breathing caused by the endotracheal tube. Anesthesiology. 1991;75:739–45.CrossRefPubMed Brochard L, Rua F, Lorino H, Lemaire F, Harf A. Inspiratory pressure support compensates for the additional work of breathing caused by the endotracheal tube. Anesthesiology. 1991;75:739–45.CrossRefPubMed
4.
Zurück zum Zitat Bersten AD, Rutten AJ, Vedig AE, Skowronski GA. Additional work of breathing imposed by endotracheal tubes, breathing circuits, and intensive care ventilators. Crit Care Med. 1989;17:671–7.CrossRefPubMed Bersten AD, Rutten AJ, Vedig AE, Skowronski GA. Additional work of breathing imposed by endotracheal tubes, breathing circuits, and intensive care ventilators. Crit Care Med. 1989;17:671–7.CrossRefPubMed
5.
Zurück zum Zitat Flevari AG, Maniatis N, Kremiotis TE, Siempos I, Betrosian AP, Roussos C, Douzinas E, Armaganidis A. Rohrer’s constant, K2, as a factor of determining inspiratory resistance of common adult endotracheal tubes. Anaesth Intensive Care. 2011;39:410–7.PubMed Flevari AG, Maniatis N, Kremiotis TE, Siempos I, Betrosian AP, Roussos C, Douzinas E, Armaganidis A. Rohrer’s constant, K2, as a factor of determining inspiratory resistance of common adult endotracheal tubes. Anaesth Intensive Care. 2011;39:410–7.PubMed
6.
Zurück zum Zitat Shandro J. Resistance to gas flow in the “new” anaesthesia circuits: a comparative study. Can Anaesth Soc J. 1982;29:387–90.CrossRefPubMed Shandro J. Resistance to gas flow in the “new” anaesthesia circuits: a comparative study. Can Anaesth Soc J. 1982;29:387–90.CrossRefPubMed
7.
Zurück zum Zitat Lofaso F, Louis B, Brochard L, Harf A, Isabey D. Use of the Blasius resistance formula to estimate the effective diameter of endotracheal tubes. Am Rev Respir Dis. 1992;146:974–9.CrossRefPubMed Lofaso F, Louis B, Brochard L, Harf A, Isabey D. Use of the Blasius resistance formula to estimate the effective diameter of endotracheal tubes. Am Rev Respir Dis. 1992;146:974–9.CrossRefPubMed
8.
Zurück zum Zitat Katz IM, Martin AR, Feng CH, Majoral C, Caillibotte G, MarxT Bazin JE, Daviet C. Airway pressure distribution during xenon anesthesia: the insufflation phase at constant flow (volume controlled mode). Appl Cardiopulm Pathophysiol. 2012;16:5–16. Katz IM, Martin AR, Feng CH, Majoral C, Caillibotte G, MarxT Bazin JE, Daviet C. Airway pressure distribution during xenon anesthesia: the insufflation phase at constant flow (volume controlled mode). Appl Cardiopulm Pathophysiol. 2012;16:5–16.
9.
Zurück zum Zitat Schumann S, Krappitz M, Möller K, Hentschel R, Braun G, Guttmann J. Pressure loss caused by pediatric endotracheal tubes during high-frequency-oscillation-ventilation. Respir Physiol Neurobiol. 2008;162(2):132–7.CrossRefPubMed Schumann S, Krappitz M, Möller K, Hentschel R, Braun G, Guttmann J. Pressure loss caused by pediatric endotracheal tubes during high-frequency-oscillation-ventilation. Respir Physiol Neurobiol. 2008;162(2):132–7.CrossRefPubMed
10.
Zurück zum Zitat Zarei S, Mirtar A, Andresen B, Salamon P. Modeling the airflow in a lung with cystic fibrosis. J Non-Equilib Thermodyn. 2013;38:119–40.CrossRef Zarei S, Mirtar A, Andresen B, Salamon P. Modeling the airflow in a lung with cystic fibrosis. J Non-Equilib Thermodyn. 2013;38:119–40.CrossRef
11.
Zurück zum Zitat McGovern J. Technical note: friction diagrams for pipe flow. Dublin Institute of Technology. 2011;1–15. McGovern J. Technical note: friction diagrams for pipe flow. Dublin Institute of Technology. 2011;1–15.
12.
Zurück zum Zitat Swamee P, Jain A. Explicit equations for pipe-flow problems. J Hydraul Div (ASCE). 1976;102:657–64. Swamee P, Jain A. Explicit equations for pipe-flow problems. J Hydraul Div (ASCE). 1976;102:657–64.
13.
Zurück zum Zitat Schmidt M, Marx T, Papp-Jambor C, Reinelt H, Schirmer U. Airway pressures during xenon anaesthesia. Appl Cardiopulm Pathophysiol. 2009;13:208–11. Schmidt M, Marx T, Papp-Jambor C, Reinelt H, Schirmer U. Airway pressures during xenon anaesthesia. Appl Cardiopulm Pathophysiol. 2009;13:208–11.
14.
Zurück zum Zitat Çengel YA, Cimbala JM, Turner RH. Chapter 12 Bernoulli and energy equations. In: Çengel YA, Cimbala JM, Turner RH, editors. Fundamentals of thermal-fluid sciences. 4th ed. New York: McGraw-Hill Higher Education; 2012. p. 471–503. Çengel YA, Cimbala JM, Turner RH. Chapter 12 Bernoulli and energy equations. In: Çengel YA, Cimbala JM, Turner RH, editors. Fundamentals of thermal-fluid sciences. 4th ed. New York: McGraw-Hill Higher Education; 2012. p. 471–503.
15.
Zurück zum Zitat Kamat SS, Muralidhar K. Chapter 28 volume controlled ventilation. In: Kamat SS, Muralidhar K, editors. Practical applications of mechanical ventilation. 2nd edn. New Delhi: Jaypee Brothers Medical Publishers; 2016. p. 372–385. Kamat SS, Muralidhar K. Chapter 28 volume controlled ventilation. In: Kamat SS, Muralidhar K, editors. Practical applications of mechanical ventilation. 2nd edn. New Delhi: Jaypee Brothers Medical Publishers; 2016. p. 372–385.
Metadaten
Titel
Roles of endotracheal tubes and slip joints in respiratory pressure loss: a laboratory study
verfasst von
Yoshihiro Takasugi
Koichi Futagawa
Kouhei Kazuhara
Satoshi Morishita
Takahiko Okuda
Publikationsdatum
01.07.2016
Verlag
Springer Japan
Erschienen in
Journal of Anesthesia / Ausgabe 5/2016
Print ISSN: 0913-8668
Elektronische ISSN: 1438-8359
DOI
https://doi.org/10.1007/s00540-016-2210-5

Weitere Artikel der Ausgabe 5/2016

Journal of Anesthesia 5/2016 Zur Ausgabe

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Hinter dieser Appendizitis steckte ein Erreger

23.04.2024 Appendizitis Nachrichten

Schmerzen im Unterbauch, aber sonst nicht viel, was auf eine Appendizitis hindeutete: Ein junger Mann hatte Glück, dass trotzdem eine Laparoskopie mit Appendektomie durchgeführt und der Wurmfortsatz histologisch untersucht wurde.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.