Skip to main content
Erschienen in: Acta Neurochirurgica 8/2020

Open Access 01.08.2020 | Case Report - Brain Tumors

Extreme intracranial pressure elevation > 90 mmHg in an awake patient with primary CNS lymphoma—case report

verfasst von: David Cederberg, Niklas Marklund, Henrietta Nittby Redebrandt

Erschienen in: Acta Neurochirurgica | Ausgabe 8/2020

Abstract

We describe a patient with primary CNS lymphomas, awake despite an extreme ICP elevation. A 48-year-old woman presented with headache since 1 month, and bilateral papillary edema was observed. Magnetic resonance imaging revealed diffuse infiltration around the petrous bone. Following external ventricular drainage (EVD) placement, ICP levels of > 90 mmHg were recorded while the patient was fully awake. Cytology revealed an aggressive primary CNS lymphoma. Cerebrospinal fluid (CSF) drainage at high opening pressure levels was required. We conclude that extreme ICP elevations, treatable by CSF drainage, can be observed without a reduced level of consciousness.
Hinweise
This article is part of the Topical Collection on Brain Tumors

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Background and importance

Monitoring and treatment of elevated intracranial pressure (ICP) is an integral part of neurosurgical management of acute brain injury, including traumatic brain injury (TBI). Although normal ICP is commonly assumed to be ca 7–15 mmHg, recent data suggests that it may be as low as 0–5 mmHg [2]. When ICP increases, there is an increased risk of cerebral ischemia and herniation, and ultimately collapse of cerebral microcirculation [6]. Although survival has been observed in TBI patients with ICP ≥ 50 mmHg [14], increased ICP is consistently associated with poor outcome and high mortality [9, 12]. If neurosurgical and/or neurocritical care treatment can successfully lower an elevated ICP, prognosis is more favorable [3]. The threshold for initiating treatment of an elevated ICP is commonly set at 20–22 mmHg, although the duration and time of ICP increase (i.e., the “ICP dose”) [4, 13] may be critical.
Although high ICP is a common observation in acute brain injury, hydrocephalus, or bacterial meningitis [10], in certain disorders such as liver failure, extremely elevated ICP may be observed [8]. In cryptococcal meningitis, a lumbar cerebrospinal fluid (CSF) opening pressure of > 25 mmHg was negatively associated with long-term survival. Another condition associated with increased ICP is idiopathic intracranial hypertension (IIH), where a lumbar opening pressure of > 25 mmHg is required for diagnosis [11].
Primary CNS lymphoma (PCNSL) accounts for 1–5% of all brain tumors [5]. Symptoms of PCNSL may include headache, nausea, vomiting, papilledema, and lethargy [1] considered indirect signs of increased ICP and seen in approximately one-third of patients. However, ICP measurements have, to the best of our knowledge, not previously been reported.
We here describe a case of extremely high ICP of > 90 mmHg in a fully awake and orientated patient with PCNSL.

Clinical presentation

A 48-year-old woman with no previous medical history was admitted to the emergency department due to headache for 1 month, and facial nerve palsy 4 days. Upon clinical examination, a peripheral facial nerve palsy, abducens nerve palsy, and decreased sensibility on the left side of the face mainly corresponding to the innervation area of nervus ophthalmicus were noted. The patient was fully conscious and orientated. A cerebellopontine angle pathology was suspected, and an emergent MRI was done revealing an unspecific infiltration around the apex pars petrosa (Fig. 1). Ophthalmoscopic examination revealed bilateral papillary edema and hemorrhages. A lumbar puncture in the lateral supine position was performed at the department of neurology, despite the presence of papillary edema, since the patient was fully awake, and an increased ICP was not suspected. An opening pressure of > 50 cm H20 (> 37 mmHg; higher values could not be measured) as well as elevated protein levels (0.83 g/L) and polymorphonuclear leukocyte count (617 × 10^ 6/L) were observed whereas the mononuclear leukocyte count was normal. Tuberculosis meningitis was suspected, and treatment was initiated.
Continuous CSF sampling was considered indicated to enable monitoring of the treatment response. Therefore, the patient was transferred to the department of neurosurgery, and an external ventricular drainage (EVD) was inserted (Fig. 2). The patient was fully awake and pupillary reactivity was preserved, and the EVD was initially planned to be used only for CSF sampling. However, when ICP was measured by closing the EVD on the first post-operative day (several hours after the EVD placement), calibrated to the level of the forehead, it read 96 mmHg. At this time, the patient was still fully awake and orientated (a Glasgow Coma Scale (GCS) score of 15). Lundberg type A waves/plateau waves were observed when evaluating the ICP wave form. Transcranial Doppler revealed a pulsatile index of 1.8, and the arterial blood pressure was 152/103 mmHg (MAP 119). Due to the high ICP and low cerebral perfusion pressure (CPP), the EVD was initially opened for CSF drainage at a level of 30 mmHg, and intravenous fluid was administered. Over the next days, the patient needed continuous CSF drainage since she developed a severe trigeminal neuralgia when the EVD was closed. Drainage of CSF was regulated by adjusting the height of the CSF sampling device above the patient’s head. On EVD closure, her ICP gradually increased to > 90 mmHg after 2 h; still, she was GCS 15 (Fig. 3).
CSF cytology revealed the presence of a highly malignant primary CNS B cell lymphoma. Intrathecal methotrexate was administered, and a chemotherapy treatment protocol was initiated. Initially, CSF drainage at an opening pressure of 30 mmHg was used, and the patient drained 188 mL during the first 24 h. On day 3, we used an opening pressure of 40 mmHg, draining 304 mL CSF, and on day 4, an opening pressure of 60 mmHg was used, draining 225 mL CSF. The drainage at 60 mmHg was maintained for 3 days, after which the EVD could be closed. Adequate pulsations were observed on the ICP curve. ICP was 95 mmHg initially, but then slowly decreased; however, it was only < 20 mmHg on four occasions. Co-registrations of CPP and ICP are presented in Fig. 3. The patient had less facial pain, and the EVD could be converted to a Rickham reservoir, which was used for further intrathecal chemotherapy (methotrexate) treatment although not ICP measurements at the department of oncology for further treatment. No ventriculoperitoneal shunting was needed, and the patient had no neurologic deficits and experienced complete remission of her PCNSL. However, she suffered from an early recurrence of the disease 5 months later, with extracerebral metastases. Further chemotherapy led to neutropenia and sepsis, and the patient died shortly thereafter.

Discussion and conclusions

The present case highlights that (i) ICP can be extremely elevated in certain disorders, even in a fully awake patient, (ii) PCNSL can lead to marked ICP elevations, and (iii) CSF drainage via an open EVD can be a useful treatment strategy when an extreme ICP elevation is encountered. Here, no cerebral ischemia or radiological signs of increased intracerebral pressure were observed on neuroimaging. We carefully searched for sources of erroneous measurement. Furthermore, the EVD system was routinely recalibrated on a daily basis. The patient drained CSF at high resistance values, controlled by manually adjusting the level of the CSF sampling device, strongly arguing that the measured ICP values were correct. ICP measurements were done by temporarily closing the EVD. Since the patient needed CSF drainage for ICP control, there was no continuous measurement of ICP. Therefore, the presence of Lundberg A waves could not be determined, although were not noted. Plausibly, the patient had a sufficiently high CPP and cerebral blood flow, stressing the importance of maintaining a high MAP in the event of critically elevated ICP. Previous reports on traumatic brain patients with severely elevated ICP have provided some support that outcome can be favorable even at an ICP > 40 mmHg when maintaining a CPP > 60 mmHg [3]. We speculate that the high ICP observed here was tolerated since it (a) plausibly developed over a long time, (b) was found without any focal lesion, and (c) the CPP was maintained over critical levels.
In CNS lymphoma, similar ICP elevations have not previously been reported to our knowledge. In other forms of cancer, high ICP has been observed, such as in a case of a fully alert young woman presenting with headache, vomiting, and papilledema secondary to a gastric signet-ring cell carcinoma. Here, ICP was > 29 mmHg, and meningeal carcinomatosis was suspected [7].
Our report emphasizes the need for ophthalmological evaluation when a patient presents with clinical signs of ICP elevation, even in the absence of obvious radiological findings. The cause of the extremely high ICP in the present case is unclear, without signs of cerebral edema, although infiltration of lymphoma cells obstructing CSF resorption and leading to communicating hydrocephalus is a plausible explanation. Drainage of CSF at high resistance under careful monitoring of the neurological state appears acceptable when facing extreme ICP elevations without midline shift or focal mass lesions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

The present case report includes no experimental treatment. All information is de-identified, including radiological images.
The patient consented to us using her data in a case report.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Algazi AP, Kadoch C, Rubenstein JL (2009) Biology and treatment of primary central nervous system lymphoma. Neurotherapeutics 6(3):587–597CrossRef Algazi AP, Kadoch C, Rubenstein JL (2009) Biology and treatment of primary central nervous system lymphoma. Neurotherapeutics 6(3):587–597CrossRef
2.
Zurück zum Zitat Andresen M, Juhler M (2014) Intracranial pressure following complete removal of a small demarcated brain tumor: a model for normal intracranial pressure in humans. J Neurosurg 121(4):797–801CrossRef Andresen M, Juhler M (2014) Intracranial pressure following complete removal of a small demarcated brain tumor: a model for normal intracranial pressure in humans. J Neurosurg 121(4):797–801CrossRef
3.
Zurück zum Zitat Farahvar A, Gerber LM, Chiu YL, Härtl R, Froelich M, Carney N, Ghajar J (2011) Response to intracranial hypertension treatment as a predictor of death in patients with severe traumatic brain injury. J Neurosurg 114(5):1471–1478CrossRef Farahvar A, Gerber LM, Chiu YL, Härtl R, Froelich M, Carney N, Ghajar J (2011) Response to intracranial hypertension treatment as a predictor of death in patients with severe traumatic brain injury. J Neurosurg 114(5):1471–1478CrossRef
4.
Zurück zum Zitat Flechet M, Meyfroidt G, Piper I, Citerio G, Chambers I, Jones PA, et al. (2018) Visualizing cerebrovascular autoregulation insults and their association with outcome in adult and paediatric traumatic brain injury. Acta Neurochir Suppl.126:291-295 Flechet M, Meyfroidt G, Piper I, Citerio G, Chambers I, Jones PA, et al. (2018) Visualizing cerebrovascular autoregulation insults and their association with outcome in adult and paediatric traumatic brain injury. Acta Neurochir Suppl.126:291-295
5.
Zurück zum Zitat Haldorsen IS, Espeland A, Larsson EM (2011) Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. Am J Neuroradiol 32(6):984–992CrossRef Haldorsen IS, Espeland A, Larsson EM (2011) Central nervous system lymphoma: characteristic findings on traditional and advanced imaging. Am J Neuroradiol 32(6):984–992CrossRef
6.
Zurück zum Zitat Harary M, Dolmans RGF, Gormley WB (2018) Intracranial pressure monitoring-review and avenues for development. Sensors (Basel) 18(2) Harary M, Dolmans RGF, Gormley WB (2018) Intracranial pressure monitoring-review and avenues for development. Sensors (Basel) 18(2)
7.
Zurück zum Zitat Jiali P, Linglia X, Xinzhen Y, Baorong Z (2016) Intracranial hypertension as the primary symptom of gastric signet-ring cell carcinoma. Medicine 95(35):e4687CrossRef Jiali P, Linglia X, Xinzhen Y, Baorong Z (2016) Intracranial hypertension as the primary symptom of gastric signet-ring cell carcinoma. Medicine 95(35):e4687CrossRef
8.
Zurück zum Zitat Maloney PR, Mallory GW, Atkinson JL, Wijdicks EF, Rabinstein AA, Van Gompel JJ (2016) Intracranial pressure monitoring in acute liver failure: institutional case series. Neurocrit Care 25(1):86–93.8CrossRef Maloney PR, Mallory GW, Atkinson JL, Wijdicks EF, Rabinstein AA, Van Gompel JJ (2016) Intracranial pressure monitoring in acute liver failure: institutional case series. Neurocrit Care 25(1):86–93.8CrossRef
9.
Zurück zum Zitat Nourallah B, Zeiler FA, Calviello L, Smielewski P, Czosnyka M, Menon DK (2018) Critical thresholds for intracranial pressure vary over time in non-craniectomised traumatic brain injury patients. Acta Neurochir 160(7):1315–1324CrossRef Nourallah B, Zeiler FA, Calviello L, Smielewski P, Czosnyka M, Menon DK (2018) Critical thresholds for intracranial pressure vary over time in non-craniectomised traumatic brain injury patients. Acta Neurochir 160(7):1315–1324CrossRef
10.
Zurück zum Zitat Tariq A, Aguilar-Salinas P, Hanel RA, Naval N, Chmayssani M (2017) The role of ICP monitoring in meningitis. Neurosurg Focus 43(5):E7CrossRef Tariq A, Aguilar-Salinas P, Hanel RA, Naval N, Chmayssani M (2017) The role of ICP monitoring in meningitis. Neurosurg Focus 43(5):E7CrossRef
11.
Zurück zum Zitat Thurtell MJ, Bruce BB, Newman NJ, Biousse V (2010) An update on idiopathic intracranial hypertension. Rev Neurol Dis 7:2–3.11 Thurtell MJ, Bruce BB, Newman NJ, Biousse V (2010) An update on idiopathic intracranial hypertension. Rev Neurol Dis 7:2–3.11
12.
Zurück zum Zitat Treggiari MM, Schutz N, Yanez ND, Romand JA (2007) Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: a systematic review. Neurocrit Care 6(2):104–112CrossRef Treggiari MM, Schutz N, Yanez ND, Romand JA (2007) Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: a systematic review. Neurocrit Care 6(2):104–112CrossRef
13.
Zurück zum Zitat Vik A, Nag T, Fredriksli OA, Skandsen T, Moen KG, Schirmer-Mikalsen K, Manley GT (2008) Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury. J Neurosurg 109(4):678–684CrossRef Vik A, Nag T, Fredriksli OA, Skandsen T, Moen KG, Schirmer-Mikalsen K, Manley GT (2008) Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury. J Neurosurg 109(4):678–684CrossRef
14.
Zurück zum Zitat Young JS, Blow O, Turrentine F, Claridge JA, Schulman A (2003) Is there an upper limit of intracranial pressure in patients with severe head injury if cerebral perfusion pressure is maintained? Neurosurg Focus 15(6):E2CrossRef Young JS, Blow O, Turrentine F, Claridge JA, Schulman A (2003) Is there an upper limit of intracranial pressure in patients with severe head injury if cerebral perfusion pressure is maintained? Neurosurg Focus 15(6):E2CrossRef
Metadaten
Titel
Extreme intracranial pressure elevation > 90 mmHg in an awake patient with primary CNS lymphoma—case report
verfasst von
David Cederberg
Niklas Marklund
Henrietta Nittby Redebrandt
Publikationsdatum
01.08.2020
Verlag
Springer Vienna
Erschienen in
Acta Neurochirurgica / Ausgabe 8/2020
Print ISSN: 0001-6268
Elektronische ISSN: 0942-0940
DOI
https://doi.org/10.1007/s00701-020-04231-x

Weitere Artikel der Ausgabe 8/2020

Acta Neurochirurgica 8/2020 Zur Ausgabe

Letter to the Editor (by Invitation) - Peripheral Nerves

Author’s response to letter from Drs. Vetrano, Devigili, and Nazzi

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.