Skip to main content
Erschienen in: Cancer and Metastasis Reviews 4/2008

01.12.2008

Tumor detection using folate receptor-targeted imaging agents

verfasst von: Emanuela I. Sega, Philip S. Low

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 4/2008

Einloggen, um Zugang zu erhalten

Abstract

Folate receptors are up-regulated on a variety of human cancers, including cancers of the breast, ovaries, endometrium, lungs, kidneys, colon, brain, and myeloid cells of hematopoietic origin. This over-expression of folate receptors (FR) on cancer tissues can be exploited to target folate-linked imaging and therapeutic agents specifically to FR-expressing tumors, thereby avoiding uptake by most healthy tissues that express few if any FR. Four folate-targeted therapeutic drugs are currently undergoing clinical trials, and several folate-linked chemotherapeutic agents are in late stage preclinical development. However, because not all cancers express FR, and because only FR-expressing cancers respond to FR-targeted therapies, FR-targeted imaging agents have been required to select patients with FR-expressing tumors likely to respond to folate-targeted therapies. This review focuses on recent advances in the use of the vitamin folic acid to target PET agents, γ-emitters, MRI contrast agents and fluorescent dyes to FR+ cancers for the purpose of diagnosing and imaging malignant masses with improved specificity and sensitivity.
Literatur
1.
Zurück zum Zitat Bettio, A., Honer, M., Muller, C., Bruhlmeier, M., Muller, U., Schibli, R., et al. (2006). Synthesis and preclinical evaluation of a folic acid derivative labeled with 18F for PET imaging of folate receptor-positive tumors. Journal of Nuclear Medicine, 47, 1153–1160.PubMed Bettio, A., Honer, M., Muller, C., Bruhlmeier, M., Muller, U., Schibli, R., et al. (2006). Synthesis and preclinical evaluation of a folic acid derivative labeled with 18F for PET imaging of folate receptor-positive tumors. Journal of Nuclear Medicine, 47, 1153–1160.PubMed
2.
Zurück zum Zitat Breeman, W. A., Kwekkeboom, D. J., de Blois, E., de Jong, M., Visser, T. J., & Krenning, E. P. (2007). Radiolabelled regulatory peptides for imaging and therapy. Anticancer Agents in Medicinal Chemistry, 7, 345–357.CrossRef Breeman, W. A., Kwekkeboom, D. J., de Blois, E., de Jong, M., Visser, T. J., & Krenning, E. P. (2007). Radiolabelled regulatory peptides for imaging and therapy. Anticancer Agents in Medicinal Chemistry, 7, 345–357.CrossRef
3.
Zurück zum Zitat Gabriel, M., Decristoforo, C., Kendler, D., Dobrozemsky, G., Heute, D., Uprimny, C., et al. (2007). 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. Journal of Nuclear Medicine, 48, 508–518.PubMedCrossRef Gabriel, M., Decristoforo, C., Kendler, D., Dobrozemsky, G., Heute, D., Uprimny, C., et al. (2007). 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. Journal of Nuclear Medicine, 48, 508–518.PubMedCrossRef
4.
Zurück zum Zitat Grotzinger, C., & Wiedenmann, B. (2004). Somatostatin receptor targeting for tumor imaging and therapy. Annals of the New York Academy of Sciences, 1014, 258–264.PubMedCrossRef Grotzinger, C., & Wiedenmann, B. (2004). Somatostatin receptor targeting for tumor imaging and therapy. Annals of the New York Academy of Sciences, 1014, 258–264.PubMedCrossRef
5.
Zurück zum Zitat Breeman, W. A., de Jong, M., Kwekkeboom, D. J., Valkema, R., Bakker, W. H., Kooij, P. P., et al. (2001). Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives. European Journal of Nuclear Medicine, 28, 1421–1429.PubMedCrossRef Breeman, W. A., de Jong, M., Kwekkeboom, D. J., Valkema, R., Bakker, W. H., Kooij, P. P., et al. (2001). Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives. European Journal of Nuclear Medicine, 28, 1421–1429.PubMedCrossRef
6.
Zurück zum Zitat Smith, C. J., Volkert, W. A., & Hoffman, T. J. (2005). Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nuclear Medicine and Biology, 32, 733–740.PubMedCrossRef Smith, C. J., Volkert, W. A., & Hoffman, T. J. (2005). Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nuclear Medicine and Biology, 32, 733–740.PubMedCrossRef
7.
Zurück zum Zitat Prasanphanich, A. F., Nanda, P. K., Rold, T. L., Ma, L., Lewis, M. R., Garrison, J. C., et al. (2007). [64Cu-NOTA-8-Aoc-BBN(7–14)NH2] targeting vector for positron-emission tomography imaging of gastrin-releasing peptide receptor-expressing tissues. Proceedings of the National Academy of Sciences of the United States of America, 104, 12462–12467.PubMedCrossRef Prasanphanich, A. F., Nanda, P. K., Rold, T. L., Ma, L., Lewis, M. R., Garrison, J. C., et al. (2007). [64Cu-NOTA-8-Aoc-BBN(7–14)NH2] targeting vector for positron-emission tomography imaging of gastrin-releasing peptide receptor-expressing tissues. Proceedings of the National Academy of Sciences of the United States of America, 104, 12462–12467.PubMedCrossRef
8.
Zurück zum Zitat Zhang, X., Cai, W., Cao, F., Schreibmann, E., Wu, Y., Wu, J. C., et al. (2006). 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. Journal of Nuclear Medicine, 47, 492–501.PubMed Zhang, X., Cai, W., Cao, F., Schreibmann, E., Wu, Y., Wu, J. C., et al. (2006). 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. Journal of Nuclear Medicine, 47, 492–501.PubMed
9.
Zurück zum Zitat Leuschner, C., Kumar, C. S., Hansel, W., Soboyejo, W., Zhou, J., & Hormes, J. (2006). LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Research and Treatment, 99, 163–176.PubMedCrossRef Leuschner, C., Kumar, C. S., Hansel, W., Soboyejo, W., Zhou, J., & Hormes, J. (2006). LHRH-conjugated magnetic iron oxide nanoparticles for detection of breast cancer metastases. Breast Cancer Research and Treatment, 99, 163–176.PubMedCrossRef
10.
Zurück zum Zitat Cai, W., Chen, K., He, L., Cao, Q., Koong, A., & Chen, X. (2007). Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. European Journal of Nuclear Medicine and Molecular Imaging, 34, 850–858.PubMedCrossRef Cai, W., Chen, K., He, L., Cao, Q., Koong, A., & Chen, X. (2007). Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. European Journal of Nuclear Medicine and Molecular Imaging, 34, 850–858.PubMedCrossRef
11.
Zurück zum Zitat Perik, P. J., Lub-De Hooge, M. N., Gietema, J. A., van der Graaf, W. T., de Korte, M. A., Jonkman, S., et al. (2006). Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. Journal of Clinical Oncology, 24, 2276–2282.PubMedCrossRef Perik, P. J., Lub-De Hooge, M. N., Gietema, J. A., van der Graaf, W. T., de Korte, M. A., Jonkman, S., et al. (2006). Indium-111-labeled trastuzumab scintigraphy in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. Journal of Clinical Oncology, 24, 2276–2282.PubMedCrossRef
12.
Zurück zum Zitat Reilly, R. M., Kiarash, R., Sandhu, J., Lee, Y. W., Cameron, R. G., Hendler, A., et al. (2000). A comparison of EGF and MAb 528 labeled with 111In for imaging human breast cancer. Journal of Nuclear Medicine, 41, 903–911.PubMed Reilly, R. M., Kiarash, R., Sandhu, J., Lee, Y. W., Cameron, R. G., Hendler, A., et al. (2000). A comparison of EGF and MAb 528 labeled with 111In for imaging human breast cancer. Journal of Nuclear Medicine, 41, 903–911.PubMed
13.
Zurück zum Zitat Nagengast, W. B., de Vries, E. G., Hospers, G. A., Mulder, N. H., de Jong, J. R., Hollema, H., et al. (2007). In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. Journal of Nuclear Medicine, 48, 1313–1319.PubMedCrossRef Nagengast, W. B., de Vries, E. G., Hospers, G. A., Mulder, N. H., de Jong, J. R., Hollema, H., et al. (2007). In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. Journal of Nuclear Medicine, 48, 1313–1319.PubMedCrossRef
14.
Zurück zum Zitat Cai, W., & Chen, X. (2007). Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Frontiers in Bioscience, 12, 4267–4279.PubMedCrossRef Cai, W., & Chen, X. (2007). Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Frontiers in Bioscience, 12, 4267–4279.PubMedCrossRef
15.
Zurück zum Zitat Low, P. S., Henne, W. A., & Doorneweerd, D. D. (2008). Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Accounts of Chemical Research, 41(1), 120–129.PubMedCrossRef Low, P. S., Henne, W. A., & Doorneweerd, D. D. (2008). Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Accounts of Chemical Research, 41(1), 120–129.PubMedCrossRef
16.
Zurück zum Zitat Reddy, J. A., Allagadda, V. M., & Leamon, C. P. (2005). Targeting therapeutic and imaging agents to folate receptor positive tumors. Current Pharmaceutical Biotechnology, 6, 131–150.PubMedCrossRef Reddy, J. A., Allagadda, V. M., & Leamon, C. P. (2005). Targeting therapeutic and imaging agents to folate receptor positive tumors. Current Pharmaceutical Biotechnology, 6, 131–150.PubMedCrossRef
17.
Zurück zum Zitat Hilgenbrink, A. R., & Low, P. S. (2005). Folate receptor-mediated drug targeting: from therapeutics to diagnostics. Journal of Pharmaceutical Sciences, 94, 2135–2146.PubMedCrossRef Hilgenbrink, A. R., & Low, P. S. (2005). Folate receptor-mediated drug targeting: from therapeutics to diagnostics. Journal of Pharmaceutical Sciences, 94, 2135–2146.PubMedCrossRef
18.
Zurück zum Zitat Collins, D. A., Hogenkamp, H. P., & Gebhard, M. W. (1999). Tumor imaging via indium 111-labeled DTPA-adenosylcobalamin. Mayo Clinic Proceedings, 74, 687–691.PubMed Collins, D. A., Hogenkamp, H. P., & Gebhard, M. W. (1999). Tumor imaging via indium 111-labeled DTPA-adenosylcobalamin. Mayo Clinic Proceedings, 74, 687–691.PubMed
19.
Zurück zum Zitat Jasanoff, A. (2005). Functional MRI using molecular imaging agents. Trends in Neurosciences, 28, 120–126.PubMedCrossRef Jasanoff, A. (2005). Functional MRI using molecular imaging agents. Trends in Neurosciences, 28, 120–126.PubMedCrossRef
20.
Zurück zum Zitat Shen, F., Ross, J. F., Wang, X., & Ratnam, M. (1994). Identification of a novel folate receptor, a truncated receptor, and receptor type beta in hematopoietic cells: cDNA cloning, expression, immunoreactivity, and tissue specificity. Biochemistry, 33, 1209–1215.PubMedCrossRef Shen, F., Ross, J. F., Wang, X., & Ratnam, M. (1994). Identification of a novel folate receptor, a truncated receptor, and receptor type beta in hematopoietic cells: cDNA cloning, expression, immunoreactivity, and tissue specificity. Biochemistry, 33, 1209–1215.PubMedCrossRef
21.
22.
Zurück zum Zitat Coney, L. R., Tomassetti, A., Carayannopoulos, L., Frasca, V., Kamen, B. A., Colnaghi, M. I., et al. (1991). Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein. Cancer Research, 51, 6125–6132.PubMed Coney, L. R., Tomassetti, A., Carayannopoulos, L., Frasca, V., Kamen, B. A., Colnaghi, M. I., et al. (1991). Cloning of a tumor-associated antigen: MOv18 and MOv19 antibodies recognize a folate-binding protein. Cancer Research, 51, 6125–6132.PubMed
23.
Zurück zum Zitat Campbell, I. G., Jones, T. A., Foulkes, W. D., & Trowsdale, J. (1991). Folate-binding protein is a marker for ovarian cancer. Cancer Research, 51, 5329–5338.PubMed Campbell, I. G., Jones, T. A., Foulkes, W. D., & Trowsdale, J. (1991). Folate-binding protein is a marker for ovarian cancer. Cancer Research, 51, 5329–5338.PubMed
24.
Zurück zum Zitat Weitman, S. D., Lark, R. H., Coney, L. R., Fort, D. W., Frasca, V., Zurawski Jr., V. R., et al. (1992). Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Research, 52, 3396–3401.PubMed Weitman, S. D., Lark, R. H., Coney, L. R., Fort, D. W., Frasca, V., Zurawski Jr., V. R., et al. (1992). Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Research, 52, 3396–3401.PubMed
25.
Zurück zum Zitat Ross, J. F., Chaudhuri, P. K., & Ratnam, M. (1994). Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer, 73, 2432–2443.PubMedCrossRef Ross, J. F., Chaudhuri, P. K., & Ratnam, M. (1994). Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer, 73, 2432–2443.PubMedCrossRef
26.
Zurück zum Zitat Mantovani, L. T., Miotti, S., Menard, S., Canevari, S., Raspagliesi, F., Bottini, C., et al. (1994). Folate binding protein distribution in normal tissues and biological fluids from ovarian carcinoma patients as detected by the monoclonal antibodies MOv18 and MOv19. European Journal of Cancer, 30A, 363–369.PubMedCrossRef Mantovani, L. T., Miotti, S., Menard, S., Canevari, S., Raspagliesi, F., Bottini, C., et al. (1994). Folate binding protein distribution in normal tissues and biological fluids from ovarian carcinoma patients as detected by the monoclonal antibodies MOv18 and MOv19. European Journal of Cancer, 30A, 363–369.PubMedCrossRef
27.
Zurück zum Zitat Holm, J., Hansen, S. I., Sondergaard, K., & Hoier-Madsen, M. (1993). Chemistry and biology of pteridines and folates. The high-affinity folate binding protein in normal and malignant mammary gland tissue. New York: Plenum. Holm, J., Hansen, S. I., Sondergaard, K., & Hoier-Madsen, M. (1993). Chemistry and biology of pteridines and folates. The high-affinity folate binding protein in normal and malignant mammary gland tissue. New York: Plenum.
28.
Zurück zum Zitat Weitman, S. D., Weinberg, A. G., Coney, L. R., Zurawski, V. R., Jennings, D. S., & Kamen, B. A. (1992). Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Research, 52, 6708–6711.PubMed Weitman, S. D., Weinberg, A. G., Coney, L. R., Zurawski, V. R., Jennings, D. S., & Kamen, B. A. (1992). Cellular localization of the folate receptor: potential role in drug toxicity and folate homeostasis. Cancer Research, 52, 6708–6711.PubMed
29.
Zurück zum Zitat Holm, J., Hansen, S. I., Hoier-Madsen, M., & Bostad, L. (1991). High-affinity folate binding in human choroid plexus. Characterization of radioligand binding, immunoreactivity, molecular heterogeneity and hydrophobic domain of the binding protein. Biochemical Journal, 280, 267–271.PubMed Holm, J., Hansen, S. I., Hoier-Madsen, M., & Bostad, L. (1991). High-affinity folate binding in human choroid plexus. Characterization of radioligand binding, immunoreactivity, molecular heterogeneity and hydrophobic domain of the binding protein. Biochemical Journal, 280, 267–271.PubMed
30.
Zurück zum Zitat Zimmerman, J. (1990). Folic acid transport in organ-cultured mucosa of human intestine. Evidence for distinct carriers. Gastroenterology, 99, 964–972.PubMed Zimmerman, J. (1990). Folic acid transport in organ-cultured mucosa of human intestine. Evidence for distinct carriers. Gastroenterology, 99, 964–972.PubMed
31.
Zurück zum Zitat Morshed, K. M., Ross, D. M., & McMartin, K. E. (1997). Folate transport proteins mediate the bidirectional transport of 5-methyltetrahydrofolate in cultured human proximal tubule cells. Journal of Nutrition, 127, 1137–1147.PubMed Morshed, K. M., Ross, D. M., & McMartin, K. E. (1997). Folate transport proteins mediate the bidirectional transport of 5-methyltetrahydrofolate in cultured human proximal tubule cells. Journal of Nutrition, 127, 1137–1147.PubMed
32.
Zurück zum Zitat Franklin, W. A., Waintrub, M., Edwards, D., Christensen, K., Prendegrast, P., Woods, J., et al. (1994). New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma. International Journal of Cancer—Supplement, 8, 89–95.CrossRef Franklin, W. A., Waintrub, M., Edwards, D., Christensen, K., Prendegrast, P., Woods, J., et al. (1994). New anti-lung-cancer antibody cluster 12 reacts with human folate receptors present on adenocarcinoma. International Journal of Cancer—Supplement, 8, 89–95.CrossRef
33.
Zurück zum Zitat Holm, J., Hansen, S. I., Hoier-Madsen, M., Helkjaer, P. E., & Nichols, C. W. (1997). Folate receptors in malignant and benign tissues of human female genital tract. Bioscience Reports, 17, 415–427.PubMedCrossRef Holm, J., Hansen, S. I., Hoier-Madsen, M., Helkjaer, P. E., & Nichols, C. W. (1997). Folate receptors in malignant and benign tissues of human female genital tract. Bioscience Reports, 17, 415–427.PubMedCrossRef
34.
Zurück zum Zitat Toffoli, G., Cernigoi, C., Russo, A., Gallo, A., Bagnoli, M., & Boiocchi, M. (1997). Overexpression of folate binding protein in ovarian cancers. International Journal of Cancer, 74, 193–198.CrossRef Toffoli, G., Cernigoi, C., Russo, A., Gallo, A., Bagnoli, M., & Boiocchi, M. (1997). Overexpression of folate binding protein in ovarian cancers. International Journal of Cancer, 74, 193–198.CrossRef
35.
Zurück zum Zitat Garin-Chesa, P., Campbell, I., Saigo, P. E., Lewis Jr., J. L., Old, L. J., & Rettig, W. J. (1993). Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. American Journal of Pathology, 142, 557–567.PubMed Garin-Chesa, P., Campbell, I., Saigo, P. E., Lewis Jr., J. L., Old, L. J., & Rettig, W. J. (1993). Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. American Journal of Pathology, 142, 557–567.PubMed
36.
Zurück zum Zitat Boerman, O. C., van Niekerk, C. C., Makkink, K., Hanselaar, T. G., Kenemans, P., & Poels, L. G. (1991). Comparative immunohistochemical study of four monoclonal antibodies directed against ovarian carcinoma-associated antigens. International Journal of Gynecological Pathology, 10, 15–25.PubMedCrossRef Boerman, O. C., van Niekerk, C. C., Makkink, K., Hanselaar, T. G., Kenemans, P., & Poels, L. G. (1991). Comparative immunohistochemical study of four monoclonal antibodies directed against ovarian carcinoma-associated antigens. International Journal of Gynecological Pathology, 10, 15–25.PubMedCrossRef
37.
Zurück zum Zitat Dainty, L. A., Risinger, J. I., Morrison, C., Chandramouli, G. V., Bidus, M. A., Zahn, C., et al. (2007). Overexpression of folate binding protein and mesothelin are associated with uterine serous carcinoma. Gynecologic Oncology, 105, 563–570.PubMedCrossRef Dainty, L. A., Risinger, J. I., Morrison, C., Chandramouli, G. V., Bidus, M. A., Zahn, C., et al. (2007). Overexpression of folate binding protein and mesothelin are associated with uterine serous carcinoma. Gynecologic Oncology, 105, 563–570.PubMedCrossRef
38.
Zurück zum Zitat Weitman, S. D., Frazier, K. M., & Kamen, B. A. (1994). The folate receptor in central nervous system malignancies of childhood. Journal of Neuro-Oncology, 21, 107–112.PubMedCrossRef Weitman, S. D., Frazier, K. M., & Kamen, B. A. (1994). The folate receptor in central nervous system malignancies of childhood. Journal of Neuro-Oncology, 21, 107–112.PubMedCrossRef
39.
Zurück zum Zitat Hartmann, L. C., Keeney, G. L., Lingle, W. L., Christianson, T. J., Varghese, B., Hillman, D., et al. (2007). Folate receptor overexpression is associated with poor outcome in breast cancer. International Journal of Cancer, 121, 938–942.CrossRef Hartmann, L. C., Keeney, G. L., Lingle, W. L., Christianson, T. J., Varghese, B., Hillman, D., et al. (2007). Folate receptor overexpression is associated with poor outcome in breast cancer. International Journal of Cancer, 121, 938–942.CrossRef
40.
Zurück zum Zitat Paulos, C. M., Turk, M. J., Breur, G. J., & Low, P. S. (2004). Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Advanced Drug Delivery Reviews, 56, 1205–1217.PubMedCrossRef Paulos, C. M., Turk, M. J., Breur, G. J., & Low, P. S. (2004). Folate receptor-mediated targeting of therapeutic and imaging agents to activated macrophages in rheumatoid arthritis. Advanced Drug Delivery Reviews, 56, 1205–1217.PubMedCrossRef
41.
Zurück zum Zitat Nakashima-Matsushita, N., Homma, T., Yu, S., Matsuda, T., Sunahara, N., Nakamura, T., et al. (1999). Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis and Rheumatism, 42, 1609–1616.PubMedCrossRef Nakashima-Matsushita, N., Homma, T., Yu, S., Matsuda, T., Sunahara, N., Nakamura, T., et al. (1999). Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis. Arthritis and Rheumatism, 42, 1609–1616.PubMedCrossRef
42.
Zurück zum Zitat Ross, J. F., Wang, H., Behm, F. G., Mathew, P., Wu, M., Booth, R., et al. (1999). Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer, 85, 348–357.PubMedCrossRef Ross, J. F., Wang, H., Behm, F. G., Mathew, P., Wu, M., Booth, R., et al. (1999). Folate receptor type beta is a neutrophilic lineage marker and is differentially expressed in myeloid leukemia. Cancer, 85, 348–357.PubMedCrossRef
43.
Zurück zum Zitat Kamen, B. A., & Smith, A. K. (2004). A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Advanced Drug Delivery Reviews, 56, 1085–1097.PubMedCrossRef Kamen, B. A., & Smith, A. K. (2004). A review of folate receptor alpha cycling and 5-methyltetrahydrofolate accumulation with an emphasis on cell models in vitro. Advanced Drug Delivery Reviews, 56, 1085–1097.PubMedCrossRef
44.
Zurück zum Zitat Leamon, C. P., & Low, P. S. (1991). Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 88, 5572–5576.PubMedCrossRef Leamon, C. P., & Low, P. S. (1991). Delivery of macromolecules into living cells: a method that exploits folate receptor endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 88, 5572–5576.PubMedCrossRef
45.
Zurück zum Zitat Turek, J. J., Leamon, C. P., & Low, P. S. (1993). Endocytosis of folate-protein conjugates: ultrastructural localization in KB cells. Journal of Cell Science, 106(Pt 1), 423–430.PubMed Turek, J. J., Leamon, C. P., & Low, P. S. (1993). Endocytosis of folate-protein conjugates: ultrastructural localization in KB cells. Journal of Cell Science, 106(Pt 1), 423–430.PubMed
46.
Zurück zum Zitat Yang, J., Chen, H., Vlahov, I. R., Cheng, J. X., & Low, P. S. (2006). Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging. Proceedings of the National Academy of Sciences of the United States of America, 103, 13872–13877.PubMedCrossRef Yang, J., Chen, H., Vlahov, I. R., Cheng, J. X., & Low, P. S. (2006). Evaluation of disulfide reduction during receptor-mediated endocytosis by using FRET imaging. Proceedings of the National Academy of Sciences of the United States of America, 103, 13872–13877.PubMedCrossRef
47.
Zurück zum Zitat Paulos, C. M., Reddy, J. A., Leamon, C. P., Turk, M. J., & Low, P. S. (2004). Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery. Molecular Pharmacology, 66, 1406–1414.PubMedCrossRef Paulos, C. M., Reddy, J. A., Leamon, C. P., Turk, M. J., & Low, P. S. (2004). Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery. Molecular Pharmacology, 66, 1406–1414.PubMedCrossRef
48.
Zurück zum Zitat Leamon, C. P., Parker, M. A., Vlahov, I. R., Xu, L. C., Reddy, J. A., Vetzel, M., et al. (2002). Synthesis and biological evaluation of EC20: a new folate-derived, (99m)Tc-based radiopharmaceutical. Bioconjugate Chemistry, 13, 1200–1210.PubMedCrossRef Leamon, C. P., Parker, M. A., Vlahov, I. R., Xu, L. C., Reddy, J. A., Vetzel, M., et al. (2002). Synthesis and biological evaluation of EC20: a new folate-derived, (99m)Tc-based radiopharmaceutical. Bioconjugate Chemistry, 13, 1200–1210.PubMedCrossRef
49.
Zurück zum Zitat Vlashi, E., Sturgis, J., & Low, P. S. Real time, non-invasive and quantitative imaging of the accumulation of ligand-targeted drugs into receptor-expressing solid tumors. in press. Vlashi, E., Sturgis, J., & Low, P. S. Real time, non-invasive and quantitative imaging of the accumulation of ligand-targeted drugs into receptor-expressing solid tumors. in press.
50.
Zurück zum Zitat Leamon, C. P., & Low, P. S. (2001). Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discovery Today, 6, 44–51.PubMedCrossRef Leamon, C. P., & Low, P. S. (2001). Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discovery Today, 6, 44–51.PubMedCrossRef
51.
Zurück zum Zitat Leamon, C. P., & Low, P. S. (1992). Cytotoxicity of momordin–folate conjugates in cultured human cells. Journal of Biological Chemistry, 267, 24966–24971.PubMed Leamon, C. P., & Low, P. S. (1992). Cytotoxicity of momordin–folate conjugates in cultured human cells. Journal of Biological Chemistry, 267, 24966–24971.PubMed
52.
Zurück zum Zitat Atkinson, S. F., Bettinger, T., Seymour, L. W., Behr, J. P., & Ward, C. M. (2001). Conjugation of folate via gelonin carbohydrate residues retains ribosomal-inactivating properties of the toxin and permits targeting to folate receptor positive cells. Journal of Biological Chemistry, 276, 27930–27935.PubMedCrossRef Atkinson, S. F., Bettinger, T., Seymour, L. W., Behr, J. P., & Ward, C. M. (2001). Conjugation of folate via gelonin carbohydrate residues retains ribosomal-inactivating properties of the toxin and permits targeting to folate receptor positive cells. Journal of Biological Chemistry, 276, 27930–27935.PubMedCrossRef
53.
Zurück zum Zitat Leamon, C. P., Reddy, J. A., Vlahov, I. R., Westrick, E., Dawson, A., Dorton, R., et al. (2007). Preclinical antitumor activity of a novel folate-targeted dual drug conjugate. Molecular Pharmaceutics, 4, 659–667.PubMedCrossRef Leamon, C. P., Reddy, J. A., Vlahov, I. R., Westrick, E., Dawson, A., Dorton, R., et al. (2007). Preclinical antitumor activity of a novel folate-targeted dual drug conjugate. Molecular Pharmaceutics, 4, 659–667.PubMedCrossRef
54.
Zurück zum Zitat Reddy, J. A., Dorton, R., Westrick, E., Dawson, A., Smith, T., Xu, L. C., et al. (2007). Preclinical evaluation of EC145, a folate–vinca alkaloid conjugate. Cancer Research, 67, 4434–4442.PubMedCrossRef Reddy, J. A., Dorton, R., Westrick, E., Dawson, A., Smith, T., Xu, L. C., et al. (2007). Preclinical evaluation of EC145, a folate–vinca alkaloid conjugate. Cancer Research, 67, 4434–4442.PubMedCrossRef
55.
Zurück zum Zitat Leamon, C. P., Reddy, J. A., Vlahov, I. R., Vetzel, M., Parker, N., Nicoson, J. S., et al. (2005). Synthesis and biological evaluation of EC72: a new folate-targeted chemotherapeutic. Bioconjugate Chemistry, 16, 803–811.PubMedCrossRef Leamon, C. P., Reddy, J. A., Vlahov, I. R., Vetzel, M., Parker, N., Nicoson, J. S., et al. (2005). Synthesis and biological evaluation of EC72: a new folate-targeted chemotherapeutic. Bioconjugate Chemistry, 16, 803–811.PubMedCrossRef
56.
Zurück zum Zitat Henne, W. A., Doorneweerd, D. D., Hilgenbrink, A. R., Kularatne, S. A., & Low, P. S. (2006). Synthesis and activity of a folate peptide camptothecin prodrug. Bioorganic & Medicinal Chemistry Letters, 16, 5350–5355.CrossRef Henne, W. A., Doorneweerd, D. D., Hilgenbrink, A. R., Kularatne, S. A., & Low, P. S. (2006). Synthesis and activity of a folate peptide camptothecin prodrug. Bioorganic & Medicinal Chemistry Letters, 16, 5350–5355.CrossRef
57.
Zurück zum Zitat Reddy, J. A., & Low, P. S. (2000). Enhanced folate receptor mediated gene therapy using a novel pH-sensitive lipid formulation. Journal of Controlled Release, 64, 27–37.PubMedCrossRef Reddy, J. A., & Low, P. S. (2000). Enhanced folate receptor mediated gene therapy using a novel pH-sensitive lipid formulation. Journal of Controlled Release, 64, 27–37.PubMedCrossRef
58.
Zurück zum Zitat Xu, L., Pirollo, K. F., Tang, W. H., Rait, A., & Chang, E. H. (1999). Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Human Gene Therapy, 10, 2941–2952.PubMedCrossRef Xu, L., Pirollo, K. F., Tang, W. H., Rait, A., & Chang, E. H. (1999). Transferrin-liposome-mediated systemic p53 gene therapy in combination with radiation results in regression of human head and neck cancer xenografts. Human Gene Therapy, 10, 2941–2952.PubMedCrossRef
59.
Zurück zum Zitat Zhao, X. B., & Lee, R. J. (2004). Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Advanced Drug Delivery Reviews, 56, 1193–1204.PubMedCrossRef Zhao, X. B., & Lee, R. J. (2004). Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Advanced Drug Delivery Reviews, 56, 1193–1204.PubMedCrossRef
60.
Zurück zum Zitat Pan, X. Q., Zheng, X., Shi, G., Wang, H., Ratnam, M., & Lee, R. J. (2002). Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood, 100, 594–602.PubMedCrossRef Pan, X. Q., Zheng, X., Shi, G., Wang, H., Ratnam, M., & Lee, R. J. (2002). Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid. Blood, 100, 594–602.PubMedCrossRef
61.
Zurück zum Zitat Anderson, K. E., Eliot, L. A., Stevenson, B. R., & Rogers, J. A. (2001). Formulation and evaluation of a folic acid receptor-targeted oral vancomycin liposomal dosage form. Pharmaceutical Research, 18, 316–322.PubMedCrossRef Anderson, K. E., Eliot, L. A., Stevenson, B. R., & Rogers, J. A. (2001). Formulation and evaluation of a folic acid receptor-targeted oral vancomycin liposomal dosage form. Pharmaceutical Research, 18, 316–322.PubMedCrossRef
62.
Zurück zum Zitat Gabizon, A., Shmeeda, H., Horowitz, A. T., & Zalipsky, S. (2004). Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid–PEG conjugates. Advanced Drug Delivery Reviews, 56, 1177–1192.PubMedCrossRef Gabizon, A., Shmeeda, H., Horowitz, A. T., & Zalipsky, S. (2004). Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid–PEG conjugates. Advanced Drug Delivery Reviews, 56, 1177–1192.PubMedCrossRef
63.
Zurück zum Zitat Roy, E. J., Gawlick, U., Orr, B. A., & Kranz, D. M. (2004). Folate-mediated targeting of T cells to tumors. Advanced Drug Delivery Reviews, 56, 1219–1231.PubMedCrossRef Roy, E. J., Gawlick, U., Orr, B. A., & Kranz, D. M. (2004). Folate-mediated targeting of T cells to tumors. Advanced Drug Delivery Reviews, 56, 1219–1231.PubMedCrossRef
64.
Zurück zum Zitat Lu, Y., Sega, E., Leamon, C. P., & Low, P. S. (2004). Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential. Advanced Drug Delivery Reviews, 56, 1161–1176.PubMedCrossRef Lu, Y., Sega, E., Leamon, C. P., & Low, P. S. (2004). Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential. Advanced Drug Delivery Reviews, 56, 1161–1176.PubMedCrossRef
65.
Zurück zum Zitat Lu, Y., & Low, P. S. (2002). Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunology and Immunotherapy, 51, 153–162.PubMedCrossRef Lu, Y., & Low, P. S. (2002). Folate targeting of haptens to cancer cell surfaces mediates immunotherapy of syngeneic murine tumors. Cancer Immunology and Immunotherapy, 51, 153–162.PubMedCrossRef
66.
Zurück zum Zitat Cho, B. K., Roy, E. J., Patrick, T. A., & Kranz, D. M. (1997). Single-chain Fv/folate conjugates mediate efficient lysis of folate-receptor-positive tumor cells. Bioconjugate Chemistry, 8, 338–346.PubMedCrossRef Cho, B. K., Roy, E. J., Patrick, T. A., & Kranz, D. M. (1997). Single-chain Fv/folate conjugates mediate efficient lysis of folate-receptor-positive tumor cells. Bioconjugate Chemistry, 8, 338–346.PubMedCrossRef
67.
Zurück zum Zitat Quintana, A., Raczka, E., Piehler, L., Lee, I., Myc, A., Majoros, I., et al. (2002). Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceutical Research, 19, 1310–1316.PubMedCrossRef Quintana, A., Raczka, E., Piehler, L., Lee, I., Myc, A., Majoros, I., et al. (2002). Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceutical Research, 19, 1310–1316.PubMedCrossRef
68.
Zurück zum Zitat Lu, J. Y., Lowe, D. A., Kennedy, M. D., & Low, P. S. (1999). Folate-targeted enzyme prodrug cancer therapy utilizing penicillin-V amidase and a doxorubicin prodrug. Journal of Drug Targeting, 7, 43–53.PubMed Lu, J. Y., Lowe, D. A., Kennedy, M. D., & Low, P. S. (1999). Folate-targeted enzyme prodrug cancer therapy utilizing penicillin-V amidase and a doxorubicin prodrug. Journal of Drug Targeting, 7, 43–53.PubMed
69.
Zurück zum Zitat Low, P. S., & Antony, A. C. (2004). Folate receptor-targeted drugs for cancer and inflammatory diseases. Advanced Drug Delivery Reviews, 56, 1055–1238.PubMedCrossRef Low, P. S., & Antony, A. C. (2004). Folate receptor-targeted drugs for cancer and inflammatory diseases. Advanced Drug Delivery Reviews, 56, 1055–1238.PubMedCrossRef
70.
Zurück zum Zitat Mathias, C. J., Wang, S., Lee, R. J., Waters, D. J., Low, P. S., & Green, M. A. (1996). Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate. Journal of Nuclear Medicine, 37, 1003–1008.PubMed Mathias, C. J., Wang, S., Lee, R. J., Waters, D. J., Low, P. S., & Green, M. A. (1996). Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate. Journal of Nuclear Medicine, 37, 1003–1008.PubMed
71.
Zurück zum Zitat Mathias, C. J., Wang, S., Waters, D. J., Turek, J. J., Low, P. S., & Green, M. A. (1998). Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. Journal of Nuclear Medicine, 39, 1579–1585.PubMed Mathias, C. J., Wang, S., Waters, D. J., Turek, J. J., Low, P. S., & Green, M. A. (1998). Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. Journal of Nuclear Medicine, 39, 1579–1585.PubMed
72.
Zurück zum Zitat Wang, S., Luo, J., Lantrip, D. A., Waters, D. J., Mathias, C. J., Green, M. A., et al. (1997). Design and synthesis of [111In]DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjugate Chemistry, 8, 673–679.PubMedCrossRef Wang, S., Luo, J., Lantrip, D. A., Waters, D. J., Mathias, C. J., Green, M. A., et al. (1997). Design and synthesis of [111In]DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjugate Chemistry, 8, 673–679.PubMedCrossRef
73.
Zurück zum Zitat Guo, W., Hinkle, G. H., & Lee, R. J. (1999). 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. Journal of Nuclear Medicine, 40, 1563–1569.PubMed Guo, W., Hinkle, G. H., & Lee, R. J. (1999). 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. Journal of Nuclear Medicine, 40, 1563–1569.PubMed
74.
Zurück zum Zitat Ilgan, S., Yang, D. J., Higuchi, T., Zareneyrizi, F., Bayhan, H., Yu, D., et al. (1998). 99mTc-ethylenedicysteine-folate: a new tumor imaging agent. Synthesis, labeling and evaluation in animals. Cancer Biotherapy & Radiopharmaceuticals, 13, 427–435.CrossRef Ilgan, S., Yang, D. J., Higuchi, T., Zareneyrizi, F., Bayhan, H., Yu, D., et al. (1998). 99mTc-ethylenedicysteine-folate: a new tumor imaging agent. Synthesis, labeling and evaluation in animals. Cancer Biotherapy & Radiopharmaceuticals, 13, 427–435.CrossRef
75.
Zurück zum Zitat Mathias, C. J., Hubers, D., Low, P. S., & Green, M. A. (2000). Synthesis of [(99m)Tc]DTPA-folate and its evaluation as a folate-receptor-targeted radiopharmaceutical. Bioconjugate Chemistry, 11, 253–257.PubMedCrossRef Mathias, C. J., Hubers, D., Low, P. S., & Green, M. A. (2000). Synthesis of [(99m)Tc]DTPA-folate and its evaluation as a folate-receptor-targeted radiopharmaceutical. Bioconjugate Chemistry, 11, 253–257.PubMedCrossRef
76.
Zurück zum Zitat Trump, D. P., Mathias, C. J., Yang, Z., Low, P. S., Marmion, M., & Green, M. A. (2002). Synthesis and evaluation of 99mTc(CO)(3)-DTPA-folate as a folate-receptor-targeted radiopharmaceutical. Nuclear Medicine and Biology, 29, 569–573.PubMedCrossRef Trump, D. P., Mathias, C. J., Yang, Z., Low, P. S., Marmion, M., & Green, M. A. (2002). Synthesis and evaluation of 99mTc(CO)(3)-DTPA-folate as a folate-receptor-targeted radiopharmaceutical. Nuclear Medicine and Biology, 29, 569–573.PubMedCrossRef
77.
Zurück zum Zitat Muller, C., Hohn, A., Schubiger, P. A., & Schibli, R. (2006). Preclinical evaluation of novel organometallic 99mTc-folate and 99mTc-pteroate radiotracers for folate receptor-positive tumour targeting. European Journal of Nuclear Medicine and Molecular Imaging, 33, 1007–1016.PubMedCrossRef Muller, C., Hohn, A., Schubiger, P. A., & Schibli, R. (2006). Preclinical evaluation of novel organometallic 99mTc-folate and 99mTc-pteroate radiotracers for folate receptor-positive tumour targeting. European Journal of Nuclear Medicine and Molecular Imaging, 33, 1007–1016.PubMedCrossRef
78.
Zurück zum Zitat Muller, C., Schubiger, P. A., & Schibli, R. (2006). In vitro and in vivo targeting of different folate receptor-positive cancer cell lines with a novel 99mTc-radiofolate tracer. European Journal of Nuclear Medicine and Molecular Imaging, 33, 1162–1170.PubMedCrossRef Muller, C., Schubiger, P. A., & Schibli, R. (2006). In vitro and in vivo targeting of different folate receptor-positive cancer cell lines with a novel 99mTc-radiofolate tracer. European Journal of Nuclear Medicine and Molecular Imaging, 33, 1162–1170.PubMedCrossRef
79.
Zurück zum Zitat Muller, C., Bruhlmeier, M., Schubiger, P. A., & Schibli, R. (2006). Effects of antifolate drugs on the cellular uptake of radiofolates in vitro and in vivo. Journal of Nuclear Medicine, 47, 2057–2064.PubMed Muller, C., Bruhlmeier, M., Schubiger, P. A., & Schibli, R. (2006). Effects of antifolate drugs on the cellular uptake of radiofolates in vitro and in vivo. Journal of Nuclear Medicine, 47, 2057–2064.PubMed
80.
Zurück zum Zitat Weber, W. A. (2006). Positron emission tomography as an imaging biomarker. Journal of Clinical Oncology, 24, 3282–3292.PubMedCrossRef Weber, W. A. (2006). Positron emission tomography as an imaging biomarker. Journal of Clinical Oncology, 24, 3282–3292.PubMedCrossRef
81.
Zurück zum Zitat Barentsz, J., Takahashi, S., Oyen, W., Mus, R., De Mulder, P., Reznek, R., et al. (2006). Commonly used imaging techniques for diagnosis and staging. Journal of Clinical Oncology, 24, 3234–3244.PubMedCrossRef Barentsz, J., Takahashi, S., Oyen, W., Mus, R., De Mulder, P., Reznek, R., et al. (2006). Commonly used imaging techniques for diagnosis and staging. Journal of Clinical Oncology, 24, 3234–3244.PubMedCrossRef
82.
Zurück zum Zitat Rosenbaum, S. J., Lind, T., Antoch, G., & Bockisch, A. (2006). False-positive FDG PET uptake—the role of PET/CT. European Radiology, 16, 1054–1065.PubMedCrossRef Rosenbaum, S. J., Lind, T., Antoch, G., & Bockisch, A. (2006). False-positive FDG PET uptake—the role of PET/CT. European Radiology, 16, 1054–1065.PubMedCrossRef
83.
Zurück zum Zitat Mathias, C. J., Lewis, M. R., Reichert, D. E., Laforest, R., Sharp, T. L., Lewis, J. S., et al. (2003). Preparation of 66Ga- and 68Ga-labeled Ga(III)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals. Nuclear Medicine and Biology, 30, 725–731.PubMedCrossRef Mathias, C. J., Lewis, M. R., Reichert, D. E., Laforest, R., Sharp, T. L., Lewis, J. S., et al. (2003). Preparation of 66Ga- and 68Ga-labeled Ga(III)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals. Nuclear Medicine and Biology, 30, 725–731.PubMedCrossRef
84.
Zurück zum Zitat Schnall, M., & Rosen, M. (2006). Primer on imaging technologies for cancer. Journal of Clinical Oncology, 24, 3225–3233.PubMedCrossRef Schnall, M., & Rosen, M. (2006). Primer on imaging technologies for cancer. Journal of Clinical Oncology, 24, 3225–3233.PubMedCrossRef
85.
Zurück zum Zitat Strijkers, G. J., Mulder, W. J., van Tilborg, G. A., & Nicolay, K. (2007). MRI contrast agents: current status and future perspectives. Anti-Cancer Agents in Medicinal Chemistry, 7, 291–305.PubMedCrossRef Strijkers, G. J., Mulder, W. J., van Tilborg, G. A., & Nicolay, K. (2007). MRI contrast agents: current status and future perspectives. Anti-Cancer Agents in Medicinal Chemistry, 7, 291–305.PubMedCrossRef
86.
Zurück zum Zitat Wiener, E. C., Konda, S. D., Wang, S., & Brechbiel, M. (2002). Imaging folate binding protein expression with MRI. Academic Radiology, 9(Suppl 2), S316–S319.PubMedCrossRef Wiener, E. C., Konda, S. D., Wang, S., & Brechbiel, M. (2002). Imaging folate binding protein expression with MRI. Academic Radiology, 9(Suppl 2), S316–S319.PubMedCrossRef
87.
Zurück zum Zitat Choi, H., Choi, S. R., Zhou, R., Kung, H. F., & Chen, I. W. (2004). Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Academic Radiology, 11, 996–1004.PubMedCrossRef Choi, H., Choi, S. R., Zhou, R., Kung, H. F., & Chen, I. W. (2004). Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Academic Radiology, 11, 996–1004.PubMedCrossRef
88.
Zurück zum Zitat Sun, C., Sze, R., & Zhang, M. (2006). Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. Journal of Biomedical Materials Research, 78, 550–557.PubMed Sun, C., Sze, R., & Zhang, M. (2006). Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. Journal of Biomedical Materials Research, 78, 550–557.PubMed
89.
Zurück zum Zitat Becker, A., Hessenius, C., Licha, K., Ebert, B., Sukowski, U., Semmler, W., et al. (2001). Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nature Biotechnology, 19, 327–331.PubMedCrossRef Becker, A., Hessenius, C., Licha, K., Ebert, B., Sukowski, U., Semmler, W., et al. (2001). Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nature Biotechnology, 19, 327–331.PubMedCrossRef
90.
Zurück zum Zitat Cai, W., Shin, D. W., Chen, K., Gheysens, O., Cao, Q., Wang, S. X., et al. (2006). Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Letters, 6, 669–676.PubMedCrossRef Cai, W., Shin, D. W., Chen, K., Gheysens, O., Cao, Q., Wang, S. X., et al. (2006). Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Letters, 6, 669–676.PubMedCrossRef
91.
Zurück zum Zitat Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538–544.PubMedCrossRef Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538–544.PubMedCrossRef
92.
Zurück zum Zitat Gibson, A. P., Hebden, J. C., & Arridge, S. R. (2005). Recent advances in diffuse optical imaging. Physics in Medicine & Biology, 50, R1–R43.CrossRef Gibson, A. P., Hebden, J. C., & Arridge, S. R. (2005). Recent advances in diffuse optical imaging. Physics in Medicine & Biology, 50, R1–R43.CrossRef
93.
Zurück zum Zitat Kennedy, M. D., Jallad, K. N., Thompson, D. H., Ben-Amotz, D., & Low, P. S. (2003). Optical imaging of metastatic tumors using a folate-targeted fluorescent probe. Journal of Biomedical Optics, 8, 636–641.PubMedCrossRef Kennedy, M. D., Jallad, K. N., Thompson, D. H., Ben-Amotz, D., & Low, P. S. (2003). Optical imaging of metastatic tumors using a folate-targeted fluorescent probe. Journal of Biomedical Optics, 8, 636–641.PubMedCrossRef
94.
Zurück zum Zitat Milstein, A. B., Kennedy, M. D., Low, P. S., Bouman, C. A., & Webb, K. J. (2005). Statistical approach for detection and localization of a fluorescing mouse tumor in intralipid. Applied Optics, 44, 2300–2310.PubMedCrossRef Milstein, A. B., Kennedy, M. D., Low, P. S., Bouman, C. A., & Webb, K. J. (2005). Statistical approach for detection and localization of a fluorescing mouse tumor in intralipid. Applied Optics, 44, 2300–2310.PubMedCrossRef
95.
Zurück zum Zitat Tung, C. H., Lin, Y., Moon, W. K., & Weissleder, R. (2002). A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging. ChemBioChem, 3, 784–786.PubMedCrossRef Tung, C. H., Lin, Y., Moon, W. K., & Weissleder, R. (2002). A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging. ChemBioChem, 3, 784–786.PubMedCrossRef
96.
Zurück zum Zitat Moon, W. K., Lin, Y., O’Loughlin, T., Tang, Y., Kim, D. E., Weissleder, R., et al. (2003). Enhanced tumor detection using a folate receptor-targeted near-infrared fluorochrome conjugate. Bioconjugate Chemistry, 14, 539–545.PubMedCrossRef Moon, W. K., Lin, Y., O’Loughlin, T., Tang, Y., Kim, D. E., Weissleder, R., et al. (2003). Enhanced tumor detection using a folate receptor-targeted near-infrared fluorochrome conjugate. Bioconjugate Chemistry, 14, 539–545.PubMedCrossRef
97.
Zurück zum Zitat He, W., Wang, H., Hartmann, L. C., Cheng, J. X., & Low, P. S. (2007). In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proceedings of the National Academy of Sciences of the United States of America, 104, 11760–11765.PubMedCrossRef He, W., Wang, H., Hartmann, L. C., Cheng, J. X., & Low, P. S. (2007). In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proceedings of the National Academy of Sciences of the United States of America, 104, 11760–11765.PubMedCrossRef
98.
Zurück zum Zitat Bharali, D. J., Lucey, D. W., Jayakumar, H., Pudavar, H. E., & Prasad, P. N. (2005). Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. Journal of the American Chemical Society, 127, 11364–11371.PubMedCrossRef Bharali, D. J., Lucey, D. W., Jayakumar, H., Pudavar, H. E., & Prasad, P. N. (2005). Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. Journal of the American Chemical Society, 127, 11364–11371.PubMedCrossRef
99.
Zurück zum Zitat Varghese, B., Haase, N., & Low, P. S. (2007). Depletion of folate-receptor-positive macrophages leads to alleviation of symptoms and prolonged survival in two murine models of systemic lupus erythematosus. Molecular Pharmaceutics, 4, 679–685.PubMedCrossRef Varghese, B., Haase, N., & Low, P. S. (2007). Depletion of folate-receptor-positive macrophages leads to alleviation of symptoms and prolonged survival in two murine models of systemic lupus erythematosus. Molecular Pharmaceutics, 4, 679–685.PubMedCrossRef
Metadaten
Titel
Tumor detection using folate receptor-targeted imaging agents
verfasst von
Emanuela I. Sega
Philip S. Low
Publikationsdatum
01.12.2008
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 4/2008
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9155-6

Weitere Artikel der Ausgabe 4/2008

Cancer and Metastasis Reviews 4/2008 Zur Ausgabe

CAR-M-Zellen: Warten auf das große Fressen

22.05.2024 Onkologische Immuntherapie Nachrichten

Auch myeloide Immunzellen lassen sich mit chimären Antigenrezeptoren gegen Tumoren ausstatten. Solche CAR-Fresszell-Therapien werden jetzt für solide Tumoren entwickelt. Künftig soll dieser Prozess nicht mehr ex vivo, sondern per mRNA im Körper der Betroffenen erfolgen.

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.