Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1/2014

01.03.2014 | NON-THEMATIC REVIEW

GAP-independent functions of DLC1 in metastasis

verfasst von: David Barras, Christian Widmann

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1/2014

Einloggen, um Zugang zu erhalten

Abstract

Metastases are responsible for most cancer-related deaths. One of the hallmarks of metastatic cells is increased motility and migration through extracellular matrixes. These processes rely on specific small GTPases, in particular those of the Rho family. Deleted in liver cancer-1 (DLC1) is a tumor suppressor that bears a RhoGAP activity. This protein is lost in most cancers, allowing malignant cells to proliferate and disseminate in a Rho-dependent manner. However, DLC1 is also a scaffold protein involved in alternative pathways leading to tumor and metastasis suppressor activities. Recently, substantial information has been gathered on these mechanisms and this review is aiming at describing the potential and known alternative GAP-independent mechanisms allowing DLC1 to impair migration, invasion, and metastasis formation.
Literatur
1.
Zurück zum Zitat Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90. Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69–90.
2.
Zurück zum Zitat Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.PubMedCrossRef Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646–674.PubMedCrossRef
3.
Zurück zum Zitat Chiang, A. C., & Massague, J. (2008). Molecular basis of metastasis. New England Journal of Medicine, 359(26), 2814–2823.PubMedCrossRef Chiang, A. C., & Massague, J. (2008). Molecular basis of metastasis. New England Journal of Medicine, 359(26), 2814–2823.PubMedCrossRef
4.
Zurück zum Zitat Pollard, T. D., & Borisy, G. G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112(4), 453–465.PubMedCrossRef Pollard, T. D., & Borisy, G. G. (2003). Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112(4), 453–465.PubMedCrossRef
5.
Zurück zum Zitat Mitra, S. K., Hanson, D. A., & Schlaepfer, D. D. (2005). Focal adhesion kinase: in command and control of cell motility. Nature Reviews Molecular Cell Biology, 6(1), 56–68.PubMedCrossRef Mitra, S. K., Hanson, D. A., & Schlaepfer, D. D. (2005). Focal adhesion kinase: in command and control of cell motility. Nature Reviews Molecular Cell Biology, 6(1), 56–68.PubMedCrossRef
6.
Zurück zum Zitat Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nature Reviews Molecular Cell Biology, 2(11), 793–805.PubMedCrossRef Geiger, B., Bershadsky, A., Pankov, R., & Yamada, K. M. (2001). Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nature Reviews Molecular Cell Biology, 2(11), 793–805.PubMedCrossRef
7.
Zurück zum Zitat Grise, F., Bidaud, A., & Moreau, V. (2009). Rho GTPases in hepatocellular carcinoma. Biochimica et Biophysica Acta, 1795(2), 137–151.PubMed Grise, F., Bidaud, A., & Moreau, V. (2009). Rho GTPases in hepatocellular carcinoma. Biochimica et Biophysica Acta, 1795(2), 137–151.PubMed
8.
Zurück zum Zitat Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635.PubMedCrossRef Etienne-Manneville, S., & Hall, A. (2002). Rho GTPases in cell biology. Nature, 420(6916), 629–635.PubMedCrossRef
9.
Zurück zum Zitat Ridley, A. J. (2001). Rho GTPases and cell migration. Journal of Cell Science, 114(15), 2713–2722.PubMed Ridley, A. J. (2001). Rho GTPases and cell migration. Journal of Cell Science, 114(15), 2713–2722.PubMed
10.
Zurück zum Zitat Bos, J. L., Rehmann, H., & Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell, 129(5), 865–877.PubMedCrossRef Bos, J. L., Rehmann, H., & Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell, 129(5), 865–877.PubMedCrossRef
11.
Zurück zum Zitat Tcherkezian, J., & Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biology of the Cell, 99(2), 67–86.PubMedCrossRef Tcherkezian, J., & Lamarche-Vane, N. (2007). Current knowledge of the large RhoGAP family of proteins. Biology of the Cell, 99(2), 67–86.PubMedCrossRef
13.
Zurück zum Zitat Durkin, M. E., Yuan, B. Z., Zhou, X., Zimonjic, D. B., Lowy, D. R., Thorgeirsson, S. S., et al. (2007). DLC-1:a Rho GTPase-activating protein and tumour suppressor. Journal of Cellular and Molecular Medicine, 11(5), 1185–1207.PubMedCrossRef Durkin, M. E., Yuan, B. Z., Zhou, X., Zimonjic, D. B., Lowy, D. R., Thorgeirsson, S. S., et al. (2007). DLC-1:a Rho GTPase-activating protein and tumour suppressor. Journal of Cellular and Molecular Medicine, 11(5), 1185–1207.PubMedCrossRef
14.
Zurück zum Zitat Xue, W., Krasnitz, A., Lucito, R., Sordella, R., Vanaelst, L., Cordon-Cardo, C., et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes and Development, 22(11), 1439–1444.PubMedCentralPubMedCrossRef Xue, W., Krasnitz, A., Lucito, R., Sordella, R., Vanaelst, L., Cordon-Cardo, C., et al. (2008). DLC1 is a chromosome 8p tumor suppressor whose loss promotes hepatocellular carcinoma. Genes and Development, 22(11), 1439–1444.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Liao, Y. C., & Lo, S. H. (2008). Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver. International Journal of Biochemistry and Cell Biology, 40(5), 843–847.PubMedCentralPubMedCrossRef Liao, Y. C., & Lo, S. H. (2008). Deleted in liver cancer-1 (DLC-1): a tumor suppressor not just for liver. International Journal of Biochemistry and Cell Biology, 40(5), 843–847.PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Lukasik, D., Wilczek, E., Wasiutynski, A., & Gornicka, B. (2011). Deleted in liver cancer protein family in human malignancies (Review). Oncology Letters, 2(5), 763–768.PubMedCentralPubMed Lukasik, D., Wilczek, E., Wasiutynski, A., & Gornicka, B. (2011). Deleted in liver cancer protein family in human malignancies (Review). Oncology Letters, 2(5), 763–768.PubMedCentralPubMed
17.
Zurück zum Zitat El-Sitt, S., & El-Sibai, M. (2013). The STAR of the DLC family. Journal of Receptor and Signal Transduction Research, 33(1), 10–13.PubMedCrossRef El-Sitt, S., & El-Sibai, M. (2013). The STAR of the DLC family. Journal of Receptor and Signal Transduction Research, 33(1), 10–13.PubMedCrossRef
18.
Zurück zum Zitat Kim, T. Y., Vigil, D., Der, C. J., & Juliano, R. L. (2009). Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility. Cancer and Metastasis Reviews, 28(1–2), 77–83.PubMedCentralPubMedCrossRef Kim, T. Y., Vigil, D., Der, C. J., & Juliano, R. L. (2009). Role of DLC-1, a tumor suppressor protein with RhoGAP activity, in regulation of the cytoskeleton and cell motility. Cancer and Metastasis Reviews, 28(1–2), 77–83.PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Feng, X., Li, C., Liu, W., Chen, H., Zhou, W., Wang, L., et al. (2013). DLC-1, a candidate tumor suppressor gene, inhibits the proliferation, migration and tumorigenicity of human nasopharyngeal carcinoma cells. International Journal of Oncology, 42(6), 1973–1984.PubMed Feng, X., Li, C., Liu, W., Chen, H., Zhou, W., Wang, L., et al. (2013). DLC-1, a candidate tumor suppressor gene, inhibits the proliferation, migration and tumorigenicity of human nasopharyngeal carcinoma cells. International Journal of Oncology, 42(6), 1973–1984.PubMed
20.
Zurück zum Zitat Wu, P. P., Jin, Y. L., Shang, Y. F., Jin, Z., Wu, P., & Huang, P. L. (2009). Restoration of DLC1 gene inhibits proliferation and migration of human colon cancer HT29 cells. Annals of Clinical and Laboratory Science, 39(3), 263–269.PubMed Wu, P. P., Jin, Y. L., Shang, Y. F., Jin, Z., Wu, P., & Huang, P. L. (2009). Restoration of DLC1 gene inhibits proliferation and migration of human colon cancer HT29 cells. Annals of Clinical and Laboratory Science, 39(3), 263–269.PubMed
21.
Zurück zum Zitat Heering, J., Erlmann, P., & Olayioye, M. A. (2009). Simultaneous loss of the DLC1 and PTEN tumor suppressors enhances breast cancer cell migration. Experimental Cell Research, 315(15), 2505–2514.PubMedCrossRef Heering, J., Erlmann, P., & Olayioye, M. A. (2009). Simultaneous loss of the DLC1 and PTEN tumor suppressors enhances breast cancer cell migration. Experimental Cell Research, 315(15), 2505–2514.PubMedCrossRef
22.
Zurück zum Zitat Kim, T. Y., Healy, K. D., Der, C. J., Sciaky, N., Bang, Y. J., & Juliano, R. L. (2008). Effects of structure of Rho GTPase-activating protein DLC-1 on cell morphology and migration. Journal of Biological Chemistry, 283(47), 32762–32770.PubMedCentralPubMedCrossRef Kim, T. Y., Healy, K. D., Der, C. J., Sciaky, N., Bang, Y. J., & Juliano, R. L. (2008). Effects of structure of Rho GTPase-activating protein DLC-1 on cell morphology and migration. Journal of Biological Chemistry, 283(47), 32762–32770.PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Wong, C. M., Yam, J. W., Ching, Y. P., Yau, T. O., Leung, T. H., Jin, D. Y., et al. (2005). Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Research, 65(19), 8861–8868.PubMedCrossRef Wong, C. M., Yam, J. W., Ching, Y. P., Yau, T. O., Leung, T. H., Jin, D. Y., et al. (2005). Rho GTPase-activating protein deleted in liver cancer suppresses cell proliferation and invasion in hepatocellular carcinoma. Cancer Research, 65(19), 8861–8868.PubMedCrossRef
24.
Zurück zum Zitat Ullmannova-Benson, V., Guan, M., Zhou, X., Tripathi, V., Yang, X. Y., Zimonjic, D. B., et al. (2009). DLC1 tumor suppressor gene inhibits migration and invasion of multiple myeloma cells through RhoA GTPase pathway. Leukemia, 23(2), 383–390.PubMedCentralPubMedCrossRef Ullmannova-Benson, V., Guan, M., Zhou, X., Tripathi, V., Yang, X. Y., Zimonjic, D. B., et al. (2009). DLC1 tumor suppressor gene inhibits migration and invasion of multiple myeloma cells through RhoA GTPase pathway. Leukemia, 23(2), 383–390.PubMedCentralPubMedCrossRef
25.
Zurück zum Zitat Goodison, S., Yuan, J., Sloan, D., Kim, R., Li, C., Popescu, N. C., et al. (2005). The RhoGAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. Cancer Research, 65(14), 6042–6053.PubMedCentralPubMedCrossRef Goodison, S., Yuan, J., Sloan, D., Kim, R., Li, C., Popescu, N. C., et al. (2005). The RhoGAP protein DLC-1 functions as a metastasis suppressor in breast cancer cells. Cancer Research, 65(14), 6042–6053.PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Healy, K. D., Hodgson, L., Kim, T. Y., Shutes, A., Maddileti, S., Juliano, R. L., et al. (2008). DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. Molecular Carcinogenesis, 47(5), 326–337.PubMedCentralPubMedCrossRef Healy, K. D., Hodgson, L., Kim, T. Y., Shutes, A., Maddileti, S., Juliano, R. L., et al. (2008). DLC-1 suppresses non-small cell lung cancer growth and invasion by RhoGAP-dependent and independent mechanisms. Molecular Carcinogenesis, 47(5), 326–337.PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Zhou, X., Zimonjic, D. B., Park, S. W., Yang, X. Y., Durkin, M. E., & Popescu, N. C. (2008). DLC1 suppresses distant dissemination of human hepatocellular carcinoma cells in nude mice through reduction of RhoA GTPase activity, actin cytoskeletal disruption and down-regulation of genes involved in metastasis. International Journal of Oncology, 32(6), 1285–1291.PubMed Zhou, X., Zimonjic, D. B., Park, S. W., Yang, X. Y., Durkin, M. E., & Popescu, N. C. (2008). DLC1 suppresses distant dissemination of human hepatocellular carcinoma cells in nude mice through reduction of RhoA GTPase activity, actin cytoskeletal disruption and down-regulation of genes involved in metastasis. International Journal of Oncology, 32(6), 1285–1291.PubMed
28.
Zurück zum Zitat Yau, T. O., Leung, T. H., Lam, S., Cheung, O. F., Tung, E. K., Khong, P. L., et al. (2009). Deleted in liver cancer 2 (DLC2) was dispensable for development and its deficiency did not aggravate hepatocarcinogenesis. PLoS One, 4(8), e6566.PubMedCentralPubMedCrossRef Yau, T. O., Leung, T. H., Lam, S., Cheung, O. F., Tung, E. K., Khong, P. L., et al. (2009). Deleted in liver cancer 2 (DLC2) was dispensable for development and its deficiency did not aggravate hepatocarcinogenesis. PLoS One, 4(8), e6566.PubMedCentralPubMedCrossRef
29.
Zurück zum Zitat Homma, Y., & Emori, Y. (1995). A dual functional signal mediator showing RhoGAP and phospholipase C-δ stimulating activities. EMBO Journal, 14(2), 286–291.PubMedCentralPubMed Homma, Y., & Emori, Y. (1995). A dual functional signal mediator showing RhoGAP and phospholipase C-δ stimulating activities. EMBO Journal, 14(2), 286–291.PubMedCentralPubMed
30.
Zurück zum Zitat Yuan, B. Z., Miller, M. J., Keck, C. L., Zimonjic, D. B., Thorgeirsson, S. S., & Popescu, N. C. (1998). Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Research, 58(10), 2196–2199.PubMed Yuan, B. Z., Miller, M. J., Keck, C. L., Zimonjic, D. B., Thorgeirsson, S. S., & Popescu, N. C. (1998). Cloning, characterization, and chromosomal localization of a gene frequently deleted in human liver cancer (DLC-1) homologous to rat RhoGAP. Cancer Research, 58(10), 2196–2199.PubMed
31.
Zurück zum Zitat Durkin, M. E., Yuan, B. Z., Thorgeirsson, S. S., & Popescu, N. C. (2002). Gene structure, tissue expression, and linkage mapping of the mouse DLC-1 gene (Arhgap7). Gene, 288(1–2), 119–127.PubMedCrossRef Durkin, M. E., Yuan, B. Z., Thorgeirsson, S. S., & Popescu, N. C. (2002). Gene structure, tissue expression, and linkage mapping of the mouse DLC-1 gene (Arhgap7). Gene, 288(1–2), 119–127.PubMedCrossRef
32.
Zurück zum Zitat Qian, X., Durkin, M. E., Wang, D., Tripathi, B. K., Olson, L., Yang, X. Y., et al. (2012). Inactivation of the Dlc1 gene cooperates with downregulation of p15INK4b and p16Ink4a, leading to neoplastic transformation and poor prognosis in human cancer. Cancer Research, 72(22), 5900–5911.PubMedCrossRef Qian, X., Durkin, M. E., Wang, D., Tripathi, B. K., Olson, L., Yang, X. Y., et al. (2012). Inactivation of the Dlc1 gene cooperates with downregulation of p15INK4b and p16Ink4a, leading to neoplastic transformation and poor prognosis in human cancer. Cancer Research, 72(22), 5900–5911.PubMedCrossRef
33.
Zurück zum Zitat Yuan, B. Z., Zhou, X., Durkin, M. E., Zimonjic, D. B., Gumundsdottir, K., Eyfjord, J. E., et al. (2003). DLC-1 gene inhibits human breast cancer cell growth and in vivo tumorigenicity. Oncogene, 22(3), 445–450.PubMedCrossRef Yuan, B. Z., Zhou, X., Durkin, M. E., Zimonjic, D. B., Gumundsdottir, K., Eyfjord, J. E., et al. (2003). DLC-1 gene inhibits human breast cancer cell growth and in vivo tumorigenicity. Oncogene, 22(3), 445–450.PubMedCrossRef
34.
Zurück zum Zitat Sahai, E., Olson, M. F., & Marshall, C. J. (2001). Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO Journal, 20(4), 755–766.PubMedCentralPubMedCrossRef Sahai, E., Olson, M. F., & Marshall, C. J. (2001). Cross-talk between Ras and Rho signalling pathways in transformation favours proliferation and increased motility. EMBO Journal, 20(4), 755–766.PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef
36.
Zurück zum Zitat Matsuyama, H., Pan, Y., Oba, K., Yoshihiro, S., Matsuda, K., Hagarth, L., et al. (2001). Deletions on chromosome 8p22 may predict disease progression as well as pathological staging in prostate cancer. Clinical Cancer Research, 7(10), 3139–3143.PubMed Matsuyama, H., Pan, Y., Oba, K., Yoshihiro, S., Matsuda, K., Hagarth, L., et al. (2001). Deletions on chromosome 8p22 may predict disease progression as well as pathological staging in prostate cancer. Clinical Cancer Research, 7(10), 3139–3143.PubMed
37.
Zurück zum Zitat Wilson, P. J., McGlinn, E., Marsh, A., Evans, T., Arnold, J., Wright, K., et al. (2000). Sequence variants of DLC1 in colorectal and ovarian tumours. Human Mutation, 15(2), 156–165.PubMedCrossRef Wilson, P. J., McGlinn, E., Marsh, A., Evans, T., Arnold, J., Wright, K., et al. (2000). Sequence variants of DLC1 in colorectal and ovarian tumours. Human Mutation, 15(2), 156–165.PubMedCrossRef
38.
Zurück zum Zitat Yuan, B. Z., Durkin, M. E., & Popescu, N. C. (2003). Promoter hypermethylation of DLC-1, a candidate tumor suppressor gene, in several common human cancers. Cancer Genetics and Cytogenetics, 140(2), 113–117.PubMedCrossRef Yuan, B. Z., Durkin, M. E., & Popescu, N. C. (2003). Promoter hypermethylation of DLC-1, a candidate tumor suppressor gene, in several common human cancers. Cancer Genetics and Cytogenetics, 140(2), 113–117.PubMedCrossRef
39.
Zurück zum Zitat Guan, M., Zhou, X., Soulitzis, N., Spandidos, D. A., & Popescu, N. C. (2006). Aberrant methylation and deacetylation of deleted in liver cancer-1 gene in prostate cancer: potential clinical applications. Clinical Cancer Research, 12(5), 1412–1419.PubMedCrossRef Guan, M., Zhou, X., Soulitzis, N., Spandidos, D. A., & Popescu, N. C. (2006). Aberrant methylation and deacetylation of deleted in liver cancer-1 gene in prostate cancer: potential clinical applications. Clinical Cancer Research, 12(5), 1412–1419.PubMedCrossRef
40.
Zurück zum Zitat Scholz, R. P., Regner, J., Theil, A., Erlmann, P., Holeiter, G., Jahne, R., et al. (2009). DLC1 interacts with 14-3-3 proteins to inhibit RhoGAP activity and block nucleocytoplasmic shuttling. Journal of Cell Science, 122(1), 92–102.PubMedCrossRef Scholz, R. P., Regner, J., Theil, A., Erlmann, P., Holeiter, G., Jahne, R., et al. (2009). DLC1 interacts with 14-3-3 proteins to inhibit RhoGAP activity and block nucleocytoplasmic shuttling. Journal of Cell Science, 122(1), 92–102.PubMedCrossRef
41.
Zurück zum Zitat Scholz, R. P., Gustafsson, J. O., Hoffmann, P., Jaiswal, M., Ahmadian, M. R., Eisler, S. A., et al. (2011). The tumor suppressor protein DLC1 is regulated by PKD-mediated GAP domain phosphorylation. Experimental Cell Research, 317(4), 496–503.PubMedCrossRef Scholz, R. P., Gustafsson, J. O., Hoffmann, P., Jaiswal, M., Ahmadian, M. R., Eisler, S. A., et al. (2011). The tumor suppressor protein DLC1 is regulated by PKD-mediated GAP domain phosphorylation. Experimental Cell Research, 317(4), 496–503.PubMedCrossRef
42.
Zurück zum Zitat Ko, F. C., Chan, L. K., Tung, E. K., Lowe, S. W., Ng, I. O., & Yam, J. W. (2010). Akt phosphorylation of deleted in liver cancer 1 abrogates its suppression of liver cancer tumorigenesis and metastasis. Gastroenterology, 139(4), 1397–1407.PubMedCrossRef Ko, F. C., Chan, L. K., Tung, E. K., Lowe, S. W., Ng, I. O., & Yam, J. W. (2010). Akt phosphorylation of deleted in liver cancer 1 abrogates its suppression of liver cancer tumorigenesis and metastasis. Gastroenterology, 139(4), 1397–1407.PubMedCrossRef
43.
Zurück zum Zitat Ko, F. C., Chan, L. K., Man-Fong, S. K., Yeung, Y. S., Yuk-Ting, T. E., Lu, P., et al. (2013). PKA-induced dimerization of the RhoGAP DLC1 promotes its inhibition of tumorigenesis and metastasis. Nature Communications, 41618. Ko, F. C., Chan, L. K., Man-Fong, S. K., Yeung, Y. S., Yuk-Ting, T. E., Lu, P., et al. (2013). PKA-induced dimerization of the RhoGAP DLC1 promotes its inhibition of tumorigenesis and metastasis. Nature Communications, 41618.
44.
Zurück zum Zitat Zhong, D., Zhang, J., Yang, S., Soh, U. J., Buschdorf, J. P., Zhou, Y. T., et al. (2009). The SAM domain of the RhoGAP DLC1 binds EF1A1 to regulate cell migration. Journal of Cell Science, 122(3), 414–424.PubMedCrossRef Zhong, D., Zhang, J., Yang, S., Soh, U. J., Buschdorf, J. P., Zhou, Y. T., et al. (2009). The SAM domain of the RhoGAP DLC1 binds EF1A1 to regulate cell migration. Journal of Cell Science, 122(3), 414–424.PubMedCrossRef
45.
Zurück zum Zitat Kim, C. A., & Bowie, J. U. (2003). SAM domains: uniform structure, diversity of function. Trends in Biochemical Sciences, 28(12), 625–628.PubMedCrossRef Kim, C. A., & Bowie, J. U. (2003). SAM domains: uniform structure, diversity of function. Trends in Biochemical Sciences, 28(12), 625–628.PubMedCrossRef
46.
Zurück zum Zitat Li, G., Du, X., Vass, W. C., Papageorge, A. G., Lowy, D. R., & Qian, X. (2011). Full activity of the deleted in liver cancer 1 (DLC1) tumor suppressor depends on an LD-like motif that binds talin and focal adhesion kinase (FAK). Proceedings of the National Academy of Sciences of the United States of America, 108(41), 17129–17134.PubMedCentralPubMedCrossRef Li, G., Du, X., Vass, W. C., Papageorge, A. G., Lowy, D. R., & Qian, X. (2011). Full activity of the deleted in liver cancer 1 (DLC1) tumor suppressor depends on an LD-like motif that binds talin and focal adhesion kinase (FAK). Proceedings of the National Academy of Sciences of the United States of America, 108(41), 17129–17134.PubMedCentralPubMedCrossRef
47.
Zurück zum Zitat Sekimata, M., Kabuyama, Y., Emori, Y., & Homma, Y. (1999). Morphological changes and detachment of adherent cells induced by p122, a GTPase-activating protein for Rho. Journal of Biological Chemistry, 274(25), 17757–17762.PubMedCrossRef Sekimata, M., Kabuyama, Y., Emori, Y., & Homma, Y. (1999). Morphological changes and detachment of adherent cells induced by p122, a GTPase-activating protein for Rho. Journal of Biological Chemistry, 274(25), 17757–17762.PubMedCrossRef
48.
Zurück zum Zitat Clark, B. J. (2012). The mammalian START domain protein family in lipid transport in health and disease. Journal of Endocrinology, 212(3), 257–275.PubMedCrossRef Clark, B. J. (2012). The mammalian START domain protein family in lipid transport in health and disease. Journal of Endocrinology, 212(3), 257–275.PubMedCrossRef
49.
Zurück zum Zitat Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Reviews Cancer, 3(5), 362–374.PubMedCrossRef Friedl, P., & Wolf, K. (2003). Tumour-cell invasion and migration: diversity and escape mechanisms. Nature Reviews Cancer, 3(5), 362–374.PubMedCrossRef
50.
Zurück zum Zitat Holeiter, G., Heering, J., Erlmann, P., Schmid, S., Jahne, R., & Olayioye, M. A. (2008). Deleted in liver cancer 1 controls cell migration through a Dia1-dependent signaling pathway. Cancer Research, 68(21), 8743–8751.PubMedCrossRef Holeiter, G., Heering, J., Erlmann, P., Schmid, S., Jahne, R., & Olayioye, M. A. (2008). Deleted in liver cancer 1 controls cell migration through a Dia1-dependent signaling pathway. Cancer Research, 68(21), 8743–8751.PubMedCrossRef
51.
Zurück zum Zitat Jin, Y., Tian, X., Shang, Y., & Huang, P. (2008). Inhibition of DLC-1 gene expression by RNA interference in the colon cancer LoVo cell line. Oncology Reports, 19(3), 669–674.PubMed Jin, Y., Tian, X., Shang, Y., & Huang, P. (2008). Inhibition of DLC-1 gene expression by RNA interference in the colon cancer LoVo cell line. Oncology Reports, 19(3), 669–674.PubMed
52.
Zurück zum Zitat Shih, Y. P., Takada, Y., & Lo, S. H. (2012). Silencing of DLC1 upregulates PAI-1 expression and reduces migration in normal prostate cells. Molecular Cancer Research, 10(1), 34–39.PubMedCentralPubMedCrossRef Shih, Y. P., Takada, Y., & Lo, S. H. (2012). Silencing of DLC1 upregulates PAI-1 expression and reduces migration in normal prostate cells. Molecular Cancer Research, 10(1), 34–39.PubMedCentralPubMedCrossRef
53.
Zurück zum Zitat Durkin, M. E., Avner, M. R., Huh, C. G., Yuan, B. Z., Thorgeirsson, S. S., & Popescu, N. C. (2005). DLC-1, a Rho GTPase-activating protein with tumor suppressor function, is essential for embryonic development. FEBS Letters, 579(5), 1191–1196.PubMedCrossRef Durkin, M. E., Avner, M. R., Huh, C. G., Yuan, B. Z., Thorgeirsson, S. S., & Popescu, N. C. (2005). DLC-1, a Rho GTPase-activating protein with tumor suppressor function, is essential for embryonic development. FEBS Letters, 579(5), 1191–1196.PubMedCrossRef
54.
Zurück zum Zitat Franz, C. M., Jones, G. E., & Ridley, A. J. (2002). Cell migration in development and disease. Developmental Cell, 2(2), 153–158.PubMedCrossRef Franz, C. M., Jones, G. E., & Ridley, A. J. (2002). Cell migration in development and disease. Developmental Cell, 2(2), 153–158.PubMedCrossRef
55.
Zurück zum Zitat Pilz, D., Stoodley, N., & Golden, J. A. (2002). Neuronal migration, cerebral cortical development, and cerebral cortical anomalies. Journal of Neuropathology and Experimental Neurology, 61(1), 1–11.PubMed Pilz, D., Stoodley, N., & Golden, J. A. (2002). Neuronal migration, cerebral cortical development, and cerebral cortical anomalies. Journal of Neuropathology and Experimental Neurology, 61(1), 1–11.PubMed
56.
Zurück zum Zitat Cramer L.P. (2013). Mechanism of cell rear retraction in migrating cells. Current Opinion in Cell Biology 25:591–599. Cramer L.P. (2013). Mechanism of cell rear retraction in migrating cells. Current Opinion in Cell Biology 25:591–599.
58.
Zurück zum Zitat Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion, and adhesion during cell movement. Journal of Cell Biology, 144(6), 1235–1244.PubMedCentralPubMedCrossRef Nobes, C. D., & Hall, A. (1999). Rho GTPases control polarity, protrusion, and adhesion during cell movement. Journal of Cell Biology, 144(6), 1235–1244.PubMedCentralPubMedCrossRef
59.
Zurück zum Zitat Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70(3), 389–399.PubMedCrossRef Ridley, A. J., & Hall, A. (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell, 70(3), 389–399.PubMedCrossRef
60.
Zurück zum Zitat Takaishi, K., Kikuchi, A., Kuroda, S., Kotani, K., Sasaki, T., & Takai, Y. (1993). Involvement of rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in cell motility. Molecular and Cellular Biology, 13(1), 72–79.PubMedCentralPubMed Takaishi, K., Kikuchi, A., Kuroda, S., Kotani, K., Sasaki, T., & Takai, Y. (1993). Involvement of rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in cell motility. Molecular and Cellular Biology, 13(1), 72–79.PubMedCentralPubMed
61.
Zurück zum Zitat Monnier, Y., Farmer, P., Bieler, G., Imaizumi, N., Sengstag, T., Alghisi, G. C., et al. (2008). CYR61 and αVβ5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Research, 68(18), 7323–7331.PubMedCrossRef Monnier, Y., Farmer, P., Bieler, G., Imaizumi, N., Sengstag, T., Alghisi, G. C., et al. (2008). CYR61 and αVβ5 integrin cooperate to promote invasion and metastasis of tumors growing in preirradiated stroma. Cancer Research, 68(18), 7323–7331.PubMedCrossRef
62.
Zurück zum Zitat Yilmaz, M., & Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer and Metastasis Reviews, 28(1–2), 15–33.PubMedCrossRef Yilmaz, M., & Christofori, G. (2009). EMT, the cytoskeleton, and cancer cell invasion. Cancer and Metastasis Reviews, 28(1–2), 15–33.PubMedCrossRef
63.
Zurück zum Zitat Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392(6672), 190–193.PubMedCrossRef Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392(6672), 190–193.PubMedCrossRef
64.
Zurück zum Zitat Banyard, J., Anand-Apte, B., Symons, M., & Zetter, B. R. (2000). Motility and invasion are differentially modulated by Rho family GTPases. Oncogene, 19(4), 580–591.PubMedCrossRef Banyard, J., Anand-Apte, B., Symons, M., & Zetter, B. R. (2000). Motility and invasion are differentially modulated by Rho family GTPases. Oncogene, 19(4), 580–591.PubMedCrossRef
65.
Zurück zum Zitat Sahai, E., & Marshall, C. J. (2002). RHO-GTPases and cancer. Nature Reviews Cancer, 2(2), 133–142.PubMedCrossRef Sahai, E., & Marshall, C. J. (2002). RHO-GTPases and cancer. Nature Reviews Cancer, 2(2), 133–142.PubMedCrossRef
66.
Zurück zum Zitat Yoshioka, K., Nakamori, S., & Itoh, K. (1999). Overexpression of small GTP-binding protein RhoA promotes invasion of tumor cells. Cancer Research, 59(8), 2004–2010.PubMed Yoshioka, K., Nakamori, S., & Itoh, K. (1999). Overexpression of small GTP-binding protein RhoA promotes invasion of tumor cells. Cancer Research, 59(8), 2004–2010.PubMed
67.
Zurück zum Zitat Wheeler, A. P., & Ridley, A. J. (2004). Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Experimental Cell Research, 301(1), 43–49.PubMedCrossRef Wheeler, A. P., & Ridley, A. J. (2004). Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Experimental Cell Research, 301(1), 43–49.PubMedCrossRef
68.
Zurück zum Zitat Liu, A. X., Rane, N., Liu, J. P., & Prendergast, G. C. (2001). RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Molecular and Cellular Biology, 21(20), 6906–6912.PubMedCentralPubMedCrossRef Liu, A. X., Rane, N., Liu, J. P., & Prendergast, G. C. (2001). RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Molecular and Cellular Biology, 21(20), 6906–6912.PubMedCentralPubMedCrossRef
69.
Zurück zum Zitat Hakem, A., Sanchez-Sweatman, O., You-Ten, A., Duncan, G., Wakeham, A., Khokha, R., et al. (2005). RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes and Development, 19(17), 1974–1979.PubMedCentralPubMedCrossRef Hakem, A., Sanchez-Sweatman, O., You-Ten, A., Duncan, G., Wakeham, A., Khokha, R., et al. (2005). RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes and Development, 19(17), 1974–1979.PubMedCentralPubMedCrossRef
70.
Zurück zum Zitat Clark, E. A., Golub, T. R., Lander, E. S., & Hynes, R. O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 406(6795), 532–535.PubMedCrossRef Clark, E. A., Golub, T. R., Lander, E. S., & Hynes, R. O. (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 406(6795), 532–535.PubMedCrossRef
71.
Zurück zum Zitat Iiizumi, M., Bandyopadhyay, S., Pai, S. K., Watabe, M., Hirota, S., Hosobe, S., et al. (2008). RhoC promotes metastasis via activation of the Pyk2 pathway in prostate cancer. Cancer Research, 68(18), 7613–7620.PubMedCentralPubMedCrossRef Iiizumi, M., Bandyopadhyay, S., Pai, S. K., Watabe, M., Hirota, S., Hosobe, S., et al. (2008). RhoC promotes metastasis via activation of the Pyk2 pathway in prostate cancer. Cancer Research, 68(18), 7613–7620.PubMedCentralPubMedCrossRef
72.
Zurück zum Zitat Bishop, A. L., & Hall, A. (2000). Rho GTPases and their effector proteins. Biochemistry Journal, 348(2), 2241–2255.CrossRef Bishop, A. L., & Hall, A. (2000). Rho GTPases and their effector proteins. Biochemistry Journal, 348(2), 2241–2255.CrossRef
73.
Zurück zum Zitat Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., et al. (1996). Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO Journal, 15(9), 2208–2216.PubMedCentralPubMed Matsui, T., Amano, M., Yamamoto, T., Chihara, K., Nakafuku, M., Ito, M., et al. (1996). Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO Journal, 15(9), 2208–2216.PubMedCentralPubMed
74.
Zurück zum Zitat Chesarone, M. A., DuPage, A. G., & Goode, B. L. (2010). Unleashing formins to remodel the actin and microtubule cytoskeletons. Nature Reviews Molecular Cell Biology, 11(1), 62–74.PubMedCrossRef Chesarone, M. A., DuPage, A. G., & Goode, B. L. (2010). Unleashing formins to remodel the actin and microtubule cytoskeletons. Nature Reviews Molecular Cell Biology, 11(1), 62–74.PubMedCrossRef
75.
Zurück zum Zitat Raftopoulou, M., & Hall, A. (2004). Cell migration: Rho GTPases lead the way. Developments in Biologicals, 265(1), 23–32.CrossRef Raftopoulou, M., & Hall, A. (2004). Cell migration: Rho GTPases lead the way. Developments in Biologicals, 265(1), 23–32.CrossRef
76.
Zurück zum Zitat Palazzo, A. F., Joseph, H. L., Chen, Y. J., Dujardin, D. L., Alberts, A. S., Pfister, K. K., et al. (2001). Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Current Biology, 11(19), 1536–1541.PubMedCrossRef Palazzo, A. F., Joseph, H. L., Chen, Y. J., Dujardin, D. L., Alberts, A. S., Pfister, K. K., et al. (2001). Cdc42, dynein, and dynactin regulate MTOC reorientation independent of Rho-regulated microtubule stabilization. Current Biology, 11(19), 1536–1541.PubMedCrossRef
77.
Zurück zum Zitat Reymond, N., Im, J. H., Garg, R., Vega, F. M., Borda, D. B., Riou, P., et al. (2012). Cdc42 promotes transendothelial migration of cancer cells through β1 integrin. Journal of Cell Biology, 199(4), 653–668.PubMedCentralPubMedCrossRef Reymond, N., Im, J. H., Garg, R., Vega, F. M., Borda, D. B., Riou, P., et al. (2012). Cdc42 promotes transendothelial migration of cancer cells through β1 integrin. Journal of Cell Biology, 199(4), 653–668.PubMedCentralPubMedCrossRef
78.
Zurück zum Zitat Wong, C. C., Wong, C. M., Ko, F. C., Chan, L. K., Ching, Y. P., Yam, J. W., et al. (2008). Deleted in liver cancer 1 (DLC1) negatively regulates Rho/ROCK/MLC pathway in hepatocellular carcinoma. PLoS One, 3(7), e2779.PubMedCentralPubMedCrossRef Wong, C. C., Wong, C. M., Ko, F. C., Chan, L. K., Ching, Y. P., Yam, J. W., et al. (2008). Deleted in liver cancer 1 (DLC1) negatively regulates Rho/ROCK/MLC pathway in hepatocellular carcinoma. PLoS One, 3(7), e2779.PubMedCentralPubMedCrossRef
79.
Zurück zum Zitat Ishizaki, T., Uehata, M., Tamechika, I., Keel, J., Nonomura, K., Maekawa, M., et al. (2000). Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Molecular Pharmacology, 57(5), 976–983.PubMed Ishizaki, T., Uehata, M., Tamechika, I., Keel, J., Nonomura, K., Maekawa, M., et al. (2000). Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Molecular Pharmacology, 57(5), 976–983.PubMed
80.
Zurück zum Zitat Tripathi, V., Popescu, N. C., & Zimonjic, D. B. (2012). DLC1 interaction with α-catenin stabilizes adherens junctions and enhances DLC1 antioncogenic activity. Molecular and Cellular Biology, 32(11), 2145–2159.PubMedCentralPubMedCrossRef Tripathi, V., Popescu, N. C., & Zimonjic, D. B. (2012). DLC1 interaction with α-catenin stabilizes adherens junctions and enhances DLC1 antioncogenic activity. Molecular and Cellular Biology, 32(11), 2145–2159.PubMedCentralPubMedCrossRef
81.
Zurück zum Zitat Harris, T. J., & Tepass, U. (2010). Adherens junctions: from molecules to morphogenesis. Nature Reviews Molecular Cell Biology, 11(7), 502–514.PubMedCrossRef Harris, T. J., & Tepass, U. (2010). Adherens junctions: from molecules to morphogenesis. Nature Reviews Molecular Cell Biology, 11(7), 502–514.PubMedCrossRef
82.
Zurück zum Zitat Desai, R., Sarpal, R., Ishiyama, N., Pellikka, M., Ikura, M., & Tepass, U. (2013). Monomeric α-catenin links cadherin to the actin cytoskeleton. Nature Cell Biology, 15(3), 261–273.PubMedCrossRef Desai, R., Sarpal, R., Ishiyama, N., Pellikka, M., Ikura, M., & Tepass, U. (2013). Monomeric α-catenin links cadherin to the actin cytoskeleton. Nature Cell Biology, 15(3), 261–273.PubMedCrossRef
83.
Zurück zum Zitat Kobielak, A., & Fuchs, E. (2004). α-catenin: at the junction of intercellular adhesion and actin dynamics. Nature Reviews Molecular Cell Biology, 5(8), 614–625.PubMedCentralPubMedCrossRef Kobielak, A., & Fuchs, E. (2004). α-catenin: at the junction of intercellular adhesion and actin dynamics. Nature Reviews Molecular Cell Biology, 5(8), 614–625.PubMedCentralPubMedCrossRef
84.
Zurück zum Zitat Tripathi V., Popescu N.C. & Zimonjic D.B. (2013). DLC1 induces expression of E-cadherin in prostate cancer cells through Rho pathway and suppresses invasion. Oncogene. doi:10.1038/onc.2013.7. Tripathi V., Popescu N.C. & Zimonjic D.B. (2013). DLC1 induces expression of E-cadherin in prostate cancer cells through Rho pathway and suppresses invasion. Oncogene. doi:10.​1038/​onc.​2013.​7.
85.
Zurück zum Zitat Yam, J. W., Ko, F. C., Chan, C. Y., Jin, D. Y., & Ng, I. O. (2006). Interaction of deleted in liver cancer 1 with tensin2 in caveolae and implications in tumor suppression. Cancer Research, 66(17), 8367–8372.PubMedCrossRef Yam, J. W., Ko, F. C., Chan, C. Y., Jin, D. Y., & Ng, I. O. (2006). Interaction of deleted in liver cancer 1 with tensin2 in caveolae and implications in tumor suppression. Cancer Research, 66(17), 8367–8372.PubMedCrossRef
86.
Zurück zum Zitat Qian, X., Li, G., Asmussen, H. K., Asnaghi, L., Vass, W. C., Braverman, R., et al. (2007). Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 9012–9017.PubMedCentralPubMedCrossRef Qian, X., Li, G., Asmussen, H. K., Asnaghi, L., Vass, W. C., Braverman, R., et al. (2007). Oncogenic inhibition by a deleted in liver cancer gene requires cooperation between tensin binding and Rho-specific GTPase-activating protein activities. Proceedings of the National Academy of Sciences of the United States of America, 104(21), 9012–9017.PubMedCentralPubMedCrossRef
87.
Zurück zum Zitat Liao, Y. C., Si, L., deVere White, R. W., & Lo, S. H. (2007). The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1. Journal of Cell Biology, 176(1), 43–49.PubMedCentralPubMedCrossRef Liao, Y. C., Si, L., deVere White, R. W., & Lo, S. H. (2007). The phosphotyrosine-independent interaction of DLC-1 and the SH2 domain of cten regulates focal adhesion localization and growth suppression activity of DLC-1. Journal of Cell Biology, 176(1), 43–49.PubMedCentralPubMedCrossRef
88.
Zurück zum Zitat Cao, X., Voss, C., Zhao, B., Kaneko, T., & Li, S. S. (2012). Differential regulation of the activity of deleted in liver cancer 1 (DLC1) by tensins controls cell migration and transformation. Proceedings of the National Academy of Sciences of the United States of America, 109(5), 1455–1460.PubMedCentralPubMedCrossRef Cao, X., Voss, C., Zhao, B., Kaneko, T., & Li, S. S. (2012). Differential regulation of the activity of deleted in liver cancer 1 (DLC1) by tensins controls cell migration and transformation. Proceedings of the National Academy of Sciences of the United States of America, 109(5), 1455–1460.PubMedCentralPubMedCrossRef
89.
Zurück zum Zitat Yang, X., Popescu, N. C., & Zimonjic, D. B. (2011). DLC1 interaction with S100A10 mediates inhibition of in vitro cell invasion and tumorigenicity of lung cancer cells through a RhoGAP-independent mechanism. Cancer Research, 71(8), 2916–2925.PubMedCentralPubMedCrossRef Yang, X., Popescu, N. C., & Zimonjic, D. B. (2011). DLC1 interaction with S100A10 mediates inhibition of in vitro cell invasion and tumorigenicity of lung cancer cells through a RhoGAP-independent mechanism. Cancer Research, 71(8), 2916–2925.PubMedCentralPubMedCrossRef
90.
Zurück zum Zitat Du, X., Qian, X., Papageorge, A., Schetter, A. J., Vass, W. C., Liu, X., et al. (2012). Functional interaction of tumor suppressor DLC1 and caveolin-1 in cancer cells. Cancer Research, 72(17), 4405–4416.PubMedCrossRef Du, X., Qian, X., Papageorge, A., Schetter, A. J., Vass, W. C., Liu, X., et al. (2012). Functional interaction of tumor suppressor DLC1 and caveolin-1 in cancer cells. Cancer Research, 72(17), 4405–4416.PubMedCrossRef
91.
Zurück zum Zitat Yang, X. Y., Guan, M., Vigil, D., Der, C. J., Lowy, D. R., & Popescu, N. C. (2009). p120Ras-GAP binds the DLC1 Rho-GAP tumor suppressor protein and inhibits its RhoA GTPase and growth-suppressing activities. Oncogene, 28(11), 1401–1409.PubMedCentralPubMedCrossRef Yang, X. Y., Guan, M., Vigil, D., Der, C. J., Lowy, D. R., & Popescu, N. C. (2009). p120Ras-GAP binds the DLC1 Rho-GAP tumor suppressor protein and inhibits its RhoA GTPase and growth-suppressing activities. Oncogene, 28(11), 1401–1409.PubMedCentralPubMedCrossRef
92.
Zurück zum Zitat Yin, H. L., & Janmey, P. A. (2003). Phosphoinositide regulation of the actin cytoskeleton. Annual Review of Physiology, 65(65), 761–789.PubMedCrossRef Yin, H. L., & Janmey, P. A. (2003). Phosphoinositide regulation of the actin cytoskeleton. Annual Review of Physiology, 65(65), 761–789.PubMedCrossRef
93.
Zurück zum Zitat Raucher, D., Stauffer, T., Chen, W., Shen, K., Guo, S., York, J. D., et al. (2000). Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell, 100(2), 221–228.PubMedCrossRef Raucher, D., Stauffer, T., Chen, W., Shen, K., Guo, S., York, J. D., et al. (2000). Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell, 100(2), 221–228.PubMedCrossRef
94.
Zurück zum Zitat Toker, A. (1998). The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. Current Opinion in Cell Biology, 10(2), 254–261.PubMedCrossRef Toker, A. (1998). The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. Current Opinion in Cell Biology, 10(2), 254–261.PubMedCrossRef
95.
Zurück zum Zitat Kawai, K., Yamaga, M., Iwamae, Y., Kiyota, M., Kamata, H., Hirata, H., et al. (2004). A PLCδ1-binding protein, p122RhoGAP, is localized in focal adhesions. Biochemical Society Transactions, 32(6), 1107–1109.PubMedCrossRef Kawai, K., Yamaga, M., Iwamae, Y., Kiyota, M., Kamata, H., Hirata, H., et al. (2004). A PLCδ1-binding protein, p122RhoGAP, is localized in focal adhesions. Biochemical Society Transactions, 32(6), 1107–1109.PubMedCrossRef
96.
Zurück zum Zitat Xiang, T., Li, L., Fan, Y., Jiang, Y., Ying, Y., Putti, T. C., et al. (2010). PLCD1 is a functional tumor suppressor inducing G(2)/M arrest and frequently methylated in breast cancer. Cancer Biology and Therapy, 10(5), 520–527.PubMedCrossRef Xiang, T., Li, L., Fan, Y., Jiang, Y., Ying, Y., Putti, T. C., et al. (2010). PLCD1 is a functional tumor suppressor inducing G(2)/M arrest and frequently methylated in breast cancer. Cancer Biology and Therapy, 10(5), 520–527.PubMedCrossRef
97.
Zurück zum Zitat Liao, Y. C., Shih, Y. P., & Lo, S. H. (2008). Mutations in the focal adhesion targeting region of deleted in liver cancer-1 attenuate their expression and function. Cancer Research, 68(19), 7718–7722.PubMedCentralPubMedCrossRef Liao, Y. C., Shih, Y. P., & Lo, S. H. (2008). Mutations in the focal adhesion targeting region of deleted in liver cancer-1 attenuate their expression and function. Cancer Research, 68(19), 7718–7722.PubMedCentralPubMedCrossRef
98.
Zurück zum Zitat Kawai, K., Iwamae, Y., Yamaga, M., Kiyota, M., Ishii, H., Hirata, H., et al. (2009). Focal adhesion-localization of START-GAP1/DLC1 is essential for cell motility and morphology. Genes to Cells, 14(2), 227–241.PubMedCrossRef Kawai, K., Iwamae, Y., Yamaga, M., Kiyota, M., Ishii, H., Hirata, H., et al. (2009). Focal adhesion-localization of START-GAP1/DLC1 is essential for cell motility and morphology. Genes to Cells, 14(2), 227–241.PubMedCrossRef
99.
Zurück zum Zitat Chan, L. K., Ko, F. C., Ng, I. O., & Yam, J. W. (2009). Deleted in liver cancer 1 (DLC1) utilizes a novel binding site for Tensin2 PTB domain interaction and is required for tumor-suppressive function. PLoS One, 4(5), e5572.PubMedCentralPubMedCrossRef Chan, L. K., Ko, F. C., Ng, I. O., & Yam, J. W. (2009). Deleted in liver cancer 1 (DLC1) utilizes a novel binding site for Tensin2 PTB domain interaction and is required for tumor-suppressive function. PLoS One, 4(5), e5572.PubMedCentralPubMedCrossRef
100.
Zurück zum Zitat Chan, L. K., Ko, F. C., Sze, K. M., Ng, I. O., & Yam, J. W. (2011). Nuclear-targeted deleted in liver cancer 1 (DLC1) is less efficient in exerting its tumor suppressive activity both in vitro and in vivo. PLoS One, 6(9), e25547.PubMedCentralPubMedCrossRef Chan, L. K., Ko, F. C., Sze, K. M., Ng, I. O., & Yam, J. W. (2011). Nuclear-targeted deleted in liver cancer 1 (DLC1) is less efficient in exerting its tumor suppressive activity both in vitro and in vivo. PLoS One, 6(9), e25547.PubMedCentralPubMedCrossRef
101.
Zurück zum Zitat Chen, L., Liu, C., Ko, F. C., Xu, N., Ng, I. O., Yam, J. W., et al. (2012). Solution structure of the phosphotyrosine binding (PTB) domain of human tensin2 protein in complex with deleted in liver cancer 1 (DLC1) peptide reveals a novel peptide binding mode. Journal of Biological Chemistry, 287(31), 26104–26114.PubMedCentralPubMedCrossRef Chen, L., Liu, C., Ko, F. C., Xu, N., Ng, I. O., Yam, J. W., et al. (2012). Solution structure of the phosphotyrosine binding (PTB) domain of human tensin2 protein in complex with deleted in liver cancer 1 (DLC1) peptide reveals a novel peptide binding mode. Journal of Biological Chemistry, 287(31), 26104–26114.PubMedCentralPubMedCrossRef
102.
Zurück zum Zitat Zaidel-Bar, R., Cohen, M., Addadi, L., & Geiger, B. (2004). Hierarchical assembly of cell-matrix adhesion complexes. Biochemical Society Transactions, 32(3), 416–420.PubMedCrossRef Zaidel-Bar, R., Cohen, M., Addadi, L., & Geiger, B. (2004). Hierarchical assembly of cell-matrix adhesion complexes. Biochemical Society Transactions, 32(3), 416–420.PubMedCrossRef
103.
Zurück zum Zitat Lo, S. H. (2004). Tensin. International Journal of Biochemistry and Cell Biology, 36(1), 31–34.PubMedCrossRef Lo, S. H. (2004). Tensin. International Journal of Biochemistry and Cell Biology, 36(1), 31–34.PubMedCrossRef
104.
Zurück zum Zitat Chen, H., Duncan, I. C., Bozorgchami, H., & Lo, S. H. (2002). Tensin1 and a previously undocumented family member, tensin2, positively regulate cell migration. Proceedings of the National Academy of Sciences of the United States of America, 99(2), 733–738.PubMedCentralPubMedCrossRef Chen, H., Duncan, I. C., Bozorgchami, H., & Lo, S. H. (2002). Tensin1 and a previously undocumented family member, tensin2, positively regulate cell migration. Proceedings of the National Academy of Sciences of the United States of America, 99(2), 733–738.PubMedCentralPubMedCrossRef
105.
Zurück zum Zitat Chen, H., & Lo, S. H. (2003). Regulation of tensin-promoted cell migration by its focal adhesion binding and Src homology domain 2. Biochemistry Journal, 370(3), 1039–1045.CrossRef Chen, H., & Lo, S. H. (2003). Regulation of tensin-promoted cell migration by its focal adhesion binding and Src homology domain 2. Biochemistry Journal, 370(3), 1039–1045.CrossRef
106.
Zurück zum Zitat Calderwood, D. A., Fujioka, Y., de Pereda, J. M., Garcia-Alvarez, B., Nakamoto, T., Margolis, B., et al. (2003). Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2272–2277.PubMedCentralPubMedCrossRef Calderwood, D. A., Fujioka, Y., de Pereda, J. M., Garcia-Alvarez, B., Nakamoto, T., Margolis, B., et al. (2003). Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2272–2277.PubMedCentralPubMedCrossRef
107.
Zurück zum Zitat Schaller, M. D. (2001). Paxillin: a focal adhesion-associated adaptor protein. Oncogene, 20(44), 6459–6472.PubMedCrossRef Schaller, M. D. (2001). Paxillin: a focal adhesion-associated adaptor protein. Oncogene, 20(44), 6459–6472.PubMedCrossRef
108.
Zurück zum Zitat West, K. A., Zhang, H., Brown, M. C., Nikolopoulos, S. N., Riedy, M. C., Horwitz, A. F., et al. (2001). The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). Journal of Cell Biology, 154(1), 161–176.PubMedCentralPubMedCrossRef West, K. A., Zhang, H., Brown, M. C., Nikolopoulos, S. N., Riedy, M. C., Horwitz, A. F., et al. (2001). The LD4 motif of paxillin regulates cell spreading and motility through an interaction with paxillin kinase linker (PKL). Journal of Cell Biology, 154(1), 161–176.PubMedCentralPubMedCrossRef
109.
Zurück zum Zitat Li, Y., & Cozzi, P. J. (2007). Targeting uPA/uPAR in prostate cancer. Cancer Treatment Reviews, 33(6), 521–527.PubMedCrossRef Li, Y., & Cozzi, P. J. (2007). Targeting uPA/uPAR in prostate cancer. Cancer Treatment Reviews, 33(6), 521–527.PubMedCrossRef
110.
Zurück zum Zitat Czekay, R. P., & Loskutoff, D. J. (2009). Plasminogen activator inhibitors regulate cell adhesion through a uPAR-dependent mechanism. Journal of Cellular Physiology, 220(3), 655–663.PubMedCentralPubMedCrossRef Czekay, R. P., & Loskutoff, D. J. (2009). Plasminogen activator inhibitors regulate cell adhesion through a uPAR-dependent mechanism. Journal of Cellular Physiology, 220(3), 655–663.PubMedCentralPubMedCrossRef
111.
Zurück zum Zitat Czekay, R. P., Aertgeerts, K., Curriden, S. A., & Loskutoff, D. J. (2003). Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. Journal of Cell Biology, 160(5), 781–791.PubMedCentralPubMedCrossRef Czekay, R. P., Aertgeerts, K., Curriden, S. A., & Loskutoff, D. J. (2003). Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. Journal of Cell Biology, 160(5), 781–791.PubMedCentralPubMedCrossRef
112.
Zurück zum Zitat Czekay, R. P., Wilkins-Port, C. E., Higgins, S. P., Freytag, J., Overstreet, J. M., Klein, R. M., et al. (2011). PAI-1: an integrator of cell signaling and migration. International Journal of Cell Biology, 2011562481. Czekay, R. P., Wilkins-Port, C. E., Higgins, S. P., Freytag, J., Overstreet, J. M., Klein, R. M., et al. (2011). PAI-1: an integrator of cell signaling and migration. International Journal of Cell Biology, 2011562481.
113.
Zurück zum Zitat Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3), 241–254.PubMedCrossRef Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3), 241–254.PubMedCrossRef
114.
Zurück zum Zitat Stewart, D. A., Cooper, C. R., & Sikes, R. A. (2004). Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reproductive Biology and Endocrinology, 22. Stewart, D. A., Cooper, C. R., & Sikes, R. A. (2004). Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reproductive Biology and Endocrinology, 22.
115.
Zurück zum Zitat Deryugina, E. I., & Quigley, J. P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer and Metastasis Reviews, 25(1), 9–34.PubMedCrossRef Deryugina, E. I., & Quigley, J. P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer and Metastasis Reviews, 25(1), 9–34.PubMedCrossRef
116.
Zurück zum Zitat Wai, P. Y., & Kuo, P. C. (2004). The role of Osteopontin in tumor metastasis. Journal of Surgical Research, 121(2), 228–241.PubMedCrossRef Wai, P. Y., & Kuo, P. C. (2004). The role of Osteopontin in tumor metastasis. Journal of Surgical Research, 121(2), 228–241.PubMedCrossRef
117.
Zurück zum Zitat Navarro, A., Anand-Apte, B., & Parat, M. O. (2004). A role for caveolae in cell migration. FASEB Journal, 18(15), 1801–1811.PubMedCrossRef Navarro, A., Anand-Apte, B., & Parat, M. O. (2004). A role for caveolae in cell migration. FASEB Journal, 18(15), 1801–1811.PubMedCrossRef
118.
Zurück zum Zitat Wei, Y., Yang, X., Liu, Q., Wilkins, J. A., & Chapman, H. A. (1999). A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. Journal of Cell Biology, 144(6), 1285–1294.PubMedCentralPubMedCrossRef Wei, Y., Yang, X., Liu, Q., Wilkins, J. A., & Chapman, H. A. (1999). A role for caveolin and the urokinase receptor in integrin-mediated adhesion and signaling. Journal of Cell Biology, 144(6), 1285–1294.PubMedCentralPubMedCrossRef
119.
Zurück zum Zitat Puyraimond, A., Fridman, R., Lemesle, M., Arbeille, B., & Menashi, S. (2001). MMP-2 colocalizes with caveolae on the surface of endothelial cells. Experimental Cell Research, 262(1), 28–36.PubMedCrossRef Puyraimond, A., Fridman, R., Lemesle, M., Arbeille, B., & Menashi, S. (2001). MMP-2 colocalizes with caveolae on the surface of endothelial cells. Experimental Cell Research, 262(1), 28–36.PubMedCrossRef
120.
Zurück zum Zitat Isshiki, M., Ando, J., Yamamoto, K., Fujita, T., Ying, Y., & Anderson, R. G. (2002). Sites of Ca(2+) wave initiation move with caveolae to the trailing edge of migrating cells. Journal of Cell Science, 115(3), 475–484.PubMed Isshiki, M., Ando, J., Yamamoto, K., Fujita, T., Ying, Y., & Anderson, R. G. (2002). Sites of Ca(2+) wave initiation move with caveolae to the trailing edge of migrating cells. Journal of Cell Science, 115(3), 475–484.PubMed
121.
Zurück zum Zitat Yamaga, M., Sekimata, M., Fujii, M., Kawai, K., Kamata, H., Hirata, H., et al. (2004). A PLCδ1-binding protein, p122/RhoGAP, is localized in caveolin-enriched membrane domains and regulates caveolin internalization. Genes to Cells, 9(1), 25–37.PubMedCrossRef Yamaga, M., Sekimata, M., Fujii, M., Kawai, K., Kamata, H., Hirata, H., et al. (2004). A PLCδ1-binding protein, p122/RhoGAP, is localized in caveolin-enriched membrane domains and regulates caveolin internalization. Genes to Cells, 9(1), 25–37.PubMedCrossRef
122.
Zurück zum Zitat Liu, G., Grant, W. M., Persky, D., Latham, V. M., Jr., Singer, R. H., & Condeelis, J. (2002). Interactions of elongation factor 1α with F-actin and β-actin mRNA: implications for anchoring mRNA in cell protrusions. Molecular Biology of the Cell, 13(2), 579–592.PubMedCentralPubMedCrossRef Liu, G., Grant, W. M., Persky, D., Latham, V. M., Jr., Singer, R. H., & Condeelis, J. (2002). Interactions of elongation factor 1α with F-actin and β-actin mRNA: implications for anchoring mRNA in cell protrusions. Molecular Biology of the Cell, 13(2), 579–592.PubMedCentralPubMedCrossRef
123.
Zurück zum Zitat Gross, S. R., & Kinzy, T. G. (2005). Translation elongation factor 1α is essential for regulation of the actin cytoskeleton and cell morphology. Nature Structural and Molecular Biology, 12(9), 772–778.PubMedCrossRef Gross, S. R., & Kinzy, T. G. (2005). Translation elongation factor 1α is essential for regulation of the actin cytoskeleton and cell morphology. Nature Structural and Molecular Biology, 12(9), 772–778.PubMedCrossRef
124.
Zurück zum Zitat Zhang, J., Guo, H., Mi, Z., Gao, C., Bhattacharya, S., Li, J., et al. (2009). EF1A1-actin interactions alter mRNA stability to determine differential osteopontin expression in HepG2 and Hep3B cells. Experimental Cell Research, 315(2), 304–312.PubMedCrossRef Zhang, J., Guo, H., Mi, Z., Gao, C., Bhattacharya, S., Li, J., et al. (2009). EF1A1-actin interactions alter mRNA stability to determine differential osteopontin expression in HepG2 and Hep3B cells. Experimental Cell Research, 315(2), 304–312.PubMedCrossRef
125.
Zurück zum Zitat Hu, K. Q., & Settleman, J. (1997). Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation. EMBO Journal, 16(3), 473–483.PubMedCentralPubMedCrossRef Hu, K. Q., & Settleman, J. (1997). Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation. EMBO Journal, 16(3), 473–483.PubMedCentralPubMedCrossRef
126.
Zurück zum Zitat Bradley, W. D., Hernandez, S. E., Settleman, J., & Koleske, A. J. (2006). Integrin signaling through Arg activates p190RhoGAP by promoting its binding to p120RasGAP and recruitment to the membrane. Molecular Biology of the Cell, 17(11), 4827–4836.PubMedCentralPubMedCrossRef Bradley, W. D., Hernandez, S. E., Settleman, J., & Koleske, A. J. (2006). Integrin signaling through Arg activates p190RhoGAP by promoting its binding to p120RasGAP and recruitment to the membrane. Molecular Biology of the Cell, 17(11), 4827–4836.PubMedCentralPubMedCrossRef
127.
Zurück zum Zitat Akagi, I., Okayama, H., Schetter, A. J., Robles, A. I., Kohno, T., Bowman, E. D., et al. (2013). Combination of Protein Coding and Noncoding Gene Expression as a Robust Prognostic Classifier in Stage I Lung Adenocarcinoma. Cancer Research, 73(13), 3821–3832.PubMedCrossRef Akagi, I., Okayama, H., Schetter, A. J., Robles, A. I., Kohno, T., Bowman, E. D., et al. (2013). Combination of Protein Coding and Noncoding Gene Expression as a Robust Prognostic Classifier in Stage I Lung Adenocarcinoma. Cancer Research, 73(13), 3821–3832.PubMedCrossRef
128.
Zurück zum Zitat Ullmannova, V., & Popescu, N. C. (2007). Inhibition of cell proliferation, induction of apoptosis, reactivation of DLC1, and modulation of other gene expression by dietary flavone in breast cancer cell lines. Cancer Detection and Prevention, 31(2), 110–118.PubMedCentralPubMedCrossRef Ullmannova, V., & Popescu, N. C. (2007). Inhibition of cell proliferation, induction of apoptosis, reactivation of DLC1, and modulation of other gene expression by dietary flavone in breast cancer cell lines. Cancer Detection and Prevention, 31(2), 110–118.PubMedCentralPubMedCrossRef
129.
Zurück zum Zitat Nagaraja, G. M., & Kandpal, R. P. (2004). Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins. Biochemical and Biophysical Research Communications, 313(3), 654–665.PubMedCrossRef Nagaraja, G. M., & Kandpal, R. P. (2004). Chromosome 13q12 encoded Rho GTPase activating protein suppresses growth of breast carcinoma cells, and yeast two-hybrid screen shows its interaction with several proteins. Biochemical and Biophysical Research Communications, 313(3), 654–665.PubMedCrossRef
130.
Zurück zum Zitat Leung, T. H., Ching, Y. P., Yam, J. W., Wong, C. M., Yau, T. O., Jin, D. Y., et al. (2005). Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity. Proceedings of the National Academy of Sciences of the United States of America, 102(42), 15207–15212.PubMedCentralPubMedCrossRef Leung, T. H., Ching, Y. P., Yam, J. W., Wong, C. M., Yau, T. O., Jin, D. Y., et al. (2005). Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity. Proceedings of the National Academy of Sciences of the United States of America, 102(42), 15207–15212.PubMedCentralPubMedCrossRef
131.
Zurück zum Zitat Lin, Y., Chen, N. T., Shih, Y. P., Liao, Y. C., Xue, L., & Lo, S. H. (2010). DLC2 modulates angiogenic responses in vascular endothelial cells by regulating cell attachment and migration. Oncogene, 29(20), 3010–3016.PubMedCentralPubMedCrossRef Lin, Y., Chen, N. T., Shih, Y. P., Liao, Y. C., Xue, L., & Lo, S. H. (2010). DLC2 modulates angiogenic responses in vascular endothelial cells by regulating cell attachment and migration. Oncogene, 29(20), 3010–3016.PubMedCentralPubMedCrossRef
132.
Zurück zum Zitat Ng, D. C., Chan, S. F., Kok, K. H., Yam, J. W., Ching, Y. P., Ng, I. O., et al. (2006). Mitochondrial targeting of growth suppressor protein DLC2 through the START domain. FEBS Letters, 580(1), 191–198.PubMedCrossRef Ng, D. C., Chan, S. F., Kok, K. H., Yam, J. W., Ching, Y. P., Ng, I. O., et al. (2006). Mitochondrial targeting of growth suppressor protein DLC2 through the START domain. FEBS Letters, 580(1), 191–198.PubMedCrossRef
133.
Zurück zum Zitat Ching, Y. P., Wong, C. M., Chan, S. F., Leung, T. H., Ng, D. C., Jin, D. Y., et al. (2003). Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma. Journal of Biological Chemistry, 278(12), 10824–10830.PubMedCrossRef Ching, Y. P., Wong, C. M., Chan, S. F., Leung, T. H., Ng, D. C., Jin, D. Y., et al. (2003). Deleted in liver cancer (DLC) 2 encodes a RhoGAP protein with growth suppressor function and is underexpressed in hepatocellular carcinoma. Journal of Biological Chemistry, 278(12), 10824–10830.PubMedCrossRef
134.
Zurück zum Zitat Barras, D., Lorusso, G., Rüegg, C., & Widmann, C. (2013). Inhibition of cell migration and invasion by the TAT-RasGAP317-326 peptide requires the DLC1 tumor suppressor. Oncogene. doi:10.1038/onc.2013.465. Barras, D., Lorusso, G., Rüegg, C., & Widmann, C. (2013). Inhibition of cell migration and invasion by the TAT-RasGAP317-326 peptide requires the DLC1 tumor suppressor. Oncogene. doi:10.​1038/​onc.​2013.​465.
Metadaten
Titel
GAP-independent functions of DLC1 in metastasis
verfasst von
David Barras
Christian Widmann
Publikationsdatum
01.03.2014
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1/2014
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9458-0

Weitere Artikel der Ausgabe 1/2014

Cancer and Metastasis Reviews 1/2014 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.