Skip to main content
Erschienen in: Journal of Neuro-Oncology 2/2018

30.04.2018 | Laboratory Investigation

GOLPH3 promotes glioma progression via facilitating JAK2–STAT3 pathway activation

verfasst von: Shishuang Wu, Jiale Fu, Yu Dong, Qinghao Yi, Dong Lu, Weibing Wang, Yanhua Qi, Rutong Yu, Xiuping Zhou

Erschienen in: Journal of Neuro-Oncology | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Introduction

Our recent work reported that GOLPH3 promotes glioma progression via inhibiting endocytosis and degradation of EGFR. The current study aimed to explore the potential regulating mechanism of GOLPH3 on JAK2–STAT3 signaling, a downstream effector of EGFR, in glioma progression.

Methods

The expression of JAK2, STAT3 and GOLPH3 in glioma tissues was detected by western blotting, tissue microarray and immunohistochemistry. The U251 and U87 cells with GOLPH3 down-regulation or over-expression were generated by lentivirus system. The effects of GOLPH3 on the activity of JAK2 and STAT3 were detected by western blotting and reverse transcription polymerase chain reaction. Co-immunoprecipitation was used to detect the association of GOLPH3 with JAK2 and STAT3. Cell proliferation was detected by CCK8 and EdU assay.

Results

The level of JAK2, STAT3 and GOLPH3 were significantly up-regulated and exhibited pairwise correlation in human glioma tissues. The level of p-JAK2 and p-STAT3, as well as the mRNA and protein levels of cyclin D1 and c-myc, two target genes of STAT3, decreased after GOLPH3 down-regulation, while they increased after GOLPH3 over-expression both in U251 and U87 cells. Interestingly, GOLPH3, JAK2 and STAT3 existed in the same protein complex and GOLPH3 affected the interaction of JAK2 and STAT3. Importantly, down-regulation of STAT3 partially abolished cell proliferation induced by GOLPH3 over-expression.

Conclusions

GOLPH3 may act as a scaffold protein to regulate JAK2–STAT3 interaction and then its activation, which therefore mediates the effect of GOLPH3 on cell proliferation.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Wood CS, Schmitz KR, Bessman NJ, Setty TG, Ferguson KM, Burd CG (2009) PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking. J Cell Biol 187(7):967–975CrossRefPubMedPubMedCentral Wood CS, Schmitz KR, Bessman NJ, Setty TG, Ferguson KM, Burd CG (2009) PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking. J Cell Biol 187(7):967–975CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Sechi S, Frappaolo A, Belloni G, Colotti G, Giansanti MG (2015) The multiple cellular functions of the oncoprotein Golgi phosphoprotein 3. Oncotarget 6(6):3493–3506CrossRefPubMedPubMedCentral Sechi S, Frappaolo A, Belloni G, Colotti G, Giansanti MG (2015) The multiple cellular functions of the oncoprotein Golgi phosphoprotein 3. Oncotarget 6(6):3493–3506CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Snyder CM, Mardones GA, Ladinsky MS, Howell KE (2006) GMx33 associates with the trans-Golgi matrix in a dynamic manner and sorts within tubules exiting the Golgi. Mol Biol Cell 17(1):511–524CrossRefPubMedPubMedCentral Snyder CM, Mardones GA, Ladinsky MS, Howell KE (2006) GMx33 associates with the trans-Golgi matrix in a dynamic manner and sorts within tubules exiting the Golgi. Mol Biol Cell 17(1):511–524CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Wu CC, Taylor RS, Lane DR, Ladinsky MS, Weisz JA, Howell KE (2000) GMx33: a novel family of trans-Golgi proteins identified by proteomics. Traffic 1(12):963–975PubMed Wu CC, Taylor RS, Lane DR, Ladinsky MS, Weisz JA, Howell KE (2000) GMx33: a novel family of trans-Golgi proteins identified by proteomics. Traffic 1(12):963–975PubMed
6.
Zurück zum Zitat Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB (1999) Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J Biol Chem 274(48):34294–34300CrossRefPubMed Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB (1999) Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J Biol Chem 274(48):34294–34300CrossRefPubMed
8.
Zurück zum Zitat Walch-Solimena C, Novick P (1999) The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nat Cell Biol 1(8):523–525CrossRefPubMed Walch-Solimena C, Novick P (1999) The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nat Cell Biol 1(8):523–525CrossRefPubMed
10.
Zurück zum Zitat McKay HF, Burgess DR (2011) ‘Life is a highway’: membrane trafficking during cytokinesis. Traffic 12(3):247–251CrossRefPubMed McKay HF, Burgess DR (2011) ‘Life is a highway’: membrane trafficking during cytokinesis. Traffic 12(3):247–251CrossRefPubMed
11.
12.
Zurück zum Zitat Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867CrossRefPubMed Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126(5):855–867CrossRefPubMed
13.
Zurück zum Zitat Scott KL, Chin L (2010) Signaling from the Golgi: mechanisms and models for Golgi phosphoprotein 3-mediated oncogenesis. Clin Cancer Res 16(8):2229–2234CrossRefPubMedPubMedCentral Scott KL, Chin L (2010) Signaling from the Golgi: mechanisms and models for Golgi phosphoprotein 3-mediated oncogenesis. Clin Cancer Res 16(8):2229–2234CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Ali MF, Chachadi VB, Petrosyan A, Cheng PW (2012) Golgi phosphoprotein 3 determines cell binding properties under dynamic flow by controlling Golgi localization of core 2 N-acetylglucosaminyltransferase 1. J Biol Chem 287(47):39564–39577CrossRefPubMedPubMedCentral Ali MF, Chachadi VB, Petrosyan A, Cheng PW (2012) Golgi phosphoprotein 3 determines cell binding properties under dynamic flow by controlling Golgi localization of core 2 N-acetylglucosaminyltransferase 1. J Biol Chem 287(47):39564–39577CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Tu L, Chen L, Banfield DK (2012) A conserved N-terminal arginine-motif in GOLPH3-family proteins mediates binding to coatomer. Traffic 13(11):1496–1507CrossRefPubMed Tu L, Chen L, Banfield DK (2012) A conserved N-terminal arginine-motif in GOLPH3-family proteins mediates binding to coatomer. Traffic 13(11):1496–1507CrossRefPubMed
16.
Zurück zum Zitat Tu L, Tai WC, Chen L, Banfield DK (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321(5887):404–407CrossRefPubMed Tu L, Tai WC, Chen L, Banfield DK (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321(5887):404–407CrossRefPubMed
17.
Zurück zum Zitat Rosnoblet C, Peanne R, Legrand D, Foulquier F (2013) Glycosylation disorders of membrane trafficking. Glycoconj J 30(1):23–31CrossRefPubMed Rosnoblet C, Peanne R, Legrand D, Foulquier F (2013) Glycosylation disorders of membrane trafficking. Glycoconj J 30(1):23–31CrossRefPubMed
18.
Zurück zum Zitat Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291(5512):2364–2369CrossRefPubMed Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291(5512):2364–2369CrossRefPubMed
19.
Zurück zum Zitat Zhou X, Xue P, Yang M et al (2014) Protein kinase D2 promotes the proliferation of glioma cells by regulating Golgi phosphoprotein 3. Cancer Lett 355(1):121–129CrossRefPubMed Zhou X, Xue P, Yang M et al (2014) Protein kinase D2 promotes the proliferation of glioma cells by regulating Golgi phosphoprotein 3. Cancer Lett 355(1):121–129CrossRefPubMed
20.
Zurück zum Zitat Chiu R, Novikov L, Mukherjee S, Shields D (2002) A caspase cleavage fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis. J Cell Biol 159(4):637–648CrossRefPubMedPubMedCentral Chiu R, Novikov L, Mukherjee S, Shields D (2002) A caspase cleavage fragment of p115 induces fragmentation of the Golgi apparatus and apoptosis. J Cell Biol 159(4):637–648CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Zhang X, Ding Z, Mo J et al (2015) GOLPH3 promotes glioblastoma cell migration and invasion via the mTOR-YB1 pathway in vitro. Mol Carcinog 54(11):1252–1263CrossRefPubMed Zhang X, Ding Z, Mo J et al (2015) GOLPH3 promotes glioblastoma cell migration and invasion via the mTOR-YB1 pathway in vitro. Mol Carcinog 54(11):1252–1263CrossRefPubMed
22.
Zurück zum Zitat Zhou X, Zhan W, Bian W et al (2013) GOLPH3 regulates the migration and invasion of glioma cells though RhoA. Biochem Biophys Res Commun 433(3):338–344CrossRefPubMed Zhou X, Zhan W, Bian W et al (2013) GOLPH3 regulates the migration and invasion of glioma cells though RhoA. Biochem Biophys Res Commun 433(3):338–344CrossRefPubMed
23.
Zurück zum Zitat Zhou X, Xie S, Wu S et al (2017) Golgi phosphoprotein 3 promotes glioma progression via inhibiting Rab5-mediated endocytosis and degradation of epidermal growth factor receptor. Neuro-oncology 19(12):1628–1639CrossRefPubMed Zhou X, Xie S, Wu S et al (2017) Golgi phosphoprotein 3 promotes glioma progression via inhibiting Rab5-mediated endocytosis and degradation of epidermal growth factor receptor. Neuro-oncology 19(12):1628–1639CrossRefPubMed
24.
Zurück zum Zitat Felsberg J, Hentschel B, Kaulich K et al (2017) Epidermal Growth Factor Receptor Variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res 23(22):6846–6855CrossRefPubMed Felsberg J, Hentschel B, Kaulich K et al (2017) Epidermal Growth Factor Receptor Variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res 23(22):6846–6855CrossRefPubMed
25.
Zurück zum Zitat Quesnelle KM, Boehm AL, Grandis JR (2007) STAT-mediated EGFR signaling in cancer. J Cell Biochem 102(2):311–319CrossRefPubMed Quesnelle KM, Boehm AL, Grandis JR (2007) STAT-mediated EGFR signaling in cancer. J Cell Biochem 102(2):311–319CrossRefPubMed
26.
Zurück zum Zitat Fan QW, Cheng CK, Gustafson WC et al (2013) EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell 24(4):438–449CrossRefPubMed Fan QW, Cheng CK, Gustafson WC et al (2013) EGFR phosphorylates tumor-derived EGFRvIII driving STAT3/5 and progression in glioblastoma. Cancer Cell 24(4):438–449CrossRefPubMed
27.
Zurück zum Zitat Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264(5164):1415–1421CrossRefPubMed Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264(5164):1415–1421CrossRefPubMed
28.
Zurück zum Zitat Heppler LN, Frank DA (2017) Targeting oncogenic transcription factors: therapeutic implications of endogenous STAT inhibitors. Trends Cancer 3(12):816–827CrossRefPubMed Heppler LN, Frank DA (2017) Targeting oncogenic transcription factors: therapeutic implications of endogenous STAT inhibitors. Trends Cancer 3(12):816–827CrossRefPubMed
29.
Zurück zum Zitat Bowman T, Garcia R, Turkson J, Jove R (2000) STATs in oncogenesis. Oncogene 19(21):2474–2488CrossRefPubMed Bowman T, Garcia R, Turkson J, Jove R (2000) STATs in oncogenesis. Oncogene 19(21):2474–2488CrossRefPubMed
30.
Zurück zum Zitat de la Iglesia N, Konopka G, Lim KL et al (2008) Deregulation of a STAT3-interleukin 8 signaling pathway promotes human glioblastoma cell proliferation and invasiveness. J Neurosci 28(23):5870–5878CrossRefPubMedPubMedCentral de la Iglesia N, Konopka G, Lim KL et al (2008) Deregulation of a STAT3-interleukin 8 signaling pathway promotes human glioblastoma cell proliferation and invasiveness. J Neurosci 28(23):5870–5878CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Bromberg JF, Darnell JE Jr. (1999) Potential roles of Stat1 and Stat3 in cellular transformation. Cold Spring Harb Symp Quant Biol 64:425–428CrossRefPubMed Bromberg JF, Darnell JE Jr. (1999) Potential roles of Stat1 and Stat3 in cellular transformation. Cold Spring Harb Symp Quant Biol 64:425–428CrossRefPubMed
32.
Zurück zum Zitat Besser D, Bromberg JF, Darnell JE Jr, Hanafusa H (1999) A single amino acid substitution in the v-Eyk intracellular domain results in activation of Stat3 and enhances cellular transformation. Mol Cell Biol 19(2):1401–1409CrossRefPubMedPubMedCentral Besser D, Bromberg JF, Darnell JE Jr, Hanafusa H (1999) A single amino acid substitution in the v-Eyk intracellular domain results in activation of Stat3 and enhances cellular transformation. Mol Cell Biol 19(2):1401–1409CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Sinibaldi D, Wharton W, Turkson J, Bowman T, Pledger WJ, Jove R (2000) Induction of p21WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts: role of activated STAT3 signaling. Oncogene 19(48):5419–5427CrossRefPubMed Sinibaldi D, Wharton W, Turkson J, Bowman T, Pledger WJ, Jove R (2000) Induction of p21WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts: role of activated STAT3 signaling. Oncogene 19(48):5419–5427CrossRefPubMed
34.
Zurück zum Zitat Yang J, Stark GR (2008) Roles of unphosphorylated STATs in signaling. Cell Res 18(4):443–451CrossRefPubMed Yang J, Stark GR (2008) Roles of unphosphorylated STATs in signaling. Cell Res 18(4):443–451CrossRefPubMed
35.
36.
Zurück zum Zitat Colomiere M, Ward AC, Riley C et al (2008) Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial–mesenchymal transition in ovarian carcinomas. Br J Cancer 100(1):134–144CrossRefPubMedPubMedCentral Colomiere M, Ward AC, Riley C et al (2008) Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial–mesenchymal transition in ovarian carcinomas. Br J Cancer 100(1):134–144CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Zeng Z, Lin H, Zhao X et al (2012) Overexpression of GOLPH3 promotes proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. Clin Cancer Res 18(15):4059–4069CrossRefPubMed Zeng Z, Lin H, Zhao X et al (2012) Overexpression of GOLPH3 promotes proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. Clin Cancer Res 18(15):4059–4069CrossRefPubMed
38.
Zurück zum Zitat Dai T, Zhang D, Cai M et al (2015) Golgi phosphoprotein 3 (GOLPH3) promotes hepatocellular carcinoma cell aggressiveness by activating the NF-κB pathway. J Pathol 235(3):490–501CrossRefPubMed Dai T, Zhang D, Cai M et al (2015) Golgi phosphoprotein 3 (GOLPH3) promotes hepatocellular carcinoma cell aggressiveness by activating the NF-κB pathway. J Pathol 235(3):490–501CrossRefPubMed
39.
Zurück zum Zitat Jin H, Pi J, Zhao Y et al (2017) EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale 9(42):16365–16374CrossRefPubMed Jin H, Pi J, Zhao Y et al (2017) EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale 9(42):16365–16374CrossRefPubMed
40.
Zurück zum Zitat Blakely CM, Watkins TBK, Wu W et al (2017) Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat Genet 49(12):1693–1704CrossRefPubMedPubMedCentral Blakely CM, Watkins TBK, Wu W et al (2017) Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nat Genet 49(12):1693–1704CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Runge D, Runge DM, Drenning SD, Bowen WC Jr, Grandis JR, Michalopoulos GK (1998) Growth and differentiation of rat hepatocytes: changes in transcription factors HNF-3, HNF-4, STAT-3, and STAT-5. Biochem Biophys Res Commun 250(3):762–768CrossRefPubMed Runge D, Runge DM, Drenning SD, Bowen WC Jr, Grandis JR, Michalopoulos GK (1998) Growth and differentiation of rat hepatocytes: changes in transcription factors HNF-3, HNF-4, STAT-3, and STAT-5. Biochem Biophys Res Commun 250(3):762–768CrossRefPubMed
Metadaten
Titel
GOLPH3 promotes glioma progression via facilitating JAK2–STAT3 pathway activation
verfasst von
Shishuang Wu
Jiale Fu
Yu Dong
Qinghao Yi
Dong Lu
Weibing Wang
Yanhua Qi
Rutong Yu
Xiuping Zhou
Publikationsdatum
30.04.2018
Verlag
Springer US
Erschienen in
Journal of Neuro-Oncology / Ausgabe 2/2018
Print ISSN: 0167-594X
Elektronische ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-018-2884-7

Weitere Artikel der Ausgabe 2/2018

Journal of Neuro-Oncology 2/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.