Skip to main content
Erschienen in: Immunologic Research 4/2017

06.05.2017 | Original Article

The levels of DNGR-1 and its ligand-bearing cells were altered after human and simian immunodeficiency virus infection

verfasst von: Wen-Rong Yao, Dong Li, Lei Yu, Feng-Jie Wang, Hui Xing, Gui-Bo Yang

Erschienen in: Immunologic Research | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Dendritic cell NK lectin Group Receptor-1 (DNGR-1), also known as C-type lectin domain family 9, member A (CLEC9A), is a member of C-type lectin receptor superfamily expressed primarily on dendritic cells (DC) that excel in cross-presentation of exogenous antigens. To find out whether and how it is affected in human immunodeficiency virus infections or acquired immunodeficiency syndromes (HIV/AIDS), DNGR-1 expression and DNGR-1-binding cells in simian/human immunodeficiency virus (SHIV) and simian immunodeficiency virus (SIV)-infected rhesus macaques and antiretroviral therapy (ART)-treated AIDS patients were examined by real-time RT-PCR, flow cytometry, and confocal microscopy. DNGR-1 expression was observed in both lymphoid and non-lymphoid tissues including gut-associated lymphoid tissues (GALT) of rhesus macaques. DNGR-1 mRNA levels were significantly reduced in the blood while significantly elevated in the GALT of SHIV/SIV-infected rhesus macaques. DNGR-1 transcription levels were also significantly reduced in the blood of ART-treated AIDS patients irrespective of viral status. White blood cells with exposed DNGR-1 ligands were significantly increased in ART-treated AIDS patients, while significantly decreased in SIV-infected rhesus macaques. These data indicate that DNGR-1 expression, and by extension, the function of cross-presentation of antigens associated with dead/damaged cells might be compromised in HIV/SIV infection, which might play a role in HIV/AIDS pathogenesis and should be taken into consideration in therapeutic AIDS vaccine development.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Caminschi I, Proietto AI, Ahmet F, et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood. 2008;112:3264–73.CrossRefPubMedPubMedCentral Caminschi I, Proietto AI, Ahmet F, et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood. 2008;112:3264–73.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Huysamen C, Willment JA, Dennehy KM, Brown GD. CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J Biol Chem. 2008;283:16693–701.CrossRefPubMedPubMedCentral Huysamen C, Willment JA, Dennehy KM, Brown GD. CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J Biol Chem. 2008;283:16693–701.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Sancho D, Mourao-Sa D, Joffre OP, et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest. 2008;118:2098–110.CrossRefPubMedPubMedCentral Sancho D, Mourao-Sa D, Joffre OP, et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest. 2008;118:2098–110.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Sancho D, Joffre OP, Keller AM, et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature. 2009;458:899–903.CrossRefPubMedPubMedCentral Sancho D, Joffre OP, Keller AM, et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature. 2009;458:899–903.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Ahrens S, Zelenay S, Sancho D, et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity. 2012;36:635–45.CrossRefPubMed Ahrens S, Zelenay S, Sancho D, et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity. 2012;36:635–45.CrossRefPubMed
7.
Zurück zum Zitat Zhang JG, Czabotar PE, Policheni AN, et al. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity. 2012;36:646–57.CrossRefPubMed Zhang JG, Czabotar PE, Policheni AN, et al. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity. 2012;36:646–57.CrossRefPubMed
8.
Zurück zum Zitat Hanc P, Fujii T, Iborra S, et al. Structure of the complex of F-actin and DNGR-1, a C-type lectin receptor involved in dendritic cell cross-presentation of dead cell-associated antigens. Immunity. 2015;42:839–49.CrossRefPubMedPubMedCentral Hanc P, Fujii T, Iborra S, et al. Structure of the complex of F-actin and DNGR-1, a C-type lectin receptor involved in dendritic cell cross-presentation of dead cell-associated antigens. Immunity. 2015;42:839–49.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12:557–69.CrossRefPubMed Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012;12:557–69.CrossRefPubMed
10.
Zurück zum Zitat Li J, Ahmet F, Sullivan LC, et al. Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates. Eur J Immunol. 2015;45:854–64.CrossRefPubMed Li J, Ahmet F, Sullivan LC, et al. Antibodies targeting Clec9A promote strong humoral immunity without adjuvant in mice and non-human primates. Eur J Immunol. 2015;45:854–64.CrossRefPubMed
11.
Zurück zum Zitat Idoyaga J, Lubkin A, Fiorese C, et al. Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to langerin, DEC205, and Clec9A. Proc Natl Acad Sci U S A. 2011;108:2384–9.CrossRefPubMedPubMedCentral Idoyaga J, Lubkin A, Fiorese C, et al. Comparable T helper 1 (Th1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to langerin, DEC205, and Clec9A. Proc Natl Acad Sci U S A. 2011;108:2384–9.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Chehimi J, Campbell DE, Azzoni L, et al. Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. J Immunol. 2002;168:4796–801.CrossRefPubMed Chehimi J, Campbell DE, Azzoni L, et al. Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. J Immunol. 2002;168:4796–801.CrossRefPubMed
14.
Zurück zum Zitat Dutertre CA, Amraoui S, DeRosa A, et al. Pivotal role of M-DC8(+) monocytes from viremic HIV-infected patients in TNFalpha overproduction in response to microbial products. Blood. 2012;120:2259–68.CrossRefPubMed Dutertre CA, Amraoui S, DeRosa A, et al. Pivotal role of M-DC8(+) monocytes from viremic HIV-infected patients in TNFalpha overproduction in response to microbial products. Blood. 2012;120:2259–68.CrossRefPubMed
15.
Zurück zum Zitat Dutertre CA, Jourdain JP, Rancez M, et al. TLR3-responsive, XCR1+, CD141(BDCA-3)+/CD8alpha+-equivalent dendritic cells uncovered in healthy and simian immunodeficiency virus-infected rhesus macaques. J Immunol. 2014;192:4697–708.CrossRefPubMed Dutertre CA, Jourdain JP, Rancez M, et al. TLR3-responsive, XCR1+, CD141(BDCA-3)+/CD8alpha+-equivalent dendritic cells uncovered in healthy and simian immunodeficiency virus-infected rhesus macaques. J Immunol. 2014;192:4697–708.CrossRefPubMed
16.
Zurück zum Zitat van den Berg LM, Cardinaud S, van der Aar AM, et al. Langerhans cell-dendritic cell cross-talk via langerin and hyaluronic acid mediates antigen transfer and cross-presentation of HIV-1. J Immunol. 2015;195:1763–73.CrossRefPubMed van den Berg LM, Cardinaud S, van der Aar AM, et al. Langerhans cell-dendritic cell cross-talk via langerin and hyaluronic acid mediates antigen transfer and cross-presentation of HIV-1. J Immunol. 2015;195:1763–73.CrossRefPubMed
17.
Zurück zum Zitat Reyes-Rodriguez AL, Reuter MA, McDonald D. Dendritic cells enhance HIV infection of memory CD4(+) T cells in human lymphoid tissues. AIDS Res Hum Retrovir. 2016;32:203–10.CrossRefPubMedPubMedCentral Reyes-Rodriguez AL, Reuter MA, McDonald D. Dendritic cells enhance HIV infection of memory CD4(+) T cells in human lymphoid tissues. AIDS Res Hum Retrovir. 2016;32:203–10.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Poulin LF, Salio M, Griessinger E, et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med. 2010;207:1261–71.CrossRefPubMedPubMedCentral Poulin LF, Salio M, Griessinger E, et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med. 2010;207:1261–71.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Schreibelt G, Klinkenberg LJ, Cruz LJ, et al. The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDCA3+ myeloid dendritic cells. Blood. 2012;119:2284–92.CrossRefPubMed Schreibelt G, Klinkenberg LJ, Cruz LJ, et al. The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDCA3+ myeloid dendritic cells. Blood. 2012;119:2284–92.CrossRefPubMed
21.
Zurück zum Zitat Kinloch-de Loes S, Hoen B, Smith DE, et al. Impact of therapeutic immunization on HIV-1 viremia after discontinuation of antiretroviral therapy initiated during acute infection. J Infect Dis. 2005;192:607–17.CrossRefPubMed Kinloch-de Loes S, Hoen B, Smith DE, et al. Impact of therapeutic immunization on HIV-1 viremia after discontinuation of antiretroviral therapy initiated during acute infection. J Infect Dis. 2005;192:607–17.CrossRefPubMed
22.
Zurück zum Zitat Macatangay BJ, Riddler SA, Wheeler ND, et al. Therapeutic vaccination with dendritic cells loaded with autologous HIV type 1-infected apoptotic cells. J Infect Dis. 2016;213:1400–9.CrossRefPubMed Macatangay BJ, Riddler SA, Wheeler ND, et al. Therapeutic vaccination with dendritic cells loaded with autologous HIV type 1-infected apoptotic cells. J Infect Dis. 2016;213:1400–9.CrossRefPubMed
23.
Zurück zum Zitat Coates PT, Barratt-Boyes SM, Zhang L, et al. Dendritic cell subsets in blood and lymphoid tissue of rhesus monkeys and their mobilization with Flt3 ligand. Blood. 2003;102:2513–21.CrossRefPubMed Coates PT, Barratt-Boyes SM, Zhang L, et al. Dendritic cell subsets in blood and lymphoid tissue of rhesus monkeys and their mobilization with Flt3 ligand. Blood. 2003;102:2513–21.CrossRefPubMed
24.
Zurück zum Zitat Brown KN, Trichel A, Barratt-Boyes SM. Parallel loss of myeloid and plasmacytoid dendritic cells from blood and lymphoid tissue in simian AIDS. J Immunol. 2007;178:6958–67.CrossRefPubMed Brown KN, Trichel A, Barratt-Boyes SM. Parallel loss of myeloid and plasmacytoid dendritic cells from blood and lymphoid tissue in simian AIDS. J Immunol. 2007;178:6958–67.CrossRefPubMed
25.
Zurück zum Zitat Yang GB, Lei N, Zong CM, Duan JZ, Xing H, Shao Y. Elevated frequency of CD1c+ myeloid dendritic cells in the peripheral blood mononuclear cells of simian/human immunodeficiency virus (SHIV) and simian immunodeficiency virus (SIV) repeatedly infected Chinese rhesus macaques. Cell Immunol. 2011;271:36–43.CrossRefPubMed Yang GB, Lei N, Zong CM, Duan JZ, Xing H, Shao Y. Elevated frequency of CD1c+ myeloid dendritic cells in the peripheral blood mononuclear cells of simian/human immunodeficiency virus (SHIV) and simian immunodeficiency virus (SIV) repeatedly infected Chinese rhesus macaques. Cell Immunol. 2011;271:36–43.CrossRefPubMed
26.
Zurück zum Zitat Reeves RK, Evans TI, Gillis J, et al. SIV infection induces accumulation of plasmacytoid dendritic cells in the gut mucosa. J Infect Dis. 2012;206:1462–8.CrossRefPubMedPubMedCentral Reeves RK, Evans TI, Gillis J, et al. SIV infection induces accumulation of plasmacytoid dendritic cells in the gut mucosa. J Infect Dis. 2012;206:1462–8.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Wonderlich ER, Wu WC, Normolle DP, Barratt-Boyes SM. Macrophages and myeloid dendritic cells lose T cell-stimulating function in simian immunodeficiency virus infection associated with diminished IL-12 and IFN-alpha production. J Immunol. 2015;195:3284–92.CrossRefPubMedPubMedCentral Wonderlich ER, Wu WC, Normolle DP, Barratt-Boyes SM. Macrophages and myeloid dendritic cells lose T cell-stimulating function in simian immunodeficiency virus infection associated with diminished IL-12 and IFN-alpha production. J Immunol. 2015;195:3284–92.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Evans TI, Li H, Schafer JL, et al. SIV-induced translocation of bacterial products in the liver mobilizes myeloid dendritic and natural killer cells associated with liver damage. J Infect Dis. 2016;213:361–9.CrossRefPubMed Evans TI, Li H, Schafer JL, et al. SIV-induced translocation of bacterial products in the liver mobilizes myeloid dendritic and natural killer cells associated with liver damage. J Infect Dis. 2016;213:361–9.CrossRefPubMed
29.
Zurück zum Zitat Yang GB, Wang Y, Babaahmady K, et al. Immunization with recombinant macaque major histocompatibility complex class I and II and human immunodeficiency virus gp140 inhibits simian-human immunodeficiency virus infection in macaques. J Gen Virol. 2012;93:1506–18.CrossRefPubMed Yang GB, Wang Y, Babaahmady K, et al. Immunization with recombinant macaque major histocompatibility complex class I and II and human immunodeficiency virus gp140 inhibits simian-human immunodeficiency virus infection in macaques. J Gen Virol. 2012;93:1506–18.CrossRefPubMed
30.
Zurück zum Zitat Wang Y, Yang GB. Alteration of polymeric immunoglobulin receptor and neonatal Fc receptor expression in the gut mucosa of immunodeficiency virus-infected rhesus macaques. Scand J Immunol. 2016;83:235–43.CrossRefPubMed Wang Y, Yang GB. Alteration of polymeric immunoglobulin receptor and neonatal Fc receptor expression in the gut mucosa of immunodeficiency virus-infected rhesus macaques. Scand J Immunol. 2016;83:235–43.CrossRefPubMed
31.
Zurück zum Zitat Zhang WJ, Wang Y, Yu K, et al. Associated changes in the transcription levels of IL-17A and tight junction-associated genes in the duodenal mucosa of rhesus macaques repeatedly exposed to simian/human immunodeficiency virus. Exp Mol Pathol. 2014;97:225–33.CrossRefPubMed Zhang WJ, Wang Y, Yu K, et al. Associated changes in the transcription levels of IL-17A and tight junction-associated genes in the duodenal mucosa of rhesus macaques repeatedly exposed to simian/human immunodeficiency virus. Exp Mol Pathol. 2014;97:225–33.CrossRefPubMed
32.
Zurück zum Zitat Wang Y, Yao WR, Duan JZ, Xu W, Yang GB. Mucosal addressin cell adhesion molecule-1 of rhesus macaques: molecular cloning, expression, and alteration after viral infection. Dig Dis Sci. 2014;59:2433–43.CrossRefPubMed Wang Y, Yao WR, Duan JZ, Xu W, Yang GB. Mucosal addressin cell adhesion molecule-1 of rhesus macaques: molecular cloning, expression, and alteration after viral infection. Dig Dis Sci. 2014;59:2433–43.CrossRefPubMed
33.
Zurück zum Zitat Yao W, Yang G. The expression of C-type lectin-like domain of DNGR-1 molecules of Chinese rhesus macaques in E. coli. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2014;30:489–92.PubMed Yao W, Yang G. The expression of C-type lectin-like domain of DNGR-1 molecules of Chinese rhesus macaques in E. coli. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2014;30:489–92.PubMed
34.
Zurück zum Zitat Jongbloed SL, Kassianos AJ, McDonald KJ, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207:1247–60.CrossRefPubMedPubMedCentral Jongbloed SL, Kassianos AJ, McDonald KJ, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207:1247–60.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Poulin LF, Reyal Y, Uronen-Hansson H, et al. DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood. 2012;119:6052–62.CrossRefPubMed Poulin LF, Reyal Y, Uronen-Hansson H, et al. DNGR-1 is a specific and universal marker of mouse and human Batf3-dependent dendritic cells in lymphoid and nonlymphoid tissues. Blood. 2012;119:6052–62.CrossRefPubMed
36.
Zurück zum Zitat Segura E, Valladeau-Guilemond J, Donnadieu MH, Sastre-Garau X, Soumelis V, Amigorena S. Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med. 2012;209:653–60.CrossRefPubMedPubMedCentral Segura E, Valladeau-Guilemond J, Donnadieu MH, Sastre-Garau X, Soumelis V, Amigorena S. Characterization of resident and migratory dendritic cells in human lymph nodes. J Exp Med. 2012;209:653–60.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Kelly A, Fahey R, Fletcher JM, et al. CD141(+) myeloid dendritic cells are enriched in healthy human liver. J Hepatol. 2014;60:135–42.CrossRefPubMed Kelly A, Fahey R, Fletcher JM, et al. CD141(+) myeloid dendritic cells are enriched in healthy human liver. J Hepatol. 2014;60:135–42.CrossRefPubMed
38.
Zurück zum Zitat Quintana E, Fernandez A, Velasco P, et al. DNGR-1(+) dendritic cells are located in meningeal membrane and choroid plexus of the noninjured brain. Glia. 2015;63:2231–48.CrossRefPubMed Quintana E, Fernandez A, Velasco P, et al. DNGR-1(+) dendritic cells are located in meningeal membrane and choroid plexus of the noninjured brain. Glia. 2015;63:2231–48.CrossRefPubMed
39.
Zurück zum Zitat Donaghy H, Pozniak A, Gazzard B, et al. Loss of blood CD11c(+) myeloid and CD11c(−) plasmacytoid dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. Blood. 2001;98:2574–6.CrossRefPubMed Donaghy H, Pozniak A, Gazzard B, et al. Loss of blood CD11c(+) myeloid and CD11c(−) plasmacytoid dendritic cells in patients with HIV-1 infection correlates with HIV-1 RNA virus load. Blood. 2001;98:2574–6.CrossRefPubMed
40.
Zurück zum Zitat Pacanowski J, Kahi S, Baillet M, et al. Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood. 2001;98:3016–21.CrossRefPubMed Pacanowski J, Kahi S, Baillet M, et al. Reduced blood CD123+ (lymphoid) and CD11c+ (myeloid) dendritic cell numbers in primary HIV-1 infection. Blood. 2001;98:3016–21.CrossRefPubMed
41.
Zurück zum Zitat Soumelis V, Scott I, Gheyas F, et al. Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood. 2001;98:906–12.CrossRefPubMed Soumelis V, Scott I, Gheyas F, et al. Depletion of circulating natural type 1 interferon-producing cells in HIV-infected AIDS patients. Blood. 2001;98:906–12.CrossRefPubMed
42.
43.
Zurück zum Zitat Kwa S, Kannanganat S, Nigam P, et al. Plasmacytoid dendritic cells are recruited to the colorectum and contribute to immune activation during pathogenic SIV infection in rhesus macaques. Blood. 2011;118:2763–73.CrossRefPubMedPubMedCentral Kwa S, Kannanganat S, Nigam P, et al. Plasmacytoid dendritic cells are recruited to the colorectum and contribute to immune activation during pathogenic SIV infection in rhesus macaques. Blood. 2011;118:2763–73.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Zelenay S, Keller AM, Whitney PG, et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J Clin Invest. 2012;122:1615–27.CrossRefPubMedPubMedCentral Zelenay S, Keller AM, Whitney PG, et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J Clin Invest. 2012;122:1615–27.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Finkel TH, Tudor-Williams G, Banda NK, et al. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med. 1995;1:129–34.CrossRefPubMed Finkel TH, Tudor-Williams G, Banda NK, et al. Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV- and SIV-infected lymph nodes. Nat Med. 1995;1:129–34.CrossRefPubMed
46.
Zurück zum Zitat Gougeon ML. Apoptosis as an HIV strategy to escape immune attack. Nat Rev Immunol. 2003;3:392–404.CrossRefPubMed Gougeon ML. Apoptosis as an HIV strategy to escape immune attack. Nat Rev Immunol. 2003;3:392–404.CrossRefPubMed
48.
49.
Zurück zum Zitat Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. Immunosuppressive effects of apoptotic cells. Nature. 1997;390:350–1.CrossRefPubMed Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I. Immunosuppressive effects of apoptotic cells. Nature. 1997;390:350–1.CrossRefPubMed
50.
Zurück zum Zitat Uderhardt S, Herrmann M, Oskolkova OV, et al. 12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity. 2012;36:834–46.CrossRefPubMed Uderhardt S, Herrmann M, Oskolkova OV, et al. 12/15-lipoxygenase orchestrates the clearance of apoptotic cells and maintains immunologic tolerance. Immunity. 2012;36:834–46.CrossRefPubMed
52.
Zurück zum Zitat Bastard JP, Fellahi S, Couffignal C, et al. Increased systemic immune activation and inflammatory profile of long-term HIV-infected ART-controlled patients is related to personal factors, but not to markers of HIV infection severity. J Antimicrob Chemother. 2015;70:1816–24.PubMed Bastard JP, Fellahi S, Couffignal C, et al. Increased systemic immune activation and inflammatory profile of long-term HIV-infected ART-controlled patients is related to personal factors, but not to markers of HIV infection severity. J Antimicrob Chemother. 2015;70:1816–24.PubMed
Metadaten
Titel
The levels of DNGR-1 and its ligand-bearing cells were altered after human and simian immunodeficiency virus infection
verfasst von
Wen-Rong Yao
Dong Li
Lei Yu
Feng-Jie Wang
Hui Xing
Gui-Bo Yang
Publikationsdatum
06.05.2017
Verlag
Springer US
Erschienen in
Immunologic Research / Ausgabe 4/2017
Print ISSN: 0257-277X
Elektronische ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-017-8925-z

Weitere Artikel der Ausgabe 4/2017

Immunologic Research 4/2017 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.