Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 4/2010

01.08.2010

The Paradoxical Role of Inflammation in Cardiac Repair and Regeneration

verfasst von: Bingbing Jiang, Ronglih Liao

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 4/2010

Einloggen, um Zugang zu erhalten

Abstract

Inflammation has emerged as a critical biological process contributing to nearly all aspects of cardiovascular diseases including heart failure. Heart failure represents the final consequence of a diverse set of initial insults to the myocardium, among which myocardial infarction (MI) is the most common cause. After MI, the lack of perfusion often leads to the death of cardiomyocytes. The necrotic cells trigger a cascade of inflammatory pathways that work to clear the dead cells and matrix debris, as well as to repair and heal damaged tissues. For the heart, an organ with limited regeneration capacity, the consequence of MI (termed post-MI remodeling) comprises a series of structural and functional changes, including scar formation at the infarct zone, reactive hypertrophy of the remaining cardiomyocytes at the noninfarct area, ventricular chamber dilatation, and molecular changes marked by fetal gene up-regulation, all of which have been linked to the activation of the inflammatory pathways. Inadequate or excessive inflammatory response may lead to improper cellular repair, tissue damage, and dysfunction. Herein, we summarize the current understanding of the role of inflammation in cardiac injury and repair and put forth the hypothesis that temporally regulated activation and suppression of inflammation may be critical for achieving effective cardiac repair and regeneration.
Literatur
1.
Zurück zum Zitat Lloyd-Jones, D., Adams, R., Carnethon, M., De Simone, G., Ferguson, T. B., Flegal, K., et al. (2009). Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 119, 480–486.CrossRefPubMed Lloyd-Jones, D., Adams, R., Carnethon, M., De Simone, G., Ferguson, T. B., Flegal, K., et al. (2009). Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 119, 480–486.CrossRefPubMed
2.
Zurück zum Zitat Kajstura, J., Leri, A., Finato, N., Di Loreto, C., Beltrami, C. A., & Anversa, P. (1998). Myocyte proliferation in end-stage cardiac failure in humans. Proceedings of the National Academy of Sciences of the United States of America, 95, 8801–8805.CrossRefPubMed Kajstura, J., Leri, A., Finato, N., Di Loreto, C., Beltrami, C. A., & Anversa, P. (1998). Myocyte proliferation in end-stage cardiac failure in humans. Proceedings of the National Academy of Sciences of the United States of America, 95, 8801–8805.CrossRefPubMed
3.
Zurück zum Zitat Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653.CrossRefPubMed Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433, 647–653.CrossRefPubMed
4.
Zurück zum Zitat Moretti, A., Caron, L., Nakano, A., Lam, J. T., Bernshausen, A., Chen, Y., et al. (2006). Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell, 127, 1151–1165.CrossRefPubMed Moretti, A., Caron, L., Nakano, A., Lam, J. T., Bernshausen, A., Chen, Y., et al. (2006). Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell, 127, 1151–1165.CrossRefPubMed
5.
Zurück zum Zitat Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.CrossRefPubMed Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872.CrossRefPubMed
6.
Zurück zum Zitat Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Natural Medicines, 13, 970–974.CrossRef Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D., et al. (2007). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Natural Medicines, 13, 970–974.CrossRef
7.
Zurück zum Zitat Zhang, J., Wilson, G. F., Soerens, A. G., Koonce, C. H., Yu, J., Palecek, S. P., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104, e30–e41.CrossRefPubMed Zhang, J., Wilson, G. F., Soerens, A. G., Koonce, C. H., Yu, J., Palecek, S. P., et al. (2009). Functional cardiomyocytes derived from human induced pluripotent stem cells. Circulation Research, 104, e30–e41.CrossRefPubMed
8.
Zurück zum Zitat Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.CrossRefPubMed Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.CrossRefPubMed
9.
Zurück zum Zitat Leibovich, S. J., & Ross, R. (1976). A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro. The American Journal of Pathology, 84, 501–514.PubMed Leibovich, S. J., & Ross, R. (1976). A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro. The American Journal of Pathology, 84, 501–514.PubMed
10.
Zurück zum Zitat Eming, S. A., Hammerschmidt, M., Krieg, T., & Roers, A. (2009). Interrelation of immunity and tissue repair or regeneration. Seminars in Cell & Developmental Biology, 20, 517–527.CrossRef Eming, S. A., Hammerschmidt, M., Krieg, T., & Roers, A. (2009). Interrelation of immunity and tissue repair or regeneration. Seminars in Cell & Developmental Biology, 20, 517–527.CrossRef
11.
Zurück zum Zitat Jennings, R. B., Steenbergen, C., Jr., & Reimer, K. A. (1995). Myocardial ischemia and reperfusion. Monographs in Pathology, 37, 47–80.PubMed Jennings, R. B., Steenbergen, C., Jr., & Reimer, K. A. (1995). Myocardial ischemia and reperfusion. Monographs in Pathology, 37, 47–80.PubMed
12.
Zurück zum Zitat Matzinger, P. (1994). Tolerance, danger, and the extended family. Annual Review of Immunology, 12, 991–1045.PubMed Matzinger, P. (1994). Tolerance, danger, and the extended family. Annual Review of Immunology, 12, 991–1045.PubMed
13.
14.
Zurück zum Zitat Chao, W. (2009). Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. American Journal of Physiology. Heart and Circulatory Physiology, 296, H1–H12.CrossRefPubMed Chao, W. (2009). Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. American Journal of Physiology. Heart and Circulatory Physiology, 296, H1–H12.CrossRefPubMed
15.
Zurück zum Zitat Chen, C. J., Kono, H., Golenbock, D., Reed, G., Akira, S., & Rock, K. L. (2007). Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Natural Medicines, 13, 851–856.CrossRef Chen, C. J., Kono, H., Golenbock, D., Reed, G., Akira, S., & Rock, K. L. (2007). Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Natural Medicines, 13, 851–856.CrossRef
16.
Zurück zum Zitat Petrilli, V., Papin, S., Dostert, C., Mayor, A., Martinon, F., & Tschopp, J. (2007). Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death and Differentiation, 14, 1583–1589.CrossRefPubMed Petrilli, V., Papin, S., Dostert, C., Mayor, A., Martinon, F., & Tschopp, J. (2007). Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death and Differentiation, 14, 1583–1589.CrossRefPubMed
17.
Zurück zum Zitat Willingham, S. B., Allen, I. C., Bergstralh, D. T., Brickey, W. J., Huang, M. T., Taxman, D. J., et al. (2009). NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. Journal of Immunology, 183, 2008–2015.CrossRef Willingham, S. B., Allen, I. C., Bergstralh, D. T., Brickey, W. J., Huang, M. T., Taxman, D. J., et al. (2009). NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. Journal of Immunology, 183, 2008–2015.CrossRef
18.
Zurück zum Zitat Bergsbaken, T., Fink, S. L., & Cookson, B. T. (2009). Pyroptosis: host cell death and inflammation. Nature Reviews. Microbiology, 7, 99–109.CrossRefPubMed Bergsbaken, T., Fink, S. L., & Cookson, B. T. (2009). Pyroptosis: host cell death and inflammation. Nature Reviews. Microbiology, 7, 99–109.CrossRefPubMed
19.
Zurück zum Zitat Franchi, L., Eigenbrod, T., Munoz-Planillo, R., & Nunez, G. (2009). The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature Immunology, 10, 241–247.CrossRefPubMed Franchi, L., Eigenbrod, T., Munoz-Planillo, R., & Nunez, G. (2009). The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nature Immunology, 10, 241–247.CrossRefPubMed
20.
Zurück zum Zitat Li, H., Ambade, A., & Re, F. (2009). Cutting edge: necrosis activates the NLRP3 inflammasome. Journal of Immunology, 183, 1528–1532.CrossRef Li, H., Ambade, A., & Re, F. (2009). Cutting edge: necrosis activates the NLRP3 inflammasome. Journal of Immunology, 183, 1528–1532.CrossRef
21.
Zurück zum Zitat Yamasaki, K., Muto, J., Taylor, K. R., Cogen, A. L., Audish, D., Bertin, J., et al. (2009). NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. The Journal of Biological Chemistry, 284, 12762–12771.CrossRefPubMed Yamasaki, K., Muto, J., Taylor, K. R., Cogen, A. L., Audish, D., Bertin, J., et al. (2009). NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. The Journal of Biological Chemistry, 284, 12762–12771.CrossRefPubMed
22.
Zurück zum Zitat Tsung, A., Sahai, R., Tanaka, H., Nakao, A., Fink, M. P., Lotze, M. T., et al. (2005). The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia–reperfusion. The Journal of Experimental Medicine, 201, 1135–1143.CrossRefPubMed Tsung, A., Sahai, R., Tanaka, H., Nakao, A., Fink, M. P., Lotze, M. T., et al. (2005). The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia–reperfusion. The Journal of Experimental Medicine, 201, 1135–1143.CrossRefPubMed
23.
Zurück zum Zitat Wu, H., Chen, G., Wyburn, K. R., Yin, J., Bertolino, P., Eris, J. M., et al. (2007). TLR4 activation mediates kidney ischemia/reperfusion injury. Journal of Clinical Investigation, 117, 2847–2859.CrossRefPubMed Wu, H., Chen, G., Wyburn, K. R., Yin, J., Bertolino, P., Eris, J. M., et al. (2007). TLR4 activation mediates kidney ischemia/reperfusion injury. Journal of Clinical Investigation, 117, 2847–2859.CrossRefPubMed
24.
Zurück zum Zitat Mollen, K. P., Anand, R. J., Tsung, A., Prince, J. M., Levy, R. M., & Billiar, T. R. (2006). Emerging paradigm: toll-like receptor 4-sentinel for the detection of tissue damage. Shock, 26, 430–437.CrossRefPubMed Mollen, K. P., Anand, R. J., Tsung, A., Prince, J. M., Levy, R. M., & Billiar, T. R. (2006). Emerging paradigm: toll-like receptor 4-sentinel for the detection of tissue damage. Shock, 26, 430–437.CrossRefPubMed
25.
Zurück zum Zitat Takeishi, Y., & Kubota, I. (2009). Role of Toll-like receptor mediated signaling pathway in ischemic heart. Frontiers in Bioscience, 14, 2553–2558.CrossRefPubMed Takeishi, Y., & Kubota, I. (2009). Role of Toll-like receptor mediated signaling pathway in ischemic heart. Frontiers in Bioscience, 14, 2553–2558.CrossRefPubMed
26.
Zurück zum Zitat Rovere-Querini, P., Capobianco, A., Scaffidi, P., Valentinis, B., Catalanotti, F., Giazzon, M., et al. (2004). HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Reports, 5, 825–830.CrossRefPubMed Rovere-Querini, P., Capobianco, A., Scaffidi, P., Valentinis, B., Catalanotti, F., Giazzon, M., et al. (2004). HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Reports, 5, 825–830.CrossRefPubMed
27.
Zurück zum Zitat Kaczorowski, D. J., Nakao, A., Vallabhaneni, R., Mollen, K. P., Sugimoto, R., Kohmoto, J., et al. (2009). Mechanisms of Toll-like receptor 4 (TLR4)-mediated inflammation after cold ischemia/reperfusion in the heart. Transplantation, 87, 1455–1463.CrossRefPubMed Kaczorowski, D. J., Nakao, A., Vallabhaneni, R., Mollen, K. P., Sugimoto, R., Kohmoto, J., et al. (2009). Mechanisms of Toll-like receptor 4 (TLR4)-mediated inflammation after cold ischemia/reperfusion in the heart. Transplantation, 87, 1455–1463.CrossRefPubMed
28.
Zurück zum Zitat Oozawa, S., Mori, S., Kanke, T., Takahashi, H., Liu, K., Tomono, Y., et al. (2008). Effects of HMGB1 on ischemia–reperfusion injury in the rat heart. Circulation Journal, 72, 1178–1184.CrossRefPubMed Oozawa, S., Mori, S., Kanke, T., Takahashi, H., Liu, K., Tomono, Y., et al. (2008). Effects of HMGB1 on ischemia–reperfusion injury in the rat heart. Circulation Journal, 72, 1178–1184.CrossRefPubMed
29.
Zurück zum Zitat Andrassy, M., Volz, H. C., Igwe, J. C., Funke, B., Eichberger, S. N., Kaya, Z., et al. (2008). High-mobility group box-1 in ischemia–reperfusion injury of the heart. Circulation, 117, 3216–3226.CrossRefPubMed Andrassy, M., Volz, H. C., Igwe, J. C., Funke, B., Eichberger, S. N., Kaya, Z., et al. (2008). High-mobility group box-1 in ischemia–reperfusion injury of the heart. Circulation, 117, 3216–3226.CrossRefPubMed
30.
Zurück zum Zitat Decleves, A. E., Caron, N., Nonclercq, D., Legrand, A., Toubeau, G., Kramp, R., et al. (2006). Dynamics of hyaluronan, CD44, and inflammatory cells in the rat kidney after ischemia/reperfusion injury. International Journal of Molecular Medicine, 18, 83–94.PubMed Decleves, A. E., Caron, N., Nonclercq, D., Legrand, A., Toubeau, G., Kramp, R., et al. (2006). Dynamics of hyaluronan, CD44, and inflammatory cells in the rat kidney after ischemia/reperfusion injury. International Journal of Molecular Medicine, 18, 83–94.PubMed
31.
Zurück zum Zitat Taylor, K. R., Trowbridge, J. M., Rudisill, J. A., Termeer, C. C., Simon, J. C., & Gallo, R. L. (2004). Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. The Journal of Biological Chemistry, 279, 17079–17084.CrossRefPubMed Taylor, K. R., Trowbridge, J. M., Rudisill, J. A., Termeer, C. C., Simon, J. C., & Gallo, R. L. (2004). Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. The Journal of Biological Chemistry, 279, 17079–17084.CrossRefPubMed
32.
Zurück zum Zitat Taylor, K. R., Yamasaki, K., Radek, K. A., Di Nardo, A., Goodarzi, H., Golenbock, D., et al. (2007). Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2. The Journal of Biological Chemistry, 282, 18265–18275.CrossRefPubMed Taylor, K. R., Yamasaki, K., Radek, K. A., Di Nardo, A., Goodarzi, H., Golenbock, D., et al. (2007). Recognition of hyaluronan released in sterile injury involves a unique receptor complex dependent on Toll-like receptor 4, CD44, and MD-2. The Journal of Biological Chemistry, 282, 18265–18275.CrossRefPubMed
33.
Zurück zum Zitat Johnson, G. B., Brunn, G. J., Kodaira, Y., & Platt, J. L. (2002). Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. Journal of Immunology, 168, 5233–5239. Johnson, G. B., Brunn, G. J., Kodaira, Y., & Platt, J. L. (2002). Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. Journal of Immunology, 168, 5233–5239.
34.
Zurück zum Zitat Celie, J. W., Rutjes, N. W., Keuning, E. D., Soininen, R., Heljasvaara, R., Pihlajaniemi, T., et al. (2007). Subendothelial heparan sulfate proteoglycans become major L-selectin and monocyte chemoattractant protein-1 ligands upon renal ischemia/reperfusion. The American Journal of Pathology, 170, 1865–1878.CrossRefPubMed Celie, J. W., Rutjes, N. W., Keuning, E. D., Soininen, R., Heljasvaara, R., Pihlajaniemi, T., et al. (2007). Subendothelial heparan sulfate proteoglycans become major L-selectin and monocyte chemoattractant protein-1 ligands upon renal ischemia/reperfusion. The American Journal of Pathology, 170, 1865–1878.CrossRefPubMed
35.
Zurück zum Zitat Mills, K. H., & Dunne, A. (2009). Immune modulation: IL-1, master mediator or initiator of inflammation. Natural Medicines, 15, 1363–1364.CrossRef Mills, K. H., & Dunne, A. (2009). Immune modulation: IL-1, master mediator or initiator of inflammation. Natural Medicines, 15, 1363–1364.CrossRef
36.
Zurück zum Zitat Martinon, F., Hofmann, K., & Tschopp, J. (2001). The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Current Biology, 11, R118–R120.CrossRefPubMed Martinon, F., Hofmann, K., & Tschopp, J. (2001). The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Current Biology, 11, R118–R120.CrossRefPubMed
37.
Zurück zum Zitat Fairbrother, W. J., Gordon, N. C., Humke, E. W., O'Rourke, K. M., Starovasnik, M. A., Yin, J. P., et al. (2001). The PYRIN domain: a member of the death domain-fold superfamily. Protein Science, 10, 1911–1918.CrossRefPubMed Fairbrother, W. J., Gordon, N. C., Humke, E. W., O'Rourke, K. M., Starovasnik, M. A., Yin, J. P., et al. (2001). The PYRIN domain: a member of the death domain-fold superfamily. Protein Science, 10, 1911–1918.CrossRefPubMed
38.
Zurück zum Zitat Fernandes-Alnemri, T., Wu, J., Yu, J. W., Datta, P., Miller, B., Jankowski, W., et al. (2007). The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death and Differentiation, 14, 1590–1604.CrossRefPubMed Fernandes-Alnemri, T., Wu, J., Yu, J. W., Datta, P., Miller, B., Jankowski, W., et al. (2007). The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death and Differentiation, 14, 1590–1604.CrossRefPubMed
39.
Zurück zum Zitat Kubota, T., McTiernan, C. F., Frye, C. S., Demetris, A. J., & Feldman, A. M. (1997). Cardiac-specific overexpression of tumor necrosis factor-alpha causes lethal myocarditis in transgenic mice. Journal of Cardiac Failure, 3, 117–124.CrossRefPubMed Kubota, T., McTiernan, C. F., Frye, C. S., Demetris, A. J., & Feldman, A. M. (1997). Cardiac-specific overexpression of tumor necrosis factor-alpha causes lethal myocarditis in transgenic mice. Journal of Cardiac Failure, 3, 117–124.CrossRefPubMed
40.
Zurück zum Zitat Bozkurt, B., Kribbs, S. B., Clubb, F. J., Jr., Michael, L. H., Didenko, V. V., Hornsby, P. J., et al. (1998). Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation, 97, 1382–1391.PubMed Bozkurt, B., Kribbs, S. B., Clubb, F. J., Jr., Michael, L. H., Didenko, V. V., Hornsby, P. J., et al. (1998). Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation, 97, 1382–1391.PubMed
41.
Zurück zum Zitat Yokoyama, T., Vaca, L., Rossen, R. D., Durante, W., Hazarika, P., & Mann, D. L. (1993). Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. Journal of Clinical Investigation, 92, 2303–2312.CrossRefPubMed Yokoyama, T., Vaca, L., Rossen, R. D., Durante, W., Hazarika, P., & Mann, D. L. (1993). Cellular basis for the negative inotropic effects of tumor necrosis factor-alpha in the adult mammalian heart. Journal of Clinical Investigation, 92, 2303–2312.CrossRefPubMed
42.
Zurück zum Zitat Dunlay, S. M., Weston, S. A., Redfield, M. M., Killian, J. M., & Roger, V. L. (2008). Tumor necrosis factor-alpha and mortality in heart failure: a community study. Circulation, 118, 625–631.CrossRefPubMed Dunlay, S. M., Weston, S. A., Redfield, M. M., Killian, J. M., & Roger, V. L. (2008). Tumor necrosis factor-alpha and mortality in heart failure: a community study. Circulation, 118, 625–631.CrossRefPubMed
43.
Zurück zum Zitat Tanno, M., Gorog, D. A., Bellahcene, M., Cao, X., Quinlan, R. A., & Marber, M. S. (2003). Tumor necrosis factor-induced protection of the murine heart is independent of p38-MAPK activation. Journal of Molecular and Cellular Cardiology, 35, 1523–1527.CrossRefPubMed Tanno, M., Gorog, D. A., Bellahcene, M., Cao, X., Quinlan, R. A., & Marber, M. S. (2003). Tumor necrosis factor-induced protection of the murine heart is independent of p38-MAPK activation. Journal of Molecular and Cellular Cardiology, 35, 1523–1527.CrossRefPubMed
44.
Zurück zum Zitat Yamashita, N., Hoshida, S., Otsu, K., Taniguchi, N., Kuzuya, T., & Hori, M. (2000). The involvement of cytokines in the second window of ischaemic preconditioning. British Journal of Pharmacology, 131, 415–422.CrossRefPubMed Yamashita, N., Hoshida, S., Otsu, K., Taniguchi, N., Kuzuya, T., & Hori, M. (2000). The involvement of cytokines in the second window of ischaemic preconditioning. British Journal of Pharmacology, 131, 415–422.CrossRefPubMed
45.
Zurück zum Zitat Dawn, B., Guo, Y., Rezazadeh, A., Wang, O. L., Stein, A. B., Hunt, G., et al. (2004). Tumor necrosis factor-alpha does not modulate ischemia/reperfusion injury in naive myocardium but is essential for the development of late preconditioning. Journal of Molecular and Cellular Cardiology, 37, 51–61.CrossRefPubMed Dawn, B., Guo, Y., Rezazadeh, A., Wang, O. L., Stein, A. B., Hunt, G., et al. (2004). Tumor necrosis factor-alpha does not modulate ischemia/reperfusion injury in naive myocardium but is essential for the development of late preconditioning. Journal of Molecular and Cellular Cardiology, 37, 51–61.CrossRefPubMed
46.
Zurück zum Zitat Higuchi, Y., McTiernan, C. F., Frye, C. B., McGowan, B. S., Chan, T. O., & Feldman, A. M. (2004). Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-alpha-induced cardiomyopathy. Circulation, 109, 1892–1897.CrossRefPubMed Higuchi, Y., McTiernan, C. F., Frye, C. B., McGowan, B. S., Chan, T. O., & Feldman, A. M. (2004). Tumor necrosis factor receptors 1 and 2 differentially regulate survival, cardiac dysfunction, and remodeling in transgenic mice with tumor necrosis factor-alpha-induced cardiomyopathy. Circulation, 109, 1892–1897.CrossRefPubMed
47.
Zurück zum Zitat Al-Lamki, R. S., Brookes, A. P., Wang, J., Reid, M. J., Parameshwar, J., Goddard, M. J., et al. (2009). TNF receptors differentially signal and are differentially expressed and regulated in the human heart. American Journal of Transplantation, 9, 2679–2696.CrossRefPubMed Al-Lamki, R. S., Brookes, A. P., Wang, J., Reid, M. J., Parameshwar, J., Goddard, M. J., et al. (2009). TNF receptors differentially signal and are differentially expressed and regulated in the human heart. American Journal of Transplantation, 9, 2679–2696.CrossRefPubMed
48.
Zurück zum Zitat Declercq, W., Vanden Berghe, T., & Vandenabeele, P. (2009). RIP kinases at the crossroads of cell death and survival. Cell, 138, 229–232.CrossRefPubMed Declercq, W., Vanden Berghe, T., & Vandenabeele, P. (2009). RIP kinases at the crossroads of cell death and survival. Cell, 138, 229–232.CrossRefPubMed
49.
Zurück zum Zitat Whelan, R. S., Kaplinskiy, V., & Kitsis, R. N. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol, 72, 19-44. Whelan, R. S., Kaplinskiy, V., & Kitsis, R. N. Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol, 72, 19-44.
50.
Zurück zum Zitat He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., et al. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 137, 1100–1111.CrossRefPubMed He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., et al. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 137, 1100–1111.CrossRefPubMed
51.
Zurück zum Zitat Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M., et al. (2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 137, 1112–1123.CrossRefPubMed Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M., et al. (2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 137, 1112–1123.CrossRefPubMed
52.
Zurück zum Zitat Mahoney, D. J., Cheung, H. H., Mrad, R. L., Plenchette, S., Simard, C., Enwere, E., et al. (2008). Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proceedings of the National Academy of Sciences of the United States of America, 105, 11778–11783.CrossRefPubMed Mahoney, D. J., Cheung, H. H., Mrad, R. L., Plenchette, S., Simard, C., Enwere, E., et al. (2008). Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proceedings of the National Academy of Sciences of the United States of America, 105, 11778–11783.CrossRefPubMed
53.
Zurück zum Zitat Varfolomeev, E., Goncharov, T., Fedorova, A. V., Dynek, J. N., Zobel, K., Deshayes, K., et al. (2008). c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. The Journal of Biological Chemistry, 283, 24295–24299.CrossRefPubMed Varfolomeev, E., Goncharov, T., Fedorova, A. V., Dynek, J. N., Zobel, K., Deshayes, K., et al. (2008). c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. The Journal of Biological Chemistry, 283, 24295–24299.CrossRefPubMed
54.
Zurück zum Zitat Shembade, N., Ma, A., & Harhaj, E. W. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science, 327, 1135-1139. Shembade, N., Ma, A., & Harhaj, E. W. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science, 327, 1135-1139.
55.
Zurück zum Zitat Wilson, N. S., Dixit, V., & Ashkenazi, A. (2009). Death receptor signal transducers: nodes of coordination in immune signaling networks. Nature Immunology, 10, 348–355.CrossRefPubMed Wilson, N. S., Dixit, V., & Ashkenazi, A. (2009). Death receptor signal transducers: nodes of coordination in immune signaling networks. Nature Immunology, 10, 348–355.CrossRefPubMed
56.
Zurück zum Zitat Wang, L., Du, F., & Wang, X. (2008). TNF-alpha induces two distinct caspase-8 activation pathways. Cell, 133, 693–703.CrossRefPubMed Wang, L., Du, F., & Wang, X. (2008). TNF-alpha induces two distinct caspase-8 activation pathways. Cell, 133, 693–703.CrossRefPubMed
57.
Zurück zum Zitat Wertz, I. E., O'Rourke, K. M., Zhou, H., Eby, M., Aravind, L., Seshagiri, S., et al. (2004). De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature, 430, 694–699.CrossRefPubMed Wertz, I. E., O'Rourke, K. M., Zhou, H., Eby, M., Aravind, L., Seshagiri, S., et al. (2004). De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature, 430, 694–699.CrossRefPubMed
58.
Zurück zum Zitat Dinarello, C. A. (2009). Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology, 27, 519–550.CrossRefPubMed Dinarello, C. A. (2009). Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology, 27, 519–550.CrossRefPubMed
59.
Zurück zum Zitat Chen, C. J., Shi, Y., Hearn, A., Fitzgerald, K., Golenbock, D., Reed, G., et al. (2006). MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. Journal of Clinical Investigation, 116, 2262–2271.CrossRefPubMed Chen, C. J., Shi, Y., Hearn, A., Fitzgerald, K., Golenbock, D., Reed, G., et al. (2006). MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. Journal of Clinical Investigation, 116, 2262–2271.CrossRefPubMed
60.
Zurück zum Zitat Mitchell, M. D., Laird, R. E., Brown, R. D., & Long, C. S. (2007). IL-1beta stimulates rat cardiac fibroblast migration via MAP kinase pathways. American Journal of Physiology. Heart and Circulatory Physiology, 292, H1139–H1147.CrossRefPubMed Mitchell, M. D., Laird, R. E., Brown, R. D., & Long, C. S. (2007). IL-1beta stimulates rat cardiac fibroblast migration via MAP kinase pathways. American Journal of Physiology. Heart and Circulatory Physiology, 292, H1139–H1147.CrossRefPubMed
61.
Zurück zum Zitat Bujak, M., & Frangogiannis, N. G. (2009). The role of IL-1 in the pathogenesis of heart disease. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 57, 165–176.CrossRef Bujak, M., & Frangogiannis, N. G. (2009). The role of IL-1 in the pathogenesis of heart disease. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 57, 165–176.CrossRef
62.
Zurück zum Zitat Tamaru, M., Tomura, K., Sakamoto, S., Tezuka, K., Tamatani, T., & Narumi, S. (1998). Interleukin-1beta induces tissue- and cell type-specific expression of adhesion molecules in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 1292–1303.PubMed Tamaru, M., Tomura, K., Sakamoto, S., Tezuka, K., Tamatani, T., & Narumi, S. (1998). Interleukin-1beta induces tissue- and cell type-specific expression of adhesion molecules in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 18, 1292–1303.PubMed
63.
Zurück zum Zitat Frangogiannis, N. G. (2008). The immune system and cardiac repair. Pharmacological Research, 58, 88–111.CrossRefPubMed Frangogiannis, N. G. (2008). The immune system and cardiac repair. Pharmacological Research, 58, 88–111.CrossRefPubMed
64.
Zurück zum Zitat Gurtner, G. C., Werner, S., Barrandon, Y., & Longaker, M. T. (2008). Wound repair and regeneration. Nature, 453, 314–321.CrossRefPubMed Gurtner, G. C., Werner, S., Barrandon, Y., & Longaker, M. T. (2008). Wound repair and regeneration. Nature, 453, 314–321.CrossRefPubMed
65.
Zurück zum Zitat Frangogiannis, N. G., Youker, K. A., & Entman, M. L. (1996). The role of the neutrophil in myocardial ischemia and reperfusion. EXS, 76, 263–284.PubMed Frangogiannis, N. G., Youker, K. A., & Entman, M. L. (1996). The role of the neutrophil in myocardial ischemia and reperfusion. EXS, 76, 263–284.PubMed
66.
Zurück zum Zitat Blyszczuk, P., Kania, G., Dieterle, T., Marty, R. R., Valaperti, A., Berthonneche, C., et al. (2009). Myeloid differentiation factor-88/interleukin-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy. Circulation Research, 105, 912–920.CrossRefPubMed Blyszczuk, P., Kania, G., Dieterle, T., Marty, R. R., Valaperti, A., Berthonneche, C., et al. (2009). Myeloid differentiation factor-88/interleukin-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy. Circulation Research, 105, 912–920.CrossRefPubMed
67.
Zurück zum Zitat Bonetti, A., Marchini, M., & Ortolani, F. (2008). Immunolocalization of interleukin-1 receptor antagonist in healthy and infarcted myocardium. Histology and Histopathology, 23, 1093–1102.PubMed Bonetti, A., Marchini, M., & Ortolani, F. (2008). Immunolocalization of interleukin-1 receptor antagonist in healthy and infarcted myocardium. Histology and Histopathology, 23, 1093–1102.PubMed
68.
Zurück zum Zitat Abbate, A., Salloum, F. N., Vecile, E., Das, A., Hoke, N. N., Straino, S., et al. (2008). Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation, 117, 2670–2683.CrossRefPubMed Abbate, A., Salloum, F. N., Vecile, E., Das, A., Hoke, N. N., Straino, S., et al. (2008). Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation, 117, 2670–2683.CrossRefPubMed
69.
Zurück zum Zitat Suzuki, K., Murtuza, B., Smolenski, R. T., Sammut, I. A., Suzuki, N., Kaneda, Y., et al. (2001). Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia–reperfusion injury associated with reduction in apoptosis. Circulation, 104, I308–I303.CrossRefPubMed Suzuki, K., Murtuza, B., Smolenski, R. T., Sammut, I. A., Suzuki, N., Kaneda, Y., et al. (2001). Overexpression of interleukin-1 receptor antagonist provides cardioprotection against ischemia–reperfusion injury associated with reduction in apoptosis. Circulation, 104, I308–I303.CrossRefPubMed
70.
Zurück zum Zitat Kamimura, D., Ishihara, K., & Hirano, T. (2003). IL-6 signal transduction and its physiological roles: the signal orchestration model. Reviews of Physiology Biochemistry and Pharmacology, 149, 1–38.CrossRef Kamimura, D., Ishihara, K., & Hirano, T. (2003). IL-6 signal transduction and its physiological roles: the signal orchestration model. Reviews of Physiology Biochemistry and Pharmacology, 149, 1–38.CrossRef
71.
Zurück zum Zitat Banerjee, I., Fuseler, J. W., Intwala, A. R., & Baudino, T. A. (2009). IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart. American Journal of Physiology. Heart and Circulatory Physiology, 296, H1694–H1704.CrossRefPubMed Banerjee, I., Fuseler, J. W., Intwala, A. R., & Baudino, T. A. (2009). IL-6 loss causes ventricular dysfunction, fibrosis, reduced capillary density, and dramatically alters the cell populations of the developing and adult heart. American Journal of Physiology. Heart and Circulatory Physiology, 296, H1694–H1704.CrossRefPubMed
72.
Zurück zum Zitat Dawn, B., Xuan, Y. T., Guo, Y., Rezazadeh, A., Stein, A. B., Hunt, G., et al. (2004). IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovascular Research, 64, 61–71.CrossRefPubMed Dawn, B., Xuan, Y. T., Guo, Y., Rezazadeh, A., Stein, A. B., Hunt, G., et al. (2004). IL-6 plays an obligatory role in late preconditioning via JAK-STAT signaling and upregulation of iNOS and COX-2. Cardiovascular Research, 64, 61–71.CrossRefPubMed
73.
Zurück zum Zitat Novoyatleva, T., Diehl, F., van Amerongen, M. J., Patra, C., Ferrazzi, F., Bellazzi, R., et al. (2009). TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovasc Res. Novoyatleva, T., Diehl, F., van Amerongen, M. J., Patra, C., Ferrazzi, F., Bellazzi, R., et al. (2009). TWEAK is a positive regulator of cardiomyocyte proliferation. Cardiovasc Res.
74.
Zurück zum Zitat Jain, M., Jakubowski, A., Cui, L., Shi, J., Su, L., Bauer, M., et al. (2009). A novel role for tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in the development of cardiac dysfunction and failure. Circulation, 119, 2058–2068.CrossRefPubMed Jain, M., Jakubowski, A., Cui, L., Shi, J., Su, L., Bauer, M., et al. (2009). A novel role for tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in the development of cardiac dysfunction and failure. Circulation, 119, 2058–2068.CrossRefPubMed
75.
Zurück zum Zitat Mitola, S., Belleri, M., Urbinati, C., Coltrini, D., Sparatore, B., Pedrazzi, M., et al. (2006). Cutting edge: extracellular high mobility group box-1 protein is a proangiogenic cytokine. Journal of Immunology, 176, 12–15. Mitola, S., Belleri, M., Urbinati, C., Coltrini, D., Sparatore, B., Pedrazzi, M., et al. (2006). Cutting edge: extracellular high mobility group box-1 protein is a proangiogenic cytokine. Journal of Immunology, 176, 12–15.
76.
Zurück zum Zitat Limana, F., Germani, A., Zacheo, A., Kajstura, J., Di Carlo, A., Borsellino, G., et al. (2005). Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circulation Research, 97, e73–e83.CrossRefPubMed Limana, F., Germani, A., Zacheo, A., Kajstura, J., Di Carlo, A., Borsellino, G., et al. (2005). Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circulation Research, 97, e73–e83.CrossRefPubMed
77.
Zurück zum Zitat Germani, A., Limana, F., & Capogrossi, M. C. (2007). Pivotal advances: high-mobility group box 1 protein—a cytokine with a role in cardiac repair. Journal of Leukocyte Biology, 81, 41–45.CrossRefPubMed Germani, A., Limana, F., & Capogrossi, M. C. (2007). Pivotal advances: high-mobility group box 1 protein—a cytokine with a role in cardiac repair. Journal of Leukocyte Biology, 81, 41–45.CrossRefPubMed
78.
Zurück zum Zitat Rossini, A., Zacheo, A., Mocini, D., Totta, P., Facchiano, A., Castoldi, R., et al. (2008). HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells. Journal of Molecular and Cellular Cardiology, 44, 683–693.CrossRefPubMed Rossini, A., Zacheo, A., Mocini, D., Totta, P., Facchiano, A., Castoldi, R., et al. (2008). HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells. Journal of Molecular and Cellular Cardiology, 44, 683–693.CrossRefPubMed
79.
Zurück zum Zitat Border, W. A., & Noble, N. A. (1994). Transforming growth factor beta in tissue fibrosis. The New England Journal of Medicine, 331, 1286–1292.CrossRefPubMed Border, W. A., & Noble, N. A. (1994). Transforming growth factor beta in tissue fibrosis. The New England Journal of Medicine, 331, 1286–1292.CrossRefPubMed
80.
Zurück zum Zitat Rosenkranz, S. (2004). TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovascular Research, 63, 423–432.CrossRefPubMed Rosenkranz, S. (2004). TGF-beta1 and angiotensin networking in cardiac remodeling. Cardiovascular Research, 63, 423–432.CrossRefPubMed
81.
Zurück zum Zitat Briest, W., Homagk, L., Rassler, B., Ziegelhoffer-Mihalovicova, B., Meier, H., Tannapfel, A., et al. (2004). Norepinephrine-induced changes in cardiac transforming growth factor-beta isoform expression pattern of female and male rats. Hypertension, 44, 410–418.CrossRefPubMed Briest, W., Homagk, L., Rassler, B., Ziegelhoffer-Mihalovicova, B., Meier, H., Tannapfel, A., et al. (2004). Norepinephrine-induced changes in cardiac transforming growth factor-beta isoform expression pattern of female and male rats. Hypertension, 44, 410–418.CrossRefPubMed
82.
Zurück zum Zitat Jain, R., Shaul, P. W., Borok, Z., & Willis, B. C. (2007). Endothelin-1 induces alveolar epithelial–mesenchymal transition through endothelin type A receptor-mediated production of TGF-beta1. American Journal of Respiratory Cell and Molecular Biology, 37, 38–47.CrossRefPubMed Jain, R., Shaul, P. W., Borok, Z., & Willis, B. C. (2007). Endothelin-1 induces alveolar epithelial–mesenchymal transition through endothelin type A receptor-mediated production of TGF-beta1. American Journal of Respiratory Cell and Molecular Biology, 37, 38–47.CrossRefPubMed
83.
Zurück zum Zitat Lee, A. A., Dillmann, W. H., McCulloch, A. D., & Villarreal, F. J. (1995). Angiotensin II stimulates the autocrine production of transforming growth factor-beta 1 in adult rat cardiac fibroblasts. Journal of Molecular and Cellular Cardiology, 27, 2347–2357.CrossRefPubMed Lee, A. A., Dillmann, W. H., McCulloch, A. D., & Villarreal, F. J. (1995). Angiotensin II stimulates the autocrine production of transforming growth factor-beta 1 in adult rat cardiac fibroblasts. Journal of Molecular and Cellular Cardiology, 27, 2347–2357.CrossRefPubMed
84.
Zurück zum Zitat Engel, F. B., Hsieh, P. C., Lee, R. T., & Keating, M. T. (2006). FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 103, 15546–15551.CrossRefPubMed Engel, F. B., Hsieh, P. C., Lee, R. T., & Keating, M. T. (2006). FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 103, 15546–15551.CrossRefPubMed
85.
Zurück zum Zitat Engel, F. B., Schebesta, M., Duong, M. T., Lu, G., Ren, S., Madwed, J. B., et al. (2005). p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes & Development, 19, 1175–1187.CrossRef Engel, F. B., Schebesta, M., Duong, M. T., Lu, G., Ren, S., Madwed, J. B., et al. (2005). p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes & Development, 19, 1175–1187.CrossRef
86.
Zurück zum Zitat Lips, D. J., deWindt, L. J., van Kraaij, D. J., & Doevendans, P. A. (2003). Molecular determinants of myocardial hypertrophy and failure: alternative pathways for beneficial and maladaptive hypertrophy. European Heart Journal, 24, 883–896.CrossRefPubMed Lips, D. J., deWindt, L. J., van Kraaij, D. J., & Doevendans, P. A. (2003). Molecular determinants of myocardial hypertrophy and failure: alternative pathways for beneficial and maladaptive hypertrophy. European Heart Journal, 24, 883–896.CrossRefPubMed
87.
Zurück zum Zitat De Angelis, N., Fiordaliso, F., Latini, R., Calvillo, L., Funicello, M., Gobbi, M., et al. (2002). Appraisal of the role of angiotensin II and aldosterone in ventricular myocyte apoptosis in adult normotensive rat. Journal of Molecular and Cellular Cardiology, 34, 1655–1665.CrossRefPubMed De Angelis, N., Fiordaliso, F., Latini, R., Calvillo, L., Funicello, M., Gobbi, M., et al. (2002). Appraisal of the role of angiotensin II and aldosterone in ventricular myocyte apoptosis in adult normotensive rat. Journal of Molecular and Cellular Cardiology, 34, 1655–1665.CrossRefPubMed
88.
Zurück zum Zitat Jessup, M., Abraham, W. T., Casey, D. E., Feldman, A. M., Francis, G. S., Ganiats, T. G., et al. (2009). 2009 focused update: ACCF/AHA Guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation, 119, 1977–2016.CrossRefPubMed Jessup, M., Abraham, W. T., Casey, D. E., Feldman, A. M., Francis, G. S., Ganiats, T. G., et al. (2009). 2009 focused update: ACCF/AHA Guidelines for the diagnosis and management of heart failure in adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines: developed in collaboration with the International Society for Heart and Lung Transplantation. Circulation, 119, 1977–2016.CrossRefPubMed
89.
Zurück zum Zitat Remme, W. J. (2007). Beta blockers or angiotensin-converting-enzyme inhibitor/angiotensin receptor blocker: what should be first? Cardiol Clin, 25, 581–594. vii.CrossRefPubMed Remme, W. J. (2007). Beta blockers or angiotensin-converting-enzyme inhibitor/angiotensin receptor blocker: what should be first? Cardiol Clin, 25, 581–594. vii.CrossRefPubMed
90.
Zurück zum Zitat Ford, C. M., Li, S., & Pickering, J. G. (1999). Angiotensin II stimulates collagen synthesis in human vascular smooth muscle cells. Involvement of the AT(1) receptor, transforming growth factor-beta, and tyrosine phosphorylation. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 1843–1851.PubMed Ford, C. M., Li, S., & Pickering, J. G. (1999). Angiotensin II stimulates collagen synthesis in human vascular smooth muscle cells. Involvement of the AT(1) receptor, transforming growth factor-beta, and tyrosine phosphorylation. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 1843–1851.PubMed
91.
Zurück zum Zitat Jiang, B., Xu, S., Hou, X., Pimentel, D. R., & Cohen, R. A. (2004). Angiotensin II differentially regulates interleukin-1-beta-inducible NO synthase (iNOS) and vascular cell adhesion molecule-1 (VCAM-1) expression: role of p38 MAPK. The Journal of Biological Chemistry, 279, 20363–20368.CrossRefPubMed Jiang, B., Xu, S., Hou, X., Pimentel, D. R., & Cohen, R. A. (2004). Angiotensin II differentially regulates interleukin-1-beta-inducible NO synthase (iNOS) and vascular cell adhesion molecule-1 (VCAM-1) expression: role of p38 MAPK. The Journal of Biological Chemistry, 279, 20363–20368.CrossRefPubMed
92.
Zurück zum Zitat Chen, X. L., Tummala, P. E., Olbrych, M. T., Alexander, R. W., & Medford, R. M. (1998). Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circulation Research, 83, 952–959.PubMed Chen, X. L., Tummala, P. E., Olbrych, M. T., Alexander, R. W., & Medford, R. M. (1998). Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells. Circulation Research, 83, 952–959.PubMed
93.
Zurück zum Zitat Tummala, P. E., Chen, X. L., Sundell, C. L., Laursen, J. B., Hammes, C. P., Alexander, R. W., et al. (1999). Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: a potential link between the renin–angiotensin system and atherosclerosis. Circulation, 100, 1223–1229.PubMed Tummala, P. E., Chen, X. L., Sundell, C. L., Laursen, J. B., Hammes, C. P., Alexander, R. W., et al. (1999). Angiotensin II induces vascular cell adhesion molecule-1 expression in rat vasculature: a potential link between the renin–angiotensin system and atherosclerosis. Circulation, 100, 1223–1229.PubMed
94.
Zurück zum Zitat Nakayama, I., Kawahara, Y., Tsuda, T., Okuda, M., & Yokoyama, M. (1994). Angiotensin II inhibits cytokine-stimulated inducible nitric oxide synthase expression in vascular smooth muscle cells. The Journal of Biological Chemistry, 269, 11628–11633.PubMed Nakayama, I., Kawahara, Y., Tsuda, T., Okuda, M., & Yokoyama, M. (1994). Angiotensin II inhibits cytokine-stimulated inducible nitric oxide synthase expression in vascular smooth muscle cells. The Journal of Biological Chemistry, 269, 11628–11633.PubMed
95.
Zurück zum Zitat Jiang, B., Xu, S., Hou, X., Pimentel, D. R., Brecher, P., & Cohen, R. A. (2004). Temporal control of NF-kappaB activation by ERK differentially regulates interleukin-1beta-induced gene expression. The Journal of Biological Chemistry, 279, 1323–1329.CrossRefPubMed Jiang, B., Xu, S., Hou, X., Pimentel, D. R., Brecher, P., & Cohen, R. A. (2004). Temporal control of NF-kappaB activation by ERK differentially regulates interleukin-1beta-induced gene expression. The Journal of Biological Chemistry, 279, 1323–1329.CrossRefPubMed
96.
Zurück zum Zitat Jiang, B., Brecher, P., & Cohen, R. A. (2001). Persistent activation of nuclear factor-kappaB by interleukin-1beta and subsequent inducible NO synthase expression requires extracellular signal-regulated kinase. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 1915–1920.CrossRefPubMed Jiang, B., Brecher, P., & Cohen, R. A. (2001). Persistent activation of nuclear factor-kappaB by interleukin-1beta and subsequent inducible NO synthase expression requires extracellular signal-regulated kinase. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 1915–1920.CrossRefPubMed
97.
Zurück zum Zitat Jiang, B., Xu, S., Brecher, P., & Cohen, R. A. (2002). Growth factors enhance interleukin-1 beta-induced persistent activation of nuclear factor-kappa B in rat vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 1811–1816.CrossRefPubMed Jiang, B., Xu, S., Brecher, P., & Cohen, R. A. (2002). Growth factors enhance interleukin-1 beta-induced persistent activation of nuclear factor-kappa B in rat vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 22, 1811–1816.CrossRefPubMed
Metadaten
Titel
The Paradoxical Role of Inflammation in Cardiac Repair and Regeneration
verfasst von
Bingbing Jiang
Ronglih Liao
Publikationsdatum
01.08.2010
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 4/2010
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-010-9193-7

Weitere Artikel der Ausgabe 4/2010

Journal of Cardiovascular Translational Research 4/2010 Zur Ausgabe

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.