Skip to main content
Erschienen in: CNS Drugs 11/2012

01.11.2012 | Review Article

Psychotropic Drug–Drug Interactions Involving P-Glycoprotein

verfasst von: Yumiko Akamine, Norio Yasui-Furukori, Ichiro Ieiri, Tsukasa Uno

Erschienen in: CNS Drugs | Ausgabe 11/2012

Einloggen, um Zugang zu erhalten

Abstract

Multidrug resistance P-glycoprotein (P-gp; also known as MDR1 and ABCB1) is expressed in the luminal membrane of the small intestine and blood–brain barrier, and the apical membranes of excretory cells such as hepatocytes and kidney proximal tubule epithelia. P-gp regulates the absorption and elimination of a wide range of compounds, such as digoxin, paclitaxel, HIV protease inhibitors and psychotropic drugs. Its substrate specificity is as broad as that of cytochrome P450 (CYP) 3A4, which encompasses up to 50 % of the currently marketed drugs. There has been considerable interest in variations in the ABCB1 gene as predictors of the pharmacokinetics and/or treatment outcomes of several drug classes, including antidepressants and antipsychotics. Moreover, P-gp-mediated transport activity is saturable, and is subject to modulation by inhibition and induction, which can affect the pharmacokinetics, efficacy or safety of P-gp substrates. In addition, many of the P-gp substrates overlap with CYP3A4 substrates, and several psychotropic drugs that are P-gp substrates are also CYP3A4 substrates. Therefore, psychotropic drugs that are P-gp substrates may cause a drug interaction when P-gp inhibitors and inducers are coadministered, or when psychotropic drugs or other medicines that are P-gp substrates are added to a prescription. Hence, it is clinically important to accumulate data about drug interactions through studies on P-gp, in addition to CYP3A4, to assist in the selection of appropriate psychotropic medications and in avoiding inappropriate combinations of therapeutic agents. There is currently insufficient information available on the psychotropic drug interactions related to P-gp, and therefore we summarize the recent clinical data in this review.
Literatur
1.
Zurück zum Zitat Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.PubMedCrossRef Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.PubMedCrossRef
2.
Zurück zum Zitat Demeule M, Régina A, Jodoin J, et al. Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood–brain barrier. Vascul Pharmacol. 2002;38:339–48.PubMedCrossRef Demeule M, Régina A, Jodoin J, et al. Drug transport to the brain: key roles for the efflux pump P-glycoprotein in the blood–brain barrier. Vascul Pharmacol. 2002;38:339–48.PubMedCrossRef
3.
Zurück zum Zitat Sasongko L, Link JM, Muzi M, et al. Imaging P-glycoprotein transport activity at the human blood–brain barrier with positron emission tomography. Clin Pharmacol Ther. 2005;77:503–14.PubMedCrossRef Sasongko L, Link JM, Muzi M, et al. Imaging P-glycoprotein transport activity at the human blood–brain barrier with positron emission tomography. Clin Pharmacol Ther. 2005;77:503–14.PubMedCrossRef
4.
Zurück zum Zitat Bauer B, Hartz AM, Fricker G, et al. Modulation of p-glycoprotein transport function at the blood–brain barrier. Exp Biol Med (Maywood). 2005;230:118–27. Bauer B, Hartz AM, Fricker G, et al. Modulation of p-glycoprotein transport function at the blood–brain barrier. Exp Biol Med (Maywood). 2005;230:118–27.
5.
Zurück zum Zitat Löscher W, Potschka H. Blood–brain barrier active efflux transporters: aTP-binding cassette gene family. NeuroRx. 2005;2:86–98.PubMedCrossRef Löscher W, Potschka H. Blood–brain barrier active efflux transporters: aTP-binding cassette gene family. NeuroRx. 2005;2:86–98.PubMedCrossRef
6.
Zurück zum Zitat Ayrton A, Morgan P. Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica. 2001;31:469–97.PubMedCrossRef Ayrton A, Morgan P. Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica. 2001;31:469–97.PubMedCrossRef
7.
Zurück zum Zitat Schrickx JA, Fink-Gremmels J. Implications of ABC transporters on the disposition of typical veterinary medicinal products. Eur J Pharmacol. 2008;585:510–9.PubMedCrossRef Schrickx JA, Fink-Gremmels J. Implications of ABC transporters on the disposition of typical veterinary medicinal products. Eur J Pharmacol. 2008;585:510–9.PubMedCrossRef
8.
Zurück zum Zitat Westphal K, Weinbrenner A, Giessmann T, et al. Oral bioavailability of digoxin is enhanced by talinolol: evidence for involvement of intestinal P-glycoprotein. Clin Pharmacol Ther. 2000;68:6–12.PubMedCrossRef Westphal K, Weinbrenner A, Giessmann T, et al. Oral bioavailability of digoxin is enhanced by talinolol: evidence for involvement of intestinal P-glycoprotein. Clin Pharmacol Ther. 2000;68:6–12.PubMedCrossRef
9.
Zurück zum Zitat Boyd RA, Stern RH, Stewart BH, et al. Atorvastatin coadministration may increase digoxin concentrations by inhibition of intestinal P-glycoprotein-mediated secretion. J Clin Pharmacol. 2000;40:91–8.PubMedCrossRef Boyd RA, Stern RH, Stewart BH, et al. Atorvastatin coadministration may increase digoxin concentrations by inhibition of intestinal P-glycoprotein-mediated secretion. J Clin Pharmacol. 2000;40:91–8.PubMedCrossRef
10.
Zurück zum Zitat Doering W. Quinidine–digoxin interaction: pharmacokinetics, underlying mechanism and clinical implications. N Engl J Med. 1979;301:400–4.PubMedCrossRef Doering W. Quinidine–digoxin interaction: pharmacokinetics, underlying mechanism and clinical implications. N Engl J Med. 1979;301:400–4.PubMedCrossRef
11.
Zurück zum Zitat Ding R, Tayrouz Y, Riedel KD, et al. Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin Pharmacol Ther. 2004;76:73–84.PubMedCrossRef Ding R, Tayrouz Y, Riedel KD, et al. Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers. Clin Pharmacol Ther. 2004;76:73–84.PubMedCrossRef
12.
Zurück zum Zitat Sadeque AJ, Wandel C, He H, et al. Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther. 2000;68:231–7.PubMedCrossRef Sadeque AJ, Wandel C, He H, et al. Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther. 2000;68:231–7.PubMedCrossRef
13.
Zurück zum Zitat Adenot M, Lahana R. Blood–brain barrier permeation models: discriminating between potential CNS and non-CNS drugs including P-glycoprotein substrates. J Chem Inf Comput Sci. 2004;44:239–48.PubMedCrossRef Adenot M, Lahana R. Blood–brain barrier permeation models: discriminating between potential CNS and non-CNS drugs including P-glycoprotein substrates. J Chem Inf Comput Sci. 2004;44:239–48.PubMedCrossRef
14.
Zurück zum Zitat Thuerauf N, Fromm MF. The role of the transporter P-glycoprotein for disposition and effects of centrally acting drugs and for the pathogenesis of CNS diseases. Eur Arch Psychiatry Clin Neurosci. 2006;256:281–6.PubMedCrossRef Thuerauf N, Fromm MF. The role of the transporter P-glycoprotein for disposition and effects of centrally acting drugs and for the pathogenesis of CNS diseases. Eur Arch Psychiatry Clin Neurosci. 2006;256:281–6.PubMedCrossRef
15.
Zurück zum Zitat Linnet K, Ejsing TB. A review on the impact of P-glycoprotein on the penetration of drugs into the brain: focus on psychotropic drugs. Eur Neuropsychopharmacol. 2008;18:157–69.PubMedCrossRef Linnet K, Ejsing TB. A review on the impact of P-glycoprotein on the penetration of drugs into the brain: focus on psychotropic drugs. Eur Neuropsychopharmacol. 2008;18:157–69.PubMedCrossRef
16.
Zurück zum Zitat Urquhart BL, Kim RB. Blood–brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol. 2009;65:1063–70.PubMedCrossRef Urquhart BL, Kim RB. Blood–brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol. 2009;65:1063–70.PubMedCrossRef
17.
Zurück zum Zitat Moons T, de Roo M, Claes S, et al. Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics. 2011;12:1193–211.PubMedCrossRef Moons T, de Roo M, Claes S, et al. Relationship between P-glycoprotein and second-generation antipsychotics. Pharmacogenomics. 2011;12:1193–211.PubMedCrossRef
18.
Zurück zum Zitat O’Brien FE, Dinan TG, Griffin BT, et al. Interactions between antidepressants and P-glycoprotein at the blood–brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol. 2012;165:289–312.PubMedCrossRef O’Brien FE, Dinan TG, Griffin BT, et al. Interactions between antidepressants and P-glycoprotein at the blood–brain barrier: clinical significance of in vitro and in vivo findings. Br J Pharmacol. 2012;165:289–312.PubMedCrossRef
19.
Zurück zum Zitat Wang JS, Ruan Y, Taylor RM, et al. The brain entry of risperidone and 9-hydroxyrisperidone is greatly limited by P-glycoprotein. Int J Neuropsychopharmacol. 2004;7:415–9.PubMedCrossRef Wang JS, Ruan Y, Taylor RM, et al. The brain entry of risperidone and 9-hydroxyrisperidone is greatly limited by P-glycoprotein. Int J Neuropsychopharmacol. 2004;7:415–9.PubMedCrossRef
20.
Zurück zum Zitat Kirschbaum KM, Uhr M, Holthoewer D, et al. Pharmacokinetics of acute and sub-chronic aripiprazole in P-glycoprotein deficient mice. Neuropharmacology. 2010;59:474–9.PubMedCrossRef Kirschbaum KM, Uhr M, Holthoewer D, et al. Pharmacokinetics of acute and sub-chronic aripiprazole in P-glycoprotein deficient mice. Neuropharmacology. 2010;59:474–9.PubMedCrossRef
21.
Zurück zum Zitat Kato M, Fukuda T, Serretti A, et al. ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:398–404.PubMedCrossRef Kato M, Fukuda T, Serretti A, et al. ABCB1 (MDR1) gene polymorphisms are associated with the clinical response to paroxetine in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:398–404.PubMedCrossRef
22.
Zurück zum Zitat Roberts RL, Joyce PR, Mulder RT, et al. A common P-glycoprotein polymorphism is associated with nortriptyline-induced postural hypotension in patients treated for major depression. Pharmacogenomics J. 2002;2:191–6.PubMedCrossRef Roberts RL, Joyce PR, Mulder RT, et al. A common P-glycoprotein polymorphism is associated with nortriptyline-induced postural hypotension in patients treated for major depression. Pharmacogenomics J. 2002;2:191–6.PubMedCrossRef
23.
Zurück zum Zitat Kim RB. Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev. 2002;34:47–54.PubMedCrossRef Kim RB. Drugs as P-glycoprotein substrates, inhibitors, and inducers. Drug Metab Rev. 2002;34:47–54.PubMedCrossRef
24.
Zurück zum Zitat Sandson NB, Armstrong SC, Cozza KL. An overview of psychotropic drug–drug interactions. Psychosomatics. 2005;46:464–94.PubMedCrossRef Sandson NB, Armstrong SC, Cozza KL. An overview of psychotropic drug–drug interactions. Psychosomatics. 2005;46:464–94.PubMedCrossRef
25.
Zurück zum Zitat Zhou SF, Lai X. An update on clinical drug interactions with the herbal antidepressant St. John’s wort. Curr Drug Metab. 2008;9:394–409.PubMedCrossRef Zhou SF, Lai X. An update on clinical drug interactions with the herbal antidepressant St. John’s wort. Curr Drug Metab. 2008;9:394–409.PubMedCrossRef
26.
Zurück zum Zitat Ereshefsky L. Drug–drug interactions with the use of psychotropic medications. CNS Spectr. 2009;14:1–8.PubMed Ereshefsky L. Drug–drug interactions with the use of psychotropic medications. CNS Spectr. 2009;14:1–8.PubMed
27.
Zurück zum Zitat Izzo AA, Ernst E. Interactions between herbal medicines and prescribed drugs. Drugs. 2009;69:1777–98.PubMedCrossRef Izzo AA, Ernst E. Interactions between herbal medicines and prescribed drugs. Drugs. 2009;69:1777–98.PubMedCrossRef
28.
Zurück zum Zitat Keltner NL, Moore RL. Biological perspectives psychiatric drug–drug interactions. Perspect Psychiatr Care. 2010;46:244–51.PubMedCrossRef Keltner NL, Moore RL. Biological perspectives psychiatric drug–drug interactions. Perspect Psychiatr Care. 2010;46:244–51.PubMedCrossRef
29.
Zurück zum Zitat Dresser GK, Spence JD, Bailey DG. Pharmacokinetic–pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet. 2000;38:41–57.PubMedCrossRef Dresser GK, Spence JD, Bailey DG. Pharmacokinetic–pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition. Clin Pharmacokinet. 2000;38:41–57.PubMedCrossRef
30.
Zurück zum Zitat Wang EJ, Lew K, Casciano CN, et al. Interaction of common azole antifungals with P glycoprotein. Antimicrob Agents Chemother. 2002;46:160–5.PubMedCrossRef Wang EJ, Lew K, Casciano CN, et al. Interaction of common azole antifungals with P glycoprotein. Antimicrob Agents Chemother. 2002;46:160–5.PubMedCrossRef
31.
Zurück zum Zitat Shimizu M, Uno T, Sugawara K, et al. Effects of itraconazole and diltiazem on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein. Br J Clin Pharmacol. 2006;61:538–44.PubMedCrossRef Shimizu M, Uno T, Sugawara K, et al. Effects of itraconazole and diltiazem on the pharmacokinetics of fexofenadine, a substrate of P-glycoprotein. Br J Clin Pharmacol. 2006;61:538–44.PubMedCrossRef
32.
Zurück zum Zitat Yasui-Furukori N, Saito M, Niioka T, et al. Effect of itraconazole on pharmacokinetics of paroxetine: the role of gut transporters. Ther Drug Monit. 2007;29:45–8.PubMedCrossRef Yasui-Furukori N, Saito M, Niioka T, et al. Effect of itraconazole on pharmacokinetics of paroxetine: the role of gut transporters. Ther Drug Monit. 2007;29:45–8.PubMedCrossRef
33.
Zurück zum Zitat Jung SM, Kim KA, Cho HK, et al. Cytochrome P450 3A inhibitor itraconazole affects plasma concentrations of risperidone and 9-hydroxyrisperidone in schizophrenic patients. Clin Pharmacol Ther. 2005;78:520–8.PubMedCrossRef Jung SM, Kim KA, Cho HK, et al. Cytochrome P450 3A inhibitor itraconazole affects plasma concentrations of risperidone and 9-hydroxyrisperidone in schizophrenic patients. Clin Pharmacol Ther. 2005;78:520–8.PubMedCrossRef
34.
Zurück zum Zitat Weiss J, Dormann SM, Martin-Facklam M, et al. Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther. 2003;305:197–204.PubMedCrossRef Weiss J, Dormann SM, Martin-Facklam M, et al. Inhibition of P-glycoprotein by newer antidepressants. J Pharmacol Exp Ther. 2003;305:197–204.PubMedCrossRef
35.
Zurück zum Zitat El Ela AA, Hartter S, Schmitt U, et al. Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds: implications for pharmacokinetics of selected substrates. J Pharm Pharmacol. 2004;56:967–75.PubMedCrossRef El Ela AA, Hartter S, Schmitt U, et al. Identification of P-glycoprotein substrates and inhibitors among psychoactive compounds: implications for pharmacokinetics of selected substrates. J Pharm Pharmacol. 2004;56:967–75.PubMedCrossRef
36.
Zurück zum Zitat Wang JS, Zhu HJ, Markowitz JS, et al. Evaluation of antipsychotic drugs as inhibitors of multidrug resistance transporter P-glycoprotein. Psychopharmacology. 2006;187:415–23.PubMedCrossRef Wang JS, Zhu HJ, Markowitz JS, et al. Evaluation of antipsychotic drugs as inhibitors of multidrug resistance transporter P-glycoprotein. Psychopharmacology. 2006;187:415–23.PubMedCrossRef
37.
Zurück zum Zitat Ibrahim S, Peggins J, Knapton A, et al. Influence of antipsychotic, antiemetic, and Ca(2+) channel blocker drugs on the cellular accumulation of the anticancer drug daunorubicin: P-glycoprotein modulation. J Pharmacol Exp Ther. 2000;295:1276–83.PubMed Ibrahim S, Peggins J, Knapton A, et al. Influence of antipsychotic, antiemetic, and Ca(2+) channel blocker drugs on the cellular accumulation of the anticancer drug daunorubicin: P-glycoprotein modulation. J Pharmacol Exp Ther. 2000;295:1276–83.PubMed
38.
Zurück zum Zitat Feng B, Mills JB, Davidson RE, et al. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos. 2008;36:268–75.PubMedCrossRef Feng B, Mills JB, Davidson RE, et al. In vitro P-glycoprotein assays to predict the in vivo interactions of P-glycoprotein with drugs in the central nervous system. Drug Metab Dispos. 2008;36:268–75.PubMedCrossRef
39.
40.
Zurück zum Zitat Elsinga PH, Hendrikse NH, Bart J, et al. PET Studies on P-glycoprotein function in the blood–brain barrier: how it affects uptake and binding of drugs within the CNS. Curr Pharm Des. 2004;10:1493–503.PubMedCrossRef Elsinga PH, Hendrikse NH, Bart J, et al. PET Studies on P-glycoprotein function in the blood–brain barrier: how it affects uptake and binding of drugs within the CNS. Curr Pharm Des. 2004;10:1493–503.PubMedCrossRef
41.
Zurück zum Zitat Hau P, Fabel K, Baumgart U. Pegylated liposomal doxorubicin-efficacy in patients with recurrent high grade glioma. Cancer. 2004;100:1199–207.PubMedCrossRef Hau P, Fabel K, Baumgart U. Pegylated liposomal doxorubicin-efficacy in patients with recurrent high grade glioma. Cancer. 2004;100:1199–207.PubMedCrossRef
42.
Zurück zum Zitat Gottesman MM, Hrycyna CA, Schoenlein PV, et al. Genetic analysis of the multidrug transporter. Ann Rev Gen. 1995;29:607–49.CrossRef Gottesman MM, Hrycyna CA, Schoenlein PV, et al. Genetic analysis of the multidrug transporter. Ann Rev Gen. 1995;29:607–49.CrossRef
43.
Zurück zum Zitat Schinkel AH, Mayer U, Wagenaar E, et al. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci USA. 1997;94:4028–33.PubMedCrossRef Schinkel AH, Mayer U, Wagenaar E, et al. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. Proc Natl Acad Sci USA. 1997;94:4028–33.PubMedCrossRef
44.
Zurück zum Zitat Barrand MA, Robertson KJ, von Weikersthal SF. Comparisons of P-glycoprotein expression in isolated rat brain microvessels and in primary cultures of endothelial cells derived from microvasculature of rat brain, epididymal fat pad and from aorta. FEBS Lett. 1995;374:179–83.PubMedCrossRef Barrand MA, Robertson KJ, von Weikersthal SF. Comparisons of P-glycoprotein expression in isolated rat brain microvessels and in primary cultures of endothelial cells derived from microvasculature of rat brain, epididymal fat pad and from aorta. FEBS Lett. 1995;374:179–83.PubMedCrossRef
45.
Zurück zum Zitat Regina A, Koman A, Piciotti M, et al. Mrp1 multidrug resistance-associated protein and P-glycoprotein expression in rat brain microvessel endothelial cells. J Neurochem. 1998;7:705–15. Regina A, Koman A, Piciotti M, et al. Mrp1 multidrug resistance-associated protein and P-glycoprotein expression in rat brain microvessel endothelial cells. J Neurochem. 1998;7:705–15.
46.
Zurück zum Zitat Doran A, Obach RS, Smith BJ, et al. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos. 2005;33:165–74.PubMedCrossRef Doran A, Obach RS, Smith BJ, et al. The impact of P-glycoprotein on the disposition of drugs targeted for indications of the central nervous system: evaluation using the MDR1A/1B knockout mouse model. Drug Metab Dispos. 2005;33:165–74.PubMedCrossRef
47.
Zurück zum Zitat Uhr M, Grauer MT, Holsboer F. Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biol Psychiatry. 2003;54:840–6.PubMedCrossRef Uhr M, Grauer MT, Holsboer F. Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption. Biol Psychiatry. 2003;54:840–6.PubMedCrossRef
48.
Zurück zum Zitat Saruwatari J, Yasui-Furukori N, Niioka T, et al. Different effects of the selective serotonin reuptake inhibitors fluvoxamine, paroxetine, and sertraline on the pharmacokinetics of fexofenadine in healthy volunteers. J Clin Psychopharmacol. 2012;32:195–9.PubMedCrossRef Saruwatari J, Yasui-Furukori N, Niioka T, et al. Different effects of the selective serotonin reuptake inhibitors fluvoxamine, paroxetine, and sertraline on the pharmacokinetics of fexofenadine in healthy volunteers. J Clin Psychopharmacol. 2012;32:195–9.PubMedCrossRef
49.
Zurück zum Zitat Cvetkovic M, Leake B, Fromm MF, et al. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27:866–71.PubMed Cvetkovic M, Leake B, Fromm MF, et al. OATP and P-glycoprotein transporters mediate the cellular uptake and excretion of fexofenadine. Drug Metab Dispos. 1999;27:866–71.PubMed
50.
Zurück zum Zitat Ma JD, Tsunoda SM, Bertino JS, et al. Evaluation of in vivo P-glycoprotein phenotyping probes: a need for validation. Clin Pharmacokinet. 2010;49:223–37.PubMedCrossRef Ma JD, Tsunoda SM, Bertino JS, et al. Evaluation of in vivo P-glycoprotein phenotyping probes: a need for validation. Clin Pharmacokinet. 2010;49:223–37.PubMedCrossRef
51.
Zurück zum Zitat Sandson NB. Drug–drug interaction primer: a compendium of case vignettes for the practicing clinician. Washington, DC: American Psychiatric Publishing, Inc.; 2007. Sandson NB. Drug–drug interaction primer: a compendium of case vignettes for the practicing clinician. Washington, DC: American Psychiatric Publishing, Inc.; 2007.
52.
Zurück zum Zitat von Moltke LL, Greenblatt DJ, Court MH, et al. Inhibition of alprazolam and desipramine hydroxylation in vitro by paroxetine and fluvoxamine: comparison with other selective serotonin reuptake inhibitor antidepressants. J Clin Psychopharmacol. 1995;15:125–31.CrossRef von Moltke LL, Greenblatt DJ, Court MH, et al. Inhibition of alprazolam and desipramine hydroxylation in vitro by paroxetine and fluvoxamine: comparison with other selective serotonin reuptake inhibitor antidepressants. J Clin Psychopharmacol. 1995;15:125–31.CrossRef
53.
Zurück zum Zitat Christensen M, Tybring G, Mihara K, et al. Low daily 10-mg and 20-mg doses of fluvoxamine inhibit the metabolism of both caffeine (cytochrome P4501A2) and omeprazole (cytochrome P4502C19). Clin Pharmacol Ther. 2002;71:141–52.PubMedCrossRef Christensen M, Tybring G, Mihara K, et al. Low daily 10-mg and 20-mg doses of fluvoxamine inhibit the metabolism of both caffeine (cytochrome P4501A2) and omeprazole (cytochrome P4502C19). Clin Pharmacol Ther. 2002;71:141–52.PubMedCrossRef
54.
Zurück zum Zitat Spina E, Pollicino AM, Avenoso A, et al. Effect of fluvoxamine on the pharmacokinetics of imipramine and desipramine in healthy subjects. Ther Drug Monit. 1993;15:243–6.PubMedCrossRef Spina E, Pollicino AM, Avenoso A, et al. Effect of fluvoxamine on the pharmacokinetics of imipramine and desipramine in healthy subjects. Ther Drug Monit. 1993;15:243–6.PubMedCrossRef
55.
Zurück zum Zitat Rapeport WG, Coates PE, Dewland PM, et al. Absence of a sertraline-mediated effect on digoxin pharmacokinetics and electrocardiographic findings. J Clin Psychiatry. 1996;57(Suppl. 1):16–9.PubMed Rapeport WG, Coates PE, Dewland PM, et al. Absence of a sertraline-mediated effect on digoxin pharmacokinetics and electrocardiographic findings. J Clin Psychiatry. 1996;57(Suppl. 1):16–9.PubMed
56.
Zurück zum Zitat Ruike Z, Junhua C, Wenxing P. In vitro and in vivo evaluation of the effects of duloxetine on P-gp function. Hum Psychopharmacol. 2010;25:553–9.PubMedCrossRef Ruike Z, Junhua C, Wenxing P. In vitro and in vivo evaluation of the effects of duloxetine on P-gp function. Hum Psychopharmacol. 2010;25:553–9.PubMedCrossRef
57.
Zurück zum Zitat Karlsson L, Hiemke C, Carlsson B, et al. Effects on enantiomeric drug disposition and open-field behavior after chronic treatment with venlafaxine in the P-glycoprotein knockout mice model. Psychopharmacology. 2011;215:367–77.PubMedCrossRef Karlsson L, Hiemke C, Carlsson B, et al. Effects on enantiomeric drug disposition and open-field behavior after chronic treatment with venlafaxine in the P-glycoprotein knockout mice model. Psychopharmacology. 2011;215:367–77.PubMedCrossRef
58.
Zurück zum Zitat Schweizer E, Thielen RJ, Frazer A. Venlafaxine: a novel antidepressant compound. Expert Opin Investig Drugs. 1997;6:65–78.PubMedCrossRef Schweizer E, Thielen RJ, Frazer A. Venlafaxine: a novel antidepressant compound. Expert Opin Investig Drugs. 1997;6:65–78.PubMedCrossRef
59.
Zurück zum Zitat Gareri P, De Fazio P, Gallelli L, et al. Venlafaxine-propafenone interaction resulting in hallucinations and psychomotor agitation. Ann Pharmacother. 2008;42:434–8.PubMedCrossRef Gareri P, De Fazio P, Gallelli L, et al. Venlafaxine-propafenone interaction resulting in hallucinations and psychomotor agitation. Ann Pharmacother. 2008;42:434–8.PubMedCrossRef
60.
Zurück zum Zitat Ujhelyi MR, O’Rangers EA, Fan C, et al. The pharmacokinetic and pharmacodynamic interaction between propafenone and lidocaine. Clin Pharmacol Ther. 1993;53:38–48.PubMedCrossRef Ujhelyi MR, O’Rangers EA, Fan C, et al. The pharmacokinetic and pharmacodynamic interaction between propafenone and lidocaine. Clin Pharmacol Ther. 1993;53:38–48.PubMedCrossRef
61.
Zurück zum Zitat Bachmakov I, Rekersbrink S, Hofmann U, et al. Characterisation of (R/S)-propafenone and its metabolites as substrates and inhibitors of P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol. 2005;371:195–201.PubMedCrossRef Bachmakov I, Rekersbrink S, Hofmann U, et al. Characterisation of (R/S)-propafenone and its metabolites as substrates and inhibitors of P-glycoprotein. Naunyn Schmiedebergs Arch Pharmacol. 2005;371:195–201.PubMedCrossRef
62.
Zurück zum Zitat Szabo D, Szabo G Jr, Ocsovszki I, et al. Anti-psychotic drugs reverse multidrug resistance of tumor cell lines and human AML cells ex vivo. Cancer Lett. 1999;139:115–9.PubMedCrossRef Szabo D, Szabo G Jr, Ocsovszki I, et al. Anti-psychotic drugs reverse multidrug resistance of tumor cell lines and human AML cells ex vivo. Cancer Lett. 1999;139:115–9.PubMedCrossRef
63.
Zurück zum Zitat Ejsing TB, Linnet K. Influence of P-glycoprotein inhibition on the distribution of the tricyclic antidepressant nortriptyline over the blood–brain barrier. Hum Psychopharmacol. 2005;20:149–53.PubMedCrossRef Ejsing TB, Linnet K. Influence of P-glycoprotein inhibition on the distribution of the tricyclic antidepressant nortriptyline over the blood–brain barrier. Hum Psychopharmacol. 2005;20:149–53.PubMedCrossRef
64.
Zurück zum Zitat Ejsing TB, Hasselstrom J, Linnet K. The influence of P-glycoprotein on cerebral and hepatic concentrations of nortriptyline and its metabolites. Drug Metabol Drug Interact. 2006;2:139–62. Ejsing TB, Hasselstrom J, Linnet K. The influence of P-glycoprotein on cerebral and hepatic concentrations of nortriptyline and its metabolites. Drug Metabol Drug Interact. 2006;2:139–62.
65.
Zurück zum Zitat O’Brien FE, Clarke G, Fitzgerald P, et al. Inhibition of P-glycoprotein enhances transport of the antidepressant imipramine across the blood–brain barrier: microdialysis studies in the conscious freely moving rat. Br J Pharmacol. 2012;166:1333–43.PubMedCrossRef O’Brien FE, Clarke G, Fitzgerald P, et al. Inhibition of P-glycoprotein enhances transport of the antidepressant imipramine across the blood–brain barrier: microdialysis studies in the conscious freely moving rat. Br J Pharmacol. 2012;166:1333–43.PubMedCrossRef
66.
Zurück zum Zitat Litman T, Druley TE, Stein WD, et al. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci. 2001;58:931–59.PubMedCrossRef Litman T, Druley TE, Stein WD, et al. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci. 2001;58:931–59.PubMedCrossRef
67.
Zurück zum Zitat Mulsant BH, Foglia JP, Sweet RA, et al. The effects of perphenazine on the concentration of nortriptyline and its hydroxymetabolites in older patients. J Clin Psychopharmacol. 1997;17:318–21.PubMedCrossRef Mulsant BH, Foglia JP, Sweet RA, et al. The effects of perphenazine on the concentration of nortriptyline and its hydroxymetabolites in older patients. J Clin Psychopharmacol. 1997;17:318–21.PubMedCrossRef
68.
Zurück zum Zitat Desta Z, Kerbusch T, Soukhova N, et al. Identification and characterization of human cytochrome P450 isoforms interacting with pimozide. J Pharmacol Exp Ther. 1998;285:428–37.PubMed Desta Z, Kerbusch T, Soukhova N, et al. Identification and characterization of human cytochrome P450 isoforms interacting with pimozide. J Pharmacol Exp Ther. 1998;285:428–37.PubMed
69.
Zurück zum Zitat Shin JG, Soukhova N, Flockhart DA. Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro: preferential inhibition of CYP2D6. Drug Metab Dispos. 1999;27:1078–84.PubMed Shin JG, Soukhova N, Flockhart DA. Effect of antipsychotic drugs on human liver cytochrome P-450 (CYP) isoforms in vitro: preferential inhibition of CYP2D6. Drug Metab Dispos. 1999;27:1078–84.PubMed
70.
Zurück zum Zitat Shin JG, Kane K, Flockhart DA. Potent inhibition of CYP2D6 by haloperidol metabolites: stereoselective inhibition by reduced haloperidol. Br J Clin Pharmacol. 2001;51:45–52.PubMedCrossRef Shin JG, Kane K, Flockhart DA. Potent inhibition of CYP2D6 by haloperidol metabolites: stereoselective inhibition by reduced haloperidol. Br J Clin Pharmacol. 2001;51:45–52.PubMedCrossRef
71.
Zurück zum Zitat Brøsen K, Gram LF, Klysner R, et al. Steady-state levels of imipramine and its metabolites: significance of dose-dependent kinetics. Eur J Clin Pharmacol. 1986;30:43–9.PubMedCrossRef Brøsen K, Gram LF, Klysner R, et al. Steady-state levels of imipramine and its metabolites: significance of dose-dependent kinetics. Eur J Clin Pharmacol. 1986;30:43–9.PubMedCrossRef
72.
Zurück zum Zitat Jerling M, Bertilsson L, Sjoqvist F. The use of therapeutic drug monitoring data to document kinetic drug interactions: an example with amitriptyline and nortriptyline. Ther Drug Monit. 1994;16:1–12.PubMedCrossRef Jerling M, Bertilsson L, Sjoqvist F. The use of therapeutic drug monitoring data to document kinetic drug interactions: an example with amitriptyline and nortriptyline. Ther Drug Monit. 1994;16:1–12.PubMedCrossRef
73.
Zurück zum Zitat Boulton DW, DeVane CL, Liston HL, et al. In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci. 2002;71:163–9.PubMedCrossRef Boulton DW, DeVane CL, Liston HL, et al. In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci. 2002;71:163–9.PubMedCrossRef
74.
Zurück zum Zitat Spina E, Pisani F, Perucca E. Clinically significant pharmacokinetic drug interactions with carbamazepine: an update. Clin Pharmacokinet. 1996;31:198–214.PubMedCrossRef Spina E, Pisani F, Perucca E. Clinically significant pharmacokinetic drug interactions with carbamazepine: an update. Clin Pharmacokinet. 1996;31:198–214.PubMedCrossRef
75.
Zurück zum Zitat Miceli JJ, Anziano RJ, Robarge L, et al. The effect of carbamazepine on the steady-state pharmacokinetics of ziprasidone in healthy volunteers. Br J Clin Pharmacol. 2000;49(Suppl. 1):65S–70S.PubMed Miceli JJ, Anziano RJ, Robarge L, et al. The effect of carbamazepine on the steady-state pharmacokinetics of ziprasidone in healthy volunteers. Br J Clin Pharmacol. 2000;49(Suppl. 1):65S–70S.PubMed
76.
Zurück zum Zitat Ucar M, Neuvonen M, Luurila H, et al. Carbamazepine markedly reduces serum concentrations of simvastatin and simvastatin acid. Eur J Clin Pharmacol. 2004;59:879–82.PubMedCrossRef Ucar M, Neuvonen M, Luurila H, et al. Carbamazepine markedly reduces serum concentrations of simvastatin and simvastatin acid. Eur J Clin Pharmacol. 2004;59:879–82.PubMedCrossRef
77.
Zurück zum Zitat Giessmann T, May K, Modess C, et al. Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans. Clin Pharmacol Ther. 2004;76:192–200.PubMedCrossRef Giessmann T, May K, Modess C, et al. Carbamazepine regulates intestinal P-glycoprotein and multidrug resistance protein MRP2 and influences disposition of talinolol in humans. Clin Pharmacol Ther. 2004;76:192–200.PubMedCrossRef
78.
Zurück zum Zitat Lü Y, Yan Y, Wang XF. Antiepileptic drug-induced multidrug resistance P-glycoprotein overexpression in astrocytes cultured from rat brains. Chin Med J (Engl). 2004;117:1682–6. Lü Y, Yan Y, Wang XF. Antiepileptic drug-induced multidrug resistance P-glycoprotein overexpression in astrocytes cultured from rat brains. Chin Med J (Engl). 2004;117:1682–6.
79.
Zurück zum Zitat Owen A, Goldring C, Morgan P, et al. Induction of P-glycoprotein in lymphocytes by carbamazepine and rifampicin: the role of nuclear hormone response elements. Br J Clin Pharmacol. 2006;62:237–42.PubMedCrossRef Owen A, Goldring C, Morgan P, et al. Induction of P-glycoprotein in lymphocytes by carbamazepine and rifampicin: the role of nuclear hormone response elements. Br J Clin Pharmacol. 2006;62:237–42.PubMedCrossRef
80.
Zurück zum Zitat Yang HW, Liu HY, Liu X, et al. Increased P-glycoprotein function and level after long-term exposure of four antiepileptic drugs to rat brain microvascular endothelial cells in vitro. Neurosci Lett. 2008;434:299–303.PubMedCrossRef Yang HW, Liu HY, Liu X, et al. Increased P-glycoprotein function and level after long-term exposure of four antiepileptic drugs to rat brain microvascular endothelial cells in vitro. Neurosci Lett. 2008;434:299–303.PubMedCrossRef
81.
Zurück zum Zitat Yamada S, Yasui-Furukori N, Akamine Y, et al. Effects of the P-glycoprotein inducer carbamazepine on fexofenadine pharmacokinetics. Ther Drug Monit. 2009;31:764–8.PubMed Yamada S, Yasui-Furukori N, Akamine Y, et al. Effects of the P-glycoprotein inducer carbamazepine on fexofenadine pharmacokinetics. Ther Drug Monit. 2009;31:764–8.PubMed
82.
Zurück zum Zitat Luo G, Cunningham M, Kim S, et al. CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos. 2002;30:795–804.PubMedCrossRef Luo G, Cunningham M, Kim S, et al. CYP3A4 induction by drugs: correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab Dispos. 2002;30:795–804.PubMedCrossRef
83.
Zurück zum Zitat Lombardo L, Pellitteri R, Balazy M, et al. Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs. Curr Neurovasc Res. 2008;5:82–92.PubMedCrossRef Lombardo L, Pellitteri R, Balazy M, et al. Induction of nuclear receptors and drug resistance in the brain microvascular endothelial cells treated with antiepileptic drugs. Curr Neurovasc Res. 2008;5:82–92.PubMedCrossRef
84.
Zurück zum Zitat Ott M, Fricker G, Bauer B. Pregnane X receptor (PXR) regulates P-glycoprotein at the blood–brain barrier: functional similarities between pig and human PXR. J Pharmacol Exp Ther. 2009;329:141–9.PubMedCrossRef Ott M, Fricker G, Bauer B. Pregnane X receptor (PXR) regulates P-glycoprotein at the blood–brain barrier: functional similarities between pig and human PXR. J Pharmacol Exp Ther. 2009;329:141–9.PubMedCrossRef
85.
Zurück zum Zitat Baltes S, Fedrowitz M, Tortós CL, et al. Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays. J Pharmacol Exp Ther. 2007;320:331–43.PubMedCrossRef Baltes S, Fedrowitz M, Tortós CL, et al. Valproic acid is not a substrate for P-glycoprotein or multidrug resistance proteins 1 and 2 in a number of in vitro and in vivo transport assays. J Pharmacol Exp Ther. 2007;320:331–43.PubMedCrossRef
86.
Zurück zum Zitat Eyal S, Lamb JG, Smith-Yockman M, et al. The antiepileptic and anticancer agent, valproic acid, induces P-glycoprotein in human tumour cell lines and in rat liver. Br J Pharmacol. 2006;149:250–60.PubMedCrossRef Eyal S, Lamb JG, Smith-Yockman M, et al. The antiepileptic and anticancer agent, valproic acid, induces P-glycoprotein in human tumour cell lines and in rat liver. Br J Pharmacol. 2006;149:250–60.PubMedCrossRef
87.
Zurück zum Zitat Cerveny L, Svecova L, Anzenbacherova E, et al. Valproic acid induces CYP3A4 and MDR1 gene expression by activation of constitutive androstane receptor and pregnane X receptor pathways. Drug Metab Dispos. 2007;35:1032–41.PubMedCrossRef Cerveny L, Svecova L, Anzenbacherova E, et al. Valproic acid induces CYP3A4 and MDR1 gene expression by activation of constitutive androstane receptor and pregnane X receptor pathways. Drug Metab Dispos. 2007;35:1032–41.PubMedCrossRef
88.
Zurück zum Zitat Luna-Tortós C, Fedrowitz M, Löscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology. 2008;55:1364–75.PubMedCrossRef Luna-Tortós C, Fedrowitz M, Löscher W. Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology. 2008;55:1364–75.PubMedCrossRef
89.
Zurück zum Zitat Zhang C, Kwan P, Zuo Z, et al. In vitro concentration dependent transport of phenytoin and phenobarbital, but not ethosuximide, by human P-glycoprotein. Life Sci. 2010;86:899–905.PubMedCrossRef Zhang C, Kwan P, Zuo Z, et al. In vitro concentration dependent transport of phenytoin and phenobarbital, but not ethosuximide, by human P-glycoprotein. Life Sci. 2010;86:899–905.PubMedCrossRef
90.
Zurück zum Zitat Neerati P, Ganji D, Bedada SK. Study on in situ and in vivo absorption kinetics of phenytoin by modulating P-glycoprotein with verapamil in rats. Eur J Pharm Sci. 2011;44:27–31.PubMedCrossRef Neerati P, Ganji D, Bedada SK. Study on in situ and in vivo absorption kinetics of phenytoin by modulating P-glycoprotein with verapamil in rats. Eur J Pharm Sci. 2011;44:27–31.PubMedCrossRef
91.
Zurück zum Zitat Yao D, Yang ZH, Liu L, et al. Verapamil exerts biphasic modulation on phenobarbital transport across the blood–brain barrier: evidence from an in vivo and in vitro study. Naunyn Schmiedebergs Arch Pharmacol. 2011;383:393–402.PubMedCrossRef Yao D, Yang ZH, Liu L, et al. Verapamil exerts biphasic modulation on phenobarbital transport across the blood–brain barrier: evidence from an in vivo and in vitro study. Naunyn Schmiedebergs Arch Pharmacol. 2011;383:393–402.PubMedCrossRef
92.
Zurück zum Zitat Moerman L, Wyffels L, Slaets D, et al. Antiepileptic drugs modulate P-glycoproteins in the brain: a mice study with (11)C-desmethylloperamide. Epilepsy Res. 2011;94:18–25.PubMedCrossRef Moerman L, Wyffels L, Slaets D, et al. Antiepileptic drugs modulate P-glycoproteins in the brain: a mice study with (11)C-desmethylloperamide. Epilepsy Res. 2011;94:18–25.PubMedCrossRef
93.
Zurück zum Zitat Jing X, Liu X, Wen T, et al. Combined effects of epileptic seizure and phenobarbital induced overexpression of P-glycoprotein in brain of chemically kindled rats. Br J Pharmacol. 2010;159:1511–22.PubMedCrossRef Jing X, Liu X, Wen T, et al. Combined effects of epileptic seizure and phenobarbital induced overexpression of P-glycoprotein in brain of chemically kindled rats. Br J Pharmacol. 2010;159:1511–22.PubMedCrossRef
94.
Zurück zum Zitat Hung CC, Chen CC, Lin CJ, et al. Functional evaluation of polymorphisms in the human ABCB1 gene and the impact on clinical responses of antiepileptic drugs. Pharmacogenet Genomics. 2008;18:390–402.PubMedCrossRef Hung CC, Chen CC, Lin CJ, et al. Functional evaluation of polymorphisms in the human ABCB1 gene and the impact on clinical responses of antiepileptic drugs. Pharmacogenet Genomics. 2008;18:390–402.PubMedCrossRef
95.
Zurück zum Zitat Dorado P, López-Torres E, Peñas-Lledó EM, et al. Neurological toxicity after phenytoin infusion in a pediatric patient with epilepsy: influence of CYP2C9, CYP2C19 and ABCB1 genetic polymorphisms. Pharmacogenomics J. 2012. doi:10.1038/tpj.2012.19 Dorado P, López-Torres E, Peñas-Lledó EM, et al. Neurological toxicity after phenytoin infusion in a pediatric patient with epilepsy: influence of CYP2C9, CYP2C19 and ABCB1 genetic polymorphisms. Pharmacogenomics J. 2012. doi:10.​1038/​tpj.​2012.​19
96.
Zurück zum Zitat Basic S, Hajnsek S, Bozina N, et al. The influence of C3435T polymorphism of ABCB1 gene on penetration of phenobarbital across the blood–brain barrier in patients with generalized epilepsy. Seizure. 2008;17:524–30.PubMedCrossRef Basic S, Hajnsek S, Bozina N, et al. The influence of C3435T polymorphism of ABCB1 gene on penetration of phenobarbital across the blood–brain barrier in patients with generalized epilepsy. Seizure. 2008;17:524–30.PubMedCrossRef
97.
Zurück zum Zitat Verschraagen M, Koks CH, Schellens JH, et al. P-glycoprotein system as a determinant of drug interactions: the case of digoxin-verapamil. Pharmacol Res. 1999;40:301–6.PubMedCrossRef Verschraagen M, Koks CH, Schellens JH, et al. P-glycoprotein system as a determinant of drug interactions: the case of digoxin-verapamil. Pharmacol Res. 1999;40:301–6.PubMedCrossRef
98.
Zurück zum Zitat Lemma GL, Wang Z, Hamman MA, et al. The effect of short- and long-term administration of verapamil on the disposition of cytochrome P450 3A and P-glycoprotein substrates. Clin Pharmacol Ther. 2006;79:218–30.PubMedCrossRef Lemma GL, Wang Z, Hamman MA, et al. The effect of short- and long-term administration of verapamil on the disposition of cytochrome P450 3A and P-glycoprotein substrates. Clin Pharmacol Ther. 2006;79:218–30.PubMedCrossRef
99.
Zurück zum Zitat Yasui-Furukori N, Uno T, Sugawara K, et al. Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics. Clin Pharmacol Ther. 2005;77:17–23.PubMedCrossRef Yasui-Furukori N, Uno T, Sugawara K, et al. Different effects of three transporting inhibitors, verapamil, cimetidine, and probenecid, on fexofenadine pharmacokinetics. Clin Pharmacol Ther. 2005;77:17–23.PubMedCrossRef
101.
Zurück zum Zitat Wang L, Kitaichi K, Hui CS, et al. Reversal of anticancer drug resistance by macrolide antibiotics in vitro and in vivo. Clin Exp Pharmacol Physiol. 2000;27:587–93.PubMedCrossRef Wang L, Kitaichi K, Hui CS, et al. Reversal of anticancer drug resistance by macrolide antibiotics in vitro and in vivo. Clin Exp Pharmacol Physiol. 2000;27:587–93.PubMedCrossRef
102.
Zurück zum Zitat Wakasugi H, Yano I, Ito T, et al. Effect of clarithromycin on renal excretion of digoxin: interaction with P-glycoprotein. Clin Pharmacol Ther. 1998;64:123–8.PubMedCrossRef Wakasugi H, Yano I, Ito T, et al. Effect of clarithromycin on renal excretion of digoxin: interaction with P-glycoprotein. Clin Pharmacol Ther. 1998;64:123–8.PubMedCrossRef
103.
Zurück zum Zitat Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res. 1999;16:408–14.PubMedCrossRef Kim RB, Wandel C, Leake B, et al. Interrelationship between substrates and inhibitors of human CYP3A and P-glycoprotein. Pharm Res. 1999;16:408–14.PubMedCrossRef
104.
Zurück zum Zitat Gomes T, Mamdani MM, Juurlink DN. Macrolide-induced digoxin toxicity: a population-based study. Clin Pharmacol Ther. 2009;86:383–6.PubMedCrossRef Gomes T, Mamdani MM, Juurlink DN. Macrolide-induced digoxin toxicity: a population-based study. Clin Pharmacol Ther. 2009;86:383–6.PubMedCrossRef
105.
Zurück zum Zitat Hughes J, Crowe A. Inhibition of P-glycoprotein-mediated efflux of digoxin and its metabolites by macrolide antibiotics. J Pharmacol Sci. 2010;113:315–24.PubMedCrossRef Hughes J, Crowe A. Inhibition of P-glycoprotein-mediated efflux of digoxin and its metabolites by macrolide antibiotics. J Pharmacol Sci. 2010;113:315–24.PubMedCrossRef
106.
Zurück zum Zitat Muirhead GJ, Faulkner S, Harness JA, Taubel J. The effects of steady-state erythromycin and azithromycin on the pharmacokinetics of sildenafil in healthy volunteers. Br J Clin Pharmacol. 2002;53(Suppl. 1):37S–43S.PubMedCrossRef Muirhead GJ, Faulkner S, Harness JA, Taubel J. The effects of steady-state erythromycin and azithromycin on the pharmacokinetics of sildenafil in healthy volunteers. Br J Clin Pharmacol. 2002;53(Suppl. 1):37S–43S.PubMedCrossRef
107.
Zurück zum Zitat Keltner NL, Opara I. Psychotropic drug interactions with grapefruit juice. Perspect Psychiatr Care. 2002;38:31–3.PubMedCrossRef Keltner NL, Opara I. Psychotropic drug interactions with grapefruit juice. Perspect Psychiatr Care. 2002;38:31–3.PubMedCrossRef
108.
Zurück zum Zitat Pawełczyk T, Kłoszewska I. Grapefruit juice interactions with psychotropic drugs: advantages and potential risk. Przegl Lek. 2008;65:92–5.PubMed Pawełczyk T, Kłoszewska I. Grapefruit juice interactions with psychotropic drugs: advantages and potential risk. Przegl Lek. 2008;65:92–5.PubMed
109.
Zurück zum Zitat Fuhr U. Drug interactions with grapefruit juice: extent, probable mechanism and clinical relevance. Drug Saf. 1998;18:251–72.PubMedCrossRef Fuhr U. Drug interactions with grapefruit juice: extent, probable mechanism and clinical relevance. Drug Saf. 1998;18:251–72.PubMedCrossRef
110.
Zurück zum Zitat Wang EJ, Casciano CN, Clement RP, et al. Inhibition of P-glycoprotein transport function by grapefruit juice psoralen. Pharm Res. 2001;18:432–8.PubMedCrossRef Wang EJ, Casciano CN, Clement RP, et al. Inhibition of P-glycoprotein transport function by grapefruit juice psoralen. Pharm Res. 2001;18:432–8.PubMedCrossRef
111.
Zurück zum Zitat Uno T, Yasui-Furukori N. Effect of grapefruit juice in relation to human pharmacokinetic study. Curr Clin Pharmacol. 2006;1:157–61.PubMedCrossRef Uno T, Yasui-Furukori N. Effect of grapefruit juice in relation to human pharmacokinetic study. Curr Clin Pharmacol. 2006;1:157–61.PubMedCrossRef
112.
Zurück zum Zitat Garg SK, Kumar N, Bhargava VK, et al. Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy. Clin Pharmacol Ther. 1998;64:286–8.PubMedCrossRef Garg SK, Kumar N, Bhargava VK, et al. Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy. Clin Pharmacol Ther. 1998;64:286–8.PubMedCrossRef
113.
Zurück zum Zitat Hori H, Yoshimura R, Ueda N, et al. Grapefruit juice–fluvoxamine interaction: is it risky or not? J Clin Psychopharmacol. 2003;23:422–4.PubMedCrossRef Hori H, Yoshimura R, Ueda N, et al. Grapefruit juice–fluvoxamine interaction: is it risky or not? J Clin Psychopharmacol. 2003;23:422–4.PubMedCrossRef
114.
Zurück zum Zitat Ueda N, Yoshimura R, Umene-Nakano W, et al. Grapefruit juice alters plasma sertraline levels after single ingestion of sertraline in healthy volunteers. World J Biol Psychiatry. 2009;10:832–5.PubMedCrossRef Ueda N, Yoshimura R, Umene-Nakano W, et al. Grapefruit juice alters plasma sertraline levels after single ingestion of sertraline in healthy volunteers. World J Biol Psychiatry. 2009;10:832–5.PubMedCrossRef
115.
Zurück zum Zitat Dürr D, Stieger B, Kullak-Ublick GA, et al. St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther. 2000;68:598–604.PubMedCrossRef Dürr D, Stieger B, Kullak-Ublick GA, et al. St John’s Wort induces intestinal P-glycoprotein/MDR1 and intestinal and hepatic CYP3A4. Clin Pharmacol Ther. 2000;68:598–604.PubMedCrossRef
116.
Zurück zum Zitat Wang Z, Hamman MA, Huang SM, et al. Effect of St John’s wort on the pharmacokinetics of fexofenadine. Clin Pharmacol Ther. 2002;71:414–20.PubMedCrossRef Wang Z, Hamman MA, Huang SM, et al. Effect of St John’s wort on the pharmacokinetics of fexofenadine. Clin Pharmacol Ther. 2002;71:414–20.PubMedCrossRef
117.
Zurück zum Zitat Dresser GK, Schwarz UI, Wilkinson GR, et al. Coordinate induction of both cytochrome P4503A and MDR1 by St John’s wort in healthy subjects. Clin Pharmacol Ther. 2003;73:41–50.PubMedCrossRef Dresser GK, Schwarz UI, Wilkinson GR, et al. Coordinate induction of both cytochrome P4503A and MDR1 by St John’s wort in healthy subjects. Clin Pharmacol Ther. 2003;73:41–50.PubMedCrossRef
118.
Zurück zum Zitat Wang XD, Li JL, Su QB, et al. Impact of the haplotypes of the human pregnane X receptor gene on the basal and St John’s wort-induced activity of cytochrome P450 3A4 enzyme. Br J Clin Pharmacol. 2009;67:255–61.PubMedCrossRef Wang XD, Li JL, Su QB, et al. Impact of the haplotypes of the human pregnane X receptor gene on the basal and St John’s wort-induced activity of cytochrome P450 3A4 enzyme. Br J Clin Pharmacol. 2009;67:255–61.PubMedCrossRef
119.
Zurück zum Zitat Markowitz JS, Donovan JL, DeVane CL, et al. Drug interactions with St. John’s wort (Hypericum perforatum): a review of the clinical evidence. Int J Clin Pharmacol Ther. 2004;42:139–48. Markowitz JS, Donovan JL, DeVane CL, et al. Drug interactions with St. John’s wort (Hypericum perforatum): a review of the clinical evidence. Int J Clin Pharmacol Ther. 2004;42:139–48.
120.
Zurück zum Zitat Zhou S, Chan E, Pan SQ, et al. Pharmacokinetic interactions of drugs with St John’s wort. J Psychopharmacol. 2004;18:262–76.PubMedCrossRef Zhou S, Chan E, Pan SQ, et al. Pharmacokinetic interactions of drugs with St John’s wort. J Psychopharmacol. 2004;18:262–76.PubMedCrossRef
121.
Zurück zum Zitat Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem. 2001;276:14581–7.PubMedCrossRef Geick A, Eichelbaum M, Burk O. Nuclear receptor response elements mediate induction of intestinal MDR1 by rifampin. J Biol Chem. 2001;276:14581–7.PubMedCrossRef
122.
Zurück zum Zitat Hamman MA, Bruce MA, Haehner-Daniels BD, et al. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther. 2001;69:114–21.PubMedCrossRef Hamman MA, Bruce MA, Haehner-Daniels BD, et al. The effect of rifampin administration on the disposition of fexofenadine. Clin Pharmacol Ther. 2001;69:114–21.PubMedCrossRef
123.
Zurück zum Zitat Asghar A, Gorski JC, Haehner-Daniels B, et al. Induction of multidrug resistance-1 and cytochrome P450 mRNAs in human mononuclear cells by rifampin. Drug Metab Dispos. 2002;30:20–6.PubMedCrossRef Asghar A, Gorski JC, Haehner-Daniels B, et al. Induction of multidrug resistance-1 and cytochrome P450 mRNAs in human mononuclear cells by rifampin. Drug Metab Dispos. 2002;30:20–6.PubMedCrossRef
124.
Zurück zum Zitat Finch CK, Chrisman CR, Baciewicz AM, et al. Rifampin and rifabutin drug interactions: an update. Arch Intern Med. 2002;162:985–92.PubMedCrossRef Finch CK, Chrisman CR, Baciewicz AM, et al. Rifampin and rifabutin drug interactions: an update. Arch Intern Med. 2002;162:985–92.PubMedCrossRef
125.
Zurück zum Zitat Lin JH. Transporter-mediated drug interactions: clinical implications and in vitro assessment. Expert Opin Drug Metab Toxicol. 2007;3:81–92.PubMedCrossRef Lin JH. Transporter-mediated drug interactions: clinical implications and in vitro assessment. Expert Opin Drug Metab Toxicol. 2007;3:81–92.PubMedCrossRef
126.
Zurück zum Zitat Kim KA, Park PW, Liu KH, et al. Effect of rifampin, an inducer of CYP3A and P-glycoprotein, on the pharmacokinetics of risperidone. J Clin Pharmacol. 2008;48:66–72.PubMedCrossRef Kim KA, Park PW, Liu KH, et al. Effect of rifampin, an inducer of CYP3A and P-glycoprotein, on the pharmacokinetics of risperidone. J Clin Pharmacol. 2008;48:66–72.PubMedCrossRef
127.
Zurück zum Zitat Holthoewer D, Hiemke C, Schmitt U. Induction of drug transporters alters disposition of risperidone: a study in mice. Pharmaceutics. 2010;2:258–74.CrossRef Holthoewer D, Hiemke C, Schmitt U. Induction of drug transporters alters disposition of risperidone: a study in mice. Pharmaceutics. 2010;2:258–74.CrossRef
128.
Zurück zum Zitat de Klerk OL, Willemsen AT, Bosker FJ, et al. Regional increase in P-glycoprotein function in the blood–brain barrier of patients with chronic schizophrenia: a PET study with [(11)C]verapamil as a probe for P-glycoprotein function. Psychiatry Res. 2010;183:151–6.PubMedCrossRef de Klerk OL, Willemsen AT, Bosker FJ, et al. Regional increase in P-glycoprotein function in the blood–brain barrier of patients with chronic schizophrenia: a PET study with [(11)C]verapamil as a probe for P-glycoprotein function. Psychiatry Res. 2010;183:151–6.PubMedCrossRef
129.
Zurück zum Zitat Langer O, Bauer M, Hammers A, et al. Pharmacoresistance in epilepsy: a pilot PET study with the P-glycoprotein substrate R-[(11)C]verapamil. Epilepsia. 2007;48:1774–84.PubMedCrossRef Langer O, Bauer M, Hammers A, et al. Pharmacoresistance in epilepsy: a pilot PET study with the P-glycoprotein substrate R-[(11)C]verapamil. Epilepsia. 2007;48:1774–84.PubMedCrossRef
130.
Zurück zum Zitat Clarke G, O’Mahony SM, Cryan JF, et al. Verapamil in treatment resistant depression: a role for the P-glycoprotein transporter? Hum Psychopharmacol. 2009;24:217–23.PubMed Clarke G, O’Mahony SM, Cryan JF, et al. Verapamil in treatment resistant depression: a role for the P-glycoprotein transporter? Hum Psychopharmacol. 2009;24:217–23.PubMed
131.
Zurück zum Zitat Philip NS, Carpenter LL, Tyrka AR, et al. Pharmacologic approaches to treatment resistant depression: a re-examination for the modern era. Expert Opin Pharmacother. 2010;11:709–22.PubMedCrossRef Philip NS, Carpenter LL, Tyrka AR, et al. Pharmacologic approaches to treatment resistant depression: a re-examination for the modern era. Expert Opin Pharmacother. 2010;11:709–22.PubMedCrossRef
132.
Zurück zum Zitat Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;58:693–705.CrossRef Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;58:693–705.CrossRef
133.
Zurück zum Zitat Alvarez AI, Real R, Pérez M, et al. Modulation of the activity of ABC transporters (P-glycoprotein, MRP2, BCRP) by flavonoids and drug response. J Pharm Sci. 2010;99:598–617.PubMed Alvarez AI, Real R, Pérez M, et al. Modulation of the activity of ABC transporters (P-glycoprotein, MRP2, BCRP) by flavonoids and drug response. J Pharm Sci. 2010;99:598–617.PubMed
134.
Zurück zum Zitat Marquez B, Van Bambeke F. ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug–drug interactions. Curr Drug Targets. 2011;12:600–20.PubMedCrossRef Marquez B, Van Bambeke F. ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug–drug interactions. Curr Drug Targets. 2011;12:600–20.PubMedCrossRef
135.
Zurück zum Zitat Nicolazzo JA, Katneni K. Drug transport across the blood–brain barrier and the impact of breast cancer resistance protein (ABCG2). Curr Top Med Chem. 2009;9:130–47.PubMedCrossRef Nicolazzo JA, Katneni K. Drug transport across the blood–brain barrier and the impact of breast cancer resistance protein (ABCG2). Curr Top Med Chem. 2009;9:130–47.PubMedCrossRef
136.
Zurück zum Zitat Ni Z, Bikadi Z, Rosenberg MF, et al. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab. 2010;11:603–17.PubMedCrossRef Ni Z, Bikadi Z, Rosenberg MF, et al. Structure and function of the human breast cancer resistance protein (BCRP/ABCG2). Curr Drug Metab. 2010;11:603–17.PubMedCrossRef
137.
Zurück zum Zitat Wang JS, Zhu HJ, Markowitz JS, et al. Antipsychotic drugs inhibit the function of breast cancer resistance protein. Basic Clin Pharmacol Toxicol. 2008;103:336–41.PubMedCrossRef Wang JS, Zhu HJ, Markowitz JS, et al. Antipsychotic drugs inhibit the function of breast cancer resistance protein. Basic Clin Pharmacol Toxicol. 2008;103:336–41.PubMedCrossRef
138.
Zurück zum Zitat Miller DS, Bauer B, Hartz AM. Modulation of P-glycoprotein at the blood–brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev. 2008;60:196–209.PubMedCrossRef Miller DS, Bauer B, Hartz AM. Modulation of P-glycoprotein at the blood–brain barrier: opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev. 2008;60:196–209.PubMedCrossRef
139.
Zurück zum Zitat He SM, Li R, Kanwar JR, et al. Structural and functional properties of human multidrug resistance protein 1 (MRP1/ABCC1). Curr Med Chem. 2011;18:439–81.PubMedCrossRef He SM, Li R, Kanwar JR, et al. Structural and functional properties of human multidrug resistance protein 1 (MRP1/ABCC1). Curr Med Chem. 2011;18:439–81.PubMedCrossRef
140.
Zurück zum Zitat Okamura T, Kikuchi T, Irie T. PET imaging of MRP1 function in the living brain: method development and future perspectives. Curr Top Med Chem. 2010;10:1810–9.PubMedCrossRef Okamura T, Kikuchi T, Irie T. PET imaging of MRP1 function in the living brain: method development and future perspectives. Curr Top Med Chem. 2010;10:1810–9.PubMedCrossRef
141.
Zurück zum Zitat Uhr M, Steckler T, Yassouridis A, Holsboer F. Penetration of amitriptyline, but not of fluoxetine, into brain is enhanced in mice with blood–brain barrier deficiency due to mdr1a P-glycoprotein gene disruption. Neuropsychopharmacology. 2000;22:380–7.PubMedCrossRef Uhr M, Steckler T, Yassouridis A, Holsboer F. Penetration of amitriptyline, but not of fluoxetine, into brain is enhanced in mice with blood–brain barrier deficiency due to mdr1a P-glycoprotein gene disruption. Neuropsychopharmacology. 2000;22:380–7.PubMedCrossRef
142.
Zurück zum Zitat Venkatakrishnan K, Greenblatt DJ, von Moltke LL, et al. Five distinct human cytochromes mediate amitriptyline N-demethylation in vitro: dominance of CYP2C19 and 3A4. J Clin Pharmacol. 1998;38:112–21.PubMedCrossRef Venkatakrishnan K, Greenblatt DJ, von Moltke LL, et al. Five distinct human cytochromes mediate amitriptyline N-demethylation in vitro: dominance of CYP2C19 and 3A4. J Clin Pharmacol. 1998;38:112–21.PubMedCrossRef
143.
Zurück zum Zitat Breyer-Pfaff U. The metabolic fate of amitriptyline, nortriptyline and amitriptyline oxide in man. Drug Metab Rev. 2004;36:723–46.PubMedCrossRef Breyer-Pfaff U. The metabolic fate of amitriptyline, nortriptyline and amitriptyline oxide in man. Drug Metab Rev. 2004;36:723–46.PubMedCrossRef
144.
Zurück zum Zitat Thieme D, Rolf B, Sachs H, et al. Correlation of inter-individual variations of amitriptyline metabolism examined in hairs with CYP2C19 and CYP2D6 polymorphisms. Int J Legal Med. 2008;122:149–55.PubMedCrossRef Thieme D, Rolf B, Sachs H, et al. Correlation of inter-individual variations of amitriptyline metabolism examined in hairs with CYP2C19 and CYP2D6 polymorphisms. Int J Legal Med. 2008;122:149–55.PubMedCrossRef
145.
Zurück zum Zitat Wen B, Ma L, Zhu M. Bioactivation of the tricyclic antidepressant amitriptyline and its metabolite nortriptyline to arene oxide intermediates in human liver microsomes and recombinant P450s. Chem Biol Interact. 2008;173:59–67.PubMedCrossRef Wen B, Ma L, Zhu M. Bioactivation of the tricyclic antidepressant amitriptyline and its metabolite nortriptyline to arene oxide intermediates in human liver microsomes and recombinant P450s. Chem Biol Interact. 2008;173:59–67.PubMedCrossRef
146.
Zurück zum Zitat Uhr M, Grauer MT. Abcb1ab P-glycoprotein is involved in the uptake of citalopram and trimipramine into the brain of mice. J Psychiatr Res. 2003;37:179–85.PubMedCrossRef Uhr M, Grauer MT. Abcb1ab P-glycoprotein is involved in the uptake of citalopram and trimipramine into the brain of mice. J Psychiatr Res. 2003;37:179–85.PubMedCrossRef
147.
Zurück zum Zitat von Moltke LL, Greenblatt DJ, Grassi JM, et al. Citalopram and desmethylcitalopram in vitro: human cytochromes mediating transformation, and cytochrome inhibitory effects. Biol Psychiatry. 1999;46:839–49.CrossRef von Moltke LL, Greenblatt DJ, Grassi JM, et al. Citalopram and desmethylcitalopram in vitro: human cytochromes mediating transformation, and cytochrome inhibitory effects. Biol Psychiatry. 1999;46:839–49.CrossRef
148.
Zurück zum Zitat Brøsen K, Naranjo CA. Review of pharmacokinetic and pharmacodynamic interaction studies with citalopram. Eur Neuropsychopharmacol. 2001;11:275–83.PubMedCrossRef Brøsen K, Naranjo CA. Review of pharmacokinetic and pharmacodynamic interaction studies with citalopram. Eur Neuropsychopharmacol. 2001;11:275–83.PubMedCrossRef
149.
Zurück zum Zitat Fudio S, Borobia AM, Piñana E, et al. Evaluation of the influence of sex and CYP2C19 and CYP2D6 polymorphisms in the disposition of citalopram. Eur J Pharmacol. 2010;626:200–4.PubMedCrossRef Fudio S, Borobia AM, Piñana E, et al. Evaluation of the influence of sex and CYP2C19 and CYP2D6 polymorphisms in the disposition of citalopram. Eur J Pharmacol. 2010;626:200–4.PubMedCrossRef
150.
Zurück zum Zitat Yin OQ, Wing YK, Cheung Y, et al. Phenotype-genotype relationship and clinical effects of citalopram in Chinese patients. J Clin Psychopharmacol. 2006;26:367–72.PubMedCrossRef Yin OQ, Wing YK, Cheung Y, et al. Phenotype-genotype relationship and clinical effects of citalopram in Chinese patients. J Clin Psychopharmacol. 2006;26:367–72.PubMedCrossRef
151.
Zurück zum Zitat Perroud N, Bondolfi G, Uher R, et al. Clinical and genetic correlates of suicidal ideation during antidepressant treatment in a depressed outpatient sample. Pharmacogenomics. 2011;12:365–77.PubMedCrossRef Perroud N, Bondolfi G, Uher R, et al. Clinical and genetic correlates of suicidal ideation during antidepressant treatment in a depressed outpatient sample. Pharmacogenomics. 2011;12:365–77.PubMedCrossRef
152.
Zurück zum Zitat Nielsen KK, Flinois JP, Beaune P, et al. The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways. J Pharmacol Exp Ther. 1996;277:1659–64.PubMed Nielsen KK, Flinois JP, Beaune P, et al. The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways. J Pharmacol Exp Ther. 1996;277:1659–64.PubMed
153.
Zurück zum Zitat Gillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007;151:737–48.PubMedCrossRef Gillman PK. Tricyclic antidepressant pharmacology and therapeutic drug interactions updated. Br J Pharmacol. 2007;151:737–48.PubMedCrossRef
154.
Zurück zum Zitat Margolis JM, O’Donnell JP, Mankowski DC, et al. (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab Dispos. 2000;28:1187–91.PubMed Margolis JM, O’Donnell JP, Mankowski DC, et al. (R)-, (S)-, and racemic fluoxetine N-demethylation by human cytochrome P450 enzymes. Drug Metab Dispos. 2000;28:1187–91.PubMed
155.
Zurück zum Zitat Liu ZQ, Shu Y, Huang SL, et al. Effects of CYP2C19 genotype and CYP2C9 on fluoxetine N-demethylation in human liver microsomes. Acta Pharmacol Sin. 2001;22:85–90.PubMed Liu ZQ, Shu Y, Huang SL, et al. Effects of CYP2C19 genotype and CYP2C9 on fluoxetine N-demethylation in human liver microsomes. Acta Pharmacol Sin. 2001;22:85–90.PubMed
156.
Zurück zum Zitat Scordo MG, Spina E, Dahl ML, et al. Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol. 2005;97:296–301.PubMedCrossRef Scordo MG, Spina E, Dahl ML, et al. Influence of CYP2C9, 2C19 and 2D6 genetic polymorphisms on the steady-state plasma concentrations of the enantiomers of fluoxetine and norfluoxetine. Basic Clin Pharmacol Toxicol. 2005;97:296–301.PubMedCrossRef
157.
Zurück zum Zitat Katoh Y, Uchida S, Kawai M, et al. Effects of cigarette smoking and cytochrome P450 2D6 genotype on fluvoxamine concentration in plasma of Japanese patients. Biol Pharm Bull. 2010;33:285–8.PubMedCrossRef Katoh Y, Uchida S, Kawai M, et al. Effects of cigarette smoking and cytochrome P450 2D6 genotype on fluvoxamine concentration in plasma of Japanese patients. Biol Pharm Bull. 2010;33:285–8.PubMedCrossRef
158.
Zurück zum Zitat Miura M, Ohkubo T. Identification of human cytochrome P450 enzymes involved in the major metabolic pathway of fluvoxamine. Xenobiotica. 2007;37:169–79.PubMedCrossRef Miura M, Ohkubo T. Identification of human cytochrome P450 enzymes involved in the major metabolic pathway of fluvoxamine. Xenobiotica. 2007;37:169–79.PubMedCrossRef
159.
Zurück zum Zitat Wang JS, Wang W, Xie HG, et al. Effect of troleandomycin on the pharmacokinetics of imipramine in Chinese: the role of CYP3A. Br J Clin Pharmacol. 1997;44:195–8.PubMedCrossRef Wang JS, Wang W, Xie HG, et al. Effect of troleandomycin on the pharmacokinetics of imipramine in Chinese: the role of CYP3A. Br J Clin Pharmacol. 1997;44:195–8.PubMedCrossRef
160.
Zurück zum Zitat Madsen H, Nielsen KK, Brøsen K. Imipramine metabolism in relation to the sparteine and mephenytoin oxidation polymorphisms: a population study. Br J Clin Pharmacol. 1995;39:433–9.PubMedCrossRef Madsen H, Nielsen KK, Brøsen K. Imipramine metabolism in relation to the sparteine and mephenytoin oxidation polymorphisms: a population study. Br J Clin Pharmacol. 1995;39:433–9.PubMedCrossRef
161.
Zurück zum Zitat Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Nortriptyline E-10-hydroxylation in vitro is mediated by human CYP2D6 (high affinity) and CYP3A4 (low affinity): implications for interactions with enzyme-inducing drugs. J Clin Pharmacol. 1999;39:567–77.PubMedCrossRef Venkatakrishnan K, von Moltke LL, Greenblatt DJ. Nortriptyline E-10-hydroxylation in vitro is mediated by human CYP2D6 (high affinity) and CYP3A4 (low affinity): implications for interactions with enzyme-inducing drugs. J Clin Pharmacol. 1999;39:567–77.PubMedCrossRef
162.
Zurück zum Zitat Kvist EE, Al-Shurbaji A, Dahl ML, et al. Quantitative pharmacogenetics of nortriptyline: a novel approach. Clin Pharmacokinet. 2001;40:869–77.PubMedCrossRef Kvist EE, Al-Shurbaji A, Dahl ML, et al. Quantitative pharmacogenetics of nortriptyline: a novel approach. Clin Pharmacokinet. 2001;40:869–77.PubMedCrossRef
163.
Zurück zum Zitat Olesen OV, Linnet K. Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA-expressed human cytochrome P-450 isozymes. Drug Metab Dispos. 1997;25:740–4.PubMed Olesen OV, Linnet K. Hydroxylation and demethylation of the tricyclic antidepressant nortriptyline by cDNA-expressed human cytochrome P-450 isozymes. Drug Metab Dispos. 1997;25:740–4.PubMed
164.
Zurück zum Zitat Feng Y, Pollock BG, Ferrell RE, et al. Paroxetine: population pharmacokinetic analysis in late-life depression using sparse concentration sampling. Br J Clin Pharmacol. 2006;61:558–69.PubMedCrossRef Feng Y, Pollock BG, Ferrell RE, et al. Paroxetine: population pharmacokinetic analysis in late-life depression using sparse concentration sampling. Br J Clin Pharmacol. 2006;61:558–69.PubMedCrossRef
165.
Zurück zum Zitat Jornil J, Jensen KG, Larsen F, et al. Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator. Drug Metab Dispos. 2010;38:376–85.PubMedCrossRef Jornil J, Jensen KG, Larsen F, et al. Identification of cytochrome P450 isoforms involved in the metabolism of paroxetine and estimation of their importance for human paroxetine metabolism using a population-based simulator. Drug Metab Dispos. 2010;38:376–85.PubMedCrossRef
166.
Zurück zum Zitat Ververs FF, Voorbij HA, Zwarts P, et al. Effect of cytochrome P450 2D6 genotype on maternal paroxetine plasma concentrations during pregnancy. Clin Pharmacokinet. 2009;48:677–83.PubMedCrossRef Ververs FF, Voorbij HA, Zwarts P, et al. Effect of cytochrome P450 2D6 genotype on maternal paroxetine plasma concentrations during pregnancy. Clin Pharmacokinet. 2009;48:677–83.PubMedCrossRef
167.
Zurück zum Zitat Kobayashi K, Ishizuka T, Shimada N, et al. Sertraline N-demethylation is catalyzed by multiple soforms of human cytochrome P-450 in vitro. Drug Metab Dispos. 1999;27:763–6.PubMed Kobayashi K, Ishizuka T, Shimada N, et al. Sertraline N-demethylation is catalyzed by multiple soforms of human cytochrome P-450 in vitro. Drug Metab Dispos. 1999;27:763–6.PubMed
168.
Zurück zum Zitat Obach RS, Cox LM, Tremaine LM. Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos. 2005;33:262–70.PubMedCrossRef Obach RS, Cox LM, Tremaine LM. Sertraline is metabolized by multiple cytochrome P450 enzymes, monoamine oxidases, and glucuronyl transferases in human: an in vitro study. Drug Metab Dispos. 2005;33:262–70.PubMedCrossRef
169.
Zurück zum Zitat Wang JH, Liu ZQ, Wang W, et al. Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin Pharmacol Ther. 2001;70:42–7.PubMedCrossRef Wang JH, Liu ZQ, Wang W, et al. Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin Pharmacol Ther. 2001;70:42–7.PubMedCrossRef
170.
Zurück zum Zitat Eap CB, Bender S, Gastpar M, et al. Steady state plasma levels of the enantiomers of trimipramine and of its metabolites in CYP2D6-, CYP2C19- and CYP3A4/5-phenotyped patients. Ther Drug Monit. 2000;22:209–14.PubMedCrossRef Eap CB, Bender S, Gastpar M, et al. Steady state plasma levels of the enantiomers of trimipramine and of its metabolites in CYP2D6-, CYP2C19- and CYP3A4/5-phenotyped patients. Ther Drug Monit. 2000;22:209–14.PubMedCrossRef
171.
Zurück zum Zitat Fogelman SM, Schmider J, Venkatakrishnan K, et al. O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: effect of metabolic inhibitors and SSRI antidepressants. Neuropsychopharmacology. 1999;20:480–90.PubMedCrossRef Fogelman SM, Schmider J, Venkatakrishnan K, et al. O- and N-demethylation of venlafaxine in vitro by human liver microsomes and by microsomes from cDNA-transfected cells: effect of metabolic inhibitors and SSRI antidepressants. Neuropsychopharmacology. 1999;20:480–90.PubMedCrossRef
172.
Zurück zum Zitat McAlpine DE, Biernacka JM, Mrazek DA, et al. Effect of cytochrome P450 enzyme polymorphisms on pharmacokinetics of venlafaxine. Ther Drug Monit. 2011;33:14–20.PubMedCrossRef McAlpine DE, Biernacka JM, Mrazek DA, et al. Effect of cytochrome P450 enzyme polymorphisms on pharmacokinetics of venlafaxine. Ther Drug Monit. 2011;33:14–20.PubMedCrossRef
173.
Zurück zum Zitat Wang JS, Zhu HJ, Donovan JL, et al. Aripiprazole brain concentration is altered in P-glycoprotein deficient mice. Schizophr Res. 2009;110:90–4.PubMedCrossRef Wang JS, Zhu HJ, Donovan JL, et al. Aripiprazole brain concentration is altered in P-glycoprotein deficient mice. Schizophr Res. 2009;110:90–4.PubMedCrossRef
174.
Zurück zum Zitat Hendset M, Hermann M, Lunde H, et al. Impact of the CYP2D6 genotype on steady-state serum concentrations of aripiprazole and dehydroaripiprazole. Eur J Clin Pharmacol. 2007;63:1147–51.PubMedCrossRef Hendset M, Hermann M, Lunde H, et al. Impact of the CYP2D6 genotype on steady-state serum concentrations of aripiprazole and dehydroaripiprazole. Eur J Clin Pharmacol. 2007;63:1147–51.PubMedCrossRef
175.
Zurück zum Zitat Waade RB, Christensen H, Rudberg I, et al. Influence of comedication on serum concentrations of aripiprazole and dehydroaripiprazole. Ther Drug Monit. 2009;31:233–8.PubMedCrossRef Waade RB, Christensen H, Rudberg I, et al. Influence of comedication on serum concentrations of aripiprazole and dehydroaripiprazole. Ther Drug Monit. 2009;31:233–8.PubMedCrossRef
176.
Zurück zum Zitat Wójcikowski J, Boksa J, Daniel WA. Main contribution of the cytochrome P450 isoenzyme 1A2 (CYP1A2) to N-demethylation and 5-sulfoxidation of the phenothiazine neuroleptic chlorpromazine in human liver: a comparison with other phenothiazines. Biochem Pharmacol. 2010;80:1252–9.PubMedCrossRef Wójcikowski J, Boksa J, Daniel WA. Main contribution of the cytochrome P450 isoenzyme 1A2 (CYP1A2) to N-demethylation and 5-sulfoxidation of the phenothiazine neuroleptic chlorpromazine in human liver: a comparison with other phenothiazines. Biochem Pharmacol. 2010;80:1252–9.PubMedCrossRef
177.
Zurück zum Zitat Eiermann B, Engel G, Johansson I, et al. The involvement of CYP1A2 and CYP3A4 in the metabolism of clozapine. Br J Clin Pharmacol. 1997;44:439–46.PubMedCrossRef Eiermann B, Engel G, Johansson I, et al. The involvement of CYP1A2 and CYP3A4 in the metabolism of clozapine. Br J Clin Pharmacol. 1997;44:439–46.PubMedCrossRef
178.
Zurück zum Zitat Olesen OV, Linnet K. Contributions of five human cytochrome P450 isoforms to the N-demethylation of clozapine in vitro at low and high concentrations. J Clin Pharmacol. 2001;41:823–32.PubMedCrossRef Olesen OV, Linnet K. Contributions of five human cytochrome P450 isoforms to the N-demethylation of clozapine in vitro at low and high concentrations. J Clin Pharmacol. 2001;41:823–32.PubMedCrossRef
179.
Zurück zum Zitat Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II. Clin Pharmacokinet. 2009;48:761–804.PubMedCrossRef Zhou SF. Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II. Clin Pharmacokinet. 2009;48:761–804.PubMedCrossRef
180.
Zurück zum Zitat Kudo S, Ishizaki T. Pharmacokinetics of haloperidol: an update. Clin Pharmacokinet. 1999;37:435–56.PubMedCrossRef Kudo S, Ishizaki T. Pharmacokinetics of haloperidol: an update. Clin Pharmacokinet. 1999;37:435–56.PubMedCrossRef
181.
Zurück zum Zitat Brockmöller J, Kirchheiner J, Schmider J, et al. The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin Pharmacol Ther. 2002;72:438–52.PubMedCrossRef Brockmöller J, Kirchheiner J, Schmider J, et al. The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin Pharmacol Ther. 2002;72:438–52.PubMedCrossRef
182.
Zurück zum Zitat Tateishi T, Watanabe M, Kumai T, et al. CYP3A is responsible for N-dealkylation of haloperidol and bromperidol and oxidation of their reduced forms by human liver microsomes. Life Sci. 2000;67:2913–20.PubMedCrossRef Tateishi T, Watanabe M, Kumai T, et al. CYP3A is responsible for N-dealkylation of haloperidol and bromperidol and oxidation of their reduced forms by human liver microsomes. Life Sci. 2000;67:2913–20.PubMedCrossRef
183.
Zurück zum Zitat Bagli M, Höflich G, Rao ML, et al. Bioequivalence and absolute bioavailability of oblong and coated levomepromazine tablets in CYP2D6 phenotyped subjects. Int J Clin Pharmacol Ther. 1995;33:646–52.PubMed Bagli M, Höflich G, Rao ML, et al. Bioequivalence and absolute bioavailability of oblong and coated levomepromazine tablets in CYP2D6 phenotyped subjects. Int J Clin Pharmacol Ther. 1995;33:646–52.PubMed
184.
Zurück zum Zitat Callaghan JT, Bergstrom RF, Ptak LR, et al. Olanzapine: pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet. 1999;37:177–93.PubMedCrossRef Callaghan JT, Bergstrom RF, Ptak LR, et al. Olanzapine: pharmacokinetic and pharmacodynamic profile. Clin Pharmacokinet. 1999;37:177–93.PubMedCrossRef
185.
Zurück zum Zitat de Leon J, Wynn G, Sandson NB. The pharmacokinetics of paliperidone versus risperidone. Psychosomatics. 2010;51:80–8.PubMedCrossRef de Leon J, Wynn G, Sandson NB. The pharmacokinetics of paliperidone versus risperidone. Psychosomatics. 2010;51:80–8.PubMedCrossRef
186.
Zurück zum Zitat Invega [package insert]. Titusville: Janssen Pharmaceuticals; 2011. Invega [package insert]. Titusville: Janssen Pharmaceuticals; 2011.
187.
Zurück zum Zitat Masui T, Kusumi I, Takahashi Y, et al. Effects of itraconazole and tandospirone on the pharmacokinetics of perospirone. Ther Drug Monit. 2006;28:73–5.PubMedCrossRef Masui T, Kusumi I, Takahashi Y, et al. Effects of itraconazole and tandospirone on the pharmacokinetics of perospirone. Ther Drug Monit. 2006;28:73–5.PubMedCrossRef
188.
Zurück zum Zitat Olesen OV, Linnet K. Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine. Br J Clin Pharmacol. 2000;50:563–71.PubMedCrossRef Olesen OV, Linnet K. Identification of the human cytochrome P450 isoforms mediating in vitro N-dealkylation of perphenazine. Br J Clin Pharmacol. 2000;50:563–71.PubMedCrossRef
189.
Zurück zum Zitat Aklillu E, Kalow W, Endrenyi L, et al. CYP2D6 and DRD2 genes differentially impact pharmacodynamic sensitivity and time course of prolactin response to perphenazine. Pharmacogenet Genomics. 2007;17:989–93.PubMedCrossRef Aklillu E, Kalow W, Endrenyi L, et al. CYP2D6 and DRD2 genes differentially impact pharmacodynamic sensitivity and time course of prolactin response to perphenazine. Pharmacogenet Genomics. 2007;17:989–93.PubMedCrossRef
190.
Zurück zum Zitat DeVane CL, Nemeroff CB. Clinical pharmacokinetics of quetiapine: an atypical antipsychotic. Clin Pharmacokinet. 2001;40:509–22.PubMedCrossRef DeVane CL, Nemeroff CB. Clinical pharmacokinetics of quetiapine: an atypical antipsychotic. Clin Pharmacokinet. 2001;40:509–22.PubMedCrossRef
191.
Zurück zum Zitat Bakken GV, Rudberg I, Christensen H, et al. Metabolism of quetiapine by CYP3A4 and CYP3A5 in presence or absence of cytochrome B5. Drug Metab Dispos. 2009;37:254–8.PubMedCrossRef Bakken GV, Rudberg I, Christensen H, et al. Metabolism of quetiapine by CYP3A4 and CYP3A5 in presence or absence of cytochrome B5. Drug Metab Dispos. 2009;37:254–8.PubMedCrossRef
192.
Zurück zum Zitat Bork JA, Rogers T, Wedlund PJ, et al. A pilot study on risperidone metabolism: the role of cytochromes P450 2D6 and 3A. J Clin Psychiatry. 1999;60:469–76.PubMedCrossRef Bork JA, Rogers T, Wedlund PJ, et al. A pilot study on risperidone metabolism: the role of cytochromes P450 2D6 and 3A. J Clin Psychiatry. 1999;60:469–76.PubMedCrossRef
193.
Zurück zum Zitat Xiang Q, Zhao X, Zhou Y, et al. Effect of CYP2D6, CYP3A5, and MDR1 genetic polymorphisms on the pharmacokinetics of risperidone and its active moiety. J Clin Pharmacol. 2010;50:659–66.PubMedCrossRef Xiang Q, Zhao X, Zhou Y, et al. Effect of CYP2D6, CYP3A5, and MDR1 genetic polymorphisms on the pharmacokinetics of risperidone and its active moiety. J Clin Pharmacol. 2010;50:659–66.PubMedCrossRef
194.
Zurück zum Zitat Potschka H, Fedrowitz M, Loscher W. P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. NeuroReport. 2001;12:3557–60.PubMedCrossRef Potschka H, Fedrowitz M, Loscher W. P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain. NeuroReport. 2001;12:3557–60.PubMedCrossRef
195.
Zurück zum Zitat Kerr BM, Thummel KE, Wurden CJ, et al. Human liver carbamazepine metabolism: role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol. 1994;47:1969–79.PubMedCrossRef Kerr BM, Thummel KE, Wurden CJ, et al. Human liver carbamazepine metabolism: role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol. 1994;47:1969–79.PubMedCrossRef
196.
Zurück zum Zitat Park PW, Seo YH, Ahn JY, et al. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady-state in Korean epileptic patients. J Clin Pharm Ther. 2009;34:569–74.PubMedCrossRef Park PW, Seo YH, Ahn JY, et al. Effect of CYP3A5*3 genotype on serum carbamazepine concentrations at steady-state in Korean epileptic patients. J Clin Pharm Ther. 2009;34:569–74.PubMedCrossRef
197.
Zurück zum Zitat Potschka H, Fedrowitz M, Löscher W. P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood–brain barrier: evidence from microdialysis experiments in rats. Neurosci Lett. 2002;327:173–6.PubMedCrossRef Potschka H, Fedrowitz M, Löscher W. P-Glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood–brain barrier: evidence from microdialysis experiments in rats. Neurosci Lett. 2002;327:173–6.PubMedCrossRef
198.
Zurück zum Zitat Chen H, Grover S, Yu L, et al. Bioactivation of lamotrigine in vivo in rat and in vitro in human liver microsomes, hepatocytes, and epidermal keratinocytes: characterization of thioether conjugates by liquid chromatography/mass spectrometry and high field nuclear magnetic resonance spectroscopy. Chem Res Toxicol. 2010;23:159–70.PubMedCrossRef Chen H, Grover S, Yu L, et al. Bioactivation of lamotrigine in vivo in rat and in vitro in human liver microsomes, hepatocytes, and epidermal keratinocytes: characterization of thioether conjugates by liquid chromatography/mass spectrometry and high field nuclear magnetic resonance spectroscopy. Chem Res Toxicol. 2010;23:159–70.PubMedCrossRef
199.
Zurück zum Zitat Reidenberg GD, Glue P, Banfield CR, et al. Effects of felbamate on the pharmacokinetics of phenobarbital. Clin Pharmacol Ther. 1995;58:279–87.PubMedCrossRef Reidenberg GD, Glue P, Banfield CR, et al. Effects of felbamate on the pharmacokinetics of phenobarbital. Clin Pharmacol Ther. 1995;58:279–87.PubMedCrossRef
200.
Zurück zum Zitat Anderson GD. A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother. 1998;32:554–63.PubMedCrossRef Anderson GD. A mechanistic approach to antiepileptic drug interactions. Ann Pharmacother. 1998;32:554–63.PubMedCrossRef
201.
Zurück zum Zitat Mamiya K, Hadama A, Yukawa E, et al. CYP2C19 polymorphism effect on phenobarbitone pharmacokinetics in Japanese patients with epilepsy: analysis by population pharmacokinetics. Eur J Clin Pharmacol. 2000;55:821–5.PubMedCrossRef Mamiya K, Hadama A, Yukawa E, et al. CYP2C19 polymorphism effect on phenobarbitone pharmacokinetics in Japanese patients with epilepsy: analysis by population pharmacokinetics. Eur J Clin Pharmacol. 2000;55:821–5.PubMedCrossRef
202.
Zurück zum Zitat Komatsu T, Yamazaki H, Asahi S, et al. Formation of a dihydroxy metabolite of phenytoin in human liver microsomes/cytosol: roles of cytochromes P450 2C9, 2C19, and 3A4. Drug Metab Dispos. 2000;28:1361–8.PubMed Komatsu T, Yamazaki H, Asahi S, et al. Formation of a dihydroxy metabolite of phenytoin in human liver microsomes/cytosol: roles of cytochromes P450 2C9, 2C19, and 3A4. Drug Metab Dispos. 2000;28:1361–8.PubMed
203.
Zurück zum Zitat Cottencin O, Regnaut N, Thevenon-Gignac C, et al. Carbamazepine–fluvoxamine interaction: consequences for the carbamazepine plasma level. Encephale. 1995;21:141–5.PubMed Cottencin O, Regnaut N, Thevenon-Gignac C, et al. Carbamazepine–fluvoxamine interaction: consequences for the carbamazepine plasma level. Encephale. 1995;21:141–5.PubMed
204.
Zurück zum Zitat Conus P, Bondolfi G, Eap CB, et al. Pharmacokinetic fluvoxamine–clomipramine interaction with favorable therapeutic consequences in therapy-resistant depressive patient. Harmacopsychiatry. 1996;29:108–10.CrossRef Conus P, Bondolfi G, Eap CB, et al. Pharmacokinetic fluvoxamine–clomipramine interaction with favorable therapeutic consequences in therapy-resistant depressive patient. Harmacopsychiatry. 1996;29:108–10.CrossRef
205.
Zurück zum Zitat Wagner W, Vause EW. Fluvoxamine: a review of global drug–drug interaction data. Clin Pharmacokinet. 1995;29:26–32.PubMedCrossRef Wagner W, Vause EW. Fluvoxamine: a review of global drug–drug interaction data. Clin Pharmacokinet. 1995;29:26–32.PubMedCrossRef
206.
Zurück zum Zitat Jerling M, Lindstrom L, Bondesson U, et al. Fluvoxamine inhibition and carbamazepine induction of the metabolism of clozapine: evidence from a therapeutic drug monitoring service. Ther Drug Monit. 1994;16:368–74.PubMedCrossRef Jerling M, Lindstrom L, Bondesson U, et al. Fluvoxamine inhibition and carbamazepine induction of the metabolism of clozapine: evidence from a therapeutic drug monitoring service. Ther Drug Monit. 1994;16:368–74.PubMedCrossRef
207.
Zurück zum Zitat Yasui-Furukori N, Kondo T, Mihara K, Inoue Y, Kaneko S. Fluvoxamine dose-dependent interaction with haloperidol and the effects on negative symptoms in schizophrenia. Psychopharmacology. 2004;171:223–7.PubMedCrossRef Yasui-Furukori N, Kondo T, Mihara K, Inoue Y, Kaneko S. Fluvoxamine dose-dependent interaction with haloperidol and the effects on negative symptoms in schizophrenia. Psychopharmacology. 2004;171:223–7.PubMedCrossRef
208.
Zurück zum Zitat Chiu CC, Lane HY, Huang MC, et al. Dose-dependent alternations in the pharmacokinetics of olanzapine during coadministration of fluvoxamine in patients with schizophrenia. J Clin Pharmacol. 2004;44:1385–90.PubMedCrossRef Chiu CC, Lane HY, Huang MC, et al. Dose-dependent alternations in the pharmacokinetics of olanzapine during coadministration of fluvoxamine in patients with schizophrenia. J Clin Pharmacol. 2004;44:1385–90.PubMedCrossRef
209.
Zurück zum Zitat Albers LJ, Reist C, Helmeste D, et al. Paroxetine shifts imipramine metabolism. Psychiatry Res. 1996;59:189–96.PubMedCrossRef Albers LJ, Reist C, Helmeste D, et al. Paroxetine shifts imipramine metabolism. Psychiatry Res. 1996;59:189–96.PubMedCrossRef
210.
Zurück zum Zitat Saito M, Yasui-Furukori N, Nakagami T, et al. Dose-dependent interaction of paroxetine with risperidone in schizophrenic patients. J Clin Psychopharmacol. 2005;25:527–32.PubMedCrossRef Saito M, Yasui-Furukori N, Nakagami T, et al. Dose-dependent interaction of paroxetine with risperidone in schizophrenic patients. J Clin Psychopharmacol. 2005;25:527–32.PubMedCrossRef
211.
Zurück zum Zitat Wolfsperger M, Greil W. Galactorrhea during treatment with trimipramine: a case report. Pharmacopsychiatry. 2005;38:326–7.PubMedCrossRef Wolfsperger M, Greil W. Galactorrhea during treatment with trimipramine: a case report. Pharmacopsychiatry. 2005;38:326–7.PubMedCrossRef
212.
Zurück zum Zitat Gélisse P, Hillaire-Buys D, Halaili E, et al. Carbamazepine and clarithromycin: a clinically relevant drug interaction. Rev Neurol (Paris). 2007;163:1096–9.CrossRef Gélisse P, Hillaire-Buys D, Halaili E, et al. Carbamazepine and clarithromycin: a clinically relevant drug interaction. Rev Neurol (Paris). 2007;163:1096–9.CrossRef
213.
Zurück zum Zitat von Rosensteil NA, Adam D. Macrolide antibacterials: drug interactions of clinical significance. Drug Saf. 1995;13:105–22.CrossRef von Rosensteil NA, Adam D. Macrolide antibacterials: drug interactions of clinical significance. Drug Saf. 1995;13:105–22.CrossRef
214.
Zurück zum Zitat Schulz-Du Bois C, Schulz-Du Bois AC, Bewig B, et al. Major increase of quetiapine steady-state plasma concentration following co-administration of clarithromycin: confirmation of the pharmacokinetic interaction potential of quetiapine. Pharmacopsychiatry. 2008;41:258–9.PubMedCrossRef Schulz-Du Bois C, Schulz-Du Bois AC, Bewig B, et al. Major increase of quetiapine steady-state plasma concentration following co-administration of clarithromycin: confirmation of the pharmacokinetic interaction potential of quetiapine. Pharmacopsychiatry. 2008;41:258–9.PubMedCrossRef
215.
Zurück zum Zitat Kubo M, Koue T, Inaba A, et al. Influence of itraconazole co-administration and CYP2D6 genotype on the pharmacokinetics of the new antipsychotic ARIPIPRAZOLE. Drug Metab Pharmacokinet. 2005;20:55–64.PubMedCrossRef Kubo M, Koue T, Inaba A, et al. Influence of itraconazole co-administration and CYP2D6 genotype on the pharmacokinetics of the new antipsychotic ARIPIPRAZOLE. Drug Metab Pharmacokinet. 2005;20:55–64.PubMedCrossRef
216.
Zurück zum Zitat Yasui N, Kondo T, Otani K, et al. Effects of itraconazole on the steady-state plasma concentrations of haloperidol and its reduced metabolite in schizophrenic patients: in vivo evidence of the involvement of CYP3A4 for haloperidol metabolism. J Clin Psychopharmacol. 1999;19:149–54.PubMedCrossRef Yasui N, Kondo T, Otani K, et al. Effects of itraconazole on the steady-state plasma concentrations of haloperidol and its reduced metabolite in schizophrenic patients: in vivo evidence of the involvement of CYP3A4 for haloperidol metabolism. J Clin Psychopharmacol. 1999;19:149–54.PubMedCrossRef
217.
Zurück zum Zitat Skarke C, Jarrar M, Erb K, et al. Respiratory and miotic effects of morphine in healthy volunteers when P-glycoprotein is blocked by quinidine. Clin Pharmacol Ther. 2003;74:303–11.PubMedCrossRef Skarke C, Jarrar M, Erb K, et al. Respiratory and miotic effects of morphine in healthy volunteers when P-glycoprotein is blocked by quinidine. Clin Pharmacol Ther. 2003;74:303–11.PubMedCrossRef
218.
Zurück zum Zitat Abilify [package insert]. Princeton: Bristol-Myers-Squibb; 2005. Abilify [package insert]. Princeton: Bristol-Myers-Squibb; 2005.
219.
Zurück zum Zitat Brøsen K, Gram LF. Quinidine inhibits the 2-hydroxylation of imipramine and desipramine but not the demethylation of imipramine. Eur J Clin Pharmacol. 1989;37:155–60.PubMedCrossRef Brøsen K, Gram LF. Quinidine inhibits the 2-hydroxylation of imipramine and desipramine but not the demethylation of imipramine. Eur J Clin Pharmacol. 1989;37:155–60.PubMedCrossRef
220.
Zurück zum Zitat Pfandl B, Mörike K, Winne D, et al. Stereoselective inhibition of nortriptyline hydroxylation in man by quinidine. Xenobiotica. 1992;22:721–30.PubMedCrossRef Pfandl B, Mörike K, Winne D, et al. Stereoselective inhibition of nortriptyline hydroxylation in man by quinidine. Xenobiotica. 1992;22:721–30.PubMedCrossRef
221.
Zurück zum Zitat van Heeswijk RP, Bourbeau M, Campbell P, et al. Time-dependent interaction between lopinavir/ritonavir and fexofenadine. J Clin Pharmacol. 2006;46:758–67.PubMedCrossRef van Heeswijk RP, Bourbeau M, Campbell P, et al. Time-dependent interaction between lopinavir/ritonavir and fexofenadine. J Clin Pharmacol. 2006;46:758–67.PubMedCrossRef
222.
Zurück zum Zitat Aung GL, O’Brien JG, Tien PG, et al. Increased aripiprazole concentrations in an HIV-positive male concurrently taking duloxetine, darunavir, and ritonavir. Ann Pharmacother. 2010;44:1850–4.PubMedCrossRef Aung GL, O’Brien JG, Tien PG, et al. Increased aripiprazole concentrations in an HIV-positive male concurrently taking duloxetine, darunavir, and ritonavir. Ann Pharmacother. 2010;44:1850–4.PubMedCrossRef
223.
Zurück zum Zitat Bates DE, Herman RJ. Carbamazepine toxicity induced by lopinavir/ritonavir and nelfinavir. Ann Pharmacother. 2006;40:1190–5.PubMedCrossRef Bates DE, Herman RJ. Carbamazepine toxicity induced by lopinavir/ritonavir and nelfinavir. Ann Pharmacother. 2006;40:1190–5.PubMedCrossRef
224.
Zurück zum Zitat Pollack TM, McCoy C, Stead W. Clinically significant adverse events from a drug interaction between quetiapine and atazanavir-ritonavir in two patients. Pharmacotherapy. 2009;29:1386–91.PubMedCrossRef Pollack TM, McCoy C, Stead W. Clinically significant adverse events from a drug interaction between quetiapine and atazanavir-ritonavir in two patients. Pharmacotherapy. 2009;29:1386–91.PubMedCrossRef
225.
Zurück zum Zitat Jover F, Cuadrado JM, Andreu L, et al. Reversible coma caused by risperidone–ritonavir interaction. Clin Neuropharmacol. 2002;25:251–3.PubMedCrossRef Jover F, Cuadrado JM, Andreu L, et al. Reversible coma caused by risperidone–ritonavir interaction. Clin Neuropharmacol. 2002;25:251–3.PubMedCrossRef
226.
Zurück zum Zitat Kelly DV, Béïque LC, Bowmer MI. Extrapyramidal symptoms with ritonavir/indinavir plus risperidone. Ann Pharmacother. 2002;36:827–30.PubMedCrossRef Kelly DV, Béïque LC, Bowmer MI. Extrapyramidal symptoms with ritonavir/indinavir plus risperidone. Ann Pharmacother. 2002;36:827–30.PubMedCrossRef
227.
Zurück zum Zitat Beattie B, Biller J, Mehlhaus B, et al. Verapamil-induced carbamazepine neurotoxicity: a report of two cases. Eur Neurol. 1988;28:104–5.PubMedCrossRef Beattie B, Biller J, Mehlhaus B, et al. Verapamil-induced carbamazepine neurotoxicity: a report of two cases. Eur Neurol. 1988;28:104–5.PubMedCrossRef
228.
Zurück zum Zitat Hermann DJ, Krol TF, Dukes GE, et al. Comparison of verapamil, diltiazem, and labetalol on the bioavailability and metabolism of imipramine. J Clin Pharmacol. 1992;32:176–83.PubMedCrossRef Hermann DJ, Krol TF, Dukes GE, et al. Comparison of verapamil, diltiazem, and labetalol on the bioavailability and metabolism of imipramine. J Clin Pharmacol. 1992;32:176–83.PubMedCrossRef
229.
Zurück zum Zitat Nakagami T, Yasui-Furukori N, Saito M, et al. Effect of verapamil on pharmacokinetics and pharmacodynamics of risperidone: in vivo evidence of involvement of P-glycoprotein in risperidone disposition. Clin Pharmacol Ther. 2005;78:43–51.PubMedCrossRef Nakagami T, Yasui-Furukori N, Saito M, et al. Effect of verapamil on pharmacokinetics and pharmacodynamics of risperidone: in vivo evidence of involvement of P-glycoprotein in risperidone disposition. Clin Pharmacol Ther. 2005;78:43–51.PubMedCrossRef
230.
Zurück zum Zitat Nakamura A, Mihara K, Nagai G, et al. Pharmacokinetic and pharmacodynamic interactions between carbamazepine and aripiprazole in patients with schizophrenia. Ther Drug Monit. 2009;31:575–8.PubMedCrossRef Nakamura A, Mihara K, Nagai G, et al. Pharmacokinetic and pharmacodynamic interactions between carbamazepine and aripiprazole in patients with schizophrenia. Ther Drug Monit. 2009;31:575–8.PubMedCrossRef
231.
Zurück zum Zitat Steinacher L, Vandel P, Zullino DF, et al. Carbamazepine augmentation in depressive patients non-responding to citalopram: a pharmacokinetic and clinical pilot study. Eur Neuropsychopharmacol. 2002;12:255–60.PubMedCrossRef Steinacher L, Vandel P, Zullino DF, et al. Carbamazepine augmentation in depressive patients non-responding to citalopram: a pharmacokinetic and clinical pilot study. Eur Neuropsychopharmacol. 2002;12:255–60.PubMedCrossRef
232.
Zurück zum Zitat Tiihonen J, Vartiainen H, Hakola P. Carbamazepine-induced changes in plasma levels of neuroleptics. Pharmacopsychiatry. 1995;28:26–8.PubMedCrossRef Tiihonen J, Vartiainen H, Hakola P. Carbamazepine-induced changes in plasma levels of neuroleptics. Pharmacopsychiatry. 1995;28:26–8.PubMedCrossRef
233.
Zurück zum Zitat Yasui-Furukori N, Kondo T, Mihara K, et al. Significant dose effect of carbamazepine on reduction of steady-state plasma concentration of haloperidol in schizophrenic patients. J Clin Psychopharmacol. 2003;23:435–40.PubMedCrossRef Yasui-Furukori N, Kondo T, Mihara K, et al. Significant dose effect of carbamazepine on reduction of steady-state plasma concentration of haloperidol in schizophrenic patients. J Clin Psychopharmacol. 2003;23:435–40.PubMedCrossRef
234.
Zurück zum Zitat Brown CS, Wells BG, Cold JA, et al. Possible influence of carbamazepine on plasma imipramine concentrations in children with attention deficit hyperactivity disorder. J Clin Psychopharmacol. 1990;10:359–62.PubMed Brown CS, Wells BG, Cold JA, et al. Possible influence of carbamazepine on plasma imipramine concentrations in children with attention deficit hyperactivity disorder. J Clin Psychopharmacol. 1990;10:359–62.PubMed
235.
Zurück zum Zitat Ono S, Mihara K, Suzuki A, et al. Significant pharmacokinetic interaction between risperidone and carbamazepine: its relationship with CYP2D6 genotypes. Psychopharmacology. 2002;162:50–4.PubMedCrossRef Ono S, Mihara K, Suzuki A, et al. Significant pharmacokinetic interaction between risperidone and carbamazepine: its relationship with CYP2D6 genotypes. Psychopharmacology. 2002;162:50–4.PubMedCrossRef
236.
Zurück zum Zitat Grimm SW, Richtand NM, Winter HR, et al. Effects of cytochrome P450 3A modulators ketoconazole and carbamazepine on quetiapine pharmacokinetics. Br J Clin Pharmacol. 2006;61:58–69.PubMedCrossRef Grimm SW, Richtand NM, Winter HR, et al. Effects of cytochrome P450 3A modulators ketoconazole and carbamazepine on quetiapine pharmacokinetics. Br J Clin Pharmacol. 2006;61:58–69.PubMedCrossRef
237.
Zurück zum Zitat Joos A, Frank U, Kaschka W. Pharmacokinetic interaction of clozapine and rifampicin in a forensic patient with atypical mycobacterial infection [letter]. J Clin Psychopharmacol. 1998;18:83–5.PubMedCrossRef Joos A, Frank U, Kaschka W. Pharmacokinetic interaction of clozapine and rifampicin in a forensic patient with atypical mycobacterial infection [letter]. J Clin Psychopharmacol. 1998;18:83–5.PubMedCrossRef
238.
Zurück zum Zitat Kim YH, Cha IJ, Shim JC, et al. Effect of rifampin on the plasma concentration and the clinical effect of haloperidol concomitantly administered to schizophrenic patients. J Clin Psychopharmacol. 1996;16:247–52.PubMedCrossRef Kim YH, Cha IJ, Shim JC, et al. Effect of rifampin on the plasma concentration and the clinical effect of haloperidol concomitantly administered to schizophrenic patients. J Clin Psychopharmacol. 1996;16:247–52.PubMedCrossRef
239.
Zurück zum Zitat Bebchuk JM, Stewart DE. Drug interaction between rifampin and nortriptyline: a case report. Int J Psychiatry Med. 1991;21:183–7.PubMedCrossRef Bebchuk JM, Stewart DE. Drug interaction between rifampin and nortriptyline: a case report. Int J Psychiatry Med. 1991;21:183–7.PubMedCrossRef
240.
Zurück zum Zitat Misra LK, Erpenbach JE, Hamlyn H, et al. Quetiapine: a new atypical antipsychotic. S D J Med. 1998;51:189–93.PubMed Misra LK, Erpenbach JE, Hamlyn H, et al. Quetiapine: a new atypical antipsychotic. S D J Med. 1998;51:189–93.PubMed
241.
Zurück zum Zitat Johne A, Schmider J, Brockmöller J, et al. Decreased plasma levels of amitriptyline and its metabolites on comedication with an extract from St. John’s wort (Hypericum perforatum). J Clin Psychopharmacol. 2002;22:46–54.PubMedCrossRef Johne A, Schmider J, Brockmöller J, et al. Decreased plasma levels of amitriptyline and its metabolites on comedication with an extract from St. John’s wort (Hypericum perforatum). J Clin Psychopharmacol. 2002;22:46–54.PubMedCrossRef
242.
Zurück zum Zitat Van Strater AC, Bogers JP. Interaction of St John’s wort (Hypericum perforatum) with clozapine. Int Clin Psychopharmacol. 2012;27:121–4.PubMedCrossRef Van Strater AC, Bogers JP. Interaction of St John’s wort (Hypericum perforatum) with clozapine. Int Clin Psychopharmacol. 2012;27:121–4.PubMedCrossRef
Metadaten
Titel
Psychotropic Drug–Drug Interactions Involving P-Glycoprotein
verfasst von
Yumiko Akamine
Norio Yasui-Furukori
Ichiro Ieiri
Tsukasa Uno
Publikationsdatum
01.11.2012
Verlag
Springer International Publishing AG
Erschienen in
CNS Drugs / Ausgabe 11/2012
Print ISSN: 1172-7047
Elektronische ISSN: 1179-1934
DOI
https://doi.org/10.1007/s40263-012-0008-z

Weitere Artikel der Ausgabe 11/2012

CNS Drugs 11/2012 Zur Ausgabe

Adis Drug Profile

Stiripentol

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.