Skip to main content
Erschienen in: Acta Neuropathologica Communications 1/2014

Open Access 01.12.2014 | Letter to the Editor

Metabolic alterations due to IDH1 mutation in glioma: opening for therapeutic opportunities?

verfasst von: Dana A N Mustafa, Sigrid M Swagemakers, Laura Buise, Peter J van der Spek, Johan M Kros

Erschienen in: Acta Neuropathologica Communications | Ausgabe 1/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​2051-5960-2-6) contains supplementary material, which is available to authorized users.

Competing interests

All authors declare that they have no competing interests.

Authors’ contributions

DM and LB carried out the molecular genetic analyses; SS and PvdS carried out the data analysis and DM and JMK conceptualized and designed the study and wrote the manuscript. All authors read and approved the final manuscript.
Recently heterozygous mutations in the active site of the enzyme isocitrate dehydrogenase 1 (IDH1) were discovered in glioblastomas [1]. In cohorts of glioma patients the IDH1 mutation appeared to be a strong predictor of clinical outcome, overruling histological malignancy grade [2]. IDH1 is an enzyme of the tricarboxylic acid (TCA) cycle and is located in the cytosol, where it produces NADPH by transforming isocitrate into α-ketoglutarate. Because the mutant enzyme displays neomorphic activity through NADPH-dependent transformation of α-ketoglutarate into 2-hydroxyglutarate (2HG), the tumorigenic role of the increased levels of 2HG has become a target of speculation [3]. IDH1 mutation alters the cellular metabolism and epigenetic phenotype influencing cellular proliferation. IDH1 mutation infers increased levels of D2HGDH leading to the inhibition of DNA and histone demethylating enzymes, resulting in the glioma-CpG island phenotype [4]. Altered concentrations of pyruvate kinase M2 play also a role in histone modifications which are associated with the transcription of the proliferation-related cyclin D1 and c-MYC [5]. In addition, IDH1 mutant cells show alterations in glutamine, fatty acid and citrate synthesis pathways, which all may have their influence on cellular proliferation [5].
The changes in IDH1 function affect the glucose metabolism, which may explain the different biological behaviour of tumors with and without the IDH1 mutation [6]. In order to detect these changes, we compared the expression levels of the genes participating in the TCA cycle and in the anaerobic glycolysis in 33 IDH1 mutated samples (3 astrocytomas WHO grade II; 6 astrocytomas WHO grade III; 4 glioblastomas; 9 oligodendrogliomas WHO grade II; 11 oligodendrogliomas WHO grade III) and in 39 IDH1 wild-type glioma samples (10 astrocytomas WHO grade III; 26 glioblastomas; 1 oligodendroglioma WHO grade II; 2 oligodendroglioma WHO grade III) and in four samples of normal brain (Table 1). We found expressional differences of 16/24 genes (Figure 1). The IDH1 mutated cells seem to compensate for the low production of α-ketoglutarate by overexpressing D2HGDH and L2HGDH in the cytoplasm. They also overexpress GLUD1, which converts glutamate to α-ketoglutarate inside the mitochondria. In addition, we found that IDH1 mutated cells overexpress HIF1AN. The HIF1AN gene inhibits HIF1α. Since HIF1α acts as an oxygen sensor that promotes angiogenesis, the formation of dysfunctional tumor vasculature is counteracted in IDH1 mutated cells. Furthermore, the IDH1 mutated cells overexpress the LDHB gene while cells without IDH1 mutation overexpress the LDHA gene. The present results illustrate that tumor cells without IDH1 mutation switch their energy production from a low rate of glycolysis followed by the TCA cycle to a high rate of glycolysis followed by aerobic glycolysis (LDHA up-regulation; Figure 1). The resulting lactate acid production causes tissue acidosis known as the Warburg effect. In invasive cancers, the pH of the extracellular space increases the infiltrative potential of the tumor cells [7]. In addition, normalization of the extracellular pH by alterations of the enzymatic actions of LDHA and LDHB influences the progression of cancer cells [8, 9]. It may well be that glial tumor cells with IDH1 mutation tend to correct their energy production through the TCA cycle by overexpressing LDHB (Figure 1). By doing so, they normalize the tissue pH which offers yet another explanation for the less aggressive biological behavior of the IDH1 mutated gliomas.
Table 1
Percentages of glioma types and grades
WHO grades
IDH1 mutation
IDH1 wild type
A II
4%
0%
A III
8%
14%
GBM
6%
36%
O II
13%
1%
O III
15%
3%
Legends: A II low-grade astrocytoma (WHO grade 2), A III anaplastic astrocytoma (WHO grade 3), GBM glioblastoma (WHO grade 4), O II low-grade oligodendroglioma (WHO grade 2), O III anaplastic oligodendroglioma (WHO grade 3).
We conclude that gliomas with IDH1 mutation normalize their glucose metabolism, which appears to result in a slower tumor progression. Depending on the IDH1 status of the tumor, specific interference with the glucose metabolism and aerobic glycolysis should therefore be considered for future therapeutic strategies.

Acknowledgements

The authors thank Mr. M. van der Weiden for his technical assistance and Mr. F. van der Panne for assistance with the photography.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​ ) applies to the data made available in this article, unless otherwise stated.

Competing interests

All authors declare that they have no competing interests.

Authors’ contributions

DM and LB carried out the molecular genetic analyses; SS and PvdS carried out the data analysis and DM and JMK conceptualized and designed the study and wrote the manuscript. All authors read and approved the final manuscript.
download
DOWNLOAD
print
DRUCKEN
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al.: An integrated genomic analysis of human glioblastoma multiforme. Science 2008, 321: 1807–1812. 10.1126/science.1164382CrossRefPubMedPubMedCentral Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al.: An integrated genomic analysis of human glioblastoma multiforme. Science 2008, 321: 1807–1812. 10.1126/science.1164382CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al.: IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009, 360: 765–773. 10.1056/NEJMoa0808710CrossRefPubMedPubMedCentral Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al.: IDH1 and IDH2 mutations in gliomas. N Engl J Med 2009, 360: 765–773. 10.1056/NEJMoa0808710CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al.: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009, 462: 739–744. 10.1038/nature08617CrossRefPubMedPubMedCentral Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al.: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009, 462: 739–744. 10.1038/nature08617CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Borodovsky A, Seltzer MJ, Riggins GJ: Altered cancer cell metabolism in gliomas with mutant IDH1 or IDH2. Curr Opin Oncol 2012, 24: 83–89. 10.1097/CCO.0b013e32834d816aCrossRefPubMedPubMedCentral Borodovsky A, Seltzer MJ, Riggins GJ: Altered cancer cell metabolism in gliomas with mutant IDH1 or IDH2. Curr Opin Oncol 2012, 24: 83–89. 10.1097/CCO.0b013e32834d816aCrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Reitman ZJ, Yan H: Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 2010, 102: 932–941. 10.1093/jnci/djq187CrossRefPubMedPubMedCentral Reitman ZJ, Yan H: Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 2010, 102: 932–941. 10.1093/jnci/djq187CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Mirebeau-Prunier D, Le Pennec S, Jacques C, Fontaine JF, Gueguen N, Boutet-Bouzamondo N, et al.: Estrogen-related receptor alpha modulates lactate dehydrogenase activity in thyroid tumors. PLoS One 2013, 8: e58683. 10.1371/journal.pone.0058683CrossRefPubMedPubMedCentral Mirebeau-Prunier D, Le Pennec S, Jacques C, Fontaine JF, Gueguen N, Boutet-Bouzamondo N, et al.: Estrogen-related receptor alpha modulates lactate dehydrogenase activity in thyroid tumors. PLoS One 2013, 8: e58683. 10.1371/journal.pone.0058683CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Ho J, de Moura MB, Lin Y, Vincent G, Thorne S, Duncan LM, et al.: Importance of glycolysis and oxidative phosphorylation in advanced melanoma. Mol Cancer 2012, 11: 76. 10.1186/1476-4598-11-76CrossRefPubMedPubMedCentral Ho J, de Moura MB, Lin Y, Vincent G, Thorne S, Duncan LM, et al.: Importance of glycolysis and oxidative phosphorylation in advanced melanoma. Mol Cancer 2012, 11: 76. 10.1186/1476-4598-11-76CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat McCleland ML, Adler AS, Deming L, Cosino E, Lee L, Blackwood EM, et al.: Lactate dehydrogenase B is required for the growth of KRAS-dependent lung adenocarcinomas. Clin Cancer Res 2013, 19: 773–784. 10.1158/1078-0432.CCR-12-2638CrossRefPubMed McCleland ML, Adler AS, Deming L, Cosino E, Lee L, Blackwood EM, et al.: Lactate dehydrogenase B is required for the growth of KRAS-dependent lung adenocarcinomas. Clin Cancer Res 2013, 19: 773–784. 10.1158/1078-0432.CCR-12-2638CrossRefPubMed
Metadaten
Titel
Metabolic alterations due to IDH1 mutation in glioma: opening for therapeutic opportunities?
verfasst von
Dana A N Mustafa
Sigrid M Swagemakers
Laura Buise
Peter J van der Spek
Johan M Kros
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Acta Neuropathologica Communications / Ausgabe 1/2014
Elektronische ISSN: 2051-5960
DOI
https://doi.org/10.1186/2051-5960-2-6

Weitere Artikel der Ausgabe 1/2014

Acta Neuropathologica Communications 1/2014 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.