Skip to main content
Erschienen in: Molecular Cancer 1/2020

Open Access 01.12.2020 | Review

Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance

verfasst von: Li Yuan, Zhi-Yuan Xu, Shan-Ming Ruan, Shaowei Mo, Jiang-Jiang Qin, Xiang-Dong Cheng

Erschienen in: Molecular Cancer | Ausgabe 1/2020

Abstract

Gastric cancer is a deadly disease and remains the third leading cause of cancer-related death worldwide. The 5-year overall survival rate of patients with early-stage localized gastric cancer is more than 60%, whereas that of patients with distant metastasis is less than 5%. Surgical resection is the best option for early-stage gastric cancer, while chemotherapy is mainly used in the middle and advanced stages of this disease, despite the frequently reported treatment failure due to chemotherapy resistance. Therefore, there is an unmet medical need for identifying new biomarkers for the early diagnosis and proper management of patients, to achieve the best response to treatment. Long non-coding RNAs (lncRNAs) in body fluids have attracted widespread attention as biomarkers for early screening, diagnosis, treatment, prognosis, and responses to drugs due to the high specificity and sensitivity. In the present review, we focus on the clinical potential of lncRNAs as biomarkers in liquid biopsies in the diagnosis and prognosis of gastric cancer. We also comprehensively discuss the roles of lncRNAs and their molecular mechanisms in gastric cancer chemoresistance as well as their potential as therapeutic targets for gastric cancer precision medicine.
Hinweise
Li Yuan and Zhi-Yuan Xu contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
5-FU
5-fluorouracil
ABC
ATP-binding cassette
ABCB1
ABC subfamily B member 1
ABCC1
ABC subfamily C member 1
ABHD11
Abhydrolase domain containing 11
ABHD11-AS1
ABHD11 antisense RNA 1
ACS
Acetyl-CoA synthetase
ADR
Adriamycin
AFP
Alpha fetoprotein
AKT
serine/threonine protein kinase B
ALDH1
Aldehyde dehydrogenase 1
ANRIL
Antisense noncoding RNA in the INK4 locus
AOC4P
Amine oxidase copper containing 4, pseudogene
ARHGAP27P1
Rho GTPase activating protein 27 pseudogene 1
ATG
Autophagy-related genes
AUC
Area under curve
B3GALT5
Beta-1,3-galactosyltransferase 5
B3GALT5-AS1
B3GALT5 antisense RNA 1
BAK
BCL-2 antagonist/killer
BANCR
BRAF-activated non-protein coding RNA
BAX
BCL-2 associated X, apoptosis regulator
BCAR4
Breast cancer anti-estrogen resistance 4
BCL-2
B-cell lymphoma-2
BCL-xL
B-cell lymphoma-extra large
BLACAT1
Bladder cancer associated transcript 1
C5orf66-AS1
C5orf66 antisense RNA 1
CA
Carbohydrate antigen
CASC
Cancer susceptibility
CCAT2
Colon cancer associated transcript 2
CD
Cluster of differentiation
CDH1
Cadherin 1
CEA
Carcinoembryonic antigen
CEBPA
CCAAT enhancer binding protein alpha
CEBPA-AS1
CEBPA divergent transcript
CeRNA
Competitive endogenous RNA
circRNAs
Circular RNAs
CKs
Cytokeratins
c-Myc/MYC
MYC proto-oncogene, bHLH transcription factor
CPT1
Diacylglycerol cholinephosphotransferase
CRAL
Cisplatin resistance-associated lncRNA
CRISPR
Clustered regularly interspaced short palindromic repeats
CSCs
Cancer stem cells
CTDHUT
CTD highly upregulated transcript
CYLD
Cylindromatosis
DANCR
Differentiation antagonizing non-protein coding RNA
DDP
Cisplatin
DGCR5
DiGeorge syndrome critical region gene 5
DOX
Doxorubicin
E-cad
E-cadherin
EMT
Epithelial-mesenchymal transition
ESA
Essential specific antigen
EZH2
Enhancer of zeste homologue 2
FADD
FAS-associated death domain protein
FAM49B
Family with sequence similarity 49, member B
FAM49B-AS
FAM49B antisense RNA
FAM84B
Family with sequence similarity 84, member B
FAM84B-AS
FAM84B antisense RNA
FAO
Fatty acid oxidation
FAS
Fas cell surface death receptor
FASL
FAS ligand
FOXD2
Forkhead box D2
FOXD2-AS1
FOXD2 adjacent opposite strand RNA 1
FOXFOXMM1
Forkhead box M1
FYCO1
FYVE and coiled-coil protein 1
GACAT2
Gastric cancer associated transcript 2
GASL1
Growth arrest associated lncRNA 1
GHET1
Gastric carcinoma proliferation enhancing transcript 1
GNAQ-6:1
G protein subunit alpha q-6:1
GUSBP11
GUSB pseudogene 11
H19
H19 imprinted maternally expressed transcript
HCP5
Histocompatibility leukocyte antigen complex P5
HIF-1α
Hypoxia-inducible factor-1α
HOTAIR
HOX transcript antisense RNA
HOTTIP
HOXA distal transcript antisense RNA
HOXA11
Homeobox A11
HOXA11-AS
HOXA11 antisense RNA
HOXD
Homeobox D cluster
HOXD-AS1
HOXD antisense RNA
HULC
Hepatocellular carcinoma upregulated long noncoding RNA
INHBA
Inhibin subunit beta A
INHBA-AS1
INHBA antisense RNA 1
KLF4
Kruppel Like Factor 4
LATS1
Large tumor suppressor kinase 1
LC3
Microtubule associated protein 1 light chain 3 alpha
LEIGC
LncRNA
chr2:118381039–118,383,698
LincRNAs
Intergenic lncRNAs
LncRNAs
Long non-coding RNAs
MACC1
MET transcriptional regulator MACC1
MACC1-AS1
MACC1 antisense RNA 1
MALAT1
Metastasis associated lung adenocarcinoma transcript 1
MDR
Multidrug resistance
MDR1
Multidrug resistance protein 1
MEF2C
Myocyte enhancer factor 2C
MEF2C-AS1
MEF2C antisense RNA 1
MEF2D
Myocyte enhancer factor 2D
MEG3
Maternally expressed 3
MIR4435–2HG
MIR4435–2 host gene
MIAT
Myocardial infarction associated transcript
miRNAs
microRNAs
MMC
Mitomycin
MMPs
Matrix metalloproteinases
MNX1
Motor neuron and pancreas homeobox 1
MNX1-AS1
MNX1 antisense RNA 1
MOM
Mitochondrial outer membrane
MOMP
Mitochondrial outer membrane permeability
MRP1
Multidrug resistance-associated protein 1
MRUL
MDR-related and upregulated lncRNA
MT1JP
Metallothionein 1 J, pseudogene
mTOR
Mechanistic target of rapamycin kinase
N-cad
N-cadherin
ncRNAs
Noncoding RNAs
NEAT1
Nuclear paraspeckle assembly transcript 1
NSE
Neuron-specific enolase
OCT
Organic cation/carnitine transporter
OS
Overall survival
OXA
Oxaliplatin
PANDAR
Promoter of CDKN1A antisense DNA damage activated RNA
PARP
Poly-(ADP-ribose) polymerase
PCA3
Prostate cancer associated 3
PCAT1
Prostate cancer associated transcript 1
PDCD4
Programmed cell death 4
PDX
Patient-derived tumor xenograft
P-gp
P-glycoprotein
PI3K
Phosphatidylinositol 3-kinase
PCSK2–2:1
Proprotein convertase subtilisin/kexin type 2–2:1
PTCSC3
Papillary thyroid carcinoma susceptibility candidate 3
PTEN
Phosphatase and tensin homolog
PTX
Paclitaxel
PVT1
Plasmacytoma variant translocation 1
Rab7
Ras-related protein 7
RMRP
RNA component of mitochondrial RNA processing endoribonuclease
ROC
Receiver operator characteristic curve
ROR
Regulator of reprogramming
SMARCC2
SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 2
SNHG
Small nucleolar RNA host gene
snoRNAs
Small nucleolar RNAs
SOX
SRY-box transcription factor
THOR
Testis-associated highly conserved oncogenic long non-coding RNA
TINCR
Terminal differentiation-induced ncRNA
TNFR1
Tumor necrosis factor receptor 1
TNFα
Tumor necrosis factor alpha
TNM
Tumor, node, metastasis
TRAIL
TNF-related apoptosis-inducing ligand
TRAILR1/2
TRAIL cell surface receptors 1 and 2
TUBA4B
Tubulin alpha 4b
TUG1
Taurine up-regulated 1
UCA1
Urothelial cancer associated 1
UEGC1
ENST00000568893.1
UEGC2
ENST00000378432.1
ULK1
Unc-51-like kinase 1
USP9X
Ubiquitin specific peptidase 9 X-linked
UTR
Untranslated regions
VCR
Vincristine
XIST
X inactive specific transcript
YAP
Yes-associated protein
ZEB1
Zinc finger E-box binding homeobox 1
ZFAS1
ZNFX1 antisense RNA 1
ZNFX1
Zinc finger NFX1-type containing 1
ZO1
Zona occludens 1

Background

Gastric cancer is one of the most common malignancies worldwide, with more than one million new cases every year, and remains the third leading cause of cancer-related deaths [1, 2]. The clinical stage at the time of diagnosis directly determines the prognosis of patients with this disease. The patients with localized, early-stage gastric cancer usually have a high 5-year overall survival (OS) rate (> 60%), whereas the 5-year OS rates for gastric cancer patients with local and distant metastasis dramatically decrease to 30 and 5%, respectively [2]. Unfortunately, due to the occult and atypical nature of early clinical symptoms of gastric cancer, more than 60% of patients have local or distant metastases at the time of diagnosis [2]. For patients with early gastric cancer, surgical resection is the best treatment option; for patients who cannot undergo surgical resection or patients with advanced metastases, chemotherapy is the most important treatment [3, 4]. However, poor or even no response to chemotherapy is often observed in gastric cancer patients because of the intrinsic or acquired resistance, which becomes the most common cause of treatment failure [5]. Therefore, the low rate of early diagnosis and chemotherapy resistance constitute the main contributions to the poor prognosis of gastric cancer.
To date, the biomarkers commonly used in early screening for gastric cancer include carcinoembryonic antigen (CEA), alpha-fetoprotein (AFP), carbohydrate antigen 19–9 (CA19–9), CA72–4, CA125, etc. [6, 7]. However, the sensitivities and positive rates of these biomarkers are poor; their sensitivities in the diagnosis of gastric cancer are from 4.7 to 33.3%, and the positive rates of CEA, CA199, and CA724 only range from 21.1 to 30% [79]. The diagnosis of gastric cancer still depends on upper gastrointestinal endoscopy, but its clinical application is limited because of the invasiveness and high cost [10]. Therefore, there is an urgent need for minimal-invasive or non-invasive detection approaches, as well as highly specific biomarkers, to improve gastric cancer early diagnosis and survival outcomes.
Long non-coding RNAs (lncRNAs) have attracted increasing attention as cancer biomarkers for early screening, diagnosis, prognosis, and responses to drug treatment [1113]. A recent study has shown that the expression of lncRNA MNX1-AS1 (MNX1 antisense RNA 1) is significantly increased in gastric cancer tissues and associated with the poor prognosis of gastric cancer patients [14]. LncRNA SNHG11 (small nucleolar RNA host gene 11) has been reported as a potential biomarker for early detection of colon cancer and a new therapeutic target of this disease [15]. A stroma-related lncRNA panel has been found to predict recurrence and adjuvant chemotherapy benefit in patients with early-stage colon cancer [16]. LncRNAs are involved in the acquired resistance to chemotherapy [17, 18], and targeting lncRNA can reverse drug resistance and enhance the sensitivity of cancer cells to chemotherapy [19]. Given the importance of lncRNAs in cancer, a better understanding of their roles in the early diagnosis, treatment, prognosis, and drug resistance of gastric cancer may provide new insights for precise treatment and individualized management of patients with this disease.
The regulation of lncRNA expression and the roles of lncRNAs in gastric cancer progression and metastasis have been extensively discussed in several recent reviews [2024]. In the present review, we focus on the clinical evidence of lncRNAs as biomarkers in liquid biopsies in the early diagnosis and prognosis of gastric cancer. We also comprehensively discuss the roles of lncRNAs and their molecular mechanisms in gastric cancer chemoresistance, as well as their potential as therapeutic targets for gastric cancer precise medicine.

An overview of lncRNAs

The Encyclopedia of DNA Elements (ENCODE) project has revealed that only about 1.2% of human transcripts (RNAs) encode proteins and more than 98% of human transcripts are non-protein-coding RNAs (ncRNAs), such as lncRNAs, circular RNAs (circRNAs), microRNAs (miRNAs), and small nucleolar RNAs (snoRNAs) [25]. LncRNAs are the transcripts of more than 200 nucleotides, accounting for 80 to 90% of all ncRNAs and are characterized by low expression levels, poor interspecies conservation, and high expression coefficient of variance [26, 27].
According to their genomic localization and evolutionary lineage, lncRNAs can be divided into intergenic lncRNAs, intronic lncRNAs, exonic lncRNAs, sense lncRNAs, and antisense lncRNAs. Intergenic lncRNAs (also called lincRNAs) are transcribed from genomic regions between coding genes, while intronic lncRNAs overlap entirely with introns of protein-coding genes and exonic lncRNAs overlap entirely or partially with exons of protein-coding genes [28, 29]. The transcriptional orientation of lncRNAs can be in sense or antisense when compared with the transcriptional orientation of the protein-coding genes [30]. Besides, lncRNAs can be classified into nuclear lncRNAs and cytoplasmic lncRNAs based on the subcellular localization, which is critical for their functions. Most lncRNAs are located in the nucleus and only about 15% are in the cytoplasm [31]. Nuclear lncRNAs mainly regulate the transcription or mRNA processing, e.g. lncRNA XIST (X inactive specific transcript), MALAT1 (metastasis associated lung adenocarcinoma transcript 1), and NEAT1 (nuclear paraspeckle assembly transcript 1) functioning as transcription regulators [3234]. Cytoplasmic lncRNAs are more often involved in post-transcriptional regulation, such as playing the role of miRNA sponges. Du et al. have demonstrated that cytoplasmic localization is an important factor in determining the sponge efficacy of lncRNA TUG1 (taurine up-regulated 1) [35]. Cytoplasmic lncRNA PVT1 (plasmacytoma variant translocation 1) has been found to act as a competitive endogenous RNA (ceRNA) against miR-214-3p and promote the progression of colon cancer [36].
LncRNAs were initially considered as “junk” or “genomic dark matter” without function. With the deepening of research in recent years, lncRNAs have been found to participate widely in various physiological and pathological processes of organisms. In the human body, lncRNAs not only regulate the physiological processes such as cell proliferation, differentiation, and apoptosis but also participate in regulating various pathological processes of the body, such as cancer, cardiovascular diseases, autoimmune diseases, diabetes, and more [3740]. The specific function of lncRNAs is to regulate gene expression at the pre-transcriptional, transcriptional, and post-transcriptional levels. At the pre-transcriptional level, lncRNA regulates gene expression by gene modification, histone modification, and chromatin remodeling, without changing the DNA sequences of the organisms [41, 42]. During transcription, lncRNA interacts with transcription factors to regulate gene transcription [43]. At the post-transcriptional level, lncRNA acts as a precursor of some miRNAs to regulate gene expression, or as a ceRNA to regulate the translation of the corresponding mRNA [44]. However, due to the large number of lncRNAs, the functions of most lncRNAs are still unclear and require further comprehensive research.

LncRNAs as liquid biopsy biomarkers of gastric cancer

The development of liquid biopsies has opened a new era for precision medical treatment of human cancer. Because of their minimal-invasive or non-invasive characteristics and high public acceptance, liquid biopsies can be conducted more frequently for early screening, diagnosis, and prognosis of cancer. Besides, liquid biopsies can be collected at specific time intervals to monitor responses to treatment, drug resistance, recurrence, and metastasis of cancer. Added benefits are that, unlike tissue biopsies obtained from only one tumor area, liquid biopsies may better reflect the genetic characteristics of all tumor subclones in patients [45]. LncRNAs are widely distributed in peripheral plasma/serum, saliva, gastric juice, urine, semen, and other liquids and play important roles in various aspects of human physiological and pathological processes [4650]. Based on the aforementioned benefits, a comprehensive understanding of the current research status of lncRNAs is critical for the further development of them as cancer biomarkers in liquid biopsies.
Accumulating evidence suggests the usefulness of lncRNAs as liquid biopsy biomarkers for human cancer. LncRNAs in peripheral blood plasma/serum have been demonstrated as biomarkers for various types of human cancer, such as lung, breast, and colon cancer [5153]. LncRNAs in saliva have been mainly used as biomarkers for head and neck cancer, such as oral, pharyngeal, and laryngeal cancer [54, 55]. LncRNAs in gastric juice and urine have also been reported as biomarkers of gastric cancer and urinary system cancer, respectively [49]. Of note, the urinary level of lncRNA PCA3 (prostate cancer associated 3) has been used as a biomarker for the diagnosis of prostate cancer in clinical applications [56, 57]. Although there is no report on lncRNAs in semen, recent studies have shown that miRNAs in semen may be used as biomarkers for prostate cancer [58]. To date, almost all attention has been paid to the lncRNAs in plasma/serum and gastric juice but not in other liquid biopsies as biomarkers of gastric cancer, which has been comprehensively discussed in this section.

LncRNAs in plasma/serum as diagnostic and prognostic biomarkers of gastric cancer

The development of a disease often leads to changes in the plasma/serum composition, which can be detected to reflect the status of the disease [59]. LncRNAs, which are freely circulating in the plasma/serum or packaged in exosomes, have all of the characteristics of ideal biomarkers because they are stable over long periods at room temperature, during repeated freeze-thaw cycles, or at different pH values [60]. More importantly, the plasma/serum levels of lncRNAs are mostly the same as those in the primary tumor tissues, thus precisely reflecting the characteristics of the tumors [61, 62]. In addition, the collection of plasma/serum samples at different time points is relatively convenient for monitoring the progress of the disease [6366].

LncRNAs in plasma/serum as diagnostic biomarkers of gastric cancer

A large number of circulating lncRNAs have been reported as biomarkers for the diagnosis of gastric cancer (as summarized in Table 1), which have obvious advantages over the diagnostic biomarkers in clinical applications. Xian et al. have found that lncRNA HULC (hepatocellular carcinoma upregulated long noncoding RNA) and ZNFX1-AS1 (ZNFX1 antisense RNA 1) can distinguish gastric cancer patients from healthy controls and have proposed them as biomarkers for diagnosing gastric cancer [77]. The receiver operator characteristic curve (ROC) analysis has shown that the area under curve (AUC) values for HULC and ZNFX1-AS1 are 0.65 and 0.85, respectively, which are higher than those of traditional serum biomarkers, including CEA (0.62), CA19–9 (0.56), CY211 (0.59), and neuron-specific enolase (NSE, 0.56) [77]. Jin et al. have further confirmed that HULC is more sensitive and specific than CEA and CA724 as a diagnostic marker of gastric cancer [82]. Yang et al. have found that the AUC values of lncRNA PANDAR (promoter of CDKN1A antisense DNA damage activated RNA), FOXD2-AS1 (FOXD2 adjacent opposite strand RNA 1), and SMARCC2 (SWI/SNF related, matrix associated, actin dependent regulator of chromatin subfamily c member 2) as diagnostic biomarkers of gastric cancer are 0.77, 0.7, and 0.75, respectively, which are similar to the AUC value of combined CEA, AFP, CA125, CA153, and CA199 [97]. Feng et al. have also demonstrated that lncRNA B3GALT5-AS1 (B3GALT5 antisense RNA 1) is better than CEA and CA19–9 as a diagnostic biomarker of gastric cancer [87]. Zhou et al. have recently reported that lncRNA C5orf66-AS1 (C5orf66 antisense RNA 1) can be utilized for the diagnosis of gastric cancer with the AUC value of 0.688 [67]. More importantly, lncRNA C5orf66-AS1 has further been shown to predict early gastric cancer with the AUC value of 0.789 [67].
Table 1
LncRNAs in plasma/serum as diagnostic and prognostic biomarkers of gastric cancer
LncRNA
Biomarker type
Expression
Cases
Sensitivity
Specificity
AUC
Sample
Refs
C5orf66-AS1
Diagnostic
Down
200 patients with GC and 278 non-GC
77.5%
53.6%
0.688
Serum
[67]
PTCSC3
Diagnostic/Prognostic
Down
68 patients with GC and 60 healthy controls
N/A
N/A
0.92
Plasma
[68]
ARHGAP27P1
Diagnostic/Prognostic
Down
53 patients with GC and 53 healthy controls
75.5%
60.4%
0.732
Plasma
[61]
TUBA4B
Diagnostic/Prognostic
Down
37 patients with GC and 37 healthy controls
N/A
N/A
0.8075
Plasma
[69]
LINC00086
Diagnostic/Prognostic
Down
168 patients with GC and 74 healthy controls
72.6%
83.8%
0.860
Plasma
[70]
DGCR5
Diagnostic/Prognostic
Down
34 patients with GC and 34 healthy controls
N/A
N/A
0.722
Plasma
[71]
SNHG17
Diagnostic/Prognostic
Up
67 patients with GC and 67 healthy controls
N/A
N/A
0.748
Plasma
[72]
MEF2C-AS1
Diagnostic
Down
46 patients with GC and 21 healthy controls
N/A
N/A
0.733
Plasma
[73]
MT1JP
Diagnostic/Prognostic
Down
34 patients with GC and 34 healthy controls
N/A
N/A
0.649
Plasma
[64]
GACAT2
Diagnostic/Prognostic
Up
117 patients with GC and 80 healthy controls
87.2%
28.2%
0.622
Plasma
[74]
RMRP
Diagnostic
Down
83 patients with GC and 90 healthy controls
59.1%
67.8%
0.693
Plasma
[49]
UCA1
Diagnostic
Up
20 patients with GC and 20 healthy controls
89.2%
80.3%
0.928
Plasma
[75]
LINC00152
Diagnostic
Up
79 patients with GC and 81 healthy controls
48.1%
85.2%
0.657
Plasma
[76]
ZNFX1-AS1
Diagnostic
Up
50 patients with GC and 50 healthy controls
84%
68%
0.85
Plasma
[77]
GASL1
Diagnostic
Down
112 patients with GC and 56 healthy controls
N/A
N/A
N/A
Plasma
[78]
GASL1
Diagnostic/Prognostic
Down
88 patients with GC and 72 healthy controls
N/A
N/A
0.8945
Serum
[79]
MALAT1
Diagnostic/Prognostic
Up
64 patients with GC and 64 healthy controls
N/A
N/A
0.8984
Plasma
[80]
MALAT1
Prognostic
Up
36 GC/NDM and 36 GC/DM
N/A
N/A
N/A
Plasma
[81]
HULC
Diagnostic
Up
50 patients with GC and 50 healthy controls
58%
80%
0.65
Plasma
[77]
HULC
Diagnostic
Up
100 patients with GC and110healthy controls
82%
83.6%
0.888
Serum
[82]
H19
Diagnostic
Up
43 patients with GC and 34 healthy controls
74%
58%
0.64
Plasma
[83]
H19
Diagnostic
Up
70 patients with GC and 70 healthy controls
82.9%
72.9%
0.838
Plasma
[84]
H19
Diagnostic
Up
35 patients with GC and 25 healthy controls
90.9%
100%
0.982
Plasma
[85]
H19
Diagnostic
Up
40 patients with GC and 42 healthy controls
87.2%
37.2%
0.643
Plasma
[86]
B3GALT5-AS1
Diagnostic
Up
107 patients with GC and 87 healthy controls
87.4%
74.7%
0.816
Serum
[87]
HOXA11-AS
Diagnostic/Prognostic
Up
94 patients with GC and 40 healthy controls
78.7%
97.8%
0.924
Serum
[88]
SNHG6
Diagnostic/Prognostic
Up
114 patients with GC and 99 healthy controls
N/A
N/A
N/A
Serum
[89]
DANCR
Diagnostic/Prognostic
Up
55 patients with GC and 39 healthy controls
72.7%
79.5%
0.816
Serum
[90]
LINC00978
Diagnostic
Up
38 patients with GC and 31 healthy controls
80%
70%
0.831
Serum
[91]
ZFAS1
Diagnostic/Prognostic
Up
77 patients with GC and 60 healthy controls
76.6%
63.9%
0.727
Plasma
[92]
Exosomal ZFAS1
Diagnostic/Prognostic
Up
60 patients with GC and 37 healthy controls
71.7%
75.7%
0.792
Serum
[93]
Exosomal lncUEGC1
Diagnostic
Up
51 patients with GC and 60 healthy controls
N/A
N/A
0.8760
Plasma
[65]
Exosomal lncUEGC2
Diagnostic
Up
51 patients with GC and 60 healthy controls
N/A
N/A
0.7582
Plasma
[65]
Exosomal PCSK2–2:1
Diagnostic/Prognostic
Down
63 patients with GC and 29 healthy controls
84%
86.5%
0.896
Serum
[94]
Exosomal GNAQ-6:1
Diagnostic
Down
43 patients with GC and 27 healthy controls
83.7%
55.6%
0.732
Serum
[95]
Exosomal MIAT
Diagnostic/Prognostic
Up
109 patients with GC and 50 healthy controls
N/A
N/A
0.892
Serum
[96]
PANDAR
Diagnostic
Up
109 patients with GC and 106 healthy controls
N/A
N/A
0.767
Plasma
[97]
FOXD2-AS1
Up
N/A
N/A
0.700
SMARCC2
Up
N/A
N/A
0.748
Combined
N/A
N/A
N/A
0.839
H19
Diagnostic
Up
62 patients with GC and 40 healthy controls
74.19%
90.0%
0.854
Plasma
[98]
MEG3
Down
95.16%
42.50%
0.638
miR-675-5p
Up
77.42%
52.50%
0.661
Combined
N/A
88.87%
85%
0.927
CTC-501O10.1
Diagnostic
Up
100 patients with GC and 100 healthy controls
90%
51%
0.74
Plasma
[99]
AC100830.4
Up
84%
58%
0.73
RP11-210 K20.5
Up
89%
55%
0.737
Combined
N/A
99%
49%
0.764
INHBA-AS1
Diagnostic
Up
51 patients with GC and 53 healthy controls
N/A
N/A
0.855
Plasma
[100]
MIR4435–2HG
Up
N/A
N/A
0.882
CEBPA-AS1
Up
N/A
N/A
0.785
AK001058
Up
N/A
N/A
0.852
Combined
N/A
N/A
N/A
0.921
TINCR
Diagnostic
Up
80 patients with GC and 80 healthy controls
69%
56%
0.66
Plasma
[66]
CCAT2
Up
85%
51%
0.63
AOC4P
Up
86%
41%
0.67
BANCR
Up
75%
78%
0.81
LINC00857
Up
93%
26%
0.61
Combined
N/A
82%
87%
0.91
FAM49B-AS
Diagnostic
Up
223 patients with GC and 223 healthy controls
N/A
N/A
0.609
Plasma
[101]
GUSBP11
Up
N/A
N/A
0.635
CTDHUT
Up
N/A
N/A
0.762
Combined
N/A
77.5%
73.9%
0.818
United CA242, CA724
N/A
93.2%
86.6%
0.952
H19
Diagnostic
Up
32 patients with GC and 30 healthy controls
68.75%
56.67%
0.724
Plasma
[102]
United CEA
N/A
N/A
N/A
0.804
CTC-497E21.4
Diagnostic
Up
110 patients with GC and 84 healthy controls
81.82%
75.00%
0.848
Serum
[103]
United CEA, CA199
N/A
96.36%
42.86%
0.896
Exosomal HOTTIP
Diagnostic
Up
126 patients with GC and 120 healthy controls
69.8%
85.0%
0.827
Serum
[104]
United CEA, CA199, CA724
N/A
N/A
N/A
0.870
N/A Not available; AUC Area under curve; GC Gastric cancer
Circulating lncRNAs have better biomarker values when combined, e.g. combining lncRNA PANDAR, FOXD2-AS1, and SMARCC2 increases the AUC value to 0.84 [97]. The combination of lncRNA CTC-501O10.1, AC100830.4, and RP11-210 K20.5 has been found to improve the sensitivity of the diagnosis to 99% [99]. The combination of lncRNA INHBA-AS1 (INHBA antisense RNA 1), MIR4435–2HG (MIR4435–2 host gene), CEBPA-AS1 (CEBPA divergent transcript), and AK001058 has increased the AUC value to 0.92 [100]. Also, the combination of lncRNA TINCR (terminal differentiation-induced ncRNA), CCAT2 (colon cancer associated transcript 2), AOC4P (amine oxidase copper containing 4, pseudogene), BANCR (BRAF-activated non-protein coding RNA), and LINC00857 has increased the AUC value to 0.91, the sensitivity to 82%, and the specificity to 87% [66]. Meanwhile, combining lncRNAs and miRNAs have also improved their diagnostic efficiency, e.g. the AUC value of lncRNA H19 (H19 imprinted maternally expressed transcript) and MEG3 (maternally expressed 3) combined with miR-675-5p is 0.93 while the specificity and sensitivity are 88.9 and 85%, respectively [98]. However, the sensitivities of H19, MEG3, and miR-675-5p are 74.19, 95.16, and 77.42%, respectively, their respective specificities are 90.0, 42.50, and 52.50%, and their AUC values range from 0.638 to 0.854 [98]. Moreover, lncRNAs combined with traditional serum tumor markers have improved the diagnostic efficiency, e.g. lncRNA CTC-497E21.4 combined with CEA and CA199 has increased the AUC value to 0.9 [103]. Using the lncRNA FAM49B-AS (FAM49B antisense RNA), GUSBP11 (GUSB pseudogene 11), and CTDHUT (CTD highly upregulated transcript) combined with A242 and CA724, the AUC value, sensitivity, and specificity have been increased to 0.95, 93.2, and 86.6%, respectively [101].

LncRNAs in plasma/serum as prognostic biomarkers of gastric cancer

Tumor size, stage, depth of invasion, lymph node metastasis, distant metastasis, and pathological type are the relevant factors for the prognosis of cancer patients [105]. Circulating lncRNAs have been associated with these prognosis-related factors and have been demonstrated as prognostic biomarkers of gastric cancer (as summarized in Table 1). It has been found that the expression levels of lncRNA GASL1 (growth arrest associated lncRNA 1), PTCSC3 (papillary thyroid carcinoma susceptibility candidate 3), and MALAT1 are significantly correlated with tumor size, TNM (tumor, node, metastasis) stage, and distant metastasis of gastric cancer, respectively [68, 79, 80]. The expression levels of lncRNA SNHG6, ARHGAP27P1 (Rho GTPase activating protein 27 pseudogene 1), DANCR (differentiation antagonizing non-protein coding RNA), DGCR5 (DiGeorge syndrome critical region gene 5), MT1JP (metallothionein 1 J, pseudogene), SNHG17, and ZFAS1 (ZNFX1 antisense RNA 1) are closely related to the TNM stage, tumor invasion depth, and lymph node metastasis of gastric cancer [61, 64, 71, 72, 89, 90, 92]. It has also been reported that lncRNA HOXA11-AS (HOXA11 antisense RNA) and TUBA4B (tubulin alpha 4b) are tightly correlated with the tumor size, TNM stage, and lymph node metastasis of gastric cancer [69, 88]. Importantly, the Kaplan-Meier survival curve analysis has indicated that the patients with low expression of HOXA11-AS have a better survival rate, whereas the patients with low expression of TUBA4B have a shorter survival time [69, 88]. Tan et al. have demonstrated a significant correlation between the expression level of lncRNA GACAT2 (gastric cancer associated transcript 2) and the lymph node metastasis, distant metastasis, and perineural invasion of gastric cancer [74]. In addition, Ji et al. have shown that LINC00086 expression level is significantly associated with tumor size, lymph node metastasis, TNM stage, and the levels of CEA and CA19–9, while the gastric cancer patients with low expression of LINC00086 have low survival rates [70].

Exosomal lncRNAs in plasma/serum as diagnostic and prognostic biomarkers of gastric cancer

In the blood, long RNAs may be packaged into extracellular vesicles, which makes them more stable in plasma/serum. According to their diameters, the extracellular vesicles are classified into apoptotic bodies (50–5000 nm), microvesicles (50–1000 nm), and exosomes (30–100 nm) [106]. Apoptotic bodies are produced by cells undergoing programmed cell death, microvesicles are vesicles directly released from cell membranes, and exosomes are intracellular in origin [107, 108]. Among these types of vesicles, exosomes are the most abundant reservoir of lncRNAs [106]. Due to their intracellular origin and high quantities of long RNAs, circulating exosomal lncRNAs have been proposed as promising biomarkers for gastric cancer [109].
Compared with traditional diagnostic biomarkers (CEA, CA724, and CA199), circulating exosomal lncRNA PCSK2–2:1 (proprotein convertase subtilisin/kexin type 2–2:1) and GNAQ-6:1 (G protein subunit alpha q-6:1) have been reported as better biomarkers for distinguishing gastric cancer patients from healthy people. The AUCs (0.9 and 0.74, respectively), sensitivities (84 and 83.7%, respectively), and specificities (86.5 and 55.6%, respectively) of PCSK2–2:1 and GNAQ-6:1 are significantly better than the best traditional diagnostic biomarker CA724, which only has an AUC value of 0.57, a sensitivity of 56%, and a specificity of 65.5% [94, 95]. It has also been shown that the exosomal PCSK2–2:1 level is significantly related to the tumor size, TNM stage, and venous infiltration and may be developed as a prognostic biomarker of gastric cancer [94]. Lin et al. have found that the expression levels of exosomal lncRNA UEGC1 (ENST00000568893) and UEGC2 (ENST00000378432.1) are increased in patients with gastric cancer [65]. The stability tests have shown that almost all plasma UEGC1 is encapsulated by exosomes and has a higher AUC value while UEGC2 is only partially encapsulated by exosomes, suggesting that UEGC1 is more suitable to be developed as a diagnostic biomarker for early gastric cancer [65]. Xu et al. have shown that the serum level of exosomal lncRNA MIAT (myocardial infarction associated transcript) is significantly increased in gastric cancer patients, which is associated with worse clinical variables and shorter survival [96]. Moreover, it has been found that the serum exosomal MIAT is down-regulated in patients after treatment but markedly up-regulated in patients suffering recurrence [96]. Furthermore, exosomal lncRNAs combined with serum tumor markers have shown improved diagnostic accuracy, e.g., exosomal lncRNA HOTTIP (HOXA distal transcript antisense RNA) combined with CEA, CA199, and CA724 have been found to increase the AUC value from 0.83 to 0.87 [104].
Taken together, lncRNAs in plasma/serum have shown great potential as biomarkers for the diagnosis and prognosis of gastric cancer. Importantly, the combinations, including but not limited to multiple lncRNAs combinations, lncRNA and miRNA combinations, and lncRNA and serum tumor marker combinations usually have better values as diagnostic biomarkers compared to an individual lncRNA. The exosomal lncRNAs in plasma/serum have also shown an advantage as biomarkers due to their high stability; however, further verification studies are needed. Moreover, controversial results have been obtained for the same lncRNA in gastric cancer. LncRNA H19 has been demonstrated as a diagnostic biomarker of gastric cancer with a large range of AUC values (0.6–0.98) in recent studies, which may be correlated with the individual differences [8386]. Further investigations with larger sample size are warranted for improving accuracy and precision. The specific source and molecular mechanisms of lncRNAs in plasma/serum are yet to be determined.

LncRNAs in gastric juice as diagnostic and prognostic biomarkers of gastric cancer

Gastric juice is directly secreted by the gastric mucosa and can sensitively reflect the pathological state of the stomach, making it an ideal sample for studying gastric cancer [110]. Recent studies have shown that lncRNAs in gastric juice are specific and their expression levels may be inconsistent with those in tissue and plasma. Fei et al. have found that the expression level of LINC00982 is significantly decreased in tumor tissues but increased in gastric juice from patients with gastric cancer [111]. Similar results have been obtained for lncRNA RMRP (RNA component of mitochondrial RNA processing endoribonuclease) and AA174084 by Shao et al. [49, 112]. It has been speculated that some lncRNAs may be secreted actively by gastric cancer cells during the disease process or partly by exosomes or other pathways [112].
To date, several lncRNAs, including RMRP, AA174084, PVT1, H19, LINC00982, ABHD11-AS1 (ABHD11 antisense RNA 1), UCA1 (urothelial cancer associated 1), and LINC00152 have been identified from gastric juice and demonstrated as biomarkers for gastric cancer. The sensitivities, specificities, and AUC values of these newly characterized diagnostic biomarkers of gastric cancer range from 41 to 56.4%, 75.4 to 93.4%, and 0.65 to 0.85, respectively. Furthermore, the expression level of AA174084 in gastric juice has been correlated with tumor size, tumor stage, Lauren type, and CEA level in the gastric juice, and a higher AA174084 level in gastric juice indicates a poorer prognosis of gastric cancer patients [112]. The expression level of ABHD11-AS1 in gastric juice has also been associated with the tumor size, tumor stage, and CEA level in the blood, while the high level of ABHD11-AS1 suggests an increased risk of gastric cancer recurrence [113]. Therefore, AA174084 and ABHD11-AS1 can be used for both the diagnosis and prognosis of gastric cancer. In addition, the combination of gastric juice ABHD11-AS1, serum CEA, and gastric juice CEA can improve the diagnostic accuracy of early gastric cancer [113].
In summary, due to the high specificity and reliability, gastric juice lncRNAs can be used as biomarkers for the diagnosis and prognosis of gastric cancer. However, an individual gastric juice lncRNA always has high specificity but insufficient sensitivity as a biomarker. More combination studies, such as the combination of multiple gastric juice lncRNAs, the combination of gastric juice lncRNAs with plasma lncRNAs, and the combination of gastric juice lncRNAs with serum tumor markers may be carried out to increase the sensitivity. Also, further investigations are needed to explore the specific source and molecular mechanisms of gastric juice lncRNAs.

LncRNA-mediated regulation of chemoresistance in gastric cancer

Chemotherapy is the main treatment option for patients with advanced gastric cancer, while drug resistance is the major cause of gastric cancer treatment failure. The mechanisms of cancer chemoresistance include, but not limited to, drug degradation, amplification and overexpression of oncogenes, anti-apoptosis, immune escape, epithelial-mesenchymal transition (EMT), cancer stemness, autophagy, epigenetic modifications, and up-regulation of multidrug resistance (MDR)-related genes [114119]. Recent studies have shown that lncRNAs are widely involved in regulating various mechanisms of cancer chemoresistance [120]. LncRNAs have been found to regulate drug resistance by acting as a ceRNA or directly binding to mRNAs or proteins and modulating their expression and/or functions. In this section, we provide a summary of the molecular mechanisms for lncRNAs-mediated gastric cancer chemoresistance (as summarized in Table 2).
Table 2
Mechanisms of chemotherapy resistance mediated by lncRNAs
LncRNA
Effection
Drugs
Pathway/target
Mechanism
Refs
MALAT1
Inducing
5-FU, DDP, VCR
miR-23B-3P, ATG12, miR-30b, ATG5, SOX2, nanog
CeRNA, Inducing autophagy, Increasing cancer stemness
[121123]
AK022798
Inducing
DDP
caspase8, caspase3, MRP1
Inhibiting cell apoptosis, Regulating MDR-related genes
[124]
CRAL
Reversing
DDP
miR-505, CYLD, PI3K/AKT
CeRNA, Promoting DNA damage and apoptosis
[125]
ROR
Inducing
ADR, VCR
MRP1
Inhibiting cell apoptosis, Regulating MDR-related genes
[126]
XLOC_006753
Inducing
5-FU, DDP
PI3K/AKT/mTOR, caspase9, Wnt/β-catenin, Vimentin, Snail
Inhibiting cell apoptosis, Promoting EMT
[127]
MACC1-AS1
Inducing
5-FU, OXA
miR-145-5p, CD133, OCT4, SOX2, LIN28
CeRNA, Increasing cancer stemness
[128]
D63785
Inducing
DOX
miR-422a, MEF2D
CeRNA, Inhibiting cell apoptosis
[129]
LINC01433
Inducing
DOX, DDP
YAP, USP9X
Inhibiting cell apoptosis
[130]
HOXD-AS1
Inducing
DDP
EZH2, PDCD4,
H3K27me3
Epigenetically silencing PDCD4 via recruiting EZH2
[131]
HULC
Reversing
DDP, ADM, 5-FU
FOXM1
Suppressing autophagy, Promoting cell apoptosis
[132, 133]
PCAT-1
Inducing
DDP
miR-128, ZEB1, EZH2, PTEN, H3K27me3
CeRNA, Promoting EMT, Epigenetically silencing PTEN via recruiting EZH2
[134, 135]
CASC2
Reversing
DDP
miR-19a
CeRNA, Promoting cell apoptosis
[136]
HOTAIR
Inducing
DDP, 5-FU, ADM, MMC, PTX
miR-17-5p, PTEN, miR-217, miR-34a, PI3K/AKT, Wnt/β-catenin
miR-126
CeRNA, Promoting EMT, Regulating MDR-related genes, Inhibiting cell apoptosis, Promoting cell proliferation
[137140]
THOR
Inducing
DDP
SOX9
Increasing cancer stemness
[141]
BLACAT1
Inducing
OXA
miR-361, ABCB1
CeRNA, Inhibiting apoptosis and promoting invasion, Regulating MDR-related genes
[142]
GHET1
Inducing
DDP
BAK, BCL-2, MDR1, MRP1
Inhibiting cell apoptosis, Regulating MDR-related genes
[143]
ANRIL
Inducing
5-FU, DDP
MDR1, MRP1
Regulating MDR-related genes
[144]
UCA1
Inducing
ADM, DDP, 5-FU
PARP, BCL-2, miR-27b, caspase-3
CeRNA, Inhibiting cell apoptosis
[145, 146]
PVT1
Inducing
PTX, 5-FU, DDP
BCL-2, MDR1, MRP1, mTOR, HIF-1α
Inhibiting cell apoptosis
[147, 148]
MRUL
Inducing
ADM, VCR
ABCB1
Inhibiting cell apoptosis
[149]
SNHG5
Inducing
DDP
BCL-2, BAX, MDR1, MRP1
Inhibiting cell apoptosis, Regulating MDR-related genes
[150]
DANCR
Inducing
DDP
MDR1, MRP1
Inhibiting cell apoptosis, Regulating MDR-related genes
[151]
FAM84B-AS
Inducing
DDP
FAM84B, caspase3, caspase7, caspase9, BCL2, BCL-xL
Inhibiting cell apoptosis
[152]
BCAR4
Inducing
DDP
Wnt/β-catenin, Nanog, OCT3/4, SOX2, c-Myc, KLF4
Increasing cancer stemness
[153]
NEAT1
Inducing
ADM
N/A
Inhibiting cell apoptosis, Promoting invasion
[154]
LEIGC
Reversing
5-FU
CDH1, E-cad, Vimentin, Twist, Slug, ZEB1, Snail
Inhibiting EMT
[155]
CASC9
Inducing
ADM, PTX
MDR1
Inhibiting cell apoptosis, Promoting cell proliferation
[156]
HOTTIP
Inducing
DDP, ADM, 5-FU
E-cad, ZO1, N-cad, Vimentin, ZEB1, Twist
Promoting EMT
[157]
HCP5
Inducing
OXA, 5-FU
MiR-3619-5p, SOX2, OCT4, LIN28, CD1331
CeRNA, Increasing cancer stemness
[158]
N/A Not available; AUC Area under curve

LncRNA-mediated cell apoptosis

Many anticancer drugs have been found to induce apoptosis and apoptosis-related signaling networks [159, 160]. However, the dysregulation of apoptosis often leads to drug resistance and treatment failure [161]. There are two major pathways of apoptosis, i.e. the extrinsic and intrinsic pathways (mitochondrial pathway) [162, 163]. The extrinsic pathway is initiated by the attachment of death receptors with their death initiating ligands, such as Fas cell surface death receptor (FAS) binding to FAS ligand (FASL), tumor necrosis factor receptor 1 (TNFR1) binding to tumor necrosis factor alpha (TNFα), and TRAIL cell surface receptors 1 and 2 (TRAILR1/2) binding to TNF-related apoptosis-inducing ligand (TRAIL) [163]. Consequently, an adaptor molecule, FAS-associated death domain protein (FADD) couples the death receptors, which leads to the activation of caspase-8 and caspase-10 [163]. Either activated caspase-8 or caspase-10 can directly cleave and activate caspase-3, caspase-6, or caspase-7, thereby promoting apoptosis. Alternatively, irreparable genetic damage, hypoxia, and other internal stimulation can activate apoptosis through the internal mitochondrial pathway. Subsequently, BH3-only protein members, BAX (BCL-2 associated X, apoptosis regulator) and BAK (BCL-2 antagonist/killer), which belong to the B-cell lymphoma-2 (BCL-2) family, can neutralize the anti-apoptotic proteins BCL-2 and BCL-xL (B-cell lymphoma-extra large) [162, 163]. Simultaneously, activation of BAX/BAK can increase the permeability of the mitochondrial outer membrane (MOM) and release different apoptosis mediators, such as cytochrome c, which can activate caspase-9. In turn, caspase-9 cleaves and activates caspase-3, caspase-6, and caspase-7, thus triggering apoptosis [161, 164]. Moreover, PI3K (phosphatidylinositol 3-kinase)/AKT (serine/threonine protein kinase B), Hippo, Wnt/β-catenin, and HIF-1α (hypoxia-inducible factor-1α) signaling pathways are involved in regulating apoptosis. Recent studies have shown that lncRNAs can regulate gastric cancer chemoresistance by modulating these apoptosis-related signaling pathways (Fig. 1).

Extrinsic apoptosis pathway

The abnormal expression of caspase-8 and caspase-3 leads to the inhibition of apoptosis and chemotherapy resistance [165]. Hang et al. have reported that the overexpression of lncRNA AK022798 down-regulates the expression of caspase-8 and caspase-3 and inhibits the extrinsic apoptosis pathway, leading to cisplatin (DDP) resistance in gastric cancer cells, while interference with AK022798 increases the expression levels of caspase-8 and caspase-3 and promotes apoptosis, reversing chemotherapy resistance in vitro [124]. Fang et al. have revealed that lncRNA UCA1 functions as a sponge of miR-27b to down-regulate caspase-3 expression and inhibit extrinsic apoptosis pathway, thereby inducing the resistance of gastric cancer cells to DDP, adriamycin (ADR), and 5-fluorouracil (5-FU). It has further been shown that silencing UCA1 increases the expression level of caspase-3, thus promoting apoptosis and reversing MDR in gastric cancer cells in vitro [145, 146].

Intrinsic apoptosis pathway (mitochondrial pathway)

The pro-apoptotic proteins (BAX, BAK) and anti-apoptotic proteins (BCL-2, BCL-xL) maintain a dynamic balance in regulating the mitochondrial apoptosis pathway, while the broken balance often causes cancer progression and chemoresistance [166, 167]. Li et al. have shown that lncRNA SNHG5 expression is remarkably higher in DDP-resistant gastric cancer patients and cells [150]. Further mechanism study has revealed that SNHG5 down-regulates BAX expression and up-regulates BCL-2 expression, thereby inhibiting apoptosis and promoting DDP resistance of gastric cancer cells. Similar results have been obtained for lncRNA GHET1 (gastric carcinoma proliferation enhancing transcript 1) by Zhang et al [143]. Moreover, interfering with GHET1 expression causes an increase in BAX level and a decrease in BCL-2 level, thus enhancing the sensitivity of BGC823 and SGC7901 cells to chemotherapy [143]. Du et al. have reported that lncRNA PVT1 inhibits apoptosis and enhances 5-FU resistance of gastric cancer by activating BCL-2 [147]. A Kaplan-Meier analysis has shown that therapy without 5-FU significantly improves the first progression survival and OS of gastric cancer patients with high PVT1 expression, while these patients do not experience survival-related benefits from 5-FU-based chemotherapy [147]. Zhang et al have shown that lncRNA FAM84B-AS (FAM84B antisense RNA) increases the expression levels of BCL-2 and BCL-xL and decreases the expression levels of caspase-9, caspase-3, and caspase-7, consequently inhibiting apoptosis and causing gastric cancer cell resistance to DDP; however, silencing FAM84B-AS enhances gastric cancer cell sensitivity to DDP in vitro and in vivo [152].

PI3K/AKT signaling pathway

The PI3K/AKT signaling pathway plays an important role in regulating apoptosis and drug resistance. The activation of PI3K/AKT pathway inhibits apoptosis, leading to tumor progression, drug resistance, and treatment failure, while inhibition of PI3K/AKT signaling reverses drug resistance by inducing apoptosis [168, 169]. In gastric cancer, Wang et al. have reported that CRAL (cisplatin resistance-associated lncRNA) functions as a ceRNA to reverse gastric cancer DDP resistance via the miR-505/CYLD (cylindromatosis)/AKT axis [125]. It has been found that CRAL is mainly located in the cytoplasm and sponges the endogenous miR-505, consequently increasing CYLD expression, suppressing AKT activation, and enhancing the sensitivity of gastric cancer cells to DDP in vitro and in vivo [125]. Zeng et al. have reported that the knockdown of XLOC_006753 can reduce the expression levels of PI3K, p-AKT (Thr308/Ser473), and p-mTOR (phosphorylation mechanistic target of rapamycin kinase), thus activating caspase-9 to promote apoptosis and reverse DDP and 5-FU resistance in gastric cancer cells in vitro [127]. Cheng et al. have demonstrated that lncRNA HOTAIR (HOX transcript antisense RNA) is significantly up-regulated in gastric cancer patients and DDP-resistant cells [137]. HOTAIR has further been found to target miR-34a and activate the PI3K/AKT pathway, consequently decreasing the expression of caspase-3 and BAX, increasing the expression of BCL-2, inhibiting apoptosis, and inducing DDP resistance in gastric cancer cells in vitro and in vivo [137].

Hippo signaling pathway

The Hippo signaling pathway is closely associated with apoptosis and MDR by regulating its downstream effectors, Yes-associated protein (YAP) and large tumor suppressor kinase 1 (LATS1) [170]. Recent studies have shown that activation of the Hippo signaling pathway inhibits apoptosis by decreasing the BAX/BCL-2 ratio [171], whereas the downregulation of YAP expression can promote apoptosis [172]. Zhang et al. have shown that LINC01433 decreases the phosphorylation of YAP by disrupting the YAP-LATS1 association. Meanwhile, YAP directly binds to the LINC01433 promoter region and activates its transcription [130]. The formation of the LINC01433-YAP feedback loop suppresses apoptosis and induces resistance to doxorubicin (DOX) and DDP. It has also been found that LINC01433 knockdown significantly increases the sensitivity of gastric cancer cells to DOX and DDP [130].

Wnt/β-catenin signaling pathway

Wnt/β-catenin signaling pathway has been demonstrated as an important regulator of cell proliferation, differentiation, and apoptosis, and its abnormal activation is related to MDR in cancer [173, 174]. Targeting the Wnt/β-catenin signaling pathway is a new hope for reversing cancer drug resistance [175, 176]. Cheng et al. have reported that lncRNA HOTAIR directly binds to miR-34a, reduces its expression level, and increases the expression of Wnt and β-catenin [137]. The interference with HOTAIR can decrease the expression of Wnt and β-catenin, thereby increasing the BAX/BCL-2 ratio, activating caspase-3, promoting apoptosis, and reversing DDP resistance in gastric cancer cells in vitro and in vivo [137].

HIF-1α signaling pathway

Activation of the HIF-1α signaling pathway is critical for cancer cells adapting to the hypoxic environment, which can mediate apoptosis through the mitochondrial pathway [177]. Recent studies have shown that HIF-1α regulates the mitochondrial apoptosis pathway and MDR by breaking the dynamic balance between the pro-apoptotic proteins (BAX, BAK) and anti-apoptotic proteins (BCL-2, BCL-xL) [178, 179]. Zhang et al. have reported that lncRNA PVT1 is highly expressed in DDP resistant gastric cancer cells and tumor tissues from DDP resistant gastric cancer patients, up-regulates the expression of HIF-1α, inhibits apoptosis, and induces DDP resistance [148]. It has further been shown that silencing PVT1 can reduce the expression of HIF-1α and enhance the sensitivity of gastric cancer cells to DDP [148].

LncRNA-mediated EMT

EMT is a biological process in which epithelial cells lose their polarity and transform into mesenchymal cells with the ability to move freely [115]. The expression and/or function of epithelial genes such as E-cadherin (E-cad), Claudin, cytokeratins (CKs), and zona occludens 1 (ZO1) are lost during the transition, whereas the expression levels of genes that define the mesenchymal phenotype, such as Vimentin, fibronectin, N-cadherin (N-cad), and matrix metalloproteinases (MMPs) are elevated [180]. The process of EMT is mainly regulated by transcription factors, including zinc-finger-binding transcription factors Snail1 and Snail2, the basic helix-loop-helix (bHLH) factors Twist1 and Twist2, and the zinc-finger E-box-binding homeobox factors ZEB1 and ZEB2 (Fig. 2) [181]. EMT leads to the degradation of adhesion structures between tumor cells, increasing invasiveness and causing chemoresistance and treatment failure [182].
LncRNAs have recently been found to play an important role in the process of drug resistance caused by EMT [183, 184]. LncRNAs regulate EMT-mediated resistance in gastric cancer by regulating EMT markers or transcription factors (Fig. 2). Mao et al. have demonstrated that the expression of lncRNA HOTTIP is up-regulated in MDR gastric cancer cells, which decreases the expression of E-cad and ZO1, increases the expression of N-cad, Vimentin, ZEB1, and Twist, and induces EMT [157]. Conversely, silencing HOTTIP can reverse EMT and enhance the sensitivity of MDR gastric cancer cells to DDP, ADR, and 5-FU in vitro [157]. Han et al. have found that lncRNA LEIGC expression is significantly down-regulated in tumor tissues from human gastric cancer patients, which causes the decreased expression of E-cad and the increased expression of Vimentin, Twist, Slug, ZEB1, and Snail, as well as EMT and resistance of gastric cancer cells to 5-FU [155]. Jia et al. have shown that lncRNA HOTAIR directly targets miR-17-5p to down-regulate E-cad expression and up-regulate the expression of N-cad and Vimentin, thereby inducing EMT and the resistance of gastric cancer cells to DDP, ADR, mitomycin (MMC), and 5-FU [138]. Guo et al. have reported that lncRNA PCAT-1 (prostate cancer associated transcript 1) is highly expressed in DDP-resistant gastric cancer tissues and cells [134]. Mechanistically, PCAT-1 competitively binds to miR-128, upregulates ZEB1 expression, and induces EMT and DDP resistance [134]. Zeng et al. have reported that lncRNA XLOC_006753 expression is up-regulated in gastric cancer tissues and MDR gastric cancer cell lines, and the knockdown of XLOC_006753 can reduce the expression levels of PI3K, p-AKT (Thr308/Ser473), p-mTOR, β-catenin, Vimentin, and Snail, thus reversing EMT and enhancing the sensitivity of gastric cancer cells to DDP and 5-FU in vitro [127].

LncRNA-mediated cancer cell stemness

Cancer stem cells (CSCs) are a subset of cancer cells with the ability to self-renew and differentiate, which can lead to tumor growth, metastasis, and drug resistance [185]. CSCs play a pivotal role in drug resistance and cancer treatment failure because they have channel proteins to efflux anticancer drugs, which leads to the decreased concentration of drugs in the cells and then induces MDR [185]. The stemness markers of CSCs mainly include cluster of differentiation 24 (CD24), CD29, CD44, CD133, nanog, SRY-box transcription factor 2 (SOX2), SOX9, LIN28, OCT1/2/4, c-Myc, kruppel like factor 4 (KLF4), aldehyde dehydrogenase 1 (ALDH1), and essential specific antigen (ESA) (Fig. 3) [186, 187]. The gain or loss of cancer cell stemness is regulated by the stemness-related pathways and stemness markers [188]. Therefore, targeting the cancer cell stemness-related pathways or markers is an important strategy to reverse drug resistance and enhance drug sensitivity.
LncRNAs have been reported to regulate gastric cancer cell stemness and MDR by modulating stemness-related pathways or markers (Fig. 3). Activation of the Wnt/β-catenin pathway has been found to promote the stemness of cancer cells [189, 190]. Wang et al. have reported that lncRNA BCAR4 (breast cancer anti-estrogen resistance 4) is highly expressed in DDP-resistant gastric cancer cells. Further studies have shown that BCAR4 activates the Wnt/β-catenin signaling pathway and up-regulates the expression of stemness markers nanog, OCT3/4, SOX2, c-Myc, and KLF4, which further enhance gastric cancer cell stemness and DDP resistance [153]. He et al. have found that lncRNA MACC1-AS1 (MACC1 antisense RNA 1) competitively antagonizes miR-145-5p, thereby up-regulating the levels of diacylglycerol cholinephosphotransferase (CPT1) and acetyl-CoA synthetase (ACS) to participate in fatty acid oxidation (FAO), increasing the expression of CD133, OCT4, SOX2, and LIN28, and inducing the resistance of gastric cancer cells to 5-FU and oxaliplatin (OXA) [128]. Unsurprisingly, the knockdown of MACC1-AS1 attenuates the stemness of gastric cancer cells and reverses MDR [128]. Song et al. have shown that THOR (testis-associated highly conserved oncogenic long non-coding RNA) is highly expressed in gastric cancer tissues and cells, whereas THOR knockdown decreases the expression of SOX9 through directly binding to its 3′UTR, thus inhibiting gastric cancer cell stemness and reversing the resistance of gastric cancer cells to DDP [141]. Xiao et al. have demonstrated that lncRNA MALAT1 directly binds to SOX2 mRNA, enhances its stability, and increases its expression, which further promotes the stemness of gastric cancer cells and induces DDP resistance [121]. Wu et al. have found that lncRNA HCP5 (histocompatibility leukocyte antigen complex P5) drives FAO by sponging miR-3619-5p and promoting stemness and the resistance of gastric cancer cells to 5-FU and OXA [158].

LncRNA-mediated autophagy

Autophagy is an evolutionarily conserved cellular process, through which damaged organelles and superfluous proteins are degraded, thereby maintaining the correct cellular balance [191]. The process of autophagy is divided into five distinct stages (Fig. 4): 1) initiation, 2) vesicle nucleation, 3) vesicle elongation, 4) vesicle fusion, and 5) cargo degradation [192]. Firstly, various stresses (deficiency of oxygen, ultraviolet rays, or exposure to toxic agents) trigger autophagy, and then the assembly of the Unc-51-like kinase 1 (ULK1) complex, comprising ULK1, autophagy-related genes 13 (ATG13), and ATG101 induces nucleation of the autophagy-isolation membrane. Following nucleation, the elongation of the isolation membrane is regulated by the ATG12-ATG5-ATG16 complex. Moreover, the isolation membrane collects cellular materials to degrade and form an autophagosome, which is regulated by ATG8/LC3 (microtubule-associated protein 1A/1B-light chain 3) complex. Subsequently, the autophagolysosome is formed through the fusion of autophagosome and lysosome, which is mediated by Ras-related protein 7 (Rab7) and FYVE and coiled-coil protein 1 (FYCO1) transport proteins. Finally, cellular components are degraded and recycled to supply energy to the cells due to the action of hydrolytic enzymes [193].
Recent studies have shown a paradoxical role of autophagy in cancer [194]. Autophagy is a double-edged sword of cancer MDR; it not only participates in the development of MDR and protects cancer cells from chemotherapy but also promotes cell death and mediates chemosensitization in MDR cancer cells with insufficient apoptosis [195, 196]. In gastric cancer, lncRNAs are widely involved in regulating various stages of autophagy as well as autophagy-mediated MDR (Fig. 4). Hu et al. have demonstrated that lncRNA MALAT1 acts as a ceRNA for miR-23b-3p and attenuates the inhibitory effects of miR-23b-3p on ATG12 expression, thus inducing autophagy-mediated resistance of gastric cancer cells to DDP and vincristine (VCR) in vitro and in vivo [122]. It has been found that MALAT1 is highly expressed in DDP-resistant AGS and HGC-27 cells [122, 123]. MALAT1 also binds to miR-30b and increases ATG5 expression, whereas MALAT1 knockdown can suppress autophagy and enhance the chemosensitivity of gastric cancer cells [122, 123]. Xin et al have found that lncRNA HULC interacts with forkhead box M1 (FOXM1) and stabilizes this protein, thus increasing the ratio of LC3-II/LC3-I and inducing autophagy-mediated DDP resistance [132]. As expected, silencing HULC has been shown to inhibit autophagy and enhance chemotherapy sensitivity of gastric cancer cells in vitro and in vivo [132].
Ample evidence suggests that the expression of ATP-binding cassette (ABC) transporters, especially multidrug resistance protein 1 (MDR1, also known as P-glycoprotein or P-gp) and multidrug resistance-associated protein 1 (MRP1), which are encoded by the ABC subfamily B member 1 (ABCB1) and the ABC subfamily C member 1 (ABCC1), respectively, confers resistance to chemotherapy [197]. The ABC transporters export chemotherapeutic drugs out of the cells, resulting in resistance with reduced concentrations of the drugs intracellularly. The transporters sequestrate intracellular drugs into membrane vesicles in the cytoplasm, which also causes chemotherapy resistance (Fig. 5) [198].
In gastric cancer, lncRNAs participate in the acquisition of chemotherapy resistance by regulating MDR-related genes (Fig. 5). Wang et al have shown that lncRNA ROR (regulator of reprogramming) expression is positively associated with MDR and poor prognosis of patients with gastric cancer [126]. It has also been reported that ROR depletion reduces MRP1 expression and reverses resistance to ADR and VCR [126]. Wu et al have reported that lncRNA BLACAT1 (bladder cancer associated transcript 1) accelerates the OXA-resistance acquisition of gastric cancer cells by targeting miR-361 and increasing MDR1 protein expression in vitro and in vivo [142]. Moreover, Wang et al have demonstrated that MRUL (MDR-related and upregulated lncRNA) exerts an enhancer-like role in up-regulating MDR1 expression, whereas MRUL knockdown reduces MDR1 expression and reverses resistance to ADR and VCR in vitro and in vivo [149]. Shang et al have found that lncRNA CASC9 (cancer susceptibility 9) is overexpressed in BGC823 and SGC7901 cells that are resistant to paclitaxel (PTX) or ADR [156]. Further studies have shown that CASC9 knockdown decreases MDR1 expression and restores the sensitivity of gastric cancer cells to PTX and ADR in vitro [156]. It has also been found that lncRNA ANRIL (antisense noncoding RNA in the INK4 locus) is highly expressed in DDP-resistant and 5-FU-resistant gastric cancer tissues and cells [144]. Importantly, ANRIL expression is positively correlated with the expression of MDR1 and MRP1 while ANRIL knockdown down-regulates the expression of MDR1 and MRP1 and reverses MDR [144]. Xu et al have shown that the overexpression of lncRNA DANCR up-regulates the expression of MDR1 and MRP1 and induces DDP resistance of gastric cancer cells in vitro [151].

LncRNA-mediated epigenetic modifications

Epigenetic modifications of histones can regulate resistance to anticancer drugs because cancer cells can develop drug resistance by reprogramming epigenetic networks to maintain their intrinsic homeostasis [199]. For example, the demethylation of H3K4 promotes DDP resistance of cancer cells while restoration of H3K4 methylation reverses such resistance [200]. Further, histone deacetylases regulate the functional equilibrium of histone acetylation and deacetylation, and its dysfunction leads to chemotherapy resistance [201].
In gastric cancer, lncRNAs also contribute to chemotherapy resistance by regulating histone methylation. Ye et al have found that lncRNA HOXD-AS1 (HOXD antisense RNA 1) is highly expressed in DDP-resistant gastric cancer tissues and cells [131]. Mechanism studies have shown that HOXD-AS1 epigenetically inhibits PDCD4 expression by binding to the histone methyltransferase enhancer of zeste homologue 2 (EZH2) on the promoter of PDCD4, thus increasing H3K27me3 level and inducing DDP resistance in gastric cancer cells [131]. Li et al have shown that lncRNA PCAT-1 epigenetically silences phosphatase and tensin homolog (PTEN) by binding to EZH2, which also increases H3K27me3 level and causes DDP resistance [135]. More importantly, the knockdown of either HOXD-AS1 or PCAT-1 enhances the sensitivity of DDP-resistant gastric cancer cells to DDP.

Perspectives and future directions

Overall, this review provides compelling evidence for lncRNAs as biomarkers for diagnosis, prognosis, and regulator of chemoresistance in gastric cancer. Because lncRNAs in the circulation (serum/plasma) or gastric juice are easy to obtain with non-invasive methods, they have great advantages as biomarkers for early screening, diagnosis, and prognosis of gastric cancer. Currently, lncRNA PCA3 in urine has been used as an early screening biomarker of prostate cancer [56, 57]. Therefore, it is of great clinical value to validate lncRNAs in serum/plasma or gastric juice as biomarkers for gastric cancer. Considering that most of the studies cited in this review are single-center trials with small samples, the results may be biased. Next, more in-depth studies are needed to accelerate the clinical applications of lncRNAs, such as increasing the sample size or conducting multi-center research to reduce the errors caused by individual differences.
LncRNAs are also involved in the regulation of chemotherapy resistance by modulating the signaling pathways related to apoptosis, EMT, cancer cell stemness, and autophagy, the expression of MDR-related genes, and epigenetic modifications. Therefore, targeting lncRNAs may be a promising strategy to enhance chemosensitivity and improve the efficacy of gastric cancer chemotherapy [202]. Previous studies have shown that treatment without 5-FU significantly improves the first progression survival and overall survival of gastric cancer patients with high PVT1 expression [147]. However, the patients harboring PVT1 overexpression do not obtain survival-related benefits from 5-FU-based chemotherapy [147]. Therefore, it is of great importance to further characterize lncRNAs in liquid biopsies as a guide to precision medicine for gastric cancer patients.
There is an increasing interest in targeting lncRNAs for gastric cancer therapy. However, concerns have also been raised about the therapeutic potential of targeting a single lncRNA and the current targeting strategies. First of all, despite the great progress in understanding the structures and functions of lncRNAs since their discovery, the study of lncRNAs is still a burgeoning research field and we have only touched on the tip of this iceberg. Furthermore, given the large number of lncRNAs and their up-regulation or down-regulation in gastric cancer, it is critically needed to determine the most clinically relevant lncRNAs in this disease. Of note, lncRNAs are poorly conserved among different species. Therefore, the lncRNA-targeting strategies that are developed by utilizing various animal models and cell culture systems cannot be easily extended to human applications. The latest advances in CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene knockout, knock-in, and point mutations may help to understand the biological role of lncRNAs. At the same time, the development of human primary cell models and patient-derived tumor xenograft (PDX) animal models may be helpful for investigating the role of lncRNAs and developing lncRNA-targeting strategies. In the near future, the development of lncRNA-targeted cancer therapy seems to be very promising.
In conclusion, accumulating evidence has shown the potential of lncRNAs as biomarkers in liquid biopsies throughout the entire management process of gastric cancer, including diagnosis, selection of chemotherapeutics, monitoring of curative effects, and prognosis.

Acknowledgements

We thank the current and former members of our laboratories and collaborators for their contributions to the publications cited in this review article. The research field in lncRNA is rapidly growing, and we apologize for not being able to cite all the recent publications, due to space limitation.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O, Abdelalim A, Abdoli A, Abdollahpour I, Abdulle ASM, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA Oncol. 2019;5:1749. Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O, Abdelalim A, Abdoli A, Abdollahpour I, Abdulle ASM, et al. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA Oncol. 2019;5:1749.
2.
Zurück zum Zitat Thrift AP, El-Serag HB. Burden of gastric Cancer. Clin Gastroenterol Hepatol. 2020;18:534–42.PubMedCrossRef Thrift AP, El-Serag HB. Burden of gastric Cancer. Clin Gastroenterol Hepatol. 2020;18:534–42.PubMedCrossRef
3.
Zurück zum Zitat Ham IH, Oh HJ, Jin H, Bae CA, Jeon SM, Choi KS, Son SY, Han SU, Brekken RA, Lee D, Hur H. Targeting interleukin-6 as a strategy to overcome stroma-induced resistance to chemotherapy in gastric cancer. Mol Cancer. 2019;18:68.PubMedPubMedCentralCrossRef Ham IH, Oh HJ, Jin H, Bae CA, Jeon SM, Choi KS, Son SY, Han SU, Brekken RA, Lee D, Hur H. Targeting interleukin-6 as a strategy to overcome stroma-induced resistance to chemotherapy in gastric cancer. Mol Cancer. 2019;18:68.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Wagner AD, Syn NL, Moehler M, Grothe W, Yong WP, Tai BC, Ho J, Unverzagt S. Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev. 2017;8:Cd004064.PubMed Wagner AD, Syn NL, Moehler M, Grothe W, Yong WP, Tai BC, Ho J, Unverzagt S. Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev. 2017;8:Cd004064.PubMed
5.
Zurück zum Zitat Biagioni A, Skalamera I, Peri S, Schiavone N, Cianchi F, Giommoni E, Magnelli L, Papucci L. Update on gastric cancer treatments and gene therapies. Cancer Metastasis Rev. 2019;38:537–48.PubMedCrossRef Biagioni A, Skalamera I, Peri S, Schiavone N, Cianchi F, Giommoni E, Magnelli L, Papucci L. Update on gastric cancer treatments and gene therapies. Cancer Metastasis Rev. 2019;38:537–48.PubMedCrossRef
6.
Zurück zum Zitat Yu J, Zheng W. An alternative method for screening gastric Cancer based on serum levels of CEA, CA19-9, and CA72-4. J Gastrointest Cancer. 2018;49:57–62.PubMedCrossRef Yu J, Zheng W. An alternative method for screening gastric Cancer based on serum levels of CEA, CA19-9, and CA72-4. J Gastrointest Cancer. 2018;49:57–62.PubMedCrossRef
7.
Zurück zum Zitat Shimada H, Noie T, Ohashi M, Oba K, Takahashi Y. Clinical significance of serum tumor markers for gastric cancer: a systematic review of literature by the task force of the Japanese gastric Cancer association. Gastric Cancer. 2014;17:26–33.PubMedCrossRef Shimada H, Noie T, Ohashi M, Oba K, Takahashi Y. Clinical significance of serum tumor markers for gastric cancer: a systematic review of literature by the task force of the Japanese gastric Cancer association. Gastric Cancer. 2014;17:26–33.PubMedCrossRef
8.
Zurück zum Zitat He CZ, Zhang KH, Li Q, Liu XH, Hong Y, Lv NH. Combined use of AFP, CEA, CA125 and CAl9-9 improves the sensitivity for the diagnosis of gastric cancer. BMC Gastroenterol. 2013;13:87.PubMedPubMedCentralCrossRef He CZ, Zhang KH, Li Q, Liu XH, Hong Y, Lv NH. Combined use of AFP, CEA, CA125 and CAl9-9 improves the sensitivity for the diagnosis of gastric cancer. BMC Gastroenterol. 2013;13:87.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Hu PJ, Chen MY, Wu MS, Lin YC, Shih PH, Lai CH, Lin HJ. Clinical evaluation of CA72-4 for screening gastric Cancer in a healthy population: a multicenter retrospective study. Cancers (Basel). 2019;11:733.PubMedCentralCrossRef Hu PJ, Chen MY, Wu MS, Lin YC, Shih PH, Lai CH, Lin HJ. Clinical evaluation of CA72-4 for screening gastric Cancer in a healthy population: a multicenter retrospective study. Cancers (Basel). 2019;11:733.PubMedCentralCrossRef
10.
Zurück zum Zitat Suzuki T, Kitagawa Y, Nankinzan R, Yamaguchi T. Early gastric cancer diagnostic ability of ultrathin endoscope loaded with laser light source. World J Gastroenterol. 2019;25:1378–86.PubMedPubMedCentralCrossRef Suzuki T, Kitagawa Y, Nankinzan R, Yamaguchi T. Early gastric cancer diagnostic ability of ultrathin endoscope loaded with laser light source. World J Gastroenterol. 2019;25:1378–86.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Necula L, Matei L, Dragu D, Neagu AI, Mambet C, Nedeianu S, Bleotu C, Diaconu CC, Chivu-Economescu M. Recent advances in gastric cancer early diagnosis. World J Gastroenterol. 2019;25:2029–44.PubMedPubMedCentralCrossRef Necula L, Matei L, Dragu D, Neagu AI, Mambet C, Nedeianu S, Bleotu C, Diaconu CC, Chivu-Economescu M. Recent advances in gastric cancer early diagnosis. World J Gastroenterol. 2019;25:2029–44.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Zhuo W, Liu Y, Li S, Guo D, Sun Q, Jin J, Rao X, Li M, Sun M, Jiang M, et al. Long Noncoding RNA GMAN, Up-regulated in Gastric Cancer Tissues, Is Associated With Metastasis in Patients and Promotes Translation of Ephrin A1 by Competitively Binding GMAN-AS. Gastroenterology. 2019;156:676–91 e611.PubMedCrossRef Zhuo W, Liu Y, Li S, Guo D, Sun Q, Jin J, Rao X, Li M, Sun M, Jiang M, et al. Long Noncoding RNA GMAN, Up-regulated in Gastric Cancer Tissues, Is Associated With Metastasis in Patients and Promotes Translation of Ephrin A1 by Competitively Binding GMAN-AS. Gastroenterology. 2019;156:676–91 e611.PubMedCrossRef
13.
Zurück zum Zitat Zhang E, He X, Zhang C, Su J, Lu X, Si X, Chen J, Yin D, Han L, De W. A novel long noncoding RNA HOXC-AS3 mediates tumorigenesis of gastric cancer by binding to YBX1. Genome Biol. 2018;19:154.PubMedPubMedCentralCrossRef Zhang E, He X, Zhang C, Su J, Lu X, Si X, Chen J, Yin D, Han L, De W. A novel long noncoding RNA HOXC-AS3 mediates tumorigenesis of gastric cancer by binding to YBX1. Genome Biol. 2018;19:154.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Shuai Y, Ma Z, Liu W, Yu T, Yan C, Jiang H, Tian S, Xu T, Shu Y. TEAD4 modulated LncRNA MNX1-AS1 contributes to gastric cancer progression partly through suppressing BTG2 and activating BCL2. Mol Cancer. 2020;19:6.PubMedPubMedCentralCrossRef Shuai Y, Ma Z, Liu W, Yu T, Yan C, Jiang H, Tian S, Xu T, Shu Y. TEAD4 modulated LncRNA MNX1-AS1 contributes to gastric cancer progression partly through suppressing BTG2 and activating BCL2. Mol Cancer. 2020;19:6.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Xu W, Zhou G, Wang H, Liu Y, Chen B, Chen W, Lin C, Wu S, Gong A, Xu M. Circulating lncRNA SNHG11 as a novel biomarker for early diagnosis and prognosis of colorectal cancer. Int J Cancer. 2020;146:2901–12.PubMedCrossRef Xu W, Zhou G, Wang H, Liu Y, Chen B, Chen W, Lin C, Wu S, Gong A, Xu M. Circulating lncRNA SNHG11 as a novel biomarker for early diagnosis and prognosis of colorectal cancer. Int J Cancer. 2020;146:2901–12.PubMedCrossRef
16.
Zurück zum Zitat Zhou R, Sun H, Zheng S, Zhang J, Zeng D, Wu J, Huang Z, Rong X, Bin J, Liao Y, et al. A stroma-related lncRNA panel for predicting recurrence and adjuvant chemotherapy benefit in patients with early-stage colon cancer. J Cell Mol Med. 2020;24:3229–41.PubMedPubMedCentralCrossRef Zhou R, Sun H, Zheng S, Zhang J, Zeng D, Wu J, Huang Z, Rong X, Bin J, Liao Y, et al. A stroma-related lncRNA panel for predicting recurrence and adjuvant chemotherapy benefit in patients with early-stage colon cancer. J Cell Mol Med. 2020;24:3229–41.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Yang Q, Li K, Huang X, Zhao C, Mei Y, Li X, Jiao L. Yang H: lncRNA SLC7A11-AS1 promotes Chemoresistance by blocking SCF (beta-TRCP)-mediated degradation of NRF2 in pancreatic Cancer. Mol Ther Nucleic Acids. 2020;19:974–85.PubMedPubMedCentralCrossRef Yang Q, Li K, Huang X, Zhao C, Mei Y, Li X, Jiao L. Yang H: lncRNA SLC7A11-AS1 promotes Chemoresistance by blocking SCF (beta-TRCP)-mediated degradation of NRF2 in pancreatic Cancer. Mol Ther Nucleic Acids. 2020;19:974–85.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Huan L, Guo T, Wu Y, Xu L, Huang S, Xu Y, Liang L, He X. Hypoxia induced LUCAT1/PTBP1 axis modulates cancer cell viability and chemotherapy response. Mol Cancer. 2020;19:11.PubMedPubMedCentralCrossRef Huan L, Guo T, Wu Y, Xu L, Huang S, Xu Y, Liang L, He X. Hypoxia induced LUCAT1/PTBP1 axis modulates cancer cell viability and chemotherapy response. Mol Cancer. 2020;19:11.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Gu N, Wang X, Di Z, Xiong J, Ma Y, Yan Y, Qian Y, Zhang Q, Yu J. Silencing lncRNA FOXD2-AS1 inhibits proliferation, migration, invasion and drug resistance of drug-resistant glioma cells and promotes their apoptosis via microRNA-98-5p/CPEB4 axis. Aging (Albany NY). 2019;11:10266–83.CrossRef Gu N, Wang X, Di Z, Xiong J, Ma Y, Yan Y, Qian Y, Zhang Q, Yu J. Silencing lncRNA FOXD2-AS1 inhibits proliferation, migration, invasion and drug resistance of drug-resistant glioma cells and promotes their apoptosis via microRNA-98-5p/CPEB4 axis. Aging (Albany NY). 2019;11:10266–83.CrossRef
20.
Zurück zum Zitat Ghafouri-Fard S, Taheri M. Long non-coding RNA signature in gastric cancer. Exp Mol Pathol. 2019;113:104365.PubMedCrossRef Ghafouri-Fard S, Taheri M. Long non-coding RNA signature in gastric cancer. Exp Mol Pathol. 2019;113:104365.PubMedCrossRef
21.
Zurück zum Zitat Virgilio E, Giarnieri E, Giovagnoli MR, Montagnini M, Proietti A, D'Urso R, Mercantini P, Balducci G, Cavallini M. Long non-coding RNAs in the gastric juice of gastric cancer patients. Pathol Res Pract. 2018;214:1239–46.PubMedCrossRef Virgilio E, Giarnieri E, Giovagnoli MR, Montagnini M, Proietti A, D'Urso R, Mercantini P, Balducci G, Cavallini M. Long non-coding RNAs in the gastric juice of gastric cancer patients. Pathol Res Pract. 2018;214:1239–46.PubMedCrossRef
22.
Zurück zum Zitat Zong W, Ju S, Jing R, Cui M. Long non-coding RNA-mediated regulation of signaling pathways in gastric cancer. Clin Chem Lab Med. 2018;56:1828–37.PubMedCrossRef Zong W, Ju S, Jing R, Cui M. Long non-coding RNA-mediated regulation of signaling pathways in gastric cancer. Clin Chem Lab Med. 2018;56:1828–37.PubMedCrossRef
23.
Zurück zum Zitat Nasrollahzadeh-Khakiani M, Emadi-Baygi M, Schulz WA, Nikpour P. Long noncoding RNAs in gastric cancer carcinogenesis and metastasis. Brief Funct Genomics. 2017;16:129–45.PubMed Nasrollahzadeh-Khakiani M, Emadi-Baygi M, Schulz WA, Nikpour P. Long noncoding RNAs in gastric cancer carcinogenesis and metastasis. Brief Funct Genomics. 2017;16:129–45.PubMed
24.
Zurück zum Zitat Sun W, Yang Y, Xu C, Xie Y, Guo J. Roles of long noncoding RNAs in gastric cancer and their clinical applications. J Cancer Res Clin Oncol. 2016;142:2231–7.PubMedCrossRef Sun W, Yang Y, Xu C, Xie Y, Guo J. Roles of long noncoding RNAs in gastric cancer and their clinical applications. J Cancer Res Clin Oncol. 2016;142:2231–7.PubMedCrossRef
25.
Zurück zum Zitat The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.
26.
Zurück zum Zitat Liao Q, Shen J, Liu J, Sun X, Zhao G, Chang Y, Xu L, Li X, Zhao Y, Zheng H, et al. Genome-wide identification and functional annotation of plasmodium falciparum long noncoding RNAs from RNA-seq data. Parasitol Res. 2014;113:1269–81.PubMedCrossRef Liao Q, Shen J, Liu J, Sun X, Zhao G, Chang Y, Xu L, Li X, Zhao Y, Zheng H, et al. Genome-wide identification and functional annotation of plasmodium falciparum long noncoding RNAs from RNA-seq data. Parasitol Res. 2014;113:1269–81.PubMedCrossRef
27.
Zurück zum Zitat Johnsson P, Lipovich L, Grander D, Morris KV. Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta. 1840;2014:1063–71. Johnsson P, Lipovich L, Grander D, Morris KV. Evolutionary conservation of long non-coding RNAs; sequence, structure, function. Biochim Biophys Acta. 1840;2014:1063–71.
28.
Zurück zum Zitat Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10:925–33.PubMed Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10:925–33.PubMed
29.
Zurück zum Zitat Alessio E, Bonadio RS, Buson L, Chemello F, Cagnin S. A single cell but many different transcripts: a journey into the world of long non-coding RNAs. Int J Mol Sci. 2020;21:302.PubMedCentralCrossRef Alessio E, Bonadio RS, Buson L, Chemello F, Cagnin S. A single cell but many different transcripts: a journey into the world of long non-coding RNAs. Int J Mol Sci. 2020;21:302.PubMedCentralCrossRef
30.
Zurück zum Zitat Mondal T, Juvvuna PK, Kirkeby A, Mitra S, Kosalai ST, Traxler L, Hertwig F, Wernig-Zorc S, Miranda C, Deland L, et al. Sense-Antisense lncRNA Pair Encoded by Locus 6p22.3 Determines Neuroblastoma Susceptibility via the USP36-CHD7-SOX9 Regulatory Axis. Cancer Cell. 2018;33:417–34 e417.PubMedCrossRef Mondal T, Juvvuna PK, Kirkeby A, Mitra S, Kosalai ST, Traxler L, Hertwig F, Wernig-Zorc S, Miranda C, Deland L, et al. Sense-Antisense lncRNA Pair Encoded by Locus 6p22.3 Determines Neuroblastoma Susceptibility via the USP36-CHD7-SOX9 Regulatory Axis. Cancer Cell. 2018;33:417–34 e417.PubMedCrossRef
31.
Zurück zum Zitat Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316:1484–8.PubMedCrossRef Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316:1484–8.PubMedCrossRef
32.
Zurück zum Zitat Katsel P, Roussos P, Fam P, Khan S, Tan W, Hirose T, Nakagawa S, Pletnikov MV, Haroutunian V. The expression of long noncoding RNA NEAT1 is reduced in schizophrenia and modulates oligodendrocytes transcription. NPJ Schizophr. 2019;5:3.PubMedPubMedCentralCrossRef Katsel P, Roussos P, Fam P, Khan S, Tan W, Hirose T, Nakagawa S, Pletnikov MV, Haroutunian V. The expression of long noncoding RNA NEAT1 is reduced in schizophrenia and modulates oligodendrocytes transcription. NPJ Schizophr. 2019;5:3.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Zhang B, Arun G, Mao YS, Lazar Z, Hung G, Bhattacharjee G, Xiao X, Booth CJ, Wu J, Zhang C, Spector DL. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2012;2:111–23.PubMedPubMedCentralCrossRef Zhang B, Arun G, Mao YS, Lazar Z, Hung G, Bhattacharjee G, Xiao X, Booth CJ, Wu J, Zhang C, Spector DL. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2012;2:111–23.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, Pandya-Jones A, Blanco M, Burghard C, Moradian A, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. 2015;521:232–6.PubMedPubMedCentralCrossRef McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, Pandya-Jones A, Blanco M, Burghard C, Moradian A, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. 2015;521:232–6.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Du Z, Sun T, Hacisuleyman E, Fei T, Wang X, Brown M, Rinn JL, Lee MG, Chen Y, Kantoff PW, Liu XS. Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat Commun. 2016;7:10982.PubMedPubMedCentralCrossRef Du Z, Sun T, Hacisuleyman E, Fei T, Wang X, Brown M, Rinn JL, Lee MG, Chen Y, Kantoff PW, Liu XS. Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat Commun. 2016;7:10982.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Shang AQ, Wang WW, Yang YB, Gu CZ, Ji P, Chen C, Zeng BJ, Wu JL, Lu WY, Sun ZJ, Li D. Knockdown of long noncoding RNA PVT1 suppresses cell proliferation and invasion of colorectal cancer via upregulation of microRNA-214-3p. Am J Physiol Gastrointest Liver Physiol. 2019;317:G222–g232.PubMedCrossRef Shang AQ, Wang WW, Yang YB, Gu CZ, Ji P, Chen C, Zeng BJ, Wu JL, Lu WY, Sun ZJ, Li D. Knockdown of long noncoding RNA PVT1 suppresses cell proliferation and invasion of colorectal cancer via upregulation of microRNA-214-3p. Am J Physiol Gastrointest Liver Physiol. 2019;317:G222–g232.PubMedCrossRef
37.
Zurück zum Zitat Bianchessi V, Badi I, Bertolotti M, Nigro P, D'Alessandra Y, Capogrossi MC, Zanobini M, Pompilio G, Raucci A, Lauri A. The mitochondrial lncRNA ASncmtRNA-2 is induced in aging and replicative senescence in endothelial cells. J Mol Cell Cardiol. 2015;81:62–70.PubMedCrossRef Bianchessi V, Badi I, Bertolotti M, Nigro P, D'Alessandra Y, Capogrossi MC, Zanobini M, Pompilio G, Raucci A, Lauri A. The mitochondrial lncRNA ASncmtRNA-2 is induced in aging and replicative senescence in endothelial cells. J Mol Cell Cardiol. 2015;81:62–70.PubMedCrossRef
38.
Zurück zum Zitat Mathieu EL, Belhocine M, Dao LT, Puthier D. Spicuglia S: [functions of lncRNA in development and diseases]. Med Sci (Paris). 2014;30:790–6.CrossRef Mathieu EL, Belhocine M, Dao LT, Puthier D. Spicuglia S: [functions of lncRNA in development and diseases]. Med Sci (Paris). 2014;30:790–6.CrossRef
39.
Zurück zum Zitat Dallner OS, Marinis JM, Lu YH, Birsoy K, Werner E, Fayzikhodjaeva G, Dill BD, Molina H, Moscati A, Kutalik Z, et al. Dysregulation of a long noncoding RNA reduces leptin leading to a leptin-responsive form of obesity. Nat Med. 2019;25:507–16.PubMedCrossRef Dallner OS, Marinis JM, Lu YH, Birsoy K, Werner E, Fayzikhodjaeva G, Dill BD, Molina H, Moscati A, Kutalik Z, et al. Dysregulation of a long noncoding RNA reduces leptin leading to a leptin-responsive form of obesity. Nat Med. 2019;25:507–16.PubMedCrossRef
40.
Zurück zum Zitat Westra HJ, Martinez-Bonet M, Onengut-Gumuscu S, Lee A, Luo Y, Teslovich N, Worthington J, Martin J, Huizinga T, Klareskog L, et al. Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes. Nat Genet. 2018;50:1366–74.PubMedPubMedCentralCrossRef Westra HJ, Martinez-Bonet M, Onengut-Gumuscu S, Lee A, Luo Y, Teslovich N, Worthington J, Martin J, Huizinga T, Klareskog L, et al. Fine-mapping and functional studies highlight potential causal variants for rheumatoid arthritis and type 1 diabetes. Nat Genet. 2018;50:1366–74.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Wang CY, Colognori D, Sunwoo H, Wang D, Lee JT. PRC1 collaborates with SMCHD1 to fold the X-chromosome and spread Xist RNA between chromosome compartments. Nat Commun. 2019;10:2950.PubMedPubMedCentralCrossRef Wang CY, Colognori D, Sunwoo H, Wang D, Lee JT. PRC1 collaborates with SMCHD1 to fold the X-chromosome and spread Xist RNA between chromosome compartments. Nat Commun. 2019;10:2950.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Huang M, Wang H, Hu X. Cao X: lncRNA MALAT1 binds chromatin remodeling subunit BRG1 to epigenetically promote inflammation-related hepatocellular carcinoma progression. Oncoimmunology. 2019;8:e1518628.PubMedCrossRef Huang M, Wang H, Hu X. Cao X: lncRNA MALAT1 binds chromatin remodeling subunit BRG1 to epigenetically promote inflammation-related hepatocellular carcinoma progression. Oncoimmunology. 2019;8:e1518628.PubMedCrossRef
43.
Zurück zum Zitat Xiu B, Chi Y, Liu L, Chi W, Zhang Q, Chen J, Guo R, Si J, Li L, Xue J, et al. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription. Mol Cancer. 2019;18:187.PubMedPubMedCentralCrossRef Xiu B, Chi Y, Liu L, Chi W, Zhang Q, Chen J, Guo R, Si J, Li L, Xue J, et al. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription. Mol Cancer. 2019;18:187.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Wang W, Hu W, Wang Y, An Y, Song L, Shang P, Yue Z. Long non-coding RNA UCA1 promotes malignant phenotypes of renal cancer cells by modulating the miR-182-5p/DLL4 axis as a ceRNA. Mol Cancer. 2020;19:18.PubMedPubMedCentralCrossRef Wang W, Hu W, Wang Y, An Y, Song L, Shang P, Yue Z. Long non-coding RNA UCA1 promotes malignant phenotypes of renal cancer cells by modulating the miR-182-5p/DLL4 axis as a ceRNA. Mol Cancer. 2020;19:18.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Barlebo Ahlborn L, Ostrup O. Toward liquid biopsies in cancer treatment: application of circulating tumor DNA. Apmis. 2019;127:329–36.PubMedCrossRef Barlebo Ahlborn L, Ostrup O. Toward liquid biopsies in cancer treatment: application of circulating tumor DNA. Apmis. 2019;127:329–36.PubMedCrossRef
46.
Zurück zum Zitat Zuo Z, Hu H, Xu Q, Luo X, Peng D, Zhu K, Zhao Q, Xie Y, Ren J. BBCancer: an expression atlas of blood-based biomarkers in the early diagnosis of cancers. Nucleic Acids Res. 2020;48:D789–d796.PubMed Zuo Z, Hu H, Xu Q, Luo X, Peng D, Zhu K, Zhao Q, Xie Y, Ren J. BBCancer: an expression atlas of blood-based biomarkers in the early diagnosis of cancers. Nucleic Acids Res. 2020;48:D789–d796.PubMed
47.
Zurück zum Zitat Zhan Y, Du L, Wang L, Jiang X, Zhang S, Li J, Yan K, Duan W, Zhao Y, Wang L, et al. Expression signatures of exosomal long non-coding RNAs in urine serve as novel non-invasive biomarkers for diagnosis and recurrence prediction of bladder cancer. Mol Cancer. 2018;17:142.PubMedPubMedCentralCrossRef Zhan Y, Du L, Wang L, Jiang X, Zhang S, Li J, Yan K, Duan W, Zhao Y, Wang L, et al. Expression signatures of exosomal long non-coding RNAs in urine serve as novel non-invasive biomarkers for diagnosis and recurrence prediction of bladder cancer. Mol Cancer. 2018;17:142.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Xie Z, Zhou F, Yang Y, Li L, Lei Y, Lin X, Li H, Pan X, Chen J, Wang G, et al. Lnc-PCDH9-13:1 is a hypersensitive and specific biomarker for early hepatocellular carcinoma. EBioMedicine. 2018;33:57–67.PubMedPubMedCentralCrossRef Xie Z, Zhou F, Yang Y, Li L, Lei Y, Lin X, Li H, Pan X, Chen J, Wang G, et al. Lnc-PCDH9-13:1 is a hypersensitive and specific biomarker for early hepatocellular carcinoma. EBioMedicine. 2018;33:57–67.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Shao Y, Ye M, Li Q, Sun W, Ye G, Zhang X, Yang Y, Xiao B, Guo J. LncRNA-RMRP promotes carcinogenesis by acting as a miR-206 sponge and is used as a novel biomarker for gastric cancer. Oncotarget. 2016;7:37812–24.PubMedPubMedCentralCrossRef Shao Y, Ye M, Li Q, Sun W, Ye G, Zhang X, Yang Y, Xiao B, Guo J. LncRNA-RMRP promotes carcinogenesis by acting as a miR-206 sponge and is used as a novel biomarker for gastric cancer. Oncotarget. 2016;7:37812–24.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Darbandi M, Darbandi S, Agarwal A, Baskaran S, Dutta S, Sengupta P, Khorram Khorshid HR, Esteves S, Gilany K, Hedayati M, et al. Reactive oxygen species-induced alterations in H19-Igf2 methylation patterns, seminal plasma metabolites, and semen quality. J Assist Reprod Genet. 2019;36:241–53.PubMedCrossRef Darbandi M, Darbandi S, Agarwal A, Baskaran S, Dutta S, Sengupta P, Khorram Khorshid HR, Esteves S, Gilany K, Hedayati M, et al. Reactive oxygen species-induced alterations in H19-Igf2 methylation patterns, seminal plasma metabolites, and semen quality. J Assist Reprod Genet. 2019;36:241–53.PubMedCrossRef
51.
52.
Zurück zum Zitat Ozgur E, Ferhatoglu F, Sen F, Saip P, Gezer U. Circulating lncRNA H19 may be a useful marker of response to neoadjuvant chemotherapy in breast cancer. Cancer Biomark. 2020;27:11–7.PubMedCrossRef Ozgur E, Ferhatoglu F, Sen F, Saip P, Gezer U. Circulating lncRNA H19 may be a useful marker of response to neoadjuvant chemotherapy in breast cancer. Cancer Biomark. 2020;27:11–7.PubMedCrossRef
53.
Zurück zum Zitat Fang C, Zan J, Yue B, Liu C, He C, Yan D. Long non-coding ribonucleic acid zinc finger antisense 1 promotes the progression of colonic cancer by modulating ZEB1 expression. J Gastroenterol Hepatol. 2017;32:1204–11.PubMedCrossRef Fang C, Zan J, Yue B, Liu C, He C, Yan D. Long non-coding ribonucleic acid zinc finger antisense 1 promotes the progression of colonic cancer by modulating ZEB1 expression. J Gastroenterol Hepatol. 2017;32:1204–11.PubMedCrossRef
54.
Zurück zum Zitat Arantes L, De Carvalho AC, Melendez ME, Lopes Carvalho A. Serum, plasma and saliva biomarkers for head and neck cancer. Expert Rev Mol Diagn. 2018;18:85–112.PubMedCrossRef Arantes L, De Carvalho AC, Melendez ME, Lopes Carvalho A. Serum, plasma and saliva biomarkers for head and neck cancer. Expert Rev Mol Diagn. 2018;18:85–112.PubMedCrossRef
55.
Zurück zum Zitat Gomes CC, de Sousa SF, Calin GA, Gomez RS. The emerging role of long noncoding RNAs in oral cancer. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123:235–41.PubMedCrossRef Gomes CC, de Sousa SF, Calin GA, Gomez RS. The emerging role of long noncoding RNAs in oral cancer. Oral Surg Oral Med Oral Pathol Oral Radiol. 2017;123:235–41.PubMedCrossRef
56.
Zurück zum Zitat Groskopf J, Aubin SM, Deras IL, Blase A, Bodrug S, Clark C, Brentano S, Mathis J, Pham J, Meyer T, et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin Chem. 2006;52:1089–95.PubMedCrossRef Groskopf J, Aubin SM, Deras IL, Blase A, Bodrug S, Clark C, Brentano S, Mathis J, Pham J, Meyer T, et al. APTIMA PCA3 molecular urine test: development of a method to aid in the diagnosis of prostate cancer. Clin Chem. 2006;52:1089–95.PubMedCrossRef
57.
Zurück zum Zitat Lemos AEG, Matos ADR, Ferreira LB, Gimba ERP. The long non-coding RNA PCA3: an update of its functions and clinical applications as a biomarker in prostate cancer. Oncotarget. 2019;10:6589–603.PubMedPubMedCentralCrossRef Lemos AEG, Matos ADR, Ferreira LB, Gimba ERP. The long non-coding RNA PCA3: an update of its functions and clinical applications as a biomarker in prostate cancer. Oncotarget. 2019;10:6589–603.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Selth LA, Roberts MJ, Chow CW, Marshall VR, Doi SA, Vincent AD, Butler LM, Lavin MF, Tilley WD, Gardiner RA. Human seminal fluid as a source of prostate cancer-specific microRNA biomarkers. Endocr Relat Cancer. 2014;21:L17–21.PubMedCrossRef Selth LA, Roberts MJ, Chow CW, Marshall VR, Doi SA, Vincent AD, Butler LM, Lavin MF, Tilley WD, Gardiner RA. Human seminal fluid as a source of prostate cancer-specific microRNA biomarkers. Endocr Relat Cancer. 2014;21:L17–21.PubMedCrossRef
59.
Zurück zum Zitat Henriksen K, O'Bryant SE, Hampel H, Trojanowski JQ, Montine TJ, Jeromin A, Blennow K, Lonneborg A, Wyss-Coray T, Soares H, et al. The future of blood-based biomarkers for Alzheimer's disease. Alzheimers Dement. 2014;10:115–31.PubMedCrossRef Henriksen K, O'Bryant SE, Hampel H, Trojanowski JQ, Montine TJ, Jeromin A, Blennow K, Lonneborg A, Wyss-Coray T, Soares H, et al. The future of blood-based biomarkers for Alzheimer's disease. Alzheimers Dement. 2014;10:115–31.PubMedCrossRef
60.
Zurück zum Zitat Wang J, Yang K, Yuan W, Gao Z. Determination of serum Exosomal H19 as a noninvasive biomarker for bladder Cancer diagnosis and prognosis. Med Sci Monit. 2018;24:9307–16.PubMedPubMedCentralCrossRef Wang J, Yang K, Yuan W, Gao Z. Determination of serum Exosomal H19 as a noninvasive biomarker for bladder Cancer diagnosis and prognosis. Med Sci Monit. 2018;24:9307–16.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Zhang G, Xu Y, Zou C, Tang Y, Lu J, Gong Z, Ma G, Zhang W, Jiang P. Long noncoding RNA ARHGAP27P1 inhibits gastric cancer cell proliferation and cell cycle progression through epigenetically regulating p15 and p16. Aging (Albany NY). 2019;11:9090–110.CrossRef Zhang G, Xu Y, Zou C, Tang Y, Lu J, Gong Z, Ma G, Zhang W, Jiang P. Long noncoding RNA ARHGAP27P1 inhibits gastric cancer cell proliferation and cell cycle progression through epigenetically regulating p15 and p16. Aging (Albany NY). 2019;11:9090–110.CrossRef
62.
Zurück zum Zitat Tang X, Yu L, Bao J, Jiang P, Yan F. Function of long noncoding RNA UCA1 on gastric Cancer cells and its Clinicopathological significance in plasma. Clin Lab. 2019;65. Tang X, Yu L, Bao J, Jiang P, Yan F. Function of long noncoding RNA UCA1 on gastric Cancer cells and its Clinicopathological significance in plasma. Clin Lab. 2019;65.
63.
Zurück zum Zitat Giraldez MD, Spengler RM, Etheridge A, Goicochea AJ, Tuck M, Choi SW, Galas DJ, Tewari M. Phospho-RNA-seq: a modified small RNA-seq method that reveals circulating mRNA and lncRNA fragments as potential biomarkers in human plasma. EMBO J. 2019;38:e101695. Giraldez MD, Spengler RM, Etheridge A, Goicochea AJ, Tuck M, Choi SW, Galas DJ, Tewari M. Phospho-RNA-seq: a modified small RNA-seq method that reveals circulating mRNA and lncRNA fragments as potential biomarkers in human plasma. EMBO J. 2019;38:e101695.
64.
Zurück zum Zitat Xu Y, Zhang G, Zou C, Zhang H, Gong Z, Wang W, Ma G, Jiang P, Zhang W. LncRNA MT1JP suppresses gastric Cancer cell proliferation and migration through MT1JP/MiR-214-3p/RUNX3 Axis. Cell Physiol Biochem. 2018;46:2445–59.PubMedCrossRef Xu Y, Zhang G, Zou C, Zhang H, Gong Z, Wang W, Ma G, Jiang P, Zhang W. LncRNA MT1JP suppresses gastric Cancer cell proliferation and migration through MT1JP/MiR-214-3p/RUNX3 Axis. Cell Physiol Biochem. 2018;46:2445–59.PubMedCrossRef
65.
Zurück zum Zitat Lin LY, Yang L, Zeng Q, Wang L, Chen ML, Zhao ZH, Ye GD, Luo QC, Lv PY, Guo QW, et al. Tumor-originated exosomal lncUEGC1 as a circulating biomarker for early-stage gastric cancer. Mol Cancer. 2018;17:84.PubMedPubMedCentralCrossRef Lin LY, Yang L, Zeng Q, Wang L, Chen ML, Zhao ZH, Ye GD, Luo QC, Lv PY, Guo QW, et al. Tumor-originated exosomal lncUEGC1 as a circulating biomarker for early-stage gastric cancer. Mol Cancer. 2018;17:84.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Zhang K, Shi H, Xi H, Wu X, Cui J, Gao Y, Liang W, Hu C, Liu Y, Li J, et al. Genome-wide lncRNA microarray profiling identifies novel circulating lncRNAs for detection of gastric Cancer. Theranostics. 2017;7:213–27.PubMedPubMedCentralCrossRef Zhang K, Shi H, Xi H, Wu X, Cui J, Gao Y, Liang W, Hu C, Liu Y, Li J, et al. Genome-wide lncRNA microarray profiling identifies novel circulating lncRNAs for detection of gastric Cancer. Theranostics. 2017;7:213–27.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Zhou Q, Li H, Jing J, Yuan Y, Sun L. Evaluation of C5orf66-AS1 AS a potential biomarker for predicting early gastric Cancer and its role in gastric carcinogenesis. Onco Targets Ther. 2020;13:2795–805.PubMedPubMedCentralCrossRef Zhou Q, Li H, Jing J, Yuan Y, Sun L. Evaluation of C5orf66-AS1 AS a potential biomarker for predicting early gastric Cancer and its role in gastric carcinogenesis. Onco Targets Ther. 2020;13:2795–805.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Zhang G, Chi N, Lu Q, Zhu D, Zhuang Y. LncRNA PTCSC3 is a biomarker for the treatment and prognosis of gastric Cancer. Cancer Biother Radiopharm. 2020;35:77–81.PubMedCrossRef Zhang G, Chi N, Lu Q, Zhu D, Zhuang Y. LncRNA PTCSC3 is a biomarker for the treatment and prognosis of gastric Cancer. Cancer Biother Radiopharm. 2020;35:77–81.PubMedCrossRef
69.
Zurück zum Zitat Guo J, Li Y, Duan H, Yuan L. LncRNA TUBA4B functions as a competitive endogenous RNA to inhibit gastric cancer progression by elevating PTEN via sponging miR-214 and miR-216a/b. Cancer Cell Int. 2019;19:156.PubMedPubMedCentralCrossRef Guo J, Li Y, Duan H, Yuan L. LncRNA TUBA4B functions as a competitive endogenous RNA to inhibit gastric cancer progression by elevating PTEN via sponging miR-214 and miR-216a/b. Cancer Cell Int. 2019;19:156.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Ji B, Huang Y, Gu T, Zhang L, Li G, Zhang C. Potential diagnostic and prognostic value of plasma long noncoding RNA LINC00086 and miR-214 expression in gastric cancer. Cancer Biomark. 2019;24:249–55.PubMedCrossRef Ji B, Huang Y, Gu T, Zhang L, Li G, Zhang C. Potential diagnostic and prognostic value of plasma long noncoding RNA LINC00086 and miR-214 expression in gastric cancer. Cancer Biomark. 2019;24:249–55.PubMedCrossRef
71.
Zurück zum Zitat Xu Y, Zhang G, Zou C, Gong Z, Wang S, Liu J, Ma G, Liu X, Zhang W, Jiang P. Long noncoding RNA DGCR5 suppresses gastric cancer progression by acting as a competing endogenous RNA of PTEN and BTG1. J Cell Physiol. 2019;234:11999–2010.PubMedCrossRef Xu Y, Zhang G, Zou C, Gong Z, Wang S, Liu J, Ma G, Liu X, Zhang W, Jiang P. Long noncoding RNA DGCR5 suppresses gastric cancer progression by acting as a competing endogenous RNA of PTEN and BTG1. J Cell Physiol. 2019;234:11999–2010.PubMedCrossRef
72.
Zurück zum Zitat Zhang G, Xu Y, Wang S, Gong Z, Zou C, Zhang H, Ma G, Zhang W, Jiang P. LncRNA SNHG17 promotes gastric cancer progression by epigenetically silencing of p15 and p57. J Cell Physiol. 2019;234:5163–74.PubMedCrossRef Zhang G, Xu Y, Wang S, Gong Z, Zou C, Zhang H, Ma G, Zhang W, Jiang P. LncRNA SNHG17 promotes gastric cancer progression by epigenetically silencing of p15 and p57. J Cell Physiol. 2019;234:5163–74.PubMedCrossRef
73.
Zurück zum Zitat Luo T, Zhao J, Lu Z, Bi J, Pang T, Cui H, Yang B, Li W, Wang Y, Wu S, Xue X. Characterization of long non-coding RNAs and MEF2C-AS1 identified as a novel biomarker in diffuse gastric cancer. Transl Oncol. 2018;11:1080–9.PubMedPubMedCentralCrossRef Luo T, Zhao J, Lu Z, Bi J, Pang T, Cui H, Yang B, Li W, Wang Y, Wu S, Xue X. Characterization of long non-coding RNAs and MEF2C-AS1 identified as a novel biomarker in diffuse gastric cancer. Transl Oncol. 2018;11:1080–9.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Tan L, Yang Y, Shao Y, Zhang H, Guo J. Plasma lncRNA-GACAT2 is a valuable marker for the screening of gastric cancer. Oncol Lett. 2016;12:4845–9.PubMedPubMedCentralCrossRef Tan L, Yang Y, Shao Y, Zhang H, Guo J. Plasma lncRNA-GACAT2 is a valuable marker for the screening of gastric cancer. Oncol Lett. 2016;12:4845–9.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Gao J, Cao R, Mu H. Long non-coding RNA UCA1 may be a novel diagnostic and predictive biomarker in plasma for early gastric cancer. Int J Clin Exp Pathol. 2015;8:12936–42.PubMedPubMedCentral Gao J, Cao R, Mu H. Long non-coding RNA UCA1 may be a novel diagnostic and predictive biomarker in plasma for early gastric cancer. Int J Clin Exp Pathol. 2015;8:12936–42.PubMedPubMedCentral
76.
Zurück zum Zitat Li Q, Shao Y, Zhang X, Zheng T, Miao M, Qin L, Wang B, Ye G, Xiao B, Guo J. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol. 2015;36:2007–12.PubMedCrossRef Li Q, Shao Y, Zhang X, Zheng T, Miao M, Qin L, Wang B, Ye G, Xiao B, Guo J. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumour Biol. 2015;36:2007–12.PubMedCrossRef
77.
Zurück zum Zitat Xian HP, Zhuo ZL, Sun YJ, Liang B, Zhao XT. Circulating long non-coding RNAs HULC and ZNFX1-AS1 are potential biomarkers in patients with gastric cancer. Oncol Lett. 2018;16:4689–98.PubMedPubMedCentral Xian HP, Zhuo ZL, Sun YJ, Liang B, Zhao XT. Circulating long non-coding RNAs HULC and ZNFX1-AS1 are potential biomarkers in patients with gastric cancer. Oncol Lett. 2018;16:4689–98.PubMedPubMedCentral
78.
Zurück zum Zitat Wang B, Chen H, Zhang Y. Involvement of GASL1 in postoperative distant recurrence of gastric adenocarcinoma after gastrectomy distal resection and the possible mechanism. J Cell Biochem. 2019;120:11454–61.CrossRef Wang B, Chen H, Zhang Y. Involvement of GASL1 in postoperative distant recurrence of gastric adenocarcinoma after gastrectomy distal resection and the possible mechanism. J Cell Biochem. 2019;120:11454–61.CrossRef
79.
Zurück zum Zitat Peng C, Li X, Yu Y, Chen J. LncRNA GASL1 inhibits tumor growth in gastric carcinoma by inactivating the Wnt/beta-catenin signaling pathway. Exp Ther Med. 2019;17:4039–45.PubMedPubMedCentral Peng C, Li X, Yu Y, Chen J. LncRNA GASL1 inhibits tumor growth in gastric carcinoma by inactivating the Wnt/beta-catenin signaling pathway. Exp Ther Med. 2019;17:4039–45.PubMedPubMedCentral
80.
Zurück zum Zitat Zhu K, Ren Q. Zhao Y: lncRNA MALAT1 overexpression promotes proliferation, migration and invasion of gastric cancer by activating the PI3K/AKT pathway. Oncol Lett. 2019;17:5335–42.PubMedPubMedCentral Zhu K, Ren Q. Zhao Y: lncRNA MALAT1 overexpression promotes proliferation, migration and invasion of gastric cancer by activating the PI3K/AKT pathway. Oncol Lett. 2019;17:5335–42.PubMedPubMedCentral
81.
Zurück zum Zitat Xia H, Chen Q, Chen Y, Ge X, Leng W, Tang Q, Ren M, Chen L, Yuan D, Zhang Y, et al. The lncRNA MALAT1 is a novel biomarker for gastric cancer metastasis. Oncotarget. 2016;7:56209–18.PubMedPubMedCentralCrossRef Xia H, Chen Q, Chen Y, Ge X, Leng W, Tang Q, Ren M, Chen L, Yuan D, Zhang Y, et al. The lncRNA MALAT1 is a novel biomarker for gastric cancer metastasis. Oncotarget. 2016;7:56209–18.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Jin C, Shi W, Wang F, Shen X, Qi J, Cong H, Yuan J, Shi L, Zhu B, Luo X, et al. Long non-coding RNA HULC as a novel serum biomarker for diagnosis and prognosis prediction of gastric cancer. Oncotarget. 2016;7:51763–72.PubMedPubMedCentralCrossRef Jin C, Shi W, Wang F, Shen X, Qi J, Cong H, Yuan J, Shi L, Zhu B, Luo X, et al. Long non-coding RNA HULC as a novel serum biomarker for diagnosis and prognosis prediction of gastric cancer. Oncotarget. 2016;7:51763–72.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Arita T, Ichikawa D, Konishi H, Komatsu S, Shiozaki A, Shoda K, Kawaguchi T, Hirajima S, Nagata H, Kubota T, et al. Circulating long non-coding RNAs in plasma of patients with gastric cancer. Anticancer Res. 2013;33:3185–93.PubMed Arita T, Ichikawa D, Konishi H, Komatsu S, Shiozaki A, Shoda K, Kawaguchi T, Hirajima S, Nagata H, Kubota T, et al. Circulating long non-coding RNAs in plasma of patients with gastric cancer. Anticancer Res. 2013;33:3185–93.PubMed
84.
Zurück zum Zitat Zhou X, Yin C, Dang Y, Ye F, Zhang G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep. 2015;5:11516.PubMedPubMedCentralCrossRef Zhou X, Yin C, Dang Y, Ye F, Zhang G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci Rep. 2015;5:11516.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Mohamed WA, Schaalan MF, Ramadan B. The expression profiling of circulating miR-204, miR-182, and lncRNA H19 as novel potential biomarkers for the progression of peptic ulcer to gastric cancer. J Cell Biochem. 2019;120:13464–77.PubMedCrossRef Mohamed WA, Schaalan MF, Ramadan B. The expression profiling of circulating miR-204, miR-182, and lncRNA H19 as novel potential biomarkers for the progression of peptic ulcer to gastric cancer. J Cell Biochem. 2019;120:13464–77.PubMedCrossRef
86.
Zurück zum Zitat Yoruker EE, Keskin M, Kulle CB, Holdenrieder S, Gezer U. Diagnostic and prognostic value of circulating lncRNA H19 in gastric cancer. Biomed Rep. 2018;9:181–6.PubMedPubMedCentral Yoruker EE, Keskin M, Kulle CB, Holdenrieder S, Gezer U. Diagnostic and prognostic value of circulating lncRNA H19 in gastric cancer. Biomed Rep. 2018;9:181–6.PubMedPubMedCentral
87.
Zurück zum Zitat Feng W, Zong W, Li Y, Shen X, Cui X, Ju S. Abnormally expressed long noncoding RNA B3GALT5-AS1 may serve AS a biomarker for the diagnostic and prognostic of gastric cancer. J Cell Biochem. 2020;121:557–65.PubMedCrossRef Feng W, Zong W, Li Y, Shen X, Cui X, Ju S. Abnormally expressed long noncoding RNA B3GALT5-AS1 may serve AS a biomarker for the diagnostic and prognostic of gastric cancer. J Cell Biochem. 2020;121:557–65.PubMedCrossRef
88.
Zurück zum Zitat Liu Y, Zhang YM, Ma FB, Pan SR, Liu BZ. Long noncoding RNA HOXA11-AS promotes gastric cancer cell proliferation and invasion via SRSF1 and functions as a biomarker in gastric cancer. World J Gastroenterol. 2019;25:2763–75.PubMedPubMedCentralCrossRef Liu Y, Zhang YM, Ma FB, Pan SR, Liu BZ. Long noncoding RNA HOXA11-AS promotes gastric cancer cell proliferation and invasion via SRSF1 and functions as a biomarker in gastric cancer. World J Gastroenterol. 2019;25:2763–75.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Li Y, Li D, Zhao M, Huang S, Zhang Q, Lin H, Wang W, Li K, Li Z, Huang W, et al. Long noncoding RNA SNHG6 regulates p21 expression via activation of the JNK pathway and regulation of EZH2 in gastric cancer cells. Life Sci. 2018;208:295–304.PubMedCrossRef Li Y, Li D, Zhao M, Huang S, Zhang Q, Lin H, Wang W, Li K, Li Z, Huang W, et al. Long noncoding RNA SNHG6 regulates p21 expression via activation of the JNK pathway and regulation of EZH2 in gastric cancer cells. Life Sci. 2018;208:295–304.PubMedCrossRef
90.
Zurück zum Zitat Pan L, Liang W, Gu J, Zang X, Huang Z, Shi H, Chen J, Fu M, Zhang P, Xiao X, et al. Long noncoding RNA DANCR is activated by SALL4 and promotes the proliferation and invasion of gastric cancer cells. Oncotarget. 2018;9:1915–30.PubMedCrossRef Pan L, Liang W, Gu J, Zang X, Huang Z, Shi H, Chen J, Fu M, Zhang P, Xiao X, et al. Long noncoding RNA DANCR is activated by SALL4 and promotes the proliferation and invasion of gastric cancer cells. Oncotarget. 2018;9:1915–30.PubMedCrossRef
91.
Zurück zum Zitat Fu M, Huang Z, Zang X, Pan L, Liang W, Chen J, Qian H, Xu W, Jiang P, Zhang X. Long noncoding RNA LINC00978 promotes cancer growth and acts as a diagnostic biomarker in gastric cancer. Cell Prolif. 2018;51:e12425.PubMedCentralCrossRef Fu M, Huang Z, Zang X, Pan L, Liang W, Chen J, Qian H, Xu W, Jiang P, Zhang X. Long noncoding RNA LINC00978 promotes cancer growth and acts as a diagnostic biomarker in gastric cancer. Cell Prolif. 2018;51:e12425.PubMedCentralCrossRef
92.
Zurück zum Zitat Zhou H, Wang F, Chen H, Tan Q, Qiu S, Chen S, Jing W, Yu M, Liang C, Ye S, Tu J. Increased expression of long-noncoding RNA ZFAS1 is associated with epithelial-mesenchymal transition of gastric cancer. Aging (Albany NY). 2016;8:2023–38.CrossRef Zhou H, Wang F, Chen H, Tan Q, Qiu S, Chen S, Jing W, Yu M, Liang C, Ye S, Tu J. Increased expression of long-noncoding RNA ZFAS1 is associated with epithelial-mesenchymal transition of gastric cancer. Aging (Albany NY). 2016;8:2023–38.CrossRef
93.
Zurück zum Zitat Pan L, Liang W, Fu M, Huang ZH, Li X, Zhang W, Zhang P, Qian H, Jiang PC, Xu WR, Zhang X. Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. J Cancer Res Clin Oncol. 2017;143:991–1004.PubMedCrossRef Pan L, Liang W, Fu M, Huang ZH, Li X, Zhang W, Zhang P, Qian H, Jiang PC, Xu WR, Zhang X. Exosomes-mediated transfer of long noncoding RNA ZFAS1 promotes gastric cancer progression. J Cancer Res Clin Oncol. 2017;143:991–1004.PubMedCrossRef
94.
Zurück zum Zitat Cai C, Zhang H, Zhu Y, Zheng P, Xu Y, Sun J, Zhang M, Lan T, Gu B, Li S, Ma P. Serum Exosomal long noncoding RNA pcsk2-2:1 as a potential novel diagnostic biomarker for gastric Cancer. Onco Targets Ther. 2019;12:10035–41.PubMedPubMedCentralCrossRef Cai C, Zhang H, Zhu Y, Zheng P, Xu Y, Sun J, Zhang M, Lan T, Gu B, Li S, Ma P. Serum Exosomal long noncoding RNA pcsk2-2:1 as a potential novel diagnostic biomarker for gastric Cancer. Onco Targets Ther. 2019;12:10035–41.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Li S, Zhang M, Zhang H, Hu K, Cai C, Wang J, Shi L, Ma P, Xu Y, Zheng P. Exosomal long noncoding RNA lnc-GNAQ-6:1 may serve as a diagnostic marker for gastric cancer. Clin Chim Acta. 2020;501:252–7.PubMedCrossRef Li S, Zhang M, Zhang H, Hu K, Cai C, Wang J, Shi L, Ma P, Xu Y, Zheng P. Exosomal long noncoding RNA lnc-GNAQ-6:1 may serve as a diagnostic marker for gastric cancer. Clin Chim Acta. 2020;501:252–7.PubMedCrossRef
96.
Zurück zum Zitat Xu H, Zhou J, Tang J, Min X, Yi T, Zhao J, Ren Y. Identification of serum exosomal lncRNA MIAT as a novel diagnostic and prognostic biomarker for gastric cancer. J Clin Lab Anal. 2020:e23323.. Xu H, Zhou J, Tang J, Min X, Yi T, Zhao J, Ren Y. Identification of serum exosomal lncRNA MIAT as a novel diagnostic and prognostic biomarker for gastric cancer. J Clin Lab Anal. 2020:e23323..
97.
Zurück zum Zitat Yang Z, Sun Y, Liu R, Shi Y, Ding S. Plasma long noncoding RNAs PANDAR, FOXD2-AS1, and SMARCC2 AS potential novel diagnostic biomarkers for gastric cancer. Cancer Manag Res. 2019;11:6175–84.PubMedPubMedCentralCrossRef Yang Z, Sun Y, Liu R, Shi Y, Ding S. Plasma long noncoding RNAs PANDAR, FOXD2-AS1, and SMARCC2 AS potential novel diagnostic biomarkers for gastric cancer. Cancer Manag Res. 2019;11:6175–84.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Ghaedi H, Mozaffari MAN, Salehi Z, Ghasemi H, Zadian SS, Alipoor S, Hadianpour S, Alipoor B. Co-expression profiling of plasma miRNAs and long noncoding RNAs in gastric cancer patients. Gene. 2019;687:135–42.PubMedCrossRef Ghaedi H, Mozaffari MAN, Salehi Z, Ghasemi H, Zadian SS, Alipoor S, Hadianpour S, Alipoor B. Co-expression profiling of plasma miRNAs and long noncoding RNAs in gastric cancer patients. Gene. 2019;687:135–42.PubMedCrossRef
99.
Zurück zum Zitat Liu J, Wang J, Song Y, Ma B, Luo J, Ni Z, Gao P, Sun J, Zhao J, Chen X, Wang Z. A panel consisting of three novel circulating lncRNAs, is it a predictive tool for gastric cancer? J Cell Mol Med. 2018;22:3605–13.PubMedPubMedCentralCrossRef Liu J, Wang J, Song Y, Ma B, Luo J, Ni Z, Gao P, Sun J, Zhao J, Chen X, Wang Z. A panel consisting of three novel circulating lncRNAs, is it a predictive tool for gastric cancer? J Cell Mol Med. 2018;22:3605–13.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Ke D, Li H, Zhang Y, An Y, Fu H, Fang X, Zheng X. The combination of circulating long noncoding RNAs AK001058, INHBA-AS1, MIR4435-2HG, and CEBPA-AS1 fragments in plasma serve as diagnostic markers for gastric cancer. Oncotarget. 2017;8:21516–25.PubMedPubMedCentralCrossRef Ke D, Li H, Zhang Y, An Y, Fu H, Fang X, Zheng X. The combination of circulating long noncoding RNAs AK001058, INHBA-AS1, MIR4435-2HG, and CEBPA-AS1 fragments in plasma serve as diagnostic markers for gastric cancer. Oncotarget. 2017;8:21516–25.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Zheng R, Liang J, Lu J, Li S, Zhang G, Wang X, Liu M, Wang W, Chu H, Tao G, et al. Genome-wide long non-coding RNAs identified a panel of novel plasma biomarkers for gastric cancer diagnosis. Gastric Cancer. 2019;22:731–41.PubMedCrossRef Zheng R, Liang J, Lu J, Li S, Zhang G, Wang X, Liu M, Wang W, Chu H, Tao G, et al. Genome-wide long non-coding RNAs identified a panel of novel plasma biomarkers for gastric cancer diagnosis. Gastric Cancer. 2019;22:731–41.PubMedCrossRef
102.
Zurück zum Zitat Hashad D, Elbanna A, Ibrahim A, Khedr G. Evaluation of the role of circulating long non-coding RNA H19 as a promising novel biomarker in plasma of patients with gastric Cancer. J Clin Lab Anal. 2016;30:1100–5.PubMedPubMedCentralCrossRef Hashad D, Elbanna A, Ibrahim A, Khedr G. Evaluation of the role of circulating long non-coding RNA H19 as a promising novel biomarker in plasma of patients with gastric Cancer. J Clin Lab Anal. 2016;30:1100–5.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Zong W, Feng W, Jiang Y, Ju S, Cui M, Jing R. Evaluating the diagnostic and prognostic value of serum long non-coding RNA CTC-497E21.4 in gastric cancer. Clin Chem Lab Med. 2019;57:1063–72.PubMedCrossRef Zong W, Feng W, Jiang Y, Ju S, Cui M, Jing R. Evaluating the diagnostic and prognostic value of serum long non-coding RNA CTC-497E21.4 in gastric cancer. Clin Chem Lab Med. 2019;57:1063–72.PubMedCrossRef
104.
Zurück zum Zitat Zhao R, Zhang Y, Zhang X, Yang Y, Zheng X, Li X, Liu Y, Zhang Y. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol Cancer. 2018;17:68.PubMedPubMedCentralCrossRef Zhao R, Zhang Y, Zhang X, Yang Y, Zheng X, Li X, Liu Y, Zhang Y. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol Cancer. 2018;17:68.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Tirada N, Aujero M, Khorjekar G, Richards S, Chopra J, Dromi S, Ioffe O. Breast Cancer tissue markers, genomic profiling, and other prognostic factors: a primer for radiologists. Radiographics. 2018;38:1902–20.PubMedCrossRef Tirada N, Aujero M, Khorjekar G, Richards S, Chopra J, Dromi S, Ioffe O. Breast Cancer tissue markers, genomic profiling, and other prognostic factors: a primer for radiologists. Radiographics. 2018;38:1902–20.PubMedCrossRef
106.
Zurück zum Zitat Dong L, Lin W, Qi P, Xu MD, Wu X, Ni S, Huang D, Weng WW, Tan C, Sheng W, et al. Circulating long RNAs in serum extracellular vesicles: their characterization and potential application as biomarkers for diagnosis of colorectal Cancer. Cancer Epidemiol Biomark Prev. 2016;25:1158–66.CrossRef Dong L, Lin W, Qi P, Xu MD, Wu X, Ni S, Huang D, Weng WW, Tan C, Sheng W, et al. Circulating long RNAs in serum extracellular vesicles: their characterization and potential application as biomarkers for diagnosis of colorectal Cancer. Cancer Epidemiol Biomark Prev. 2016;25:1158–66.CrossRef
107.
Zurück zum Zitat Hauser P, Wang S, Didenko VV. Apoptotic bodies: selective detection in extracellular vesicles. Methods Mol Biol. 2017;1554:193–200.PubMedCrossRef Hauser P, Wang S, Didenko VV. Apoptotic bodies: selective detection in extracellular vesicles. Methods Mol Biol. 2017;1554:193–200.PubMedCrossRef
108.
Zurück zum Zitat van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.PubMedCrossRef van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19:213–28.PubMedCrossRef
109.
110.
Zurück zum Zitat Sung J, Kim N, Lee J, Hwang YJ, Kim HW, Chung JW, Kim JW, Lee DH. Associations among gastric juice pH, atrophic gastritis, intestinal metaplasia and helicobacter pylori infection. Gut Liver. 2018;12:158–64.PubMedCrossRef Sung J, Kim N, Lee J, Hwang YJ, Kim HW, Chung JW, Kim JW, Lee DH. Associations among gastric juice pH, atrophic gastritis, intestinal metaplasia and helicobacter pylori infection. Gut Liver. 2018;12:158–64.PubMedCrossRef
111.
Zurück zum Zitat Fei ZH, Yu XJ, Zhou M, Su HF, Zheng Z, Xie CY. Upregulated expression of long non-coding RNA LINC00982 regulates cell proliferation and its clinical relevance in patients with gastric cancer. Tumour Biol. 2016;37:1983–93.PubMedCrossRef Fei ZH, Yu XJ, Zhou M, Su HF, Zheng Z, Xie CY. Upregulated expression of long non-coding RNA LINC00982 regulates cell proliferation and its clinical relevance in patients with gastric cancer. Tumour Biol. 2016;37:1983–93.PubMedCrossRef
112.
Zurück zum Zitat Shao Y, Ye M, Jiang X, Sun W, Ding X, Liu Z, Ye G, Zhang X, Xiao B, Guo J. Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer. Cancer. 2014;120:3320–8.PubMedCrossRef Shao Y, Ye M, Jiang X, Sun W, Ding X, Liu Z, Ye G, Zhang X, Xiao B, Guo J. Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer. Cancer. 2014;120:3320–8.PubMedCrossRef
113.
Zurück zum Zitat Yang Y, Shao Y, Zhu M, Li Q, Yang F, Lu X, Xu C, Xiao B, Sun Y, Guo J. Using gastric juice lncRNA-ABHD11-AS1 AS a novel type of biomarker in the screening of gastric cancer. Tumour Biol. 2016;37:1183–8.PubMedCrossRef Yang Y, Shao Y, Zhu M, Li Q, Yang F, Lu X, Xu C, Xiao B, Sun Y, Guo J. Using gastric juice lncRNA-ABHD11-AS1 AS a novel type of biomarker in the screening of gastric cancer. Tumour Biol. 2016;37:1183–8.PubMedCrossRef
114.
Zurück zum Zitat Leary M, Heerboth S, Lapinska K, Sarkar S. Sensitization of drug resistant Cancer cells: a matter of combination therapy. Cancers (Basel). 2018;10:483.PubMedCentralCrossRef Leary M, Heerboth S, Lapinska K, Sarkar S. Sensitization of drug resistant Cancer cells: a matter of combination therapy. Cancers (Basel). 2018;10:483.PubMedCentralCrossRef
115.
Zurück zum Zitat Chakraborty S, Mir KB, Seligson ND, Nayak D, Kumar R, Goswami A. Integration of EMT and cellular survival instincts in reprogramming of programmed cell death to anastasis. Cancer Metastasis Rev. 2020. Chakraborty S, Mir KB, Seligson ND, Nayak D, Kumar R, Goswami A. Integration of EMT and cellular survival instincts in reprogramming of programmed cell death to anastasis. Cancer Metastasis Rev. 2020.
116.
Zurück zum Zitat Du B, Shim JS. Targeting epithelial-Mesenchymal transition (EMT) to overcome drug resistance in Cancer. Molecules. 2016;21:965.PubMedCentralCrossRef Du B, Shim JS. Targeting epithelial-Mesenchymal transition (EMT) to overcome drug resistance in Cancer. Molecules. 2016;21:965.PubMedCentralCrossRef
117.
Zurück zum Zitat Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby CR Jr, Chen ZS, Cheng XD, Qin JJ. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist Updat. 2020;49:100681.PubMedCrossRef Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby CR Jr, Chen ZS, Cheng XD, Qin JJ. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist Updat. 2020;49:100681.PubMedCrossRef
118.
Zurück zum Zitat Qin JJ, Yan L, Zhang J, Zhang WD. STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. J Exp Clin Cancer Res. 2019;38:195.PubMedPubMedCentralCrossRef Qin JJ, Yan L, Zhang J, Zhang WD. STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. J Exp Clin Cancer Res. 2019;38:195.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Qin JJ, Cheng XD, Zhang J, Zhang WD. Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: a systematic review. Cell Commun Signal. 2019;17:121.PubMedPubMedCentralCrossRef Qin JJ, Cheng XD, Zhang J, Zhang WD. Dual roles and therapeutic potential of Keap1-Nrf2 pathway in pancreatic cancer: a systematic review. Cell Commun Signal. 2019;17:121.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Zhao W, Shan B, He D, Cheng Y, Li B, Zhang C, Duan C. Recent Progress in characterizing long noncoding RNAs in Cancer drug resistance. J Cancer. 2019;10:6693–702.PubMedPubMedCentralCrossRef Zhao W, Shan B, He D, Cheng Y, Li B, Zhang C, Duan C. Recent Progress in characterizing long noncoding RNAs in Cancer drug resistance. J Cancer. 2019;10:6693–702.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Xiao Y, Pan J, Geng Q, Wang G. LncRNA MALAT1 increases the stemness of gastric cancer cells via enhancing SOX2 mRNA stability. FEBS Open Bio. 2019;9:1212–22.PubMedPubMedCentralCrossRef Xiao Y, Pan J, Geng Q, Wang G. LncRNA MALAT1 increases the stemness of gastric cancer cells via enhancing SOX2 mRNA stability. FEBS Open Bio. 2019;9:1212–22.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat YiRen H, YingCong Y, Sunwu Y, Keqin L, Xiaochun T, Senrui C, Ende C, XiZhou L, Yanfan C. Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol Cancer. 2017;16:174.PubMedPubMedCentralCrossRef YiRen H, YingCong Y, Sunwu Y, Keqin L, Xiaochun T, Senrui C, Ende C, XiZhou L, Yanfan C. Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol Cancer. 2017;16:174.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Xi Z, Si J, Nan J. LncRNA MALAT1 potentiates autophagyassociated cisplatin resistance by regulating the microRNA30b/autophagyrelated gene 5 axis in gastric cancer. Int J Oncol. 2019;54:239–48.PubMed Xi Z, Si J, Nan J. LncRNA MALAT1 potentiates autophagyassociated cisplatin resistance by regulating the microRNA30b/autophagyrelated gene 5 axis in gastric cancer. Int J Oncol. 2019;54:239–48.PubMed
124.
Zurück zum Zitat Hang Q, Sun R, Jiang C, Li Y. Notch 1 promotes cisplatin-resistant gastric cancer formation by upregulating lncRNA AK022798 expression. Anti-Cancer Drugs. 2015;26:632–40.PubMed Hang Q, Sun R, Jiang C, Li Y. Notch 1 promotes cisplatin-resistant gastric cancer formation by upregulating lncRNA AK022798 expression. Anti-Cancer Drugs. 2015;26:632–40.PubMed
125.
Zurück zum Zitat Wang Z, Wang Q, Xu G, Meng N, Huang X, Jiang Z, Chen C, Zhang Y, Chen J, Li A, et al. The long noncoding RNA CRAL reverses cisplatin resistance via the miR-505/CYLD/AKT axis in human gastric cancer cells. RNA Biol. 2020:1–14. Wang Z, Wang Q, Xu G, Meng N, Huang X, Jiang Z, Chen C, Zhang Y, Chen J, Li A, et al. The long noncoding RNA CRAL reverses cisplatin resistance via the miR-505/CYLD/AKT axis in human gastric cancer cells. RNA Biol. 2020:1–14.
126.
Zurück zum Zitat Wang S, Chen W, Yu H, Song Z, Li Q, Shen X, Wu Y, Zhu L, Ma Q. Xing D: lncRNA ROR promotes gastric Cancer drug resistance. Cancer Control. 2020;27:1073274820904694.PubMedPubMedCentralCrossRef Wang S, Chen W, Yu H, Song Z, Li Q, Shen X, Wu Y, Zhu L, Ma Q. Xing D: lncRNA ROR promotes gastric Cancer drug resistance. Cancer Control. 2020;27:1073274820904694.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Zeng L, Liao Q, Zou Z, Wen Y, Wang J, Liu C, He Q, Weng N, Zeng J, Tang H, et al. Long non-coding RNA XLOC_006753 promotes the development of multidrug resistance in gastric Cancer cells through the PI3K/AKT/mTOR signaling pathway. Cell Physiol Biochem. 2018;51:1221–36.PubMedCrossRef Zeng L, Liao Q, Zou Z, Wen Y, Wang J, Liu C, He Q, Weng N, Zeng J, Tang H, et al. Long non-coding RNA XLOC_006753 promotes the development of multidrug resistance in gastric Cancer cells through the PI3K/AKT/mTOR signaling pathway. Cell Physiol Biochem. 2018;51:1221–36.PubMedCrossRef
128.
Zurück zum Zitat He W, Liang B, Wang C, Li S, Zhao Y, Huang Q, Liu Z, Yao Z, Wu Q, Liao W, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene. 2019;38:4637–54.PubMedPubMedCentralCrossRef He W, Liang B, Wang C, Li S, Zhao Y, Huang Q, Liu Z, Yao Z, Wu Q, Liao W, et al. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene. 2019;38:4637–54.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Zhou Z, Lin Z, He Y, Pang X, Wang Y, Ponnusamy M, Ao X, Shan P, Tariq MA, Li P, Wang J. The long noncoding RNA D63785 regulates chemotherapy sensitivity in human gastric Cancer by targeting miR-422a. Mol Ther Nucleic Acids. 2018;12:405–19.PubMedPubMedCentralCrossRef Zhou Z, Lin Z, He Y, Pang X, Wang Y, Ponnusamy M, Ao X, Shan P, Tariq MA, Li P, Wang J. The long noncoding RNA D63785 regulates chemotherapy sensitivity in human gastric Cancer by targeting miR-422a. Mol Ther Nucleic Acids. 2018;12:405–19.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Zhang C, Qian H, Liu K, Zhao W, Wang L. A feedback loop regulation of LINC01433 and YAP promotes malignant behavior in gastric Cancer cells. Onco Targets Ther. 2019;12:7949–62.PubMedPubMedCentralCrossRef Zhang C, Qian H, Liu K, Zhao W, Wang L. A feedback loop regulation of LINC01433 and YAP promotes malignant behavior in gastric Cancer cells. Onco Targets Ther. 2019;12:7949–62.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Ye Y, Yang S, Han Y, Sun J, Xv L, Wu L, Ming L. HOXD-AS1 confers cisplatin resistance in gastric cancer through epigenetically silencing PDCD4 via recruiting EZH2. Open Biol. 2019;9:190068.PubMedPubMedCentralCrossRef Ye Y, Yang S, Han Y, Sun J, Xv L, Wu L, Ming L. HOXD-AS1 confers cisplatin resistance in gastric cancer through epigenetically silencing PDCD4 via recruiting EZH2. Open Biol. 2019;9:190068.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Xin L, Zhou Q, Yuan YW, Zhou LQ, Liu L, Li SH, Liu C. METase/lncRNA HULC/FoxM1 reduced cisplatin resistance in gastric cancer by suppressing autophagy. J Cancer Res Clin Oncol. 2019;145:2507–17.PubMedCrossRef Xin L, Zhou Q, Yuan YW, Zhou LQ, Liu L, Li SH, Liu C. METase/lncRNA HULC/FoxM1 reduced cisplatin resistance in gastric cancer by suppressing autophagy. J Cancer Res Clin Oncol. 2019;145:2507–17.PubMedCrossRef
133.
Zurück zum Zitat Zhang Y, Song X, Wang X, Hu J, Jiang L. Silencing of LncRNA HULC enhances chemotherapy induced apoptosis in human gastric Cancer. J Med Biochem. 2016;35:137–43.PubMedPubMedCentralCrossRef Zhang Y, Song X, Wang X, Hu J, Jiang L. Silencing of LncRNA HULC enhances chemotherapy induced apoptosis in human gastric Cancer. J Med Biochem. 2016;35:137–43.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Guo Y, Yue P, Wang Y, Chen G, Li Y. PCAT-1 contributes to cisplatin resistance in gastric cancer through miR-128/ZEB1 axis. Biomed Pharmacother. 2019;118:109255.PubMedCrossRef Guo Y, Yue P, Wang Y, Chen G, Li Y. PCAT-1 contributes to cisplatin resistance in gastric cancer through miR-128/ZEB1 axis. Biomed Pharmacother. 2019;118:109255.PubMedCrossRef
135.
Zurück zum Zitat Li H, Ma X, Yang D, Suo Z, Dai R, Liu C. PCAT-1 contributes to cisplatin resistance in gastric cancer through epigenetically silencing PTEN via recruiting EZH2. J Cell Biochem. 2020;121:1353–61.PubMedCrossRef Li H, Ma X, Yang D, Suo Z, Dai R, Liu C. PCAT-1 contributes to cisplatin resistance in gastric cancer through epigenetically silencing PTEN via recruiting EZH2. J Cell Biochem. 2020;121:1353–61.PubMedCrossRef
136.
Zurück zum Zitat Li Y, Lv S, Ning H, Li K, Zhou X, Xv H, Wen H. Down-regulation of CASC2 contributes to cisplatin resistance in gastric cancer by sponging miR-19a. Biomed Pharmacother. 2018;108:1775–82.PubMedCrossRef Li Y, Lv S, Ning H, Li K, Zhou X, Xv H, Wen H. Down-regulation of CASC2 contributes to cisplatin resistance in gastric cancer by sponging miR-19a. Biomed Pharmacother. 2018;108:1775–82.PubMedCrossRef
137.
Zurück zum Zitat Cheng C, Qin Y, Zhi Q, Wang J, Qin C. Knockdown of long non-coding RNA HOTAIR inhibits cisplatin resistance of gastric cancer cells through inhibiting the PI3K/Akt and Wnt/beta-catenin signaling pathways by up-regulating miR-34a. Int J Biol Macromol. 2018;107:2620–9.PubMedCrossRef Cheng C, Qin Y, Zhi Q, Wang J, Qin C. Knockdown of long non-coding RNA HOTAIR inhibits cisplatin resistance of gastric cancer cells through inhibiting the PI3K/Akt and Wnt/beta-catenin signaling pathways by up-regulating miR-34a. Int J Biol Macromol. 2018;107:2620–9.PubMedCrossRef
138.
Zurück zum Zitat Jia J, Zhan D, Li J, Li Z, Li H, Qian J. The contrary functions of lncRNA HOTAIR/miR-17-5p/PTEN axis and Shenqifuzheng injection on chemosensitivity of gastric cancer cells. J Cell Mol Med. 2019;23:656–69.PubMedCrossRef Jia J, Zhan D, Li J, Li Z, Li H, Qian J. The contrary functions of lncRNA HOTAIR/miR-17-5p/PTEN axis and Shenqifuzheng injection on chemosensitivity of gastric cancer cells. J Cell Mol Med. 2019;23:656–69.PubMedCrossRef
139.
Zurück zum Zitat Wang H, Qin R, Guan A, Yao Y, Huang Y, Jia H, Huang W, Gao J. HOTAIR enhanced paclitaxel and doxorubicin resistance in gastric cancer cells partly through inhibiting miR-217 expression. J Cell Biochem. 2018;119:7226–34.PubMedCrossRef Wang H, Qin R, Guan A, Yao Y, Huang Y, Jia H, Huang W, Gao J. HOTAIR enhanced paclitaxel and doxorubicin resistance in gastric cancer cells partly through inhibiting miR-217 expression. J Cell Biochem. 2018;119:7226–34.PubMedCrossRef
140.
Zurück zum Zitat Yan J, Dang Y, Liu S, Zhang Y, Zhang G. LncRNA HOTAIR promotes cisplatin resistance in gastric cancer by targeting miR-126 to activate the PI3K/AKT/MRP1 genes. Tumour Biol. 2016;37:16345–55.CrossRef Yan J, Dang Y, Liu S, Zhang Y, Zhang G. LncRNA HOTAIR promotes cisplatin resistance in gastric cancer by targeting miR-126 to activate the PI3K/AKT/MRP1 genes. Tumour Biol. 2016;37:16345–55.CrossRef
141.
Zurück zum Zitat Song H, Xu Y, Shi L, Xu T, Fan R, Cao M, Xu W, Song J. LncRNA THOR increases the stemness of gastric cancer cells via enhancing SOX9 mRNA stability. Biomed Pharmacother. 2018;108:338–46.PubMedCrossRef Song H, Xu Y, Shi L, Xu T, Fan R, Cao M, Xu W, Song J. LncRNA THOR increases the stemness of gastric cancer cells via enhancing SOX9 mRNA stability. Biomed Pharmacother. 2018;108:338–46.PubMedCrossRef
142.
Zurück zum Zitat Wu X, Zheng Y, Han B, Dong X. Long noncoding RNA BLACAT1 modulates ABCB1 to promote oxaliplatin resistance of gastric cancer via sponging miR-361. Biomed Pharmacother. 2018;99:832–8.PubMedCrossRef Wu X, Zheng Y, Han B, Dong X. Long noncoding RNA BLACAT1 modulates ABCB1 to promote oxaliplatin resistance of gastric cancer via sponging miR-361. Biomed Pharmacother. 2018;99:832–8.PubMedCrossRef
143.
Zurück zum Zitat Zhang X, Bo P, Liu L, Zhang X, Li J. Overexpression of long non-coding RNA GHET1 promotes the development of multidrug resistance in gastric cancer cells. Biomed Pharmacother. 2017;92:580–5.PubMedCrossRef Zhang X, Bo P, Liu L, Zhang X, Li J. Overexpression of long non-coding RNA GHET1 promotes the development of multidrug resistance in gastric cancer cells. Biomed Pharmacother. 2017;92:580–5.PubMedCrossRef
144.
Zurück zum Zitat Lan WG, Xu DH, Xu C, Ding CL, Ning FL, Zhou YL, Ma LB, Liu CM, Han X. Silencing of long non-coding RNA ANRIL inhibits the development of multidrug resistance in gastric cancer cells. Oncol Rep. 2016;36:263–70.PubMedCrossRef Lan WG, Xu DH, Xu C, Ding CL, Ning FL, Zhou YL, Ma LB, Liu CM, Han X. Silencing of long non-coding RNA ANRIL inhibits the development of multidrug resistance in gastric cancer cells. Oncol Rep. 2016;36:263–70.PubMedCrossRef
145.
Zurück zum Zitat Shang C, Guo Y, Zhang J, Huang B. Silence of long noncoding RNA UCA1 inhibits malignant proliferation and chemotherapy resistance to adriamycin in gastric cancer. Cancer Chemother Pharmacol. 2016;77:1061–7.PubMedCrossRef Shang C, Guo Y, Zhang J, Huang B. Silence of long noncoding RNA UCA1 inhibits malignant proliferation and chemotherapy resistance to adriamycin in gastric cancer. Cancer Chemother Pharmacol. 2016;77:1061–7.PubMedCrossRef
146.
Zurück zum Zitat Fang Q, Chen X, Zhi X. Long non-coding RNA (LncRNA) Urothelial carcinoma associated 1 (UCA1) increases multi-drug resistance of gastric Cancer via Downregulating miR-27b. Med Sci Monit. 2016;22:3506–13.PubMedPubMedCentralCrossRef Fang Q, Chen X, Zhi X. Long non-coding RNA (LncRNA) Urothelial carcinoma associated 1 (UCA1) increases multi-drug resistance of gastric Cancer via Downregulating miR-27b. Med Sci Monit. 2016;22:3506–13.PubMedPubMedCentralCrossRef
147.
Zurück zum Zitat Du P, Hu C, Qin Y, Zhao J, Patel R, Fu Y, Zhu M, Zhang W, Huang G. LncRNA PVT1 mediates Antiapoptosis and 5-fluorouracil resistance via increasing Bcl2 expression in gastric Cancer. J Oncol. 2019;2019:9325407.PubMedPubMedCentralCrossRef Du P, Hu C, Qin Y, Zhao J, Patel R, Fu Y, Zhu M, Zhang W, Huang G. LncRNA PVT1 mediates Antiapoptosis and 5-fluorouracil resistance via increasing Bcl2 expression in gastric Cancer. J Oncol. 2019;2019:9325407.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Zhang XW, Bu P, Liu L, Zhang XZ, Li J. Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochem Biophys Res Commun. 2015;462:227–32.PubMedCrossRef Zhang XW, Bu P, Liu L, Zhang XZ, Li J. Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochem Biophys Res Commun. 2015;462:227–32.PubMedCrossRef
149.
Zurück zum Zitat Wang Y, Zhang D, Wu K, Zhao Q, Nie Y, Fan D. Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol Cell Biol. 2014;34:3182–93.PubMedPubMedCentralCrossRef Wang Y, Zhang D, Wu K, Zhao Q, Nie Y, Fan D. Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol Cell Biol. 2014;34:3182–93.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Li M, Zhang YY, Shang J, Xu YD. LncRNA SNHG5 promotes cisplatin resistance in gastric cancer via inhibiting cell apoptosis. Eur Rev Med Pharmacol Sci. 2019;23:4185–91.PubMed Li M, Zhang YY, Shang J, Xu YD. LncRNA SNHG5 promotes cisplatin resistance in gastric cancer via inhibiting cell apoptosis. Eur Rev Med Pharmacol Sci. 2019;23:4185–91.PubMed
151.
Zurück zum Zitat Xu YD, Shang J, Li M, Zhang YY. LncRNA DANCR accelerates the development of multidrug resistance of gastric cancer. Eur Rev Med Pharmacol Sci. 2019;23:2794–802.PubMed Xu YD, Shang J, Li M, Zhang YY. LncRNA DANCR accelerates the development of multidrug resistance of gastric cancer. Eur Rev Med Pharmacol Sci. 2019;23:2794–802.PubMed
152.
Zurück zum Zitat Zhang Y, Li Q, Yu S, Zhu C, Zhang Z, Cao H, Xu J. Long non-coding RNA FAM84B-AS promotes resistance of gastric cancer to platinum drugs through inhibition of FAM84B expression. Biochem Biophys Res Commun. 2019;509:753–62.PubMedCrossRef Zhang Y, Li Q, Yu S, Zhu C, Zhang Z, Cao H, Xu J. Long non-coding RNA FAM84B-AS promotes resistance of gastric cancer to platinum drugs through inhibition of FAM84B expression. Biochem Biophys Res Commun. 2019;509:753–62.PubMedCrossRef
153.
Zurück zum Zitat Wang L, Chunyan Q, Zhou Y, He Q, Ma Y, Ga Y, Wang X. BCAR4 increase cisplatin resistance and predicted poor survival in gastric cancer patients. Eur Rev Med Pharmacol Sci. 2017;21:4064–70.PubMed Wang L, Chunyan Q, Zhou Y, He Q, Ma Y, Ga Y, Wang X. BCAR4 increase cisplatin resistance and predicted poor survival in gastric cancer patients. Eur Rev Med Pharmacol Sci. 2017;21:4064–70.PubMed
154.
Zurück zum Zitat Zhang J, Zhao B, Chen X, Wang Z, Xu H, Huang B. Silence of long noncoding RNA NEAT1 inhibits malignant biological behaviors and chemotherapy resistance in gastric Cancer. Pathol Oncol Res. 2018;24:109–13.PubMedCrossRef Zhang J, Zhao B, Chen X, Wang Z, Xu H, Huang B. Silence of long noncoding RNA NEAT1 inhibits malignant biological behaviors and chemotherapy resistance in gastric Cancer. Pathol Oncol Res. 2018;24:109–13.PubMedCrossRef
155.
Zurück zum Zitat Han Y, Ye J, Wu D, Wu P, Chen Z, Chen J, Gao S, Huang J. LEIGC long non-coding RNA acts as a tumor suppressor in gastric carcinoma by inhibiting the epithelial-to-mesenchymal transition. BMC Cancer. 2014;14:932.PubMedPubMedCentralCrossRef Han Y, Ye J, Wu D, Wu P, Chen Z, Chen J, Gao S, Huang J. LEIGC long non-coding RNA acts as a tumor suppressor in gastric carcinoma by inhibiting the epithelial-to-mesenchymal transition. BMC Cancer. 2014;14:932.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Shang C, Sun L, Zhang J, Zhao B, Chen X, Xu H, Huang B. Silence of cancer susceptibility candidate 9 inhibits gastric cancer and reverses chemoresistance. Oncotarget. 2017;8:15393–8.PubMedPubMedCentralCrossRef Shang C, Sun L, Zhang J, Zhao B, Chen X, Xu H, Huang B. Silence of cancer susceptibility candidate 9 inhibits gastric cancer and reverses chemoresistance. Oncotarget. 2017;8:15393–8.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Mao Z, Wu Y, Zhou J, Xing C. Salinomycin reduces epithelial-mesenchymal transition-mediated multidrug resistance by modifying long noncoding RNA HOTTIP expression in gastric cancer cells. Anti-Cancer Drugs. 2019;30:892–9.PubMedCrossRef Mao Z, Wu Y, Zhou J, Xing C. Salinomycin reduces epithelial-mesenchymal transition-mediated multidrug resistance by modifying long noncoding RNA HOTTIP expression in gastric cancer cells. Anti-Cancer Drugs. 2019;30:892–9.PubMedCrossRef
158.
Zurück zum Zitat Wu H, Liu B, Chen Z, Li G, Zhang Z. MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1alpha/CEBPB axis to promote stemness and chemo-resistance of gastric cancer. Cell Death Dis. 2020;11:233.PubMedPubMedCentralCrossRef Wu H, Liu B, Chen Z, Li G, Zhang Z. MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1alpha/CEBPB axis to promote stemness and chemo-resistance of gastric cancer. Cell Death Dis. 2020;11:233.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Wang W, Qin JJ, Voruganti S, Nijampatnam B, Velu SE, Ruan KH, Hu M, Zhou J, Zhang R. Discovery and characterization of dual inhibitors of MDM2 and NFAT1 for pancreatic Cancer therapy. Cancer Res. 2018;78:5656–67.PubMedPubMedCentralCrossRef Wang W, Qin JJ, Voruganti S, Nijampatnam B, Velu SE, Ruan KH, Hu M, Zhou J, Zhang R. Discovery and characterization of dual inhibitors of MDM2 and NFAT1 for pancreatic Cancer therapy. Cancer Res. 2018;78:5656–67.PubMedPubMedCentralCrossRef
160.
Zurück zum Zitat Wang W, Yang J, Liao YY, Cheng G, Chen J, Cheng XD, Qin JJ, Shao Z. Cytotoxic Nitrogenated Azaphilones from the Deep-Sea-derived fungus Chaetomium globosum MP4-S01-7. J Nat Prod. 2020;83:1157–66. Wang W, Yang J, Liao YY, Cheng G, Chen J, Cheng XD, Qin JJ, Shao Z. Cytotoxic Nitrogenated Azaphilones from the Deep-Sea-derived fungus Chaetomium globosum MP4-S01-7. J Nat Prod. 2020;83:1157–66.
161.
Zurück zum Zitat Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 2015;35(Suppl):S78–s103.PubMedPubMedCentralCrossRef Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 2015;35(Suppl):S78–s103.PubMedPubMedCentralCrossRef
162.
Zurück zum Zitat D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43:582–92.PubMedCrossRef D'Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43:582–92.PubMedCrossRef
163.
Zurück zum Zitat Pfeffer CM, Singh ATK. Apoptosis: a target for anticancer therapy. Int J Mol Sci. 2018;19:448. Pfeffer CM, Singh ATK. Apoptosis: a target for anticancer therapy. Int J Mol Sci. 2018;19:448.
164.
Zurück zum Zitat Cavalcante GC, Schaan AP, Cabral GF, Santana-da-Silva MN, Pinto P, Vidal AF, Ribeiro-Dos-Santos A. A Cell's fate: An overview of the molecular biology and genetics of apoptosis. Int J Mol Sci. 2019;20:4133.PubMedCentralCrossRef Cavalcante GC, Schaan AP, Cabral GF, Santana-da-Silva MN, Pinto P, Vidal AF, Ribeiro-Dos-Santos A. A Cell's fate: An overview of the molecular biology and genetics of apoptosis. Int J Mol Sci. 2019;20:4133.PubMedCentralCrossRef
165.
Zurück zum Zitat Fianco G, Contadini C, Ferri A, Cirotti C, Stagni V, Barila D. Caspase-8: a novel target to overcome resistance to chemotherapy in Glioblastoma. Int J Mol Sci. 2018;19:3798.PubMedCentralCrossRef Fianco G, Contadini C, Ferri A, Cirotti C, Stagni V, Barila D. Caspase-8: a novel target to overcome resistance to chemotherapy in Glioblastoma. Int J Mol Sci. 2018;19:3798.PubMedCentralCrossRef
166.
Zurück zum Zitat Garcia-Aranda M, Perez-Ruiz E, Redondo M. Bcl-2 inhibition to overcome resistance to chemo- and immunotherapy. Int J Mol Sci. 2018;19:3950.PubMedCentralCrossRef Garcia-Aranda M, Perez-Ruiz E, Redondo M. Bcl-2 inhibition to overcome resistance to chemo- and immunotherapy. Int J Mol Sci. 2018;19:3950.PubMedCentralCrossRef
167.
Zurück zum Zitat Binju M, Amaya-Padilla MA, Wan G, Gunosewoyo H, Suryo Rahmanto Y, Yu Y. Therapeutic inducers of apoptosis in ovarian Cancer. Cancers (Basel). 2019;11:1786.PubMedCentralCrossRef Binju M, Amaya-Padilla MA, Wan G, Gunosewoyo H, Suryo Rahmanto Y, Yu Y. Therapeutic inducers of apoptosis in ovarian Cancer. Cancers (Basel). 2019;11:1786.PubMedCentralCrossRef
168.
169.
Zurück zum Zitat Lin KN, Jiang YL, Zhang SG, Huang SY, Li H. Grape seed proanthocyanidin extract reverses multidrug resistance in HL-60/ADR cells via inhibition of the PI3K/Akt signaling pathway. Biomed Pharmacother. 2020;125:109885.PubMedCrossRef Lin KN, Jiang YL, Zhang SG, Huang SY, Li H. Grape seed proanthocyanidin extract reverses multidrug resistance in HL-60/ADR cells via inhibition of the PI3K/Akt signaling pathway. Biomed Pharmacother. 2020;125:109885.PubMedCrossRef
171.
Zurück zum Zitat Ye C, Wang W, Xia G, Yu C, Yi Y, Hua C, Tu F, Shen L, Chen C, Sun W, Zheng Z. A novel curcumin derivative CL-6 exerts antitumor effect in human gastric cancer cells by inducing apoptosis through hippo-YAP signaling pathway. Onco Targets Ther. 2019;12:2259–69.PubMedPubMedCentralCrossRef Ye C, Wang W, Xia G, Yu C, Yi Y, Hua C, Tu F, Shen L, Chen C, Sun W, Zheng Z. A novel curcumin derivative CL-6 exerts antitumor effect in human gastric cancer cells by inducing apoptosis through hippo-YAP signaling pathway. Onco Targets Ther. 2019;12:2259–69.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Yang XM, Cao XY, He P, Li J, Feng MX, Zhang YL, Zhang XL, Wang YH, Yang Q, Zhu L, et al. Overexpression of rac GTPase activating protein 1 contributes to proliferation of cancer cells by reducing hippo signaling to promote cytokinesis. Gastroenterology. 2018;155:1233–1249.e1222.PubMedCrossRef Yang XM, Cao XY, He P, Li J, Feng MX, Zhang YL, Zhang XL, Wang YH, Yang Q, Zhu L, et al. Overexpression of rac GTPase activating protein 1 contributes to proliferation of cancer cells by reducing hippo signaling to promote cytokinesis. Gastroenterology. 2018;155:1233–1249.e1222.PubMedCrossRef
173.
Zurück zum Zitat Chiarini F, Paganelli F, Martelli AM, Evangelisti C. The role played by Wnt/beta-catenin signaling pathway in acute lymphoblastic leukemia. Int J Mol Sci. 2020;21:1098. Chiarini F, Paganelli F, Martelli AM, Evangelisti C. The role played by Wnt/beta-catenin signaling pathway in acute lymphoblastic leukemia. Int J Mol Sci. 2020;21:1098.
174.
Zurück zum Zitat Roy S, Kar M, Roy S, Padhi S, Kumar A, Thakur S, Akhter Y, Gatto G, Banerjee B. Inhibition of CD44 sensitizes cisplatin-resistance and affects Wnt/beta-catenin signaling in HNSCC cells. Int J Biol Macromol. 2020;149:501–12.PubMedCrossRef Roy S, Kar M, Roy S, Padhi S, Kumar A, Thakur S, Akhter Y, Gatto G, Banerjee B. Inhibition of CD44 sensitizes cisplatin-resistance and affects Wnt/beta-catenin signaling in HNSCC cells. Int J Biol Macromol. 2020;149:501–12.PubMedCrossRef
175.
Zurück zum Zitat Ram Makena M, Gatla H, Verlekar D, Sukhavasi S. M KP, K CP: Wnt/beta-catenin signaling: the culprit in pancreatic carcinogenesis and therapeutic resistance. Int J Mol Sci. 2019;20:4242. Ram Makena M, Gatla H, Verlekar D, Sukhavasi S. M KP, K CP: Wnt/beta-catenin signaling: the culprit in pancreatic carcinogenesis and therapeutic resistance. Int J Mol Sci. 2019;20:4242.
176.
Zurück zum Zitat Harb J, Lin PJ, Hao J. Recent development of Wnt signaling pathway inhibitors for Cancer therapeutics. Curr Oncol Rep. 2019;21:12.PubMedCrossRef Harb J, Lin PJ, Hao J. Recent development of Wnt signaling pathway inhibitors for Cancer therapeutics. Curr Oncol Rep. 2019;21:12.PubMedCrossRef
177.
Zurück zum Zitat Yin J, Ni B, Liao WG, Gao YQ. Hypoxia-induced apoptosis of mouse spermatocytes is mediated by HIF-1alpha through a death receptor pathway and a mitochondrial pathway. J Cell Physiol. 2018;233:1146–55.PubMedCrossRef Yin J, Ni B, Liao WG, Gao YQ. Hypoxia-induced apoptosis of mouse spermatocytes is mediated by HIF-1alpha through a death receptor pathway and a mitochondrial pathway. J Cell Physiol. 2018;233:1146–55.PubMedCrossRef
178.
Zurück zum Zitat Mendez-Blanco C, Fondevila F, Fernandez-Palanca P, Garcia-Palomo A, Pelt JV, Verslype C, Gonzalez-Gallego J, Mauriz JL. Stabilization of hypoxia-inducible factors and BNIP3 promoter methylation contribute to acquired Sorafenib resistance in human Hepatocarcinoma cells. Cancers (Basel). 2019;11:1984.PubMedCentralCrossRef Mendez-Blanco C, Fondevila F, Fernandez-Palanca P, Garcia-Palomo A, Pelt JV, Verslype C, Gonzalez-Gallego J, Mauriz JL. Stabilization of hypoxia-inducible factors and BNIP3 promoter methylation contribute to acquired Sorafenib resistance in human Hepatocarcinoma cells. Cancers (Basel). 2019;11:1984.PubMedCentralCrossRef
179.
Zurück zum Zitat Ge X, Pan MH, Wang L, Li W, Jiang C, He J, Abouzid K, Liu LZ, Shi Z, Jiang BH. Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/bad/Bax axis. Cell Death Dis. 2018;9:1128.PubMedPubMedCentralCrossRef Ge X, Pan MH, Wang L, Li W, Jiang C, He J, Abouzid K, Liu LZ, Shi Z, Jiang BH. Hypoxia-mediated mitochondria apoptosis inhibition induces temozolomide treatment resistance through miR-26a/bad/Bax axis. Cell Death Dis. 2018;9:1128.PubMedPubMedCentralCrossRef
181.
Zurück zum Zitat Olteanu GE, Mihai IM, Bojin F, Gavriliuc O, Paunescu V. The natural adaptive evolution of cancer: the metastatic ability of cancer cells. Bosn J Basic Med Sci. 2020. Olteanu GE, Mihai IM, Bojin F, Gavriliuc O, Paunescu V. The natural adaptive evolution of cancer: the metastatic ability of cancer cells. Bosn J Basic Med Sci. 2020.
182.
183.
Zurück zum Zitat Liu B, Wu S, Ma J, Yan S, Xiao Z, Wan L, Zhang F, Shang M. Mao a: lncRNA GAS5 reverses EMT and tumor stem cell-mediated gemcitabine resistance and metastasis by targeting miR-221/SOCS3 in pancreatic Cancer. Mol Ther Nucleic Acids. 2018;13:472–82.PubMedPubMedCentralCrossRef Liu B, Wu S, Ma J, Yan S, Xiao Z, Wan L, Zhang F, Shang M. Mao a: lncRNA GAS5 reverses EMT and tumor stem cell-mediated gemcitabine resistance and metastasis by targeting miR-221/SOCS3 in pancreatic Cancer. Mol Ther Nucleic Acids. 2018;13:472–82.PubMedPubMedCentralCrossRef
184.
Zurück zum Zitat Dong H, Hu J, Zou K, Ye M, Chen Y, Wu C, Chen X, Han M. Activation of LncRNA TINCR by H3K27 acetylation promotes Trastuzumab resistance and epithelial-mesenchymal transition by targeting MicroRNA-125b in breast Cancer. Mol Cancer. 2019;18:3.PubMedPubMedCentralCrossRef Dong H, Hu J, Zou K, Ye M, Chen Y, Wu C, Chen X, Han M. Activation of LncRNA TINCR by H3K27 acetylation promotes Trastuzumab resistance and epithelial-mesenchymal transition by targeting MicroRNA-125b in breast Cancer. Mol Cancer. 2019;18:3.PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Yadav AK, Desai NS. Cancer stem cells: acquisition, characteristics, therapeutic implications, targeting strategies and future prospects. Stem Cell Rev Rep. 2019;15:331–55.PubMedCrossRef Yadav AK, Desai NS. Cancer stem cells: acquisition, characteristics, therapeutic implications, targeting strategies and future prospects. Stem Cell Rev Rep. 2019;15:331–55.PubMedCrossRef
186.
Zurück zum Zitat Lathia J, Liu H, Matei D. The clinical impact of Cancer stem cells. Oncologist. 2020;25:123–31.PubMedCrossRef Lathia J, Liu H, Matei D. The clinical impact of Cancer stem cells. Oncologist. 2020;25:123–31.PubMedCrossRef
187.
Zurück zum Zitat Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol. 2019;234:8381–95.PubMedCrossRef Najafi M, Farhood B, Mortezaee K. Cancer stem cells (CSCs) in cancer progression and therapy. J Cell Physiol. 2019;234:8381–95.PubMedCrossRef
188.
Zurück zum Zitat Prasad S, Ramachandran S, Gupta N, Kaushik I, Srivastava SK. Cancer cells stemness: a doorstep to targeted therapy. Biochim Biophys Acta Mol basis Dis. 1866;2020:165424. Prasad S, Ramachandran S, Gupta N, Kaushik I, Srivastava SK. Cancer cells stemness: a doorstep to targeted therapy. Biochim Biophys Acta Mol basis Dis. 1866;2020:165424.
189.
Zurück zum Zitat Wang J, Quan Y, Lv J, Gong S, Dong D. BRD4 promotes glioma cell stemness via enhancing miR-142-5p-mediated activation of Wnt/beta-catenin signaling. Environ Toxicol. 2020;35:368–76.PubMedCrossRef Wang J, Quan Y, Lv J, Gong S, Dong D. BRD4 promotes glioma cell stemness via enhancing miR-142-5p-mediated activation of Wnt/beta-catenin signaling. Environ Toxicol. 2020;35:368–76.PubMedCrossRef
190.
Zurück zum Zitat Liu Q, Sun J, Luo Q, Ju Y, Song G. Salinomycin suppresses tumorigenicity of liver cancer stem cells and Wnt/beta-catenin signaling. Curr Stem Cell Res Ther. 2020. Liu Q, Sun J, Luo Q, Ju Y, Song G. Salinomycin suppresses tumorigenicity of liver cancer stem cells and Wnt/beta-catenin signaling. Curr Stem Cell Res Ther. 2020.
191.
Zurück zum Zitat Allen EA, Baehrecke EH. Autophagy in animal development. Cell Death Differ. 2020;27:903–18.CrossRef Allen EA, Baehrecke EH. Autophagy in animal development. Cell Death Differ. 2020;27:903–18.CrossRef
192.
Zurück zum Zitat Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528–42.CrossRefPubMed Levy JMM, Towers CG, Thorburn A. Targeting autophagy in cancer. Nat Rev Cancer. 2017;17:528–42.CrossRefPubMed
194.
Zurück zum Zitat Yang Y, Klionsky DJ. Autophagy and disease: unanswered questions. Cell Death Differ. 2020;27:858–71.CrossRef Yang Y, Klionsky DJ. Autophagy and disease: unanswered questions. Cell Death Differ. 2020;27:858–71.CrossRef
195.
Zurück zum Zitat Ho CJ, Gorski SM. Molecular mechanisms underlying autophagy-mediated treatment resistance in Cancer. Cancers (Basel). 2019;11:1775.PubMedCentralCrossRef Ho CJ, Gorski SM. Molecular mechanisms underlying autophagy-mediated treatment resistance in Cancer. Cancers (Basel). 2019;11:1775.PubMedCentralCrossRef
196.
197.
Zurück zum Zitat Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018;18:452–64.PubMedPubMedCentralCrossRef Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018;18:452–64.PubMedPubMedCentralCrossRef
198.
Zurück zum Zitat Amawi H, Sim HM, Tiwari AK, Ambudkar SV, Shukla S. ABC transporter-mediated multidrug-resistant Cancer. Adv Exp Med Biol. 2019;1141:549–80.PubMedCrossRef Amawi H, Sim HM, Tiwari AK, Ambudkar SV, Shukla S. ABC transporter-mediated multidrug-resistant Cancer. Adv Exp Med Biol. 2019;1141:549–80.PubMedCrossRef
199.
Zurück zum Zitat Hu Q, Baeg GH. Role of epigenome in tumorigenesis and drug resistance. Food Chem Toxicol. 2017;109:663–8.PubMedCrossRef Hu Q, Baeg GH. Role of epigenome in tumorigenesis and drug resistance. Food Chem Toxicol. 2017;109:663–8.PubMedCrossRef
200.
Zurück zum Zitat Xu W, Zhou B, Zhao X, Zhu L, Xu J, Jiang Z, Chen D, Wei Q, Han M, Feng L, et al. KDM5B demethylates H3K4 to recruit XRCC1 and promote chemoresistance. Int J Biol Sci. 2018;14:1122–32.PubMedPubMedCentralCrossRef Xu W, Zhou B, Zhao X, Zhu L, Xu J, Jiang Z, Chen D, Wei Q, Han M, Feng L, et al. KDM5B demethylates H3K4 to recruit XRCC1 and promote chemoresistance. Int J Biol Sci. 2018;14:1122–32.PubMedPubMedCentralCrossRef
201.
Zurück zum Zitat Schizas D, Mastoraki A, Naar L, Tsilimigras DI, Katsaros I, Fragkiadaki V, Karachaliou GS, Arkadopoulos N, Liakakos T, Moris D. Histone Deacetylases (HDACs) in gastric cancer: An update of their emerging prognostic and therapeutic role. Curr Med Chem. 2019. Schizas D, Mastoraki A, Naar L, Tsilimigras DI, Katsaros I, Fragkiadaki V, Karachaliou GS, Arkadopoulos N, Liakakos T, Moris D. Histone Deacetylases (HDACs) in gastric cancer: An update of their emerging prognostic and therapeutic role. Curr Med Chem. 2019.
Metadaten
Titel
Long non-coding RNAs towards precision medicine in gastric cancer: early diagnosis, treatment, and drug resistance
verfasst von
Li Yuan
Zhi-Yuan Xu
Shan-Ming Ruan
Shaowei Mo
Jiang-Jiang Qin
Xiang-Dong Cheng
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2020
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-020-01219-0

Weitere Artikel der Ausgabe 1/2020

Molecular Cancer 1/2020 Zur Ausgabe

Positiver FIT: Die Ursache liegt nicht immer im Dickdarm

27.05.2024 Blut im Stuhl Nachrichten

Immunchemischer Stuhltest positiv, Koloskopie negativ – in solchen Fällen kann die Blutungsquelle auch weiter proximal sitzen. Ein Forschungsteam hat nachgesehen, wie häufig und in welchen Lokalisationen das der Fall ist.

Mammakarzinom: Brustdichte beeinflusst rezidivfreies Überleben

26.05.2024 Mammakarzinom Nachrichten

Frauen, die zum Zeitpunkt der Brustkrebsdiagnose eine hohe mammografische Brustdichte aufweisen, haben ein erhöhtes Risiko für ein baldiges Rezidiv, legen neue Daten nahe.

Mehr Lebenszeit mit Abemaciclib bei fortgeschrittenem Brustkrebs?

24.05.2024 Mammakarzinom Nachrichten

In der MONARCHE-3-Studie lebten Frauen mit fortgeschrittenem Hormonrezeptor-positivem, HER2-negativem Brustkrebs länger, wenn sie zusätzlich zu einem nicht steroidalen Aromatasehemmer mit Abemaciclib behandelt wurden; allerdings verfehlte der numerische Zugewinn die statistische Signifikanz.

ADT zur Radiatio nach Prostatektomie: Wenn, dann wohl länger

24.05.2024 Prostatakarzinom Nachrichten

Welchen Nutzen es trägt, wenn die Strahlentherapie nach radikaler Prostatektomie um eine Androgendeprivation ergänzt wird, hat die RADICALS-HD-Studie untersucht. Nun liegen die Ergebnisse vor. Sie sprechen für länger dauernden Hormonentzug.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.