Skip to main content
Erschienen in: Journal of Neuroinflammation 1/2022

Open Access 01.12.2022 | Review

Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression

verfasst von: Haixia Wang, Yi He, Zuoli Sun, Siyu Ren, Mingxia Liu, Gang Wang, Jian Yang

Erschienen in: Journal of Neuroinflammation | Ausgabe 1/2022

Abstract

Major depressive disorder is a highly debilitating psychiatric disorder involving the dysfunction of different cell types in the brain. Microglia are the predominant resident immune cells in the brain and exhibit a critical role in depression. Recent studies have suggested that depression can be regarded as a microglial disease. Microglia regulate inflammation, synaptic plasticity, and the formation of neural networks, all of which affect depression. In this review, we highlighted the role of microglia in the pathology of depression. First, we described microglial activation in animal models and clinically depressed patients. Second, we emphasized the possible mechanisms by which microglia recognize depression-associated stress and regulate conditions. Third, we described how antidepressants (clinical medicines and natural products) affect microglial activation. Thus, this review aimed to objectively analyze the role of microglia in depression and focus on potential antidepressants. These data suggested that regulation of microglial actions might be a novel therapeutic strategy to counteract the adverse effects of devastating mental disorders.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12974-022-02492-0.
Haixia Wang and Yi He contributed equally in writing of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
MDD
Major depressive disorder
COVID-19
Coronavirus disease 2019
HPA
Hypothalamus–pituitary–adrenal
CNS
Central nervous system
PFC
Prefrontal cortex
HIP
Hippocampus
vHIP
Ventral hippocampus
BLA
Basolateral
SN
Substantia nigra
NPC
Neural progenitor cell
OPC
Oligodendrocyte progenitor cell
CD86, CD16/32
Differentiation marker 86 and 16/32
iNOS
Inducible nitric oxide synthase
Arg1
Arginase-1
TGF-β1
Transforming growth factor-β1
BDNF
Brain-derived neurotrophic factor
DAM
Disease-associated microglia
PAMPs
Pathogen-associated molecular patterns
DAMPs
Danger-associated molecular patterns
TLRs
Toll-like receptors
LPS
Lipopolysaccharide
IFN-γ
Interferon-γ
IL-1β
Interleukin-1β
TNF-α
Tumor necrosis factor-α
ROS
Reactive oxygen species
ACC
Anterior cingulate cortex
QUIN
Quinolinic acid
PET
Positron emission tomography
Iba-1
Ionized calcium-binding adapter molecule 1
CMS
Chronic mild stress
CSDS
Chronic social defeat stress
CRS
Chronic restraint stress
OBX
Olfactory bulbectomy
LH
Learned helplessness
NLRP3
Nod-like receptor pyrin containing 3
NF-κB
Nuclear factor-kappa B
SPT
Sucrose preference test
FST
Forced swimming test
TST
Tail suspension test
LD
Light–dark
SIT
Social interaction test
NORT
Novel object recognition test
AD
Alzheimer’s disease
SGZ/GCL
Subgranular zone/granule cell layer
CWIRS
Chronic water-immersion restraint stress
NMDAR
N-Methyl-d-aspartate receptor
SYP
Synaptophysin
PSD95
Postsynaptic densitin-95
SSRIs
Selective serotonin reuptake inhibitors
TCAs
Tricyclic antidepressants
TRP
Tryptophan
KP
Kynurenine pathway
KYNA
Kynurenic acid
3-HK
3-Hydroxykynurenine
KYN
Kynurenine
NSFT
NOvelty suppressed feeding test
ST
Splash test
IDO1
Enzyme indoleamine 2, 3-dioxygenase 1
PSD
Poststroke depression
BDNF
Brain-derived neurotrophic factor
HAAO
3-Hydroxyanthranilate 3, 4-dioxygenase
NAc
Nucleus accumbens
LTP
Long-term potentiation
PPARγ
Peroxisome proliferator-activated receptor γ
NSE
Neuron-specific enolase
vmPFC
Ventral medial prefrontal cortex
COX-2
Cyclooxygenase-2
TrkB
Tyrosine kinase B
BTK
Bruton’s tyrosine kinase
HMGB1
High mobility group box 1
TNFR1
TNF receptor 1
SalB
Salvianolic acid B
GWI
Gulf war illness

Background

Major depressive disorder (MDD) is a public health problem that affects approximately 322 million people worldwide [1]. During the coronavirus disease 2019 (COVID-19) pandemic, a meta‐analysis reported that 45% of COVID‐19 patients experienced depression [2]. Over 700,000 people die from suicide every year due to depressive disorder, which results in a heavy burden on individuals and society [3]. Clinical symptoms of MDD include persistent low mood, appetite loss, decreased interest in favorite activities, despair, sleepy disorders, and, in severe cases, suicidal behavior [4]. Unfortunately, due to its complexity and heterogeneity that are determined by genetic and environmental factors, the biological mechanisms underlying depression remain unclear. Currently, theories concerning depression primarily focus on the monoamine neurotransmitter depletion hypothesis, neuroplasticity hypothesis, and hypothalamus–pituitary–adrenal (HPA) axis hypothesis [5]. However, limitations are associated with these specific pathological mechanisms, such as an inability to explain the delayed effect of antidepressants and a lack of focus on cells other than neurons in the central nervous system (CNS) [6, 7].
Microglia are the first line in the innate immune system in the CNS and actively regulate microenvironmental changes in healthy and disordered brains. Microglial activation regulates inflammation, synaptic refinement, synaptic pruning, and neuronal connectivity [8]. Depression is considered a microglia-associated disorder (microgliopathy) [9]. Ample evidence suggests that microglia-mediated neuroinflammation interacts with all three theories correlated with MDD listed above [10, 11]. Neuroinflammation and the HPA axis are thought to function in a coordinated manner, and their dysregulation might mediate the onset of depression [10, 1214]. Some clinical antidepressants affect the activation of microglia and neuroinflammation [1517]. Nonsteroidal anti-inflammatory drugs appear to alleviate depressive symptoms by inhibiting microglial activation [18]. Minocycline is a semisynthetic tetracycline antibiotic that decidedly improves depressive-like behaviors by inhibiting microglial activation in the prefrontal cortex (PFC) and hippocampus (HIP) [19]. Microglial activation can be divided into the classic activation of M1 or alternate activation of M2 under optimal conditions [20]. Recently, pharmacological principles that modulate microglial polarization may provide beneficial treatments to alleviate the recurrence of psychiatric disorders [2123].
Therefore, we conducted a systematic review using the Pubmed electronic database. Search themes included depression and microglia, neurogenesis, stress, and antidepressants. Articles from 1992 to 2021 were reviewed that focused on the connection between microglia and depression. In this review, we described the activation states of microglia in animal models and clinically depressed patients. We elucidated the mechanisms underlying depression and the therapeutic potential of targeting microglia. Finally, we highlighted the protective effects of antidepressants that act through modulating microglia in stress-induced animal models of depression.

Microglia: origin and function

Origin and development of microglia

Microglia were first described as a distinct cell type by Spanish neuroscientist Pio del Rio-Hortega in 1919 and account for approximately 5–10% of the total cell population in the brain [24]. The number of microglia in the adult mouse brain is estimated at 3.5 million, with variations in density across different regions. For example, more microglia are found in the HIP, substantia nigra (SN), olfactory telencephalon, and basal ganglia. Fewer microglia are observed in the fiber tracts, cerebellum, and the majority of brainstem [25]. Ontogenetically, recent fate-mapping studies have revealed that microglia originate from erythromyeloid progenitor cells in the developing embryonic yolk sac, and migrate into the embryonic CNS to differentiate into mature microglia. CNS microglia form a self-renewing cell population through proliferation and apoptosis throughout life of the individual [26, 27].

Characteristics and functions of microglia

As CNS immune effector cells, microglia are similar to peripheral macrophages with respect to their morphology and functions [28]. Under normal conditions, neurons serve a regulatory role in the CNS. Microglia provide protection and nutritional support to neurons, influence neuronal homeostasis, regulate synaptogenesis, and activate astrocytes (Fig. 1) [29, 30]. Resting microglia are characterized by a small soma with multiple symmetrically distributed protrusions that protrude at a rate of 0.4–3.8 μm/min to maintain either an extended or contracted state to sense changes in surrounding environment. Microglia are maintained in a relatively resting state in part by signals from neurons and astrocytes [31]. In response to challenges, such as tissue injury, pathogens, or other pathological processes, microglia quickly respond to the homeostatic imbalance and undergo considerable morphological transformation to provide defense mechanisms [32]. Specifically, the processes retract, the soma enlarges, and the ramification of the distal branches decreases. Activated microglia undergo additional morphological change and present a characteristic “amoeba-like” shape. The number of transformed microglia increases, and they migrate to the injured site at a rate of 1–2 μm/min for tissue repair [33, 34]. The activated microglia gradually shift from providing nutritional support and repairing neurons to neuronal dysfunction. These changes in function may be more persistent after continuous exposure to certain stimuli. This response further recruits peripheral innate immune cells (e.g., macrophages) and adaptive immune cells (e.g., B cells) to cross the blood–brain barrier and eventually lead to cognitive and emotional disorders [3537].

The polarization of microglia

Microglia exist in a resting state under normal physiological conditions and carry out “immune surveillance” functions [38, 39]. When CNS damage or infection occurs, microglia can be broadly divided into the classic activation (M1) or alternative activation (M2) phenotype. M1 microglia result in pro-inflammatory cytokine release and increased expression of several differentiation marker 86 and 16/32 (CD86, CD16/32) and inducible nitric oxide synthase (iNOS). M2 microglia are inclined to express anti-inflammatory cytokines, arginase-1 (Arg1), transforming growth factor-β1 (TGF-β1), CD206, and chitinase-3-like-3 [22]. M1 microglia remove apoptotic cells, pathogens, and inhibit normal neuron growth, which adversely affects synaptic transmission. M2 microglia promote phagocytosis of cell fragments and misfolded proteins, tissue repair, and support neuron survival. Intriguingly, M2 microglia are driven by the coordinated regulation of multiple anti-inflammatory mediators and against M1-induced inflammation that ultimately achieve immune suppression and neuronal protection (Fig. 2) [40].
However, the status of microglia may include a range of different but overlapping functional phenotypes that are in response to changes in their local environment. Novel single-cell technologies, such as single-cell RNA sequencing and cytometry by time-of-flight mass spectrometry, have emerged as superior methods to characterize immune cell types and states, the transition from normal to disease, and respond to therapy. For instance, microglia were isolated from LPS-injected mice that showed downregulation of homeostatic markers (e.g., Tmem119, Mef2c, P2ry13, P2ry12, and Siglech) and upregulation of inflammatory genes (e.g., Ccl2, Gpr84, and Nfkbia) by single-cell RNA sequencing and multicolor flow cytometry [41]. In the brains of a transgenic mouse model of Alzheimer’s disease (AD), a novel type of microglia (disease-associated microglia, DAM) was identified using single-cell analysis. Researchers further discovered that Trem2 is necessary for transformation from DAM stage-1 to DAM stage-2 [42]. With the development of unbiased and high-throughput analytical methods, it is possible to comprehensively characterize the spatial and temporal heterogeneity of microglia during CNS development and disease [43, 44]. Based on current research of microglial phenotypes, the classification using M1 and M2 subtypes is oversimplified and not universally accepted. We will use “pro-inflammatory” or “anti-inflammatory” microglia in subsequent descriptions to highlight the contribution of microglia in depression.

Microglia in depression

Clinical evidence

A growing body of research has shown that damage to the typical structure and function of microglia in the developing and adult brain is associated with the etiology of depressive disorders. Changes in microglia in different brain regions, including the PFC, HIP, anterior cingulate cortex (ACC), and amygdala, are involved in the development of depression. Previous studies have shown that considerable microglial activation occurs in the PFC and ACC during severe episodes of MDD. Microglial activation in ACC also is positively correlated with the severity of the depressive episode [45]. Positron emission tomography (PET) scans have shown that microglia are increased in ACC during episodes of MDD [46]. At the same time, the TSPO levels (a marker of microglial activation) were increased in MDD patients [47]. A cross-sectional study using 18F-FEPPA PET showed a strong relationship between the total distribution volume of TSPO and the duration of untreated MDD, total illness duration, and antidepressant exposure [48]. Correspondingly, in an autopsy study of patients with MDD, the concentrations of quinolinic acid (QUIN) produced by microglia were increased in the subgenual ACC and anterior midcingulate cortex of suicide victims [49]. In the dorsal ACC white matter from depressed suicide patients, microglial density was increased significantly, as identified by elevated gene expressions of ionized calcium-binding adapter molecule 1 (Iba-1), CD45, and monocyte chemoattractant protein-1 [50]. Another study reported similar results that were obtained in the prefrontal white matter [51]. Nevertheless, the role of microglia-mediated inflammation in the occurrence of depression is still controversial. Additional evidence demonstrated that microglia decrease in depression. In subjects with familial MDD, glia cells were clearly reduced while the number of neurons remained unchanged [52]. Brain imaging revealed cortical atrophy in the subgenual part of Brodmann’s area 24 [52]. A similar reduction in glial density was also observed in the orbital cortex, ACC, and dorsolateral PFC, based on a laminar analysis [5355]. In addition, the numbers of glial cells were reduced, especially on the left side of the amygdala in MDD patients, when assessed using stereological methods [56]. However, no reduction in the numbers of glia was found in area 3b of the somatosensory cortex in patients with depression, suggesting that glial reduction in mood disorders is limited to specific brain structures [57].
In addition to depression disorder, microglial activation has been reported in other mental disorders such as anxiety [58], schizophrenia [59], and autism spectrum disorders [60, 61]. Anxiety disorders often emerge early in life and are associated with other diseases. Clinical reports on microglia and anxiety disorders remains extremely limited, except in animal models of depression [58]. A PET imaging study demonstrated increased microglial activity in patients with schizophrenia and persons at ultra-high risk of psychosis [62]. In autism, increases in microglia were observed in cortical areas (fronto-insular and visual cortex) of the brain [63]. Conversely, several studies reported no significant microgliosis or changes in the expression of glial cell markers in schizophrenia and autism [60]. Therefore, there are different opinions concerning microglial activation in the development of these mental diseases, which may be related to assessments during different stages of disease onset or individual heterogeneity. The treatment of depression should be personalized based on the status of major depression and microglial function in individual patients. It also is worth noting that suicide has a high prevalence in the long-term course of mental diseases. Postmortem analysis has revealed that an elevated microglial density in schizophrenia and depressive patients is associated with suicide [59], indicating altered microglial activity might be critical in psychiatric disorders.

Preclinical evidence

Considerable research has focused on the relationship between MDD and microglia in various animal models. Sustained microglial activation that exhibited high levels of pro-inflammatory cytokines has been observed in different brain regions [6468], while inhibition of microglia alleviated depressive-type behaviors [69]. In this review, we illustrated the effects of microglial activation in animal models of depression, including acute/chronic stress and rodent pharmacological models. The search themes that were used included “LPS, chronic mild stress (CMS), chronic social defeat stress (CSDS), chronic restraint stress (CRS), olfactory bulbectomy (OBX), or learned helplessness (LH) combined with microglia and depression, respectively. The results indicated that microglia involved in nearly all models mentioned above. Among them, microglia were most evident in the models associated with LPS, CMS, and CRS, as well as CSDS-induced neuroinflammation, as shown in Fig. 3.
In a mouse model of acute depression, intraperitoneal injection of LPS activated the nod-like receptor pyrin containing 3 (NLRP3) expression and IL-1β cleavage in the HIP. Immunofluorescence staining showed that NLRP3 was primarily expressed in Iba-1 positive microglia when compared with control mice [70]. In BV2 microglial cells, LPS exposure induced an imbalance between the pro-inflammatory and anti-inflammatory microglial phenotype [71], activated TLR4/nuclear factor-kappa B (NF-κB) pathway, and downregulated TREM2 expression [72]. In the HIP and cortex of CMS-exposed mice, immunofluorescence staining revealed that the activated microglia (Iba-1 positive cells), as well as increased pro-inflammatory microglial markers (IL-1β, TNF-ɑ, IL-6, INF-γ, and iNOS) and decreased anti-inflammatory markers (Ym1, IL-4, IL-10, and Arg-1), suggesting a transformation of the microglial phenotype [73]. The CSDS paradigm also produces mood alterations and microglial activation, as well as ROS elevation. In addition, depletion of microglia using PLX5622 protects against behavioral abnormalities in the light–dark (LD) and social interaction (SI) tests [74]. These studies provide evidence that depressive-like behaviors and inflammation are present in chronic stress and pharmacological rodent models, which might be associated with persistent interference in microglia-related signaling. Other animal models that demonstrate an association between depression and microglia are shown in the Additional file 1: Table S1.
Since 1992, numerous studies have verified the concept that CNS microglia-mediated inflammation may contribute to depression and is closely related to regional selectivity and disease severity. Even though a strong correlation between microglia and depression has been observed in patients and animal models, determining whether microglial abnormalities actually play a significant role in depression remains challenging.

The role of microglia in the pathogenesis of depression

Microglia–neuron communication in depression

Microglia–neuron communication functions bi-directionally. Microglia impart considerable influence on numerous aspects of neuronal function. Similarly, neurons regulate microglial functions mainly through soluble factors such as chemokines, cytokines, and neurotransmitters. Among these factors, CX3CL1 and CD200 are primarily expressed by neurons, and their receptors, CX3CR1 and CD200R, are expressed on microglia [75]. Dysfunctional interactions between neurons and microglia are critical factors in severe neurological disorders, including depression, schizophrenia, and AD.
The communication between CX3CL1 and CX3CR1 contributes to the ability of microglia to maintain functional stability. Depending on the degree of brain damage, CX3CL1 leads to increased microglia pro-inflammation or maintenance of microglia in a quiescence state [76, 77]. In a LPS-induced depression model, the decreased expression of CX3CL1 and microglial activation were observed in the HIP [78]. The serum levels of CX3CL1 in patients with moderate–severe depression were higher than in the control group [79]. A similar observation was made for the plasma levels of CX3CL1 from MDD patients with co-morbid cocaine addiction [80]. Cx3cr1-deficient mice displayed transient microglial reductions during the early postnatal period and subsequent defects in synaptic pruning. Defective synaptic pruning has been associated with less effective synaptic transmission and decreased neural circuit formation, and social interaction, as well as increased repetitive behavior, which also have been observed in several neuropsychiatric disorders. These findings suggest that microglia-mediated disruption of synaptic pruning could be associated with neurodevelopmental and neuropsychiatric disorders [81]. More importantly, previous studies have suggested that hyper-ramified microglia (process branching and/or soma enlargement) is connected to depressive-like behavior in rodents. The CX3CR1-deficient mice showed definite resistance to repetitive swim stress-induced depressive-like behavior and microglia hyper-ramification changes compared to wild-type mice [82]. Also, CX3CR1-deficient mice also demonstrated the impairment in long-term potentiation (LTP). Treatment with an IL-1β receptor antagonist significantly reversed the cognitive function and synaptic plasticity impairments observed in CX3CR1-deficient mice [83]. The prenatal stress produced behavioral disturbances in anxiety and depressive behavior in adult offspring of rats. The underlying mechanism may be related to the upregulation of CXCL12 and its receptor, as well as decreased CX3CL1-CX3CR1 expression in the HIP and frontal cortices, whereas exogenous CX3CL1 application alleviated the observed changes [84, 85]. Furthermore, CX3CR1 deficiency has been shown to impair neuron–microglia responsiveness to chronic stress [86]. Treatment with antidepressants such as fluoxetine, venlafaxine, or tianeptine normalized these behavioral and biochemical alterations [84].
Recently, CD200-CD200R has been shown to be related to the pathogenesis of depression through animal models studies that focused on using different stress-inducing protocols. For instance, exposure to inescapable tail shock resulted in reduced CD200R level in the HIP, basolateral (BLA), and central nucleus of the amygdale [87]. Similar observations have been reported in male and female rats [88]. However, a paradoxical observation indicated that unavoidable foot shocks in rats reduced the transcription level of CD200R in the hypothalamus, but not the HIP [89]. These discrepancies between published reports concerning the HIP might be attributed to the use of different protocols by the two research groups. In an IFN-α-induced model of depression, vulnerable mice displayed increased levels of MHC-II, CD86, and CD200R. These mice displayed depressive-like behaviors characterized by increased immobility time in the forced swimming test (FST) and tail suspension test (TST), as well as decreased explorative behavior in the novel object exploration test [90].

Microglia and neurogenesis in depression

During brain development, microglia regulate synaptic transmission, prune neuronal synapses, and facilitate the formation of neural circuits. Once homeostasis is disturbed, microglia are converted into an active state and release pro-inflammatory cytokines, chemokines, and reactive oxidants. The pro-inflammatory microglia are involved with the upregulation of pro-inflammatory mediators, which is usually considered a harmful event. Whereas anti-inflammatory microglia display protective effects in neuronal survival and adult neurogenesis [91].
Activation of microglia is a critical mechanism in neurogenesis inhibition in the presence of inflammation and stress [9]. Hippocampal neurogenesis is a complex neurobiological process involving the generation and functional integration of newborn cells into brain neural circuits [92]. Several studies have demonstrated that stress strongly suppresses adult hippocampal neurogenesis. Both acute and chronic stress have been reported to reduce adult neurogenesis by decreasing neuroprogenitor proliferation and newborn cell survival [9395], and also impair newborn neuron maturation [96, 97]. LPS infusion via a cannula for 4 weeks reduced the survival of new neurons in the subgranular zone/granule cell layer (SGZ/GCL) of the HIP, while 6 days of intracortical LPS infusion in rats did not affect the proliferation of new cells [98]. In addition, LPS-induced neuroinflammation suppressed proliferation and differentiation of neural stem cells in the dentate gyrus (DG) of the HIP, which was indicated by the decreased number of BrdU-, DCX- and NeuN-positive cells [99]. In an 8-week CMS-induced depression paradigm, C57BL/6 mice exhibited an increase in the number of Iba-1 positive cells and levels of IL-1β, IL-6, and TNF-α [100]. Another report on the CMS showed that an imbalance of peripheral inflammation markers and decreased CX3CL1/CX3CR1 immunoreactivity were associated with reduced numbers of BrdU/Ki-67/DCX+ (nascent, proliferating and DCX-associated) cells in the DG of the HIP [101]. Furthermore, in a graded study of the CMS for 5, 6, or 7 weeks, the investigators found that the pro- or anti-inflammatory microglial changes in the cortex and HIP, as well as BrdU/DCX+ cells, decreased in the DG [102]. Similar results related to the relationship between depressive-like behaviors and changes in microglia and neurogenesis have been reported in psychosocial stress models, including maternal separation [103], maternal sleep deprivation [104], chronic water-immersion restraint stress (CWIRS) [105], and CSDS [106, 107]. On the other hand, IL-4 and IL-10 induce alternative activation of anti-inflammatory factors that play a critical neuroprotective function in tissue remodeling and nerve regeneration. Treatment with IL-4 markedly inhibited IL-1β-caused depressive behavior by regulating glial activation and neurotransmitter levels in the HIP [108]. IL-4 stimulation increased the expression of insulin-like growth factor-1 in microglia, which has been reported to promote neurogenesis [109, 110]. Recent research demonstrated that IL-4-driven Arg1+ microglia modulate stress resilience through brain-derived neurotrophic factor (BDNF)-dependent neurogenesis in CMS mice [111]. IL-10-stimulated microglia enhanced the proliferation of NPCs but did not affect neuronal differentiation. IL-10-secreting microglia supported neuronal differentiation and the survival of newly formed cells in vitro [112]. CX3CR1CreERIL-10 knockout mice exhibited depression- and anxiety-like behaviors, along with decreased NR2B (N-methyl-D-aspartate receptor (NMDAR) subunit) and synaptophysin (SYP) levels in the mPFC, and increased NR2B and postsynaptic densitin-95 (PSD95) levels in the amygdala [113]. Furthermore, hippocampal neurogenesis was reduced in CX3CR1-deficient mice, and antagonizing CX3CR1 resulted in increased hippocampal IL-1β level and decreased neurogenesis in young rats [114]. Minocycline, a microglial inhibitor, reversed the pathogenic phagocytic potential of neurotoxic microglia, and reduced the negative phenotypes associated with reduced neurogenesis in depression models induced by chronic stress and LPS [115]. Therefore, these data suggest that microglia are correlated with reduced neurogenesis induced by exposure to stress and, in turn, may be responsible for the development of depressive-like behaviors.

Microglia-mediated activation of NLRP3 in depression

The NLRP3 inflammasome is a multi-molecule complex containing cytosolic NLRP3, adaptor protein ASC, and pro-caspase-1 precursor. NLRP3 plays a vital role in production of pro-inflammatory cytokines during the stress process [116]. The NLRP3 inflammasome is currently considered to be an essential molecular platform for regulating pro-inflammatory cytokines release. NF-κB nuclear translocation is an indispensable event in the initiation of NLRP3 activation, which further confirmed that NF-κB nuclear translocation might play a role in assembling the NLRP3 inflammasome. When NLRP3 is activated by repetitive stress, it modulates caspase-1 activation, which, in turn, promotes IL-1β and IL-18 maturation in microglia, where excessive secretion of cytokines contributes to the development and progression of MDD [117119].
NLRP3 inflammasome activation has even been observed in depressive patients and numerous animal models of depression. Previous studies have revealed that the NLRP3 inflammasome was activated in blood cells from MDD patients, and the levels of IL-1β and IL-18 were increased in serum. The increase in pro-inflammatory factors was positively correlated with Beck Depression Inventory scores [120], suggesting that NLRP3 might have a critical role in mediating the development of depression [121]. In another experimental study, a sustained CMS procedure (12 weeks) enhanced the levels of IL-1, NLRP3, ASC, TLR2, NF-κB, p-IKKα, and IKKβ in rat PFC, while these alterations were reversed with fluoxetine [122]. Immunofluorescent analysis has confirmed that the NLRP3 inflammasome was primarily activated only in microglia in the PFC (Iba-1/NeuN+ cells) [122]. Using NLRP3 inflammasome inhibitors AC-YVAD-CMK and VX-765 significantly improved depressive-like behavior, as shown by improvements in sucrose intake in the sucrose preference test (SPT) and immobility time in the FST of CMS mice [94, 123]. Moreover, activation of P2X7R and NLRP3 inflammasome-associated proteins in hippocampal microglia could mediate depressive-like behaviors, which provide new therapeutic targets for depression [124]. In a LPS-induced acute depression mouse model, NLRP3, ASC, and caspase-1 mRNA expressions were remarkably increased compared to the control group [125]. In addition, IL-1β secretion was closely controlled by the NLRP3 inflammasome, which plays an important role in the pathogenesis of depression [108]. Minocycline has an acute antidepressant role in CRS, CUMS, and LH models by inhibiting microglia and NLRP3 activation [126129]. Fluoxetine conferred an antidepressant effect in part by inhibiting NLRP3 inflammasome activation [130]. Clomipramine reversed LPS-induced increases in IL-1β, IL-6, TNF-α, and NLRP3 gene expressions in vivo, as well as in vitro in BV2 cells [131]. Electro-acupuncture treatment for 4 weeks markedly reversed CMS-induced increases in NLRP3 inflammasome-associated components (NLRP3, ASC, and caspase-1) and the expressions of mature IL-1β, as well as IL-18, TNF-α, IL-6, P2X7 receptor, and Iba-1 [132]. Iptakalim negatively regulates NLRP3 expression and, in turn, affects microglia-mediated neuroinflammation by inhibiting the activation of NLRP3/caspase-1 axis in the HIP of CMS mice [94]. These findings suggest that microglial NLRP3 activation is a central mediator involved in depressive-like behaviors in animal models and MDD patients.

Microglia-mediated kynurenine pathway in depression

Chronic stress stimulation or inflammation may contribute to tryptophan (TRP) metabolism associated with the kynurenine pathway (KP). The generation of neuroactive kynurenine metabolites leads to subsequent depressive-like symptoms [133]. KP metabolizes tryptophan into several bioactive metabolites in the brain, including QUIN (an NMDAR agonist) and kynurenic acid (KYNA, an α7-AChR and NMDAR antagonist). KYNA is primarily formed in astrocytes [134], which exhibit a neuroprotective function via their ability to eliminate glutamate spillover. QUIN is produced mainly by microglia [135] and has a strong excitotoxic role through enhancing NMDAR activation [136]. Microglia regulate KP balance by preferentially producing oxidative metabolites, including QUIN. Other metabolites of KP, including 3-hydroxykynurenine (3-HK) and anthralinic acid, do not directly affect neuronal activity but are involved in complicated pro-oxidation and anti-oxidation processes [137].
Recent studies have found that microglial QUIN expression was increased in the subgenual and supracallosal regions of the ACC in post-mortem brains of suicide patients with severe depression. In contrast, additional research revealed decreased QUIN in left CA1 or right CA2/3 areas of the HIP in uni- and bipolar depression patients [138]. Moreover, a meta-analysis revealed decreased KYNA and kynurenine (KYN) levels in patients with depression and increased QUIN level in antidepressant-free patients [139]. Similar results have been reported concerning the increase of QUIN in peripartum depression and adolescent MDD [140, 141]. In addition to clinical data, enhanced levels of 3-HK and QUIN have been observed in several models of depression [142, 143]. LPS and other infectious agents, including viruses, upregulate the release of inflammatory cytokines by binding to TLRs, which in turn directly and indirectly induce KP metabolism via pro-inflammatory cytokines [144]. Ketamine treatment could reduce the LPS-induced depressive-like alterations observed in the novelty suppressed feeding test (NSFT) and splash test (ST) [145]. In a genetic animal model, the level of KYNA was reduced in the PFC of Flinders sensitive line rats compared with Flinders resistant line control rats [146]. In addition, CMS contributed to QUIN production and its release from microglia in the HIP. QUIN resulted in the elevation of Glu level via NMDARs and mGluR1, as well as the increased expression of NR2B and mGluR1, which lead to depressive-like symptoms [147]. CRS exposure induced depressive-like behavior in C57BL/6 J mice, which was attributed partially to disruption of the neuroprotective/neurotoxic balance of the kynurenine metabolic pathway in the gut and brain [148]. Enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is considered to be a rate-limiting enzyme for tryptophan metabolism in KP [149]. Treatment with the IDO inhibitor, 1-methyl-tryptophan, partially prevented CRS-induced depression- and anxiety-like changes [148]. The chronic forced swim test and tail suspension test in mice enhanced KYN/TRP and reduced the 5-HT/TRP ratio, which indicated activation of IDO1 [150]. In the poststroke depression (PSD) mouse model, 3-hydroxyanthranilate 3,4-dioxygenase (HAAO), QUIN, IDO1, Iba-1, and ROS were remarkably increased in the nucleus accumbens (NAc), HIP, and hypothalamus. At the same time, treatment with aripiprazole ameliorated the abnormal behaviors in PSD mice that were accompanied by decreased levels of IDO1, HAAO, QUIN, and ROS [151]. IDOInh is a specific inhibitor of IDO1 and has been shown to reverse fear learning and memory in CSDS-induced depressed mice by decreasing KYN and 3-HK levels in the blood and brain [152]. Consequently, it has been proposed that kynurenine metabolites directly interact with microglial activity, which provides a reliable target for investigating the mechanisms underlying antidepressant drugs.

Effects of antidepressants on microglia

Currently, numerous reports using different experimental models have indicated that antidepressants, including clinical and plant-based drugs, exert their antidepressant effects, in part, by regulating microglial phenotypes. Regulation of microglia has been proposed as a potentially effective therapeutic strategy in chronic inflammatory diseases [29, 30]. In this section, we summarized the current knowledge of antidepressants (clinical medicine and natural products) that act against microglial dysfunction in stress-induced depression models (Tables 1 and 2).
Table 1
Traditional antidepressants regulate the microglia-mediated neuroinflammation in animal models of depression
Treatment
Animal models
Behavioral test
Analyzed regions
Microglia
Pro-inflammation
Anti-inflammation
Fluoxetine [154]
CSDS
OFT, EPM, SIT
Serum
ELISA: TNF-α ↓, HMGB1 ↑
Hip
Iba-1(–)
mRNA:TNF-α, IL-1β, RAGE, TLR4 ↑
Proteins: T-HMGB1, T-p65, IκB ↑, TLR4 ↓
mRNA: Arg-1, CD206 ↑
Fluoxetine [170]
CMS
Nest-building test, Dexamethasone suppression test
Cortical
CD11 b/P2X7R+
Amygdala
CD11 b/P2X7R+
HIP
CD11 b/P2X7R+
Fluoxetine [105]
CWIRS
SPT, FST, TST
HIP
Proteins: CD68, Iba-1 ↓
Proteins: IL-1β, TNF-α, iNOS ↓
Fluoxetine [155]
LPS
SPT, FST
HIP
Iba-1/COX-2+↓ in DG
ELISA: IL-1β, IL-6, TNF-α
Proteins: TLR4, NLRP3 ↓
Citalopram [101]
CMS
SPT, FST
HIP
Iba-1+↑; CX3CL1+↑, CX3CR1+↑ in DG
Escitalopram [16]
CMS
OFT, SPT, TST, FST, NSFT
HIP
Proteins: IL-6, IL-1β ↓
IL-10 (–)
Cerebral cortex
Protein: TNF-α ↓
IL-10 (–)
Imipramine [107]
CSDS
SIT, SPT, TST, FST
Serum
ELISA: IL-1β, IL-6, TNF-α ↓
HIP
Iba-1+↓ in DG
mRNA: IL-1β, IL-6, TNF-α ↓
Proteins: p-p65/p65, cleved-Caspase-3, ac-NF-κB ↓
Sertraline [171]
CMS
SPT, TST, FST
PFC
Iba-1/HMGB1+
Proteins: TNF-α, IL-1β ↓
Serum
ELISA: TNF-α, IL-1β, NO ↓
Sertraline [172]
CMS
TST, FST
Brain
Protein: Iba-1 ↓
Proteins: TNF-α, iNOS, IL-1β, p-p65-NF-κB, p65-NF-κB, p-IκB-α ↓
Serum
ELISA: TNF-α, IL-1β ↓
Vortioxetine [17]
LPS
OFT, SPT, NORT
Dorsal HIP
mRNA: CD14, CD86 ↑
mRNA: TNF-α, IL-6, IDO1 ↑
mRNA: IL-4, TGF-β1 ↑
Ventral hippocampus (vHIP)
mRNA: CD14, CD86, CD11b ↑
mRNA: IL-1β, IL-6, IDO1 ↑
mRNA: IL-4, IL-1Rα ↑
Imipramine [173]
Repeated social defeat
OFT, social avoidance test
Plasma
ELISA: IL-6, CORT ↓
Brain
Proteins: CD45, CD11b ↓
Imipramine [156]
LH
Hilus
Iba-1+
Clomipramine [131]
LPS
TST, FST
HIP
Iba-1+
mRNA: IL-1β, TNF-α, IL-6 ↓
Agomelatine [174]
LPS
vHIP
mRNA: CD11b, CX3CL1, CX3CR1 ↓, CD68 ↑
Melation [70]
LPS
TST, FST
HIP
Iba-1/NLRP3+
Proteins: pro-IL-1β, IL-1β, NLRP3, caspase-1
SRT2104 [175]
CMS
OFT, SPT, TST, FST
HIP
Iba-1+, CD11b+ CD45low+ (–)
mRNA: IL-6, IL-1β, iNOS ↓
CD11b+ MHCII+
mRNA: IL-10, TGF-β, Arg-1 ↑ CD11b+CD206+
Pioglitazone [169]
CMS
OFT, SPT, TST, FST
HIP
Iba-1+
mRNA: IL-1β, IL-6, TNF-α, iNOS, CCL2 ↓
mRNA: Ym1, Arg1, IL-4, IL-10, TGF-β ↑
Clemastine [176]
CMS
SPT, TST, FST
Serum
ELISA: IL-1β, TNF-α ↓
HIP
Protein: Iba-1 ↓
Proteins: IL-1β, TNF-α, iNOS ↓
Protein: Arg-1 ↑
Minocycline [163]
OBX + spinal nerve ligation
OFT
PFC
mRNA: IL-1β, IL-6 ↑
mRNA: MRC2, IL-10 ↑
Minocycline [14]
CMS
SPT, FST, EMP
Serum
CORT ↓
HIP
mRNA: CD11b, IFN-γ/IL-4, IFN-γ/IL-10 ↓
mRNA: IFN-γ, TNF-α, IL-1β, IL-17 ↓
Protein: CD11b ↓
mRNA: TGF-β1, IL-4, IL-10, IL-13 ↑
Memantine [177]
OBX
Emotional behavior, TST, FST
HIP
Iba-1+
Proteins: p-IkBα, p-p65-NF-κB, TNF-α, IL-6 ↓
Iptakalim [94]
CMS
SPT, TST, FST
Serum
ELISA: IL-1β ↓
HIP
MAC-1+↓ in DG
mRNA: TNF-α, IL-6
Proteins: p65, IL-1β, NLRP3, caspase-1 ↓
mRNA: IL-10 ↑
Simvastatin [178]
LPS or CMS
SPT, FST, NSFT
HIP
Iba-1+
Proteins: p65-NF-κB, IL-1β, TNF-α, IL-6 ↓
ONO-2952 [179]
CSDS
OFT, EMP, TST, FST
NAc
Proteins: TNF-α, IL-6 ↓
BLA
DHE/Iba1+
Proteins: IL-1β, IL-6, IL-12 ↓
PFC
Proteins: IL-1β, IL-12 ↓
vHip
Protein: IL-12 ↓
Iptakalim [180]
CRS
OFT, FST
Hypothalamus
TNF-α/CD11b+
mRNA: TNF-α, TLR4, IL-1β ↓
Caffeine [105]
CWIRS
SPT, FST, TST
HIP
Protein: Iba-1 ↓
CD68+
Proteins: CD68, iNOS, TNF-α, IL-1β ↓
Apelin-13 [181]
CWIRS
OFT, SPT, TST, FST
HIP
Iba-1+↑, Iba-1/iNOS+↑, Iba-1/Arg-1+↓ in CA1
Proteins: IL-1β, IL-6, iNOS ↓
Proteins: IL-1β, IL-6, Arg-1 ↑
Melatonin [101]
CMS
SPT, FST
HIP
Iba-1+, CX3CL1+, CX3CR1+↑ in DG
ω-3 polyunsaturated fatty acids [182]
Ovariectomized
SPT, FST, NSFT, TST
HIP
Iba-1+↓ in DG
mRNA: IL-1β, IL-6, TNF-α, CD68 ↓
Proteins: p-p65, IκB, iNOS ↓
mRNA: IL-4, IL-10, CD206, Arg-1 ↑
Protein: Arg-1 ↑
Fingolimod [183]
CMS
OFT, SPT, FST, WMW
HIP
mRNA: Iba-1 ↑
ELISA: IL-1β, IL-6, TNF-α ↓
mRNA: NLRP3, ACS, caspase-1, iNOS, CD16 ↓
Proteins: iNOS, CD16, NLRP3, ACS, caspase-1 ↓
ELISA: IL-10 ↑
mRNA: Arg-1, CD206 ↑
Proteins: Arg-1, CD206 ↑
↑upregulated; ↓downregulated; (–) no significant difference;—no explicit data
Table 2
Plant-derived natural compounds and formulations that regulate microglia-mediated neuroinflammation in animal models of depression
Treatment
Animal models
Behavioral test
Analyzed regions
Microglia
Pro-inflammation
Anti-inflammation
Crocin [226]
LPS
OFT, FST, TST, FST
HIP
ELISA: IL-1β, IL-18, TNF-α ↓
Proteins: CD16/32, iNOS, p-65-NF-κB ↓
Protein: CD206 ↑
Baicalin [186]
CMS
OFT, FST, TST, FST
HIP
Proteins: IL-1β, IL-6, TNF-α, TLR4 ↓
Catalpol [205]
CMS
OFT, EPM, FST
HIP
Iba-1+
mRNA: IL-1β, TNF-α, iNOS, IL-6, CD206 ↓
Proteins: NLRP3, cleaved caspase-1, IL-1β ↓
ROS ↓
mRNA: CD206 ↑
Ganoderic acid A [227]
MCAO + CMS
OFT, SPT
HIP
ELISA: TNF-α, IL-1β, IL-6 ↓
mRNA: TNF-α, IL-1β, IL-6, iNOS, CD68 ↓
Proteins: iNOS, CD68 ↓
ELISA: IL-10 ↑
mRNA: IL-10, CD206, Arg-1 ↑
Proteins: CD206, Arg-1 ↑
Ginsenoside Rb1 [73]
CMS
OFT, SPT, TST, FST
HIP
Iba-1+
mRNA: TNF-α, IL-1β ↓
mRNA: TGF-β, Arg-1 ↑
Cortex
Iba-1+
mRNA: TNF-α, IL-1β ↓
mRNA: TGF-β, Arg-1 ↑
Salvianolic acid B [213]
CMS
SPT, TST, FST
HIP
Iba-1+(–)
ELISA: TNF-α ↓
mRNA: IL-1β, TNF-α ↓
ELISA: IL-10 ↑
mRNA: IL-10, TGF-β ↑
Cortex
Iba-1+
ELISA: TNF-α ↓
mRNA: IL-1β, TNF-α ↓
ELISA: IL-10 ↑
mRNA: IL-10, TGF-β ↑
Curcumin [215]
GWI + CRS
OLT, NORT, NSFT
HIP
Iba-1+
Ginsenoside Rb1 [197]
CRS
OFT, TST, FST
HIP
Protein: Iba-1 ↓
Proteins: TNF-α, IL-1β ↓
Arctigenin [171]
CMS
SPT, TST, FST
Serum
ELISA: TNF-α, IL-1β, NO ↓
PFC
Iba-1/HMGB1+
Protein: Iba-1 ↓
Proteins: TNF-α, IL-1β, IDO ↓
Astragalin [231]
CMS
SPT, TST, FST
HIP
Iba-1+
Proteins: Nuclear p65-NF-κB, NLRP3, cleaved caspase-1, cleaved IL-1β, cleaved gasdermin D ↓
Saikosaponin-d [190]
LPS
OFT, FST, TST, FST
HIP
Iba-1+↓ in CA1
Proteins: CD68, IL-1β, IL-6, TNF-α, HMGB1, TLR4, p65-NF-κB, p-IκB-α ↓
Asperosaponin VI [228]
LPS
OFT, FST
HIP
Iba-1+
mRNA: IL-1β, IL-6, TNF-α, iNOS ↓
Proteins: IL-1β, TNF-α, TLR4, p-NF-κB/NF-κB ↓
PFC
Iba-1+, iNOS/ Iba-1+
mRNA: IL-1β, IL-6, TNF-α, iNOS ↓
Proteins: IL-1β, TNF-α, TLR4, p-NF-κB/NF-κB ↓
 
5-O-Methylvisammioside [233]
LPS
OFT, FST, FST, EPM
HIP
Proteins: NF-κB, IκB-α ↓
Scutellarin [230]
LPS
OFT, SPT, FST
HIP
Iba-1+
Proteins: NLRP3, caspase-1, IL-1β ↓
ROS ↓
Ginsenoside Rg1 [200]
CMS
SPT, FST
vmPFC
Iba-1+
mRNA: IL-1β, IFN-γ, TNF-α ↓
ELISA: IL-1β, IFN-γ, TNF-α ↓
Ginsenoside Rg3 [201]
LPS
Cortex
Iba-1+
Hypothalamus
Iba-1+
Brain
iNOS+, COX-2+, Iba-1+
mRNA: IL-1β, IL-6, TNF-α
Magnolol [219]
CMS
OFT, SPT, FST, TST
HIP
Iba-1+↓ in DG;
Iba-1/CD16/32+↓, Iba-1/CD206+↑ 
Brain
ELISA: TNF-α, IL-1β, IL-6, IL-12 ↓
ELISA: IL-4, IL-10 ↑
mRNA: Arg1, Ym1, Fizz1, Klf4 ↑
Geniposide [208]
LPS
SPT, TST, FST, OFT
HIP
ELISA: TNF-α, IL-6 ↓
Proteins: CD86 ↓, CD206 ↑
Serum
ELISA: TNF-α, IL-6 ↓
Arctiin [210]
CMS
TST, FST, OFT, SPT
PFC
Iba-1+/HMGB1+
Protein: Iba-1 ↓
Proteins: TNF-α, IL-1β, iNOS, HMGB1 ↓
Serum
ELISA: TNF-α, IL-1β, iNOS ↓
 
Ginkgolide B [234]
Depression in post myocardial infarction
OFT, SPT
Median raphe nucleus
ELISA: IL-1β ↓
mRNA: IL-1β ↓
HIP
Iba-1+
ELISA: IL-1β ↓
mRNA: IL-1β ↓
Cortex
ELISA: IL-1β ↓
mRNA: IL-1β ↓
Leonurine [235]
CMS
TST, FST, SPT
HIP
Proteins: IL-1β, IL-6, TNF-α, p-IKKβ/IKKβ, p-p65/p65 ↓
Hesperidin [232]
CMS
FST, SPT, OFT
PFC
Iba-1+
mRNA: NLRP3, caspase-1, ASC ↓
Proteins: NLRP3, caspase-1, ASC ↓
ELISA: IL-1β, IL-6, TNF-α ↓
20(S)-Protopanaxadiol [229]
CMS
SPT, TST, FST
HIP
Iba-1+
Proteins: iNOS, COX-2, acetylated p65 (ac-p65) ↓
Cortex
Iba-1+
Ferulic acid [236]
CMS
SPT, FST
PFC
mRNA: IL-6, IL-1β, TNF-α, NF-κB, CD11b ↓
Proteins: NLRP3, caspase-1 ↓
Resveratrol [224]
LPS
OFT, TST, FST
HIP
Iba-1+↓ in DG-SGZ
(+)-Sesamin [69]
CMS
OFT, FST, TST, EMP
HIP
Protein: Iba-1 ↓
mRNA: COX-2, iNOS, IL-1β, TNF-α ↓
Prelimbic cortex
Protein: Iba-1 ↓
mRNA: COX-2, iNOS, IL-1β, TNF-α ↓
Quercetin [187]
OBX
OFT, FST
HIP
ELISA: TNF-α, IL-6 ↓
Cortex
ELISA: TNF-α, IL-6 ↓
Theaflavins [246]
LPS
TST
HIP
MIP-1α/CD11b+, TNF-α/CD11b+↓ in microglia
ELISA: TNF-α, IL-1β ↓
Epigallocatechin-3-gallate [99]
LPS
HIP
Iba-1+↓ in DG
mRNA: IL-1β, IL-6, TNF-α ↓
Proteins: TLR4, Rel A, pRel A ↓
ELISA: IL-1β, IL-6, TNF-α ↓
Gypenosides [192]
CMS
SPT, TST
HIP
Iba-1+↓ in DG
mRNA: IL-6 ↓
Proteins: IL-6, TNF-α ↓
Kososan [237]
CSDS
Social avoidance test
HIP
Iba-1+
Aquilariae Lignum ethanol extracts [238]
CRS
HIP
Iba-1+
Proteins: TNF-α, IL-1β, iNOS ↓
Rosemary Extracts [239]
CRS
OFT, TST, FST
Serum
ELISA: IL-1β, TNF-α ↓
HIP
Protein: Iba-1 ↓
Proteins: IL-1β, TNF-α, p-p65-NF-κB ↓
Radix Polygalae extract [240]
CRS
OFT, SPT, NSFT
PFC
Iba-1+
mRNA: NLRP3, IL-1β, IL-6, IL-18, TNF-α ↓
Proteins: NLRP3, ASC, cleaved caspase-1
Bangpungtongsung-san [241]
Reserpine
OFT, TST, FST
HIP
mRNA: IL-1β, IL-6, TNF-α ↓
XingnaoJieyu decoction [242]
MCAO + CMS
OFT, FST
Cortex
Iba-1+
ELISA: TNF-α, IL-6, IL-1β ↓
HIP
Iba-1+
ELISA: TNF-α, IL-6, IL-1β ↓
Ganoderma lucidum polysaccharides [243]
CSDS
OFT, SPT, TST, FST
HIP
Iba-1+
Proteins: IL-1β, TNF-α ↓
Proteins: IL-10, BDNF ↑
Water extract of Armillaria mellea (Vahl) P. Kumm [244]
CMS
OFT, FST
Cerebral
Protein: Iba-1 ↓
Proteins: IL-1β, TNF-α ↓
Xiaoyaosan [245]
CMS
SPT, OFT, FST, NSFT
HIP
Iba-1+
mRNA: COX-2 ↓
Myelophil [96]
CMS
OFT, TST, FST
HIP
Iba-1+↓ in CA1, DG, CA3
ELISA: IL-1β, TNF-α ↓
Proteins: NLRP3, ASC, pro-IL-1β, IL-1β ↓
↑upregulated; ↓downregulated; (–) no significant difference;—no explicit data

Clinical antidepressive drugs

Clinical antidepressants, including selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs), have exhibited effects on microglial activation and neuroinflammation [153]. Other compounds, including minocycline, melation, FCPR16, pioglitazone, iptakalim, and caffeine, also influence microglial polarization and depressive-like behavior [91], as shown in Table 1.
The SSRIs (fluoxetine, citalopram, and escitalopram) exhibit antidepressant roles in LPS, CMS, CSDS, and CWIRS models, as seen by alleviating nest-building deficits, reducing immobility time in the FST and TST, and increasing sucrose intake in the SPT (Table 1). These behavioral changes were accompanied by decreases in the microglial marker Iba-1 expression in different brain regions. In addition, pro-inflammatory factors levels (IL-1β, TNF-α, and NO) were downregulated, and anti-inflammatory factors levels (IL-4, IL-10, Arg-1, and TGF-β1) were upregulated [16, 101, 105, 154, 155]. Tricyclics, including clomipramine and imipramine, reversed depressive behaviors induced by LPS, LH, and CSDS by reducing the number of activated hippocampal microglia (Table 1). These traditional antidepressants promote the activation of anti-inflammatory microglia to release anti-inflammatory cytokines and neurotrophic factors, suggesting that reducing inflammation may be part of the function of clinical antidepressants [107, 131, 156]. Cytokines levels are strongly correlated with the efficacy of antidepressant treatment in patients. For example, higher levels of IL-6 and TNF-α are more commonly found in treatment-resistant patients than responders [157]. Nevertheless, some results revealed conflicting views that antidepressants might sometimes increase the inflammatory load in the brain. For instance, citalopram treatment elevated the levels of TNF-α and IFN-γ in the PFC, and these effects were inhibited by the anti-inflammatory agent ibuprofen [158]. Phenelzine, a monoamine oxidase inhibitor, has been shown to enhance the microglia-mediated immune responses by increasing the expressions of iNOS, TNF-α, and IL-6 in LPS-treated BV-2 cells. It has been verified that phenelzine also increased the levels of NO, TNF-α, and IL-6 via the NF-κB signaling pathway in LPS-activated primary microglia cells [159]. These differences may depend on regional brain specificity and heterogeneity among depression models and patients, but the conflicting causes and mechanisms need further study. Ketamine has exhibited potential antidepressant effects in vivo and in vitro by inhibiting microglia-mediated neuroinflammation [160]. Partial depletion of microglia with PLX3397 blocked the rapid and sustained antidepressant effects of (R)-ketamine (an isomer of ketamine), suggesting that antidepressant effects of ketamine may be partly attributed to microglial activation [161].
Minocycline is a potential agent for the treatment of depression [19]. In several studies, chronic minocycline treatment clearly alleviated depressive-like symptoms by inhibiting microglia and HPA axis hyperactivity. The powerful neuroprotective effects of minocycline were mainly mediated by modulating pro-inflammation and anti-inflammation balance in the PFC and HIP, as well as upregulating the BDNF-mediated synaptic plasticity in stress models [14, 162164]. Meanwhile, CMS-induced changes in behavior, hippocampal LTP, CD11b expression, NLRP3 inflammasome, BDNF, and p-GluR1 levels were restored with chronic minocycline treatment [128, 165168]. Peroxisome proliferator-activated receptor γ (PPARγ) is a nuclear receptor that regulates inflammation and microglial polarization and is a potential treatment target in MDD. Pioglitazone, a PPARγ agonist, significantly ameliorated depressive-like behaviors in CMS mice by regulating the expression of pro-inflammatory markers (IL-1β, IL-6, TNF-α, iNOS, and CCL2) together with anti-inflammatory markers (Ym1, Arg1, IL-4, IL-10, and TGF-β) in the HIP [169]. Other drugs that play a potential antidepressant role in modulating microglial phenotype are shown in Table 1.

Plant-derived natural compounds and formulations with antidepressant properties

Recently, the regulatory properties of some plant-derived natural compounds and formulations have shown efficacy in treating depression. In this review, the antidepressive effect of natural products such as ginsenosides (Rg1, Rg3, and Rb1), resveratrol, salvianolic acid B, and magnolol on microglia-mediated neuroinflammation are summarized in Table 2. The chemical structures of several natural compounds that may act as potential inhibitors of pro-inflammatory microglial activation in MDD are illustrated in Fig. 5.

Flavonoids

Flavones are subgroups of flavonoids composed of a backbone of 2-phenylchromen-4-ketone, and their biological activities have been reported in vitro and in vivo [184]. Flavonoids achieve their antidepressive effects through modulating microglial activation and NLRP3 inflammasomes. Baicalin, a flavonoid found in the root of Scutellaria, could ameliorate depressive behaviors in CMS model [185, 186]. Oral administration of baicalin (20, 40 mg/kg/day) for 3 weeks significantly improved sucrose intake, locomotor activities, and behavioral despair in CMS rats. The mechanism of baicalin against CMS-induced depression was partially achieved by increasing levels of DCX, neuron-specific enolase (NSE), and BDNF, reducing oxidative stress, and modulating the GSK3/NF-κB/NLRP3 signal cascade in the HIP [185]. In addition, baicalin supplementation (30, 60 mg/kg/day, p.o.) for 3 weeks also inhibited TLR4 activation and pro-inflammatory cytokine secretion in CMS mice. Furthermore, it was confirmed that the inhibition might be realized through PI3K/AKT/FoxO1 pathway in LPS-stimulated BV2 cells [186]. Quercetin is a flavanol present in apples, onions, and berries [37]. Treatment with quercetin (40, 80 mg/kg/d, p.o.) for 2 weeks significantly reversed OBX-induced increase in immobility time in the FST, possibly by inhibiting TNF-α, IL-6, and caspase-3 in the HIP and cortex. Co-treatment with minocycline (25 mg/kg, p.o.) significantly potentiated its protective effects when compared to treatment with quercetin alone [187]. Treatment with quercetin (40 mg/kg/day, p.o.) for 2 weeks alleviated depressive-like behavior in the SPT and FST of LPS-challenged rats via regulation of BDNF-related imbalance of Copine 6 and TREM1/2 in the HIP and PFC [188].

Terpenoids

Terpenoids, especially triterpenoids, monoterpenes and sesquiterpenes, are the most abundant natural compounds found in several vegetables and fruits. Recently, some terpenoids have been reported to have preventive efficacy against neurological diseases by modulating the activation of microglia, especially on depression. Saponins, which are triterpene glycosides, are abundant in some plants, and their general biological activities have been summarized [189]. Saikosaponin-D is a triterpenoid saponin derived from Radix bupleuri and exhibits anti-inflammatory, anti-oxidative, and other pharmacological activities [190]. Previous studies have suggested that treatment with saikosaponin-D (0.75, 1.50 mg/kg/day, p.o.) for 3 weeks remarkably ameliorated the CMS-induced depressive-like behaviors in rats, mainly by improving HPA axis functions and hippocampal neurogenesis [191]. Moreover, additional research confirmed that saikosaponin-D administration ameliorated LPS-induced depressive-like behaviors, as shown by increased sucrose consumption in the SPT and decreased immobility time in the TST and FST. These performances appear to be mediated by inhibition of microglial activation and regulation of the high mobility group box 1 (HMGB1)/TLR4/NF-κB signaling pathway [190]. Gypenosides, the major ingredients of Gynostemma pentaphyllum, exert a neuroprotective function in the CNS. Treatment with gypenosides (50, 100 mg/kg/day, p.o.) for 4 weeks significantly relieved depressive-like behaviors of CMS mice in the TST and FST, which was mediated, in part, by inhibiting microglial activation and NF-κB signaling and increasing BDNF levels in the HIP [192, 193].
Ginsenosides are one of ginseng’s most biologically active ingredients and have a triterpenoid glycoside structure [194]. Direct and indirect evidence support that some ginsenosides (such as ginsenoside Rg3, Rb1, and Rg1) induce the anti-inflammatory actions of macrophages and microglia [195]. Ginsenoside Rb1 is a typical 20(S)-protopanaxadiol-type saponin and exerts significant antidepressive effects in chronic stress models [73, 196, 197]. It is known that Rb1 regulates microglial activation, protects neurons from inflammatory and oxidative damage, and promotes neurogenesis [198, 199]. Recently, treatment with Rb1 (20 mg/kg/d, p.o.) in CMS-treated mice for consecutive 4 weeks alleviated depressive-like behaviors in the SPT, TST, and FST mainly through PPARγ-mediated transitions in microglial phenotype (TNF-α, IL-1β, TGF-β, and Arg-1) in the HIP and cortex [73]. Rb1 attenuated a decrease in BDNF and the ratio of p-AKT/AKT expression, and increased IL-1β, TNF-α, and Iba-1 levels in the HIP in a CRS model. In line with in vivo reports, Rb1 lowered the protein expressions of IL-1β and TNF-α in BV-2 cells [197]. In addition to Rb1, ginsenoside Rg1 and Rg3 exhibited potential anti-inflammatory effects, which protected against microglial activation in stress-injured rodents [200, 201]. A previous study reported that chronic pretreatment with ginsenoside Rg1 (40 mg/kg/d, i.p.) for 5 weeks significantly suppressed inflammatory responses by alleviating microglial and astrocyte activation through decreased overexpression of IL-1β, IFN-γ, and TNF-α. These effects were accompanied by attenuation of dendritic spine and synaptic defects, and upregulation of synaptic-related proteins in the ventral medial prefrontal cortex (vmPFC). Ginsenoside Rg1 inhibited neuronal apoptosis by increasing Bcl-2 and decreasing cleaved caspase-3 and caspase-9 expressions after CMS exposure. Furthermore, ginsenoside Rg1 increased the nuclear factor erythroid 2-related factor (Nrf2) and inhibited p38 mitogen-activated protein kinase (p-p38 MAPK) and p65-NF-κB activation in the vmPFC [200]. Moreover, ginsenoside Rg3 at oral doses of 20 and 30 mg/kg attenuated upregulation of TNF-α, IL-1β, and IL-6 mRNA expression in brains of C57BL/6 mice after systemic LPS injection. Morphological activation of microglia, and Iba-1, cyclooxygenase-2 (COX-2), iNOS protein expression was reduced with Rg3 treatment [201]. Our previous studies also found that ginsenosides Rd and Re (10, 20, or 40 mg/kg, p.o.) have potentially neuroprotective and anti-inflammatory properties, as manifested by significantly reducing the expression of hippocampal pro-inflammatory factors and NLRP3 inflammasome related protein, as well as enhancing endogenous antioxidant factor Nrf2, and mediating PI3K-AKT and BDNF signaling pathways in mice exposed to CRS [129, 202]. Taken together, the anti-inflammatory effects of ginsenosides have been confirmed, and the negative regulation of pro-inflammatory cytokines and enzymes has been found to underlie the anti-inflammatory properties of ginsenosides in pro-inflammatory microglia in depression. However, additional studies are needed to investigate whether other ginsenosides or their metabolites can relieve depressive symptoms through modulating microglial phenotype and the molecular mechanisms involved in neuroinflammation.

Iridoid glycosides

Catalpol, an iridoid glucoside, is primarily isolated from Radix rehmannia and is commonly used as a traditional Chinese medicine [203]. Previous studies have been reported that catalpol exhibits a wide range of pharmacological effects, including exhibiting anti-diabetic, anti-tumor, anti-inflammatory, and antioxidant activities. Growing evidence indicates that catalpol has a robust antidepressant effect that acts through its anti-inflammatory and anti-oxidative properties in vitro and in vivo [203, 204]. Catalpol (5, 10, or 20 mg/kg/day, i.g.) administration for 5 weeks ameliorated CMS-induced depressive-like behavior in the SPT, and its underlying mechanisms might be at least partially ascribed to reducing HPA axis dysfunction, upregulating BDNF and its specific binding receptor tyrosine kinase B (TrkB), downregulating COX-2 expression, thus reducing prostaglandin E2 level in the brain [204]. It was also confirmed that catalpol at 20 mg/kg decreased the expression of NLRP3 inflammasome-associated proteins and inhibited pro-inflammatory microglial polarization in the HIP (IL-1β, TNF-α, and iNOS) [205]. Geniposide, a type of iridoid glycoside extracted from the ripe fruit of Gardenia jasminoides Ellis, exhibits numerous bioactivities, including anti-diabetic, anti-oxidative, and anti-inflammatory actions [206]. It has been demonstrated that administration of geniposide (10, 40 mg/kg/day, p.o.) for 1 or 3 weeks ameliorated LPS- and CMS-induced depressive-like behavior in the SPT, TST, and FST by regulating the Bruton’s tyrosine kinase (BTK)/TLR4/NF-κB, BDNF/TrkB, and BTK/JAK2/STAT1 signaling pathways [207, 208]. Also, the beneficial effect of geniposide on anxiety- and depressive-like behaviors in mice may possibly act through induction of microglial polarization towards anti-inflammatory phenotype and inhibition of IL-6 and TNF-α release [208].

Phenylpropanoids

Arctigenin and its glycoside, arctiin, are the major active ingredients of the dried ripe fruit of Arctiumlappa L. Arctiin can be metabolized into arctigenin by human intestinal microflora after oral consumption [209]. Arctiin has antidepressive effects that appear to act through inhibition of the NF-κB mediated HMGB1/TLR4 and TNF-α/TNF receptor 1 (TNFR1) pathways, which consequently attenuated microglial activation and neuroinflammation [210]. Similarly, arctigenin showed antidepressive effects by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB signaling pathways [171]. Salvianolic acid B (SalB) is one of the phenolic acid compounds derived from Salvia miltiorrhiza, which has various pharmacological effects, including anti-inflammatory, antioxidant, and anti-apoptotic [211, 212]. CMS mice treated with SalB (20 mg/kg/day, i.p.) for 3 weeks significantly reversed decreased sucrose preference index in the SPT and increased immobility time in the FST and TST. In addition, the decreased expression of IL-1β and TNF-α and increased expression of IL-10 and TGF-β were accompanied by increased apoptosis (cleaved-caspase 3+) and microglial activation (Iba-1+) in the HIP and cortex that were reversed after SalB treatment [213]. Curcumin is a representative natural phenolic compound of turmeric and a potential candidate for regulation of brain function due to its antioxidant and anti-inflammatory properties. In a CRS model, systemic administration of curcumin (10, 20, or 30 mg/kg, i.p.) daily for 3 weeks significantly attenuated oxidative stress and lipid peroxidation, prevented apoptosis, and increased antioxidant defense activity [214]. Curcumin (10 mg/kg, i.p.) also was beneficial for maintaining improved memory and mood functions after 30 days of daily therapy in a Gulf War Illness (GWI) with stress-treatment model. At the molecular level, enhanced numbers of DCX+ cells, decreased numbers of Iba-1/ED-1+ cells, and elevated antioxidant genes with normalized mitochondrial respiration might be the basis of the regulatory mechanism that is mediated by curcumin treatment [215]. Magnolol, a hydroxylated biphenyl compound extracted from Magnolia tree, has endothelial cell protective, antioxidant, and anti-inflammatory functions [216]. It is noteworthy that magnolol exhibits antidepressant effects, as evident by increased sucrose consumption and decreased the immobility time in the SPT, TST, and FST. In an OBX model, magnolol (50, 100 mg/kg/day, p.o.) treatment for 2 weeks produced antidepressant-like effects by enhancing neurogenesis (as indicated by BrdU positive cells) in the HIP [217]. In a CMS model, treatment with magnolol (20, 40 mg/kg/day, p.o.) for 4 weeks increased BDNF expression and normalized serotonergic system [218]. In agreement with previous studies, the protective effect of magnolol (50, 100 mg/kg/day, p.o.) given for 3 weeks to CMS-treated female mice also appeared to be associated with inhibition of pro-inflammatory microglia (TNF-α, IL-1β, and IL-6) and activation of anti-inflammatory microglia (IL-4, IL-10, Arg1, Ym1, Fizz1, and Klf4) via Nrf2/hemeoxygenase (HO-1)/NLRP3 signaling pathway [219].

Others

Resveratrol is one of the most well-known dietary stilbenoids. Resveratrol confers health benefits due to its antioxidant, anti-inflammatory, anti-aging, and immune-regulatory activities [220]. Resveratrol is found in the skin of red grapes, peanuts, and other medicinal plants. Recent studies have found that resveratrol ameliorated depressive-like behaviors in several animal models [221223]. In a LPS model, mice were treated for 2 weeks with resveratrol (20 mg/kg/day, i.p.), which abrogated the increased immobility in the FST and TST. Immunohistochemical staining revealed that resveratrol reversed increased microglial activation (Iba-1+) and inhibition of neurogenesis (BrdU/DCX+) in the DG [224]. Moreover, 3 doses of resveratrol (20 mg/kg/day, i.p.) promoted the activation of sirtuin type 1 and blocked the decline of hippocampal neurogenesis triggered by ethanol exposure during early postnatal life [225]. The carotenoids crocin was able to regulate microglial activation associated with neurological disorders. Crocin decreased the expression of LPS-induced NO, TNF-α, and ROS production in BV-2 cells and improved locomotor activity, sucrose intake, and reduced immobility time in LPS-treated Kunming mice [226]. The health benefits associated with crocin might be due to its potent ability to regulate the NLRP3 inflammasome and NF-κB, as well as anti-inflammatory phenotypic conversion [226]. Moreover, emerging data have shown that plant-derived compounds can exert neuroprotective effects that prevent neurological disorders in depression. For instance, ganoderic acid A [227], asperosaponin VI [228], 20(S)-protopanaxadiol [229], scutellarin [230], astragalin [231], hesperidin [232], 5-O-methylvisammioside [233], ginkgolide B [234], leonurine [235], ferulic acid [236], and (+)-sesamin [69] were found to inactivate microglia in stress-induced depression models. Recent information concerning the antidepressant activity of phytochemicals through regulation of microglial polarization is illustrated in Table 2. In addition, several herbal extracts and traditional formulations reported to improve depression-like behavior by regulating microglia are shown in Table 2 [237245].

Conclusions

This review has summarized the current knowledge regarding microglial activation in depression as seen in clinical and preclinical studies. Microglia are the primary resident immune cells that are currently considered as a critical link between neurological and immunological activity in the CNS [247]. These cells modulate neuronal function not only during an inflammatory response, but also during developmental synaptic pruning and plasticity in healthy brains [27]. The heterogeneous states of activated microglia exist on a continuum ranging from neuroprotection to neurotoxic/pathogenic activity (Figs. 1 and 2) [248]. In this review, we summarized microglial activation in depressed patients and animal models (Additional file 1: Table S1), as well as the possible mechanisms associated with the pathogenesis of MDD (Fig. 4). Moreover, we described the therapeutic role of traditional antidepressants and phytochemicals in stress-induced depression models (Tables 1 and 2).
Recently, natural compounds have been considered to be potential agents for the prevention or treatment of neuropsychiatric diseases due, in part, to their antioxidant and anti-inflammatory activities [249]. Numerous studies have shown that natural compounds and formulations are beneficial in the treatment of depression through their ability to regulate microglial functions, as listed in Table 2. The chemical structures of these bioactive compounds are highlighted in Fig. 5. Most compounds have been shown to modulate inflammatory response, oxidative stress, and ameliorate symptoms of depression through inhibiting microglial activation. However, additional research is needed to determine whether these compounds promote the transformation of microglia with a pro-inflammatory phenotype to an anti-inflammatory phenotype, or whether they depend on regulation of downstream signaling pathways that are activated by microglia. In a pathological state, changes in microglial phenotypes depend on the disease stage and severity. Therefore, developing protocols that control the stage-specific conversion of pro-inflammatory/anti-inflammatory actions in appropriate time frames might provide better therapeutic outcomes. Thus, changing the activity of microglia to a stable state through pharmacological or non-pharmacological methods will be the focus of future research, which also may provide new ideas for targeted treatment of depression. Moreover, it has been shown that some polyphenolic compounds are not completely absorbed via the gastrointestinal tract but still possess anti-inflammatory actions due to metabolites that are produced by intestinal microflora [250]. However, information concerning the role of these activated metabolites through microglia regulation is still minimal. Therefore, the discovery of potential inhibitors against microglial activation from metabolites may also be another promising strategy for the prevention of depression in the future.
In addition, data primarily obtained from studies that used specific microglial manipulation methods help improve our understanding of the mechanisms underlying neurogenesis, inflammation, and neurotransmitter metabolism dysfunction in depression. Genetic and pharmacological methods that directly or indirectly modify the activation status of microglia have been used and achieved some success, such as the Cx3cr1−/− or Cd200-deficient mouse models and the minocycline or PLX4497 treatment models [75, 251]. Moreover, it should be noted that the dichotomy of microglial activation states (M1/M2) is an oversimplified conceptual framework. This dichotomy is not generally accepted as it may not accurately reflect the heterogeneous microglial profiles that can be observed in complicated homeostatic or disease conditions [252254]. The spatial and temporal distribution of microglial subsets can be better assessed using newly developed unbiased and high-throughput methods. Novel single-cell techniques enable scientists to overcome such limitations and reveal the surprising context-dependent heterogeneity of microglia [247, 255]. Specific subsets and key targets of microglia have been revealed in the development of AD and regulators such as TREM2 that control disease severity has been identified [42]. Currently, advanced technologies and tools are being used to comprehensively decipher the role of microglial heterogeneity in the pathology of depression, particularly in the modulation, inhibition, and stimulation of contextually relevant microglia functions. These technologies also are being used to target microglia to explore the treatment of neuropsychiatric diseases, which remains to be explored further.
Taken together, the data analyzed in this review suggest that microglial changes mainly affect the regulation of inflammatory response, neurogenesis, and tryptophan metabolism with respect to the development of depression. However, other factors should not be ignored. The discovery of natural compounds that exert antidepressant effects by inhibiting microglial activation may contribute to the effectiveness of preventing and treating depression. Additional information regarding the neuroprotective properties of these compounds that act through the regulation of microglial phenotypes remains to be explored in the future. High-performance omics technologies are expected to provide more effective molecular targets and identify additional specific signaling pathways in drug screening and disease diagnosis.

Acknowledgements

The authors would like to thank the Hotchkiss Brain Institute, the National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, and Natural Sciences and others for their financial contributions. The authors have no competing financial interests with respect to the work described here. All figures were generated with BioRender and ChemDraw.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare that they have no conflicts of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
Zurück zum Zitat Deng JW, Zhou FW, Hou WT, Silver Z, Wong CY, Chang O, et al. The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: a meta-analysis. Ann N Y Acad Sci. 2021;1486:90–111.CrossRefPubMed Deng JW, Zhou FW, Hou WT, Silver Z, Wong CY, Chang O, et al. The prevalence of depression, anxiety, and sleep disturbances in COVID-19 patients: a meta-analysis. Ann N Y Acad Sci. 2021;1486:90–111.CrossRefPubMed
4.
Zurück zum Zitat Pollak DD, Rey CE, Monje FJ. Rodent models in depression research: classical strategies and new directions. Ann Med. 2010;42:252–64.CrossRefPubMed Pollak DD, Rey CE, Monje FJ. Rodent models in depression research: classical strategies and new directions. Ann Med. 2010;42:252–64.CrossRefPubMed
5.
Zurück zum Zitat Jesulola E, Micalos P, Baguley IJ. Understanding the pathophysiology of depression: from monoamines to the neurogenesis hypothesis model-are we there yet? Behav Brain Res. 2018;341:79–90.CrossRefPubMed Jesulola E, Micalos P, Baguley IJ. Understanding the pathophysiology of depression: from monoamines to the neurogenesis hypothesis model-are we there yet? Behav Brain Res. 2018;341:79–90.CrossRefPubMed
6.
Zurück zum Zitat Frazer A, Benmansour S. Delayed pharmacological effects of antidepressants. Mol Psychiatry. 2002;7:23–8.CrossRef Frazer A, Benmansour S. Delayed pharmacological effects of antidepressants. Mol Psychiatry. 2002;7:23–8.CrossRef
7.
Zurück zum Zitat Liu W, Ge TT, Leng YS, Pan ZX, Fan J, Yang W, et al. The role of neural plasticity in depression: from hippocampus to prefrontal cortex. Neural Plast. 2017;2017:6871089.PubMedPubMedCentralCrossRef Liu W, Ge TT, Leng YS, Pan ZX, Fan J, Yang W, et al. The role of neural plasticity in depression: from hippocampus to prefrontal cortex. Neural Plast. 2017;2017:6871089.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Deng SL, Chen JG, Wang F. Microglia: a central player in depression. Curr Med Sci. 2020;40:391–400.CrossRefPubMed Deng SL, Chen JG, Wang F. Microglia: a central player in depression. Curr Med Sci. 2020;40:391–400.CrossRefPubMed
9.
Zurück zum Zitat Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci. 2015;38:637–58.CrossRefPubMed Yirmiya R, Rimmerman N, Reshef R. Depression as a microglial disease. Trends Neurosci. 2015;38:637–58.CrossRefPubMed
10.
Zurück zum Zitat Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, et al. Neuroinflammation and depression: a review. Eur J Neurosci. 2021;53:151–71.CrossRefPubMed Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, et al. Neuroinflammation and depression: a review. Eur J Neurosci. 2021;53:151–71.CrossRefPubMed
11.
Zurück zum Zitat Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16:22–34.CrossRefPubMedPubMedCentral Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2016;16:22–34.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Tapp ZM, Godbout JP, Kokiko-Cochran ON. A tilted axis: maladaptive inflammation and HPA axis dysfunction contribute to consequences of TBI. Front Neurol. 2019;10:345.CrossRefPubMedPubMedCentral Tapp ZM, Godbout JP, Kokiko-Cochran ON. A tilted axis: maladaptive inflammation and HPA axis dysfunction contribute to consequences of TBI. Front Neurol. 2019;10:345.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Walker DJ, Zimmer C, Larriva M, Healy SD, Spencer KA. Early-life adversity programs long-term cytokine and microglia expression within the HPA axis in female Japanese quail. J Exp Biol. 2019;222:jeb187039.CrossRefPubMed Walker DJ, Zimmer C, Larriva M, Healy SD, Spencer KA. Early-life adversity programs long-term cytokine and microglia expression within the HPA axis in female Japanese quail. J Exp Biol. 2019;222:jeb187039.CrossRefPubMed
14.
Zurück zum Zitat Zhang C, Zhang YP, Li YY, Liu BP, Wang HY, Li KW, et al. Minocycline ameliorates depressive behaviors and neuro-immune dysfunction induced by chronic unpredictable mild stress in the rat. Behav Brain Res. 2019;356:348–57.CrossRefPubMed Zhang C, Zhang YP, Li YY, Liu BP, Wang HY, Li KW, et al. Minocycline ameliorates depressive behaviors and neuro-immune dysfunction induced by chronic unpredictable mild stress in the rat. Behav Brain Res. 2019;356:348–57.CrossRefPubMed
15.
Zurück zum Zitat Jiang B, Wang H, Wang JL, Wang YJ, Zhu Q, Wang CN, et al. Hippocampal salt-inducible kinase 2 plays a role in depression via the CREB-regulated transcription coactivator 1-cAMP response element binding-brain-derived neurotrophic factor pathway. Biol Psychiatry. 2019;85:650–66.CrossRefPubMed Jiang B, Wang H, Wang JL, Wang YJ, Zhu Q, Wang CN, et al. Hippocampal salt-inducible kinase 2 plays a role in depression via the CREB-regulated transcription coactivator 1-cAMP response element binding-brain-derived neurotrophic factor pathway. Biol Psychiatry. 2019;85:650–66.CrossRefPubMed
16.
Zurück zum Zitat Zhong QP, Yu H, Huang C, Zhong JH, Wang HT, Xu JP, et al. FCPR16, a novel phosphodiesterase 4 inhibitor, produces an antidepressant-like effect in mice exposed to chronic unpredictable mild stress. Prog Neuropsychopharmacol Biol Psychiatry. 2019;90:62–75.CrossRefPubMed Zhong QP, Yu H, Huang C, Zhong JH, Wang HT, Xu JP, et al. FCPR16, a novel phosphodiesterase 4 inhibitor, produces an antidepressant-like effect in mice exposed to chronic unpredictable mild stress. Prog Neuropsychopharmacol Biol Psychiatry. 2019;90:62–75.CrossRefPubMed
17.
Zurück zum Zitat Alboni S, Benatti C, Colliva C, Radighieri G, Blom JMC, Brunello N, et al. Vortioxetine prevents lipopolysaccharide-induced memory impairment without inhibiting the initial inflammatory cascade. Front Pharmacol. 2020;11: 603979.CrossRefPubMed Alboni S, Benatti C, Colliva C, Radighieri G, Blom JMC, Brunello N, et al. Vortioxetine prevents lipopolysaccharide-induced memory impairment without inhibiting the initial inflammatory cascade. Front Pharmacol. 2020;11: 603979.CrossRefPubMed
18.
Zurück zum Zitat Köhler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O, et al. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiat. 2014;71:1381–91.CrossRef Köhler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O, et al. Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiat. 2014;71:1381–91.CrossRef
19.
Zurück zum Zitat Pae CU, Marks DM, Han C, Patkar AA. Does minocycline have antidepressant effect? Biomed Pharmacother. 2008;62:308–11.CrossRefPubMed Pae CU, Marks DM, Han C, Patkar AA. Does minocycline have antidepressant effect? Biomed Pharmacother. 2008;62:308–11.CrossRefPubMed
20.
Zurück zum Zitat Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G, et al. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler. 2011;17:2–15.CrossRefPubMed Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G, et al. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler. 2011;17:2–15.CrossRefPubMed
21.
Zurück zum Zitat Pusic KM, Pusic AD, Kemme J, Kraig RP. Spreading depression requires microglia and is decreased by their M2a polarization from environmental enrichment. Glia. 2014;62:1176–94.CrossRefPubMedPubMedCentral Pusic KM, Pusic AD, Kemme J, Kraig RP. Spreading depression requires microglia and is decreased by their M2a polarization from environmental enrichment. Glia. 2014;62:1176–94.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Nakagawa Y, Chiba K. Role of microglial M1/M2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals (Basel). 2014;7:1028–48.CrossRef Nakagawa Y, Chiba K. Role of microglial M1/M2 polarization in relapse and remission of psychiatric disorders and diseases. Pharmaceuticals (Basel). 2014;7:1028–48.CrossRef
23.
Zurück zum Zitat Zhang LJ, Zhang JQ, You ZL. Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front Cell Neurosci. 2018;12:306.CrossRefPubMedPubMedCentral Zhang LJ, Zhang JQ, You ZL. Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front Cell Neurosci. 2018;12:306.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990;39:151–70.CrossRefPubMed Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience. 1990;39:151–70.CrossRefPubMed
26.
Zurück zum Zitat Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.CrossRefPubMedPubMedCentral Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T. Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke. Int J Mol Sci. 2017;18:2135.CrossRefPubMedCentral Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T. Microglia and monocytes/macrophages polarization reveal novel therapeutic mechanism against stroke. Int J Mol Sci. 2017;18:2135.CrossRefPubMedCentral
29.
Zurück zum Zitat Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, et al. Role of microglia in central nervous system infections. Clin Microbiol Rev. 2004;17:942–64.CrossRefPubMedPubMedCentral Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, et al. Role of microglia in central nervous system infections. Clin Microbiol Rev. 2004;17:942–64.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Jurga AM, Paleczna M, Kuter KZ. Overview of general and discriminating markers of differential microglia phenotypes. Front Cell Neurosci. 2020;14:198.CrossRefPubMedPubMedCentral Jurga AM, Paleczna M, Kuter KZ. Overview of general and discriminating markers of differential microglia phenotypes. Front Cell Neurosci. 2020;14:198.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173:649–65.CrossRefPubMed Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016;173:649–65.CrossRefPubMed
32.
Zurück zum Zitat Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology. 2016;233:1637–50.CrossRefPubMedPubMedCentral Calcia MA, Bonsall DR, Bloomfield PS, Selvaraj S, Barichello T, Howes OD. Stress and neuroinflammation: a systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology. 2016;233:1637–50.CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Dibaj P, Nadrigny F, Steffens H, Scheller A, Hirrlinger J, Schomburg ED, et al. NO mediates microglial response to acute spinal cord injury under ATP control in vivo. Glia. 2010;58:1133–44.CrossRefPubMed Dibaj P, Nadrigny F, Steffens H, Scheller A, Hirrlinger J, Schomburg ED, et al. NO mediates microglial response to acute spinal cord injury under ATP control in vivo. Glia. 2010;58:1133–44.CrossRefPubMed
34.
Zurück zum Zitat Carbonell WS, Murase S, Horwitz AF, Mandell JW. Migration of perilesional microglia after focal brain injury and modulation by CC chemokine receptor 5: an in situ time-lapse confocal imaging study. J Neurosci. 2005;25:7040–7.CrossRefPubMedPubMedCentral Carbonell WS, Murase S, Horwitz AF, Mandell JW. Migration of perilesional microglia after focal brain injury and modulation by CC chemokine receptor 5: an in situ time-lapse confocal imaging study. J Neurosci. 2005;25:7040–7.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun. 2012;26:1191–201.CrossRefPubMed Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun. 2012;26:1191–201.CrossRefPubMed
36.
Zurück zum Zitat Kim YK, Na KS. Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;70:117–26.CrossRefPubMed Kim YK, Na KS. Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;70:117–26.CrossRefPubMed
37.
Zurück zum Zitat Hung WL, Ho CT, Pan MH. Targeting the NLRP3 inflammasome in neuroinflammation: health promoting effects of dietary phytochemicals in neurological disorders. Mol Nutr Food Res. 2020;64: e1900550.CrossRefPubMed Hung WL, Ho CT, Pan MH. Targeting the NLRP3 inflammasome in neuroinflammation: health promoting effects of dietary phytochemicals in neurological disorders. Mol Nutr Food Res. 2020;64: e1900550.CrossRefPubMed
38.
Zurück zum Zitat Crotti A, Ransohoff RM. Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity. 2016;44:505–15.CrossRefPubMed Crotti A, Ransohoff RM. Microglial physiology and pathophysiology: insights from genome-wide transcriptional profiling. Immunity. 2016;44:505–15.CrossRefPubMed
39.
Zurück zum Zitat Perry VH, Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol. 2013;35:601–12.CrossRefPubMedPubMedCentral Perry VH, Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol. 2013;35:601–12.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Tang Y, Le WD. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2016;53:1181–94.CrossRefPubMed Tang Y, Le WD. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol. 2016;53:1181–94.CrossRefPubMed
41.
Zurück zum Zitat Sousa C, Golebiewska A, Poovathingal SK, Kaoma T, Pires-Afonso Y, Martina S, et al. Single-cell transcriptomics reveals distinct inflammation-induced microglia signatures. EMBO Rep. 2018;19: e46171.CrossRefPubMedPubMedCentral Sousa C, Golebiewska A, Poovathingal SK, Kaoma T, Pires-Afonso Y, Martina S, et al. Single-cell transcriptomics reveals distinct inflammation-induced microglia signatures. EMBO Rep. 2018;19: e46171.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s Disease. Cell. 2017;169:1276–90.CrossRefPubMed Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s Disease. Cell. 2017;169:1276–90.CrossRefPubMed
43.
Zurück zum Zitat Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L, Sagar, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature. 2019;566:388–92.CrossRefPubMed Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L, Sagar, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature. 2019;566:388–92.CrossRefPubMed
44.
Zurück zum Zitat Chen WT, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, Corthout N, et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s Disease. Cell. 2020;182:976–91.CrossRefPubMed Chen WT, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, Corthout N, et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s Disease. Cell. 2020;182:976–91.CrossRefPubMed
45.
Zurück zum Zitat Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiat. 2015;72:268–75.CrossRef Setiawan E, Wilson AA, Mizrahi R, Rusjan PM, Miler L, Rajkowska G, et al. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiat. 2015;72:268–75.CrossRef
46.
Zurück zum Zitat Richards EM, Zanotti-Fregonara P, Fujita M, Newman L, Farmer C, Ballard ED, et al. PET radioligand binding to translocator protein (TSPO) is increased in unmedicated depressed subjects. EJNMMI Res. 2018;8:57.CrossRefPubMedPubMedCentral Richards EM, Zanotti-Fregonara P, Fujita M, Newman L, Farmer C, Ballard ED, et al. PET radioligand binding to translocator protein (TSPO) is increased in unmedicated depressed subjects. EJNMMI Res. 2018;8:57.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Li H, Sagar AP, Kéri S. Translocator protein (18kDa TSPO) binding, a marker of microglia, is reduced in major depression during cognitive-behavioral therapy. Prog Neuropsychopharmacol Biol Psychiatry. 2018;83:1–7.CrossRefPubMed Li H, Sagar AP, Kéri S. Translocator protein (18kDa TSPO) binding, a marker of microglia, is reduced in major depression during cognitive-behavioral therapy. Prog Neuropsychopharmacol Biol Psychiatry. 2018;83:1–7.CrossRefPubMed
48.
Zurück zum Zitat Setiawan E, Attwells S, Wilson AA, Mizrahi R, Rusjan PM, Miler L, et al. Association of translocator protein total distribution volume with duration of untreated major depressive disorder: a cross-sectional study. Lancet Psychiatry. 2018;5:339–47.CrossRefPubMed Setiawan E, Attwells S, Wilson AA, Mizrahi R, Rusjan PM, Miler L, et al. Association of translocator protein total distribution volume with duration of untreated major depressive disorder: a cross-sectional study. Lancet Psychiatry. 2018;5:339–47.CrossRefPubMed
49.
Zurück zum Zitat Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation. 2011;8:94.CrossRefPubMedPubMedCentral Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, et al. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation. 2011;8:94.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 2014;42:50–9.CrossRefPubMed Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 2014;42:50–9.CrossRefPubMed
51.
Zurück zum Zitat Schnieder TP, Trencevska I, Rosoklija G, Stankov A, Mann JJ, Smiley J, et al. Microglia of prefrontal white matter in suicide. J Neuropathol Exp Neurol. 2014;73:880–90.CrossRefPubMed Schnieder TP, Trencevska I, Rosoklija G, Stankov A, Mann JJ, Smiley J, et al. Microglia of prefrontal white matter in suicide. J Neuropathol Exp Neurol. 2014;73:880–90.CrossRefPubMed
52.
53.
Zurück zum Zitat Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry. 2001;49:741–52.CrossRefPubMed Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry. 2001;49:741–52.CrossRefPubMed
54.
Zurück zum Zitat Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999;45:1085–98.CrossRefPubMed Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry. 1999;45:1085–98.CrossRefPubMed
55.
Zurück zum Zitat Cotter D, Mackay D, Landau S, Kerwin R, Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry. 2001;58:545–53.CrossRefPubMed Cotter D, Mackay D, Landau S, Kerwin R, Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry. 2001;58:545–53.CrossRefPubMed
56.
Zurück zum Zitat Bowley MP, Drevets WC, Ongür D, Price JL. Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry. 2002;52:404–12.CrossRefPubMed Bowley MP, Drevets WC, Ongür D, Price JL. Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry. 2002;52:404–12.CrossRefPubMed
57.
Zurück zum Zitat Ongür D, An X, Price JL. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol. 1998;401:480–505.CrossRefPubMed Ongür D, An X, Price JL. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol. 1998;401:480–505.CrossRefPubMed
59.
Zurück zum Zitat Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 2008;42:151–7.CrossRefPubMed Steiner J, Bielau H, Brisch R, Danos P, Ullrich O, Mawrin C, et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 2008;42:151–7.CrossRefPubMed
60.
Zurück zum Zitat Réus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience. 2015;300:141–54.CrossRefPubMed Réus GZ, Fries GR, Stertz L, Badawy M, Passos IC, Barichello T, et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience. 2015;300:141–54.CrossRefPubMed
61.
Zurück zum Zitat Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, et al. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiat. 2013;70:49–58.CrossRef Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, et al. Microglial activation in young adults with autism spectrum disorder. JAMA Psychiat. 2013;70:49–58.CrossRef
62.
Zurück zum Zitat Bloomfield PS, Selvaraj S, Veronese M, Rizzo G, Bertoldo A, Owen DR, et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [(11)C]PBR28 PET brain imaging study. Am J Psychiatry. 2016;173:44–52.CrossRefPubMed Bloomfield PS, Selvaraj S, Veronese M, Rizzo G, Bertoldo A, Owen DR, et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: an [(11)C]PBR28 PET brain imaging study. Am J Psychiatry. 2016;173:44–52.CrossRefPubMed
63.
Zurück zum Zitat Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E, Wold BJ, et al. Microglia in the cerebral cortex in autism. J Autism Dev Disords. 2012;42:2569–84.CrossRef Tetreault NA, Hakeem AY, Jiang S, Williams BA, Allman E, Wold BJ, et al. Microglia in the cerebral cortex in autism. J Autism Dev Disords. 2012;42:2569–84.CrossRef
64.
Zurück zum Zitat Zhang Y, Su WJ, Chen Y, Wu TY, Gong H, Shen XL, et al. Effects of hydrogen-rich water on depressive-like behavior in mice. Sci Rep. 2016;6:23742.CrossRefPubMedPubMedCentral Zhang Y, Su WJ, Chen Y, Wu TY, Gong H, Shen XL, et al. Effects of hydrogen-rich water on depressive-like behavior in mice. Sci Rep. 2016;6:23742.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Liu LL, Li JM, Su WJ, Wang B, Jiang CL. Sex differences in depressive-like behaviour may relate to imbalance of microglia activation in the hippocampus. Brain Behav Immun. 2019;81:188–97.CrossRefPubMed Liu LL, Li JM, Su WJ, Wang B, Jiang CL. Sex differences in depressive-like behaviour may relate to imbalance of microglia activation in the hippocampus. Brain Behav Immun. 2019;81:188–97.CrossRefPubMed
66.
Zurück zum Zitat Sugama S, Takenouchi T, Fujita M, Conti B, Hashimoto M. Differential microglial activation between acute stress and lipopolysaccharide treatment. J Neuroimmunol. 2009;207:24–31.CrossRefPubMed Sugama S, Takenouchi T, Fujita M, Conti B, Hashimoto M. Differential microglial activation between acute stress and lipopolysaccharide treatment. J Neuroimmunol. 2009;207:24–31.CrossRefPubMed
67.
Zurück zum Zitat Tynan RJ, Naicker S, Hinwood M, Nalivaiko E, Buller KM, Pow DV, et al. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun. 2010;24:1058–68.CrossRefPubMed Tynan RJ, Naicker S, Hinwood M, Nalivaiko E, Buller KM, Pow DV, et al. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun. 2010;24:1058–68.CrossRefPubMed
68.
Zurück zum Zitat Wohleb ES, Fenn AM, Pacenta AM, Powell ND, Sheridan JF, Godbout JP. Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice. Psychoneuroendocrinology. 2012;37:1491–505.CrossRefPubMedPubMedCentral Wohleb ES, Fenn AM, Pacenta AM, Powell ND, Sheridan JF, Godbout JP. Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice. Psychoneuroendocrinology. 2012;37:1491–505.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Zhao YH, Wang QX, Jia MZ, Fu SC, Pan JR, Chu CQ, et al. (+)-Sesamin attenuates chronic unpredictable mild stress-induced depressive-like behaviors and memory deficits via suppression of neuroinflammation. J Nutr Biochem. 2019;64:61–71.CrossRefPubMed Zhao YH, Wang QX, Jia MZ, Fu SC, Pan JR, Chu CQ, et al. (+)-Sesamin attenuates chronic unpredictable mild stress-induced depressive-like behaviors and memory deficits via suppression of neuroinflammation. J Nutr Biochem. 2019;64:61–71.CrossRefPubMed
70.
Zurück zum Zitat Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, et al. Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol. 2019;10:1511.CrossRefPubMedPubMedCentral Arioz BI, Tastan B, Tarakcioglu E, Tufekci KU, Olcum M, Ersoy N, et al. Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol. 2019;10:1511.CrossRefPubMedPubMedCentral
71.
Zurück zum Zitat Xu Y, Xu YZ, Wang YR, Wang YJ, He L, Jiang ZZ, et al. Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation. Brain Behav Immun. 2015;50:298–313.CrossRefPubMed Xu Y, Xu YZ, Wang YR, Wang YJ, He L, Jiang ZZ, et al. Telmisartan prevention of LPS-induced microglia activation involves M2 microglia polarization via CaMKKβ-dependent AMPK activation. Brain Behav Immun. 2015;50:298–313.CrossRefPubMed
72.
Zurück zum Zitat Zhang JW, Zheng YL, Luo Y, Du Y, Zhang XJ, Fu JL. Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/TLR4/NF-κB pathways in BV2 cells. Mol Immunol. 2019;116:29–37.CrossRefPubMed Zhang JW, Zheng YL, Luo Y, Du Y, Zhang XJ, Fu JL. Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/TLR4/NF-κB pathways in BV2 cells. Mol Immunol. 2019;116:29–37.CrossRefPubMed
73.
Zurück zum Zitat Zhang LJ, Tang MM, Xie XF, Zhao QY, Hu N, He H, et al. Ginsenoside Rb1 induces a pro-neurogenic microglial phenotype via PPARγ activation in male mice exposed to chronic mild stress. J Neuroinflammation. 2021;18:171.CrossRefPubMedPubMedCentral Zhang LJ, Tang MM, Xie XF, Zhao QY, Hu N, He H, et al. Ginsenoside Rb1 induces a pro-neurogenic microglial phenotype via PPARγ activation in male mice exposed to chronic mild stress. J Neuroinflammation. 2021;18:171.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Lehmann ML, Weigel TK, Poffenberger CN, Herkenham M. The behavioral sequelae of social defeat require microglia and are driven by oxidative stress in mice. J Neurosci. 2019;39:5594–605.CrossRefPubMedPubMedCentral Lehmann ML, Weigel TK, Poffenberger CN, Herkenham M. The behavioral sequelae of social defeat require microglia and are driven by oxidative stress in mice. J Neurosci. 2019;39:5594–605.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Chamera K, Trojan E, Szuster-Głuszczak M, Basta-Kaim A. The potential role of dysfunctions in neuron-microglia communication in the pathogenesis of brain disorders. Curr Neuropharmacol. 2020;18:408–30.CrossRefPubMedPubMedCentral Chamera K, Trojan E, Szuster-Głuszczak M, Basta-Kaim A. The potential role of dysfunctions in neuron-microglia communication in the pathogenesis of brain disorders. Curr Neuropharmacol. 2020;18:408–30.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Liu Y, Wu XM, Luo QQ, Huang S, Yang Q-WQ, Wang FX, et al. CX3CL1/CX3CR1-mediated microglia activation plays a detrimental role in ischemic mice brain via p38MAPK/PKC pathway. J Cereb Blood Flow Metab. 2015;35:1623–31.CrossRefPubMedPubMedCentral Liu Y, Wu XM, Luo QQ, Huang S, Yang Q-WQ, Wang FX, et al. CX3CL1/CX3CR1-mediated microglia activation plays a detrimental role in ischemic mice brain via p38MAPK/PKC pathway. J Cereb Blood Flow Metab. 2015;35:1623–31.CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat Zanier ER, Marchesi F, Ortolano F, Perego C, Arabian M, Zoerle T, et al. Fractalkine receptor deficiency is associated with early protection but late worsening of outcome following brain trauma in mice. J Neurotrauma. 2016;33:1060–72.CrossRefPubMedPubMedCentral Zanier ER, Marchesi F, Ortolano F, Perego C, Arabian M, Zoerle T, et al. Fractalkine receptor deficiency is associated with early protection but late worsening of outcome following brain trauma in mice. J Neurotrauma. 2016;33:1060–72.CrossRefPubMedPubMedCentral
78.
Zurück zum Zitat Tang MM, Lin WJ, Pan YQ, Li YC. Fibroblast growth factor 2 modulates hippocampal microglia activation in a neuroinflammation induced model of depression. Front Cell Neurosci. 2018;12:255.CrossRefPubMedPubMedCentral Tang MM, Lin WJ, Pan YQ, Li YC. Fibroblast growth factor 2 modulates hippocampal microglia activation in a neuroinflammation induced model of depression. Front Cell Neurosci. 2018;12:255.CrossRefPubMedPubMedCentral
79.
Zurück zum Zitat Merendino RA, Di Pasquale G, De Luca F, Di Pasquale L, Ferlazzo E, Martino G, et al. Involvement of fractalkine and macrophage inflammatory protein-1 alpha in moderate-severe depression. Mediators Inflamm. 2004;13:205–7.CrossRefPubMedPubMedCentral Merendino RA, Di Pasquale G, De Luca F, Di Pasquale L, Ferlazzo E, Martino G, et al. Involvement of fractalkine and macrophage inflammatory protein-1 alpha in moderate-severe depression. Mediators Inflamm. 2004;13:205–7.CrossRefPubMedPubMedCentral
80.
Zurück zum Zitat García-Marchena N, Barrera M, Mestre-Pintó JI, Araos P, Serrano A, Pérez-Mañá C, et al. Inflammatory mediators and dual depression: potential biomarkers in plasma of primary and substance-induced major depression in cocaine and alcohol use disorders. PLoS ONE. 2019;14: e0213791.CrossRefPubMedPubMedCentral García-Marchena N, Barrera M, Mestre-Pintó JI, Araos P, Serrano A, Pérez-Mañá C, et al. Inflammatory mediators and dual depression: potential biomarkers in plasma of primary and substance-induced major depression in cocaine and alcohol use disorders. PLoS ONE. 2019;14: e0213791.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014;17:400–6.CrossRefPubMed Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci. 2014;17:400–6.CrossRefPubMed
82.
Zurück zum Zitat Hellwig S, Brioschi S, Dieni S, Frings L, Masuch A, Blank T, et al. Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice. Brain Behav Immun. 2016;55:126–37.CrossRefPubMed Hellwig S, Brioschi S, Dieni S, Frings L, Masuch A, Blank T, et al. Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice. Brain Behav Immun. 2016;55:126–37.CrossRefPubMed
83.
Zurück zum Zitat Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, et al. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci. 2011;31(45):16241–50.CrossRefPubMedPubMedCentral Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, et al. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci. 2011;31(45):16241–50.CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Trojan E, Ślusarczyk J, Chamera K, Kotarska K, Głombik K, Kubera M, et al. The modulatory properties of chronic antidepressant drugs treatment on the brain chemokine-chemokine receptor network: a molecular study in an animal model of depression. Front Pharmacol. 2017;8:779.CrossRefPubMedPubMedCentral Trojan E, Ślusarczyk J, Chamera K, Kotarska K, Głombik K, Kubera M, et al. The modulatory properties of chronic antidepressant drugs treatment on the brain chemokine-chemokine receptor network: a molecular study in an animal model of depression. Front Pharmacol. 2017;8:779.CrossRefPubMedPubMedCentral
85.
Zurück zum Zitat Ślusarczyk J, Trojan E, Wydra K, Głombik K, Chamera K, Kucharczyk M, et al. Beneficial impact of intracerebroventricular fractalkine administration on behavioral and biochemical changes induced by prenatal stress in adult rats: possible role of NLRP3 inflammasome pathway. Biochem Pharmacol. 2016;113:45–56.CrossRefPubMed Ślusarczyk J, Trojan E, Wydra K, Głombik K, Chamera K, Kucharczyk M, et al. Beneficial impact of intracerebroventricular fractalkine administration on behavioral and biochemical changes induced by prenatal stress in adult rats: possible role of NLRP3 inflammasome pathway. Biochem Pharmacol. 2016;113:45–56.CrossRefPubMed
86.
Zurück zum Zitat Milior G, Lecours C, Samson L, Bisht K, Poggini S, Pagani F, et al. Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress. Brain Behav Immun. 2016;55:114–25.CrossRefPubMed Milior G, Lecours C, Samson L, Bisht K, Poggini S, Pagani F, et al. Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress. Brain Behav Immun. 2016;55:114–25.CrossRefPubMed
87.
Zurück zum Zitat Frank MG, Fonken LK, Annis JL, Watkins LR, Maier SF. Stress disinhibits microglia via down-regulation of CD200R: a mechanism of neuroinflammatory priming. Brain Behav Immun. 2018;69:62–73.CrossRefPubMed Frank MG, Fonken LK, Annis JL, Watkins LR, Maier SF. Stress disinhibits microglia via down-regulation of CD200R: a mechanism of neuroinflammatory priming. Brain Behav Immun. 2018;69:62–73.CrossRefPubMed
88.
Zurück zum Zitat Fonken LK, Frank MG, Gaudet AD, D’Angelo HM, Daut RA, Hampson EC, et al. Neuroinflammatory priming to stress is differentially regulated in male and female rats. Brain Behav Immun. 2018;70:257–67.CrossRefPubMedPubMedCentral Fonken LK, Frank MG, Gaudet AD, D’Angelo HM, Daut RA, Hampson EC, et al. Neuroinflammatory priming to stress is differentially regulated in male and female rats. Brain Behav Immun. 2018;70:257–67.CrossRefPubMedPubMedCentral
89.
Zurück zum Zitat Blandino P, Barnum CJ, Solomon LG, Larish Y, Lankow BS, Deak T. Gene expression changes in the hypothalamus provide evidence for regionally-selective changes in IL-1 and microglial markers after acute stress. Brain Behav Immun. 2009;23:958–68.CrossRefPubMed Blandino P, Barnum CJ, Solomon LG, Larish Y, Lankow BS, Deak T. Gene expression changes in the hypothalamus provide evidence for regionally-selective changes in IL-1 and microglial markers after acute stress. Brain Behav Immun. 2009;23:958–68.CrossRefPubMed
90.
Zurück zum Zitat Wachholz S, Eßlinger M, Plümper J, Manitz MP, Juckel G, Friebe A. Microglia activation is associated with IFN-α induced depressive-like behavior. Brain Behav Immun. 2016;55:105–13.CrossRefPubMed Wachholz S, Eßlinger M, Plümper J, Manitz MP, Juckel G, Friebe A. Microglia activation is associated with IFN-α induced depressive-like behavior. Brain Behav Immun. 2016;55:105–13.CrossRefPubMed
91.
Zurück zum Zitat Nieto-Quero A, Chaves-Peña P, Santín LJ, Pérez-Martín M, Pedraza C. Do changes in microglial status underlie neurogenesis impairments and depressive-like behaviours induced by psychological stress? A systematic review in animal models. Neurobiol Stress. 2021;15: 100356.CrossRefPubMedPubMedCentral Nieto-Quero A, Chaves-Peña P, Santín LJ, Pérez-Martín M, Pedraza C. Do changes in microglial status underlie neurogenesis impairments and depressive-like behaviours induced by psychological stress? A systematic review in animal models. Neurobiol Stress. 2021;15: 100356.CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, et al. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature. 2018;559:98–102.CrossRefPubMedPubMedCentral Anacker C, Luna VM, Stevens GS, Millette A, Shores R, Jimenez JC, et al. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature. 2018;559:98–102.CrossRefPubMedPubMedCentral
93.
Zurück zum Zitat Ito N, Nagai T, Yabe T, Nunome S, Hanawa T, Yamada H. Antidepressant-like activity of a Kampo (Japanese herbal) medicine, Koso-san (Xiang-Su-San), and its mode of action via the hypothalamic-pituitary-adrenal axis. Phytomedicine. 2006;13:658–67.CrossRefPubMed Ito N, Nagai T, Yabe T, Nunome S, Hanawa T, Yamada H. Antidepressant-like activity of a Kampo (Japanese herbal) medicine, Koso-san (Xiang-Su-San), and its mode of action via the hypothalamic-pituitary-adrenal axis. Phytomedicine. 2006;13:658–67.CrossRefPubMed
94.
Zurück zum Zitat Lu M, Yang JZ, Geng F, Ding JH, Hu G. Iptakalim confers an antidepressant effect in a chronic mild stress model of depression through regulating neuro-inflammation and neurogenesis. Int J Neuropsychopharmacol. 2014;17:1501–10.CrossRefPubMed Lu M, Yang JZ, Geng F, Ding JH, Hu G. Iptakalim confers an antidepressant effect in a chronic mild stress model of depression through regulating neuro-inflammation and neurogenesis. Int J Neuropsychopharmacol. 2014;17:1501–10.CrossRefPubMed
95.
Zurück zum Zitat Schoenfeld TJ, Gould E. Stress, stress hormones, and adult neurogenesis. Exp Neurol. 2012;233:12–21.CrossRefPubMed Schoenfeld TJ, Gould E. Stress, stress hormones, and adult neurogenesis. Exp Neurol. 2012;233:12–21.CrossRefPubMed
96.
Zurück zum Zitat Lee JS, Kim WY, Jeon YJ, Lee SB, Lee DS, Son CG. Antidepressant-like activity of Myelophil attenuation of microglial-mediated neuroinflammation in mice undergoing unpredictable chronic mild stress. Front Pharmacol. 2019;10:683.CrossRefPubMedPubMedCentral Lee JS, Kim WY, Jeon YJ, Lee SB, Lee DS, Son CG. Antidepressant-like activity of Myelophil attenuation of microglial-mediated neuroinflammation in mice undergoing unpredictable chronic mild stress. Front Pharmacol. 2019;10:683.CrossRefPubMedPubMedCentral
97.
Zurück zum Zitat Llorens-Martín M, Jurado-Arjona J, Bolós M, Pallas-Bazarra N, Ávila J. Forced swimming sabotages the morphological and synaptic maturation of newborn granule neurons and triggers a unique pro-inflammatory milieu in the hippocampus. Brain Behav Immun. 2016;53:242–54.CrossRefPubMed Llorens-Martín M, Jurado-Arjona J, Bolós M, Pallas-Bazarra N, Ávila J. Forced swimming sabotages the morphological and synaptic maturation of newborn granule neurons and triggers a unique pro-inflammatory milieu in the hippocampus. Brain Behav Immun. 2016;53:242–54.CrossRefPubMed
98.
Zurück zum Zitat Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A. 2003;100:13632–7.CrossRefPubMedPubMedCentral Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A. 2003;100:13632–7.CrossRefPubMedPubMedCentral
99.
Zurück zum Zitat Seong KJ, Lee HG, Kook MS, Ko HM, Jung JY, Kim WJ. Epigallocatechin-3-gallate rescues LPS-impaired adult hippocampal neurogenesis through suppressing the TLR4-NF-κB signaling pathway in mice. Korean J Physiol Pharmacol. 2016;20:41–51.CrossRefPubMed Seong KJ, Lee HG, Kook MS, Ko HM, Jung JY, Kim WJ. Epigallocatechin-3-gallate rescues LPS-impaired adult hippocampal neurogenesis through suppressing the TLR4-NF-κB signaling pathway in mice. Korean J Physiol Pharmacol. 2016;20:41–51.CrossRefPubMed
100.
Zurück zum Zitat Cheng J, Chen M, Zhu JX, Li CF, Zhang QP, Geng D, et al. FGF-2 signaling activation in the hippocampus contributes to the behavioral and cellular responses to puerarin. Biochem Pharmacol. 2019;168:91–9.CrossRefPubMed Cheng J, Chen M, Zhu JX, Li CF, Zhang QP, Geng D, et al. FGF-2 signaling activation in the hippocampus contributes to the behavioral and cellular responses to puerarin. Biochem Pharmacol. 2019;168:91–9.CrossRefPubMed
101.
Zurück zum Zitat Vega-Rivera NM, Ortiz-López L, Granados-Juárez A, Estrada-Camarena EM, Ramírez-Rodríguez GB. Melatonin reverses the depression-associated behaviour and regulates microglia, fractalkine expression and neurogenesis in adult mice exposed to chronic mild stress. Neuroscience. 2020;440:316–36.CrossRefPubMed Vega-Rivera NM, Ortiz-López L, Granados-Juárez A, Estrada-Camarena EM, Ramírez-Rodríguez GB. Melatonin reverses the depression-associated behaviour and regulates microglia, fractalkine expression and neurogenesis in adult mice exposed to chronic mild stress. Neuroscience. 2020;440:316–36.CrossRefPubMed
102.
Zurück zum Zitat Zhang JQ, Xie XF, Tang MM, Zhang J, Zhang BY, Zhao QY, et al. Salvianolic acid B promotes microglial M2-polarization and rescues neurogenesis in stress-exposed mice. Brain Behav Immun. 2017;66:111–24.CrossRefPubMed Zhang JQ, Xie XF, Tang MM, Zhang J, Zhang BY, Zhao QY, et al. Salvianolic acid B promotes microglial M2-polarization and rescues neurogenesis in stress-exposed mice. Brain Behav Immun. 2017;66:111–24.CrossRefPubMed
103.
Zurück zum Zitat Han Y, Zhang LJ, Wang QZ, Zhang DD, Zhao QY, Zhang JQ, et al. Minocycline inhibits microglial activation and alleviates depressive-like behaviors in male adolescent mice subjected to maternal separation. Psychoneuroendocrinology. 2019;107:37–45.CrossRefPubMed Han Y, Zhang LJ, Wang QZ, Zhang DD, Zhao QY, Zhang JQ, et al. Minocycline inhibits microglial activation and alleviates depressive-like behaviors in male adolescent mice subjected to maternal separation. Psychoneuroendocrinology. 2019;107:37–45.CrossRefPubMed
104.
Zurück zum Zitat Zhao QY, Peng C, Wu XH, Chen YB, Wang C, You ZL. Maternal sleep deprivation inhibits hippocampal neurogenesis associated with inflammatory response in young offspring rats. Neurobiol Dis. 2014;68:57–65.CrossRefPubMed Zhao QY, Peng C, Wu XH, Chen YB, Wang C, You ZL. Maternal sleep deprivation inhibits hippocampal neurogenesis associated with inflammatory response in young offspring rats. Neurobiol Dis. 2014;68:57–65.CrossRefPubMed
105.
Zurück zum Zitat Mao ZF, Ouyang SH, Zhang QY, Wu YP, Wang GE, Tu LF, et al. New insights into the effects of caffeine on adult hippocampal neurogenesis in stressed mice: inhibition of CORT-induced microglia activation. FASEB J. 2020;34:10998–1014.CrossRefPubMed Mao ZF, Ouyang SH, Zhang QY, Wu YP, Wang GE, Tu LF, et al. New insights into the effects of caffeine on adult hippocampal neurogenesis in stressed mice: inhibition of CORT-induced microglia activation. FASEB J. 2020;34:10998–1014.CrossRefPubMed
106.
Zurück zum Zitat Jiang N, Lv JW, Wang HX, Lu C, Wang Q, Xia TJ, et al. Dammarane sapogenins alleviates depression-like behaviours induced by chronic social defeat stress in mice through the promotion of the BDNF signalling pathway and neurogenesis in the hippocampus. Brain Res Bull. 2019;153:239–49.CrossRefPubMed Jiang N, Lv JW, Wang HX, Lu C, Wang Q, Xia TJ, et al. Dammarane sapogenins alleviates depression-like behaviours induced by chronic social defeat stress in mice through the promotion of the BDNF signalling pathway and neurogenesis in the hippocampus. Brain Res Bull. 2019;153:239–49.CrossRefPubMed
107.
Zurück zum Zitat Jiang N, Lv J, Wang HX, Huang H, Wang Q, Lu C, et al. Ginsenoside Rg1 ameliorates chronic social defeat stress-induced depressive-like behaviors and hippocampal neuroinflammation. Life Sci. 2020;252: 117669.CrossRefPubMed Jiang N, Lv J, Wang HX, Huang H, Wang Q, Lu C, et al. Ginsenoside Rg1 ameliorates chronic social defeat stress-induced depressive-like behaviors and hippocampal neuroinflammation. Life Sci. 2020;252: 117669.CrossRefPubMed
108.
Zurück zum Zitat Park HJ, Shim HS, An K, Starkweather A, Kim KS, Shim I. IL-4 inhibits IL-1β-induced depressive-like behavior and central neurotransmitter alterations. Mediators Inflamm. 2015;2015: 941413.PubMedPubMedCentralCrossRef Park HJ, Shim HS, An K, Starkweather A, Kim KS, Shim I. IL-4 inhibits IL-1β-induced depressive-like behavior and central neurotransmitter alterations. Mediators Inflamm. 2015;2015: 941413.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, et al. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci. 2006;31:149–60.CrossRefPubMed Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, et al. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci. 2006;31:149–60.CrossRefPubMed
110.
Zurück zum Zitat Forster R, Sarginson A, Velichkova A, Hogg C, Dorning A, Horne AW, et al. Macrophage-derived insulin-like growth factor-1 is a key neurotrophic and nerve-sensitizing factor in pain associated with endometriosis. FASEB J. 2019;33:11210–22.CrossRefPubMedPubMedCentral Forster R, Sarginson A, Velichkova A, Hogg C, Dorning A, Horne AW, et al. Macrophage-derived insulin-like growth factor-1 is a key neurotrophic and nerve-sensitizing factor in pain associated with endometriosis. FASEB J. 2019;33:11210–22.CrossRefPubMedPubMedCentral
111.
Zurück zum Zitat Zhang JQ, Rong PJ, Zhang LJ, He H, Zhou T, Fan YH, et al. IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis. Sci Adv. 2021;7:eabb9888.CrossRefPubMedPubMedCentral Zhang JQ, Rong PJ, Zhang LJ, He H, Zhou T, Fan YH, et al. IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis. Sci Adv. 2021;7:eabb9888.CrossRefPubMedPubMedCentral
112.
Zurück zum Zitat Qi FF, Zuo ZJ, Yang JH, Hu SS, Yang Y, Yuan QF, et al. Combined effect of BCG vaccination and enriched environment promote neurogenesis and spatial cognition via a shift in meningeal macrophage M2 polarization. J Neuroinflammation. 2017;14:32.CrossRefPubMedPubMedCentral Qi FF, Zuo ZJ, Yang JH, Hu SS, Yang Y, Yuan QF, et al. Combined effect of BCG vaccination and enriched environment promote neurogenesis and spatial cognition via a shift in meningeal macrophage M2 polarization. J Neuroinflammation. 2017;14:32.CrossRefPubMedPubMedCentral
113.
Zurück zum Zitat Yang L, Liu C, Li WY, Ma YQ, Huo SJ, Ozathaley A, et al. Depression-like behavior associated with E/I imbalance of mPFC and amygdala without TRPC channels in mice of knockout IL-10 from microglia. Brain Behav Immun. 2021;97:68–78.CrossRefPubMed Yang L, Liu C, Li WY, Ma YQ, Huo SJ, Ozathaley A, et al. Depression-like behavior associated with E/I imbalance of mPFC and amygdala without TRPC channels in mice of knockout IL-10 from microglia. Brain Behav Immun. 2021;97:68–78.CrossRefPubMed
114.
Zurück zum Zitat Bachstetter AD, Morganti JM, Jernberg J, Schlunk A, Mitchell SH, Brewster KW, et al. Fractalkine and CX3CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging. 2011;32:2030–44.CrossRefPubMed Bachstetter AD, Morganti JM, Jernberg J, Schlunk A, Mitchell SH, Brewster KW, et al. Fractalkine and CX3CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging. 2011;32:2030–44.CrossRefPubMed
115.
Zurück zum Zitat Bassett B, Subramaniyam S, Fan Y, Varney S, Pan H, Carneiro AMD, et al. Minocycline alleviates depression-like symptoms by rescuing decrease in neurogenesis in dorsal hippocampus via blocking microglia activation/phagocytosis. Brain Behav Immun. 2021;91:519–30.CrossRefPubMed Bassett B, Subramaniyam S, Fan Y, Varney S, Pan H, Carneiro AMD, et al. Minocycline alleviates depression-like symptoms by rescuing decrease in neurogenesis in dorsal hippocampus via blocking microglia activation/phagocytosis. Brain Behav Immun. 2021;91:519–30.CrossRefPubMed
116.
Zurück zum Zitat Li MX, Zheng HL, Luo Y, He JG, Wang W, Han J, et al. Gene deficiency and pharmacological inhibition of caspase-1 confers resilience to chronic social defeat stress via regulating the stability of surface AMPARs. Mol Psychiatry. 2018;23:556–68.CrossRefPubMed Li MX, Zheng HL, Luo Y, He JG, Wang W, Han J, et al. Gene deficiency and pharmacological inhibition of caspase-1 confers resilience to chronic social defeat stress via regulating the stability of surface AMPARs. Mol Psychiatry. 2018;23:556–68.CrossRefPubMed
117.
Zurück zum Zitat Wong ML, Inserra A, Lewis MD, Mastronardi CA, Leong L, Choo J, et al. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry. 2016;21:797–805.CrossRefPubMedPubMedCentral Wong ML, Inserra A, Lewis MD, Mastronardi CA, Leong L, Choo J, et al. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry. 2016;21:797–805.CrossRefPubMedPubMedCentral
118.
Zurück zum Zitat Impellizzeri D, Mazzon E, Paterniti I, Esposito E, Cuzzocrea S. Effect of fasudil, a selective inhibitor of Rho kinase activity, in the secondary injury associated with the experimental model of spinal cord trauma. J Pharmacol Exp Ther. 2012;343:21–33.CrossRefPubMed Impellizzeri D, Mazzon E, Paterniti I, Esposito E, Cuzzocrea S. Effect of fasudil, a selective inhibitor of Rho kinase activity, in the secondary injury associated with the experimental model of spinal cord trauma. J Pharmacol Exp Ther. 2012;343:21–33.CrossRefPubMed
119.
120.
Zurück zum Zitat Alcocer-Gómez E, de Miguel M, Casas-Barquero N, Núñez-Vasco J, Sánchez-Alcazar JA, Fernández-Rodríguez A, et al. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav Immun. 2014;36:111–7.CrossRefPubMed Alcocer-Gómez E, de Miguel M, Casas-Barquero N, Núñez-Vasco J, Sánchez-Alcazar JA, Fernández-Rodríguez A, et al. NLRP3 inflammasome is activated in mononuclear blood cells from patients with major depressive disorder. Brain Behav Immun. 2014;36:111–7.CrossRefPubMed
121.
Zurück zum Zitat Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev. 2012;36:764–85.CrossRefPubMed Leonard B, Maes M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci Biobehav Rev. 2012;36:764–85.CrossRefPubMed
122.
Zurück zum Zitat Pan Y, Chen XY, Zhang QY, Kong LD. Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun. 2014;41:90–100.CrossRefPubMed Pan Y, Chen XY, Zhang QY, Kong LD. Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats. Brain Behav Immun. 2014;41:90–100.CrossRefPubMed
123.
Zurück zum Zitat Zhang Y, Liu L, Liu YZ, Shen XL, Wu TY, Zhang T, et al. NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int J Neuropsychopharmacol. 2015;18(8):pyv006.CrossRefPubMedPubMedCentral Zhang Y, Liu L, Liu YZ, Shen XL, Wu TY, Zhang T, et al. NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int J Neuropsychopharmacol. 2015;18(8):pyv006.CrossRefPubMedPubMedCentral
124.
Zurück zum Zitat Yue N, Huang HJ, Zhu XC, Han QQ, Wang YL, Li B, et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflammation. 2017;14:102.CrossRefPubMedPubMedCentral Yue N, Huang HJ, Zhu XC, Han QQ, Wang YL, Li B, et al. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflammation. 2017;14:102.CrossRefPubMedPubMedCentral
125.
Zurück zum Zitat Zhang Y, Liu L, Peng YL, Liu YZ, Wu TY, Shen XL, et al. Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors. CNS Neurosci Ther. 2014;20(2):119–24.CrossRefPubMed Zhang Y, Liu L, Peng YL, Liu YZ, Wu TY, Shen XL, et al. Involvement of inflammasome activation in lipopolysaccharide-induced mice depressive-like behaviors. CNS Neurosci Ther. 2014;20(2):119–24.CrossRefPubMed
126.
Zurück zum Zitat Dai JJ, Ding ZF, Zhang J, Xu W, Guo QL, Zou WY, et al. Minocycline relieves depressive-like behaviors in rats with bone cancer pain by inhibiting microglia activation in hippocampus. Anesth Analg. 2019;129:1733–41.CrossRefPubMed Dai JJ, Ding ZF, Zhang J, Xu W, Guo QL, Zou WY, et al. Minocycline relieves depressive-like behaviors in rats with bone cancer pain by inhibiting microglia activation in hippocampus. Anesth Analg. 2019;129:1733–41.CrossRefPubMed
127.
Zurück zum Zitat Arakawa S, Shirayama Y, Fujita Y, Ishima T, Horio M, Muneoka K, et al. Minocycline produced antidepressant-like effects on the learned helplessness rats with alterations in levels of monoamine in the amygdala and no changes in BDNF levels in the hippocampus at baseline. Pharmacol Biochem Behav. 2012;100:601–6.CrossRefPubMed Arakawa S, Shirayama Y, Fujita Y, Ishima T, Horio M, Muneoka K, et al. Minocycline produced antidepressant-like effects on the learned helplessness rats with alterations in levels of monoamine in the amygdala and no changes in BDNF levels in the hippocampus at baseline. Pharmacol Biochem Behav. 2012;100:601–6.CrossRefPubMed
128.
Zurück zum Zitat Liu MC, Li J, Dai P, Zhao F, Zheng G, Jing JF, et al. Microglia activation regulates GluR1 phosphorylation in chronic unpredictable stress-induced cognitive dysfunction. Stress. 2015;18:96–106.CrossRefPubMed Liu MC, Li J, Dai P, Zhao F, Zheng G, Jing JF, et al. Microglia activation regulates GluR1 phosphorylation in chronic unpredictable stress-induced cognitive dysfunction. Stress. 2015;18:96–106.CrossRefPubMed
129.
Zurück zum Zitat Wang HX, Lv JW, Jiang N, Huang H, Wang Q, Liu X. Ginsenoside Re protects against chronic restraint stress-induced cognitive deficits through regulation of NLRP3 and Nrf2 pathways in mice. Phytother Res. 2021;35:2523–35.CrossRef Wang HX, Lv JW, Jiang N, Huang H, Wang Q, Liu X. Ginsenoside Re protects against chronic restraint stress-induced cognitive deficits through regulation of NLRP3 and Nrf2 pathways in mice. Phytother Res. 2021;35:2523–35.CrossRef
130.
Zurück zum Zitat Du RH, Tan J, Sun XY, Lu M, Ding JH, Hu G. Fluoxetine inhibits NLRP3 inflammasome activation: implication in depression. Int J Neuropsychopharmacol. 2016;19(9):pyw037.CrossRefPubMedPubMedCentral Du RH, Tan J, Sun XY, Lu M, Ding JH, Hu G. Fluoxetine inhibits NLRP3 inflammasome activation: implication in depression. Int J Neuropsychopharmacol. 2016;19(9):pyw037.CrossRefPubMedPubMedCentral
131.
Zurück zum Zitat Gong W, Zhang S, Zong Y, Halim M, Ren Z, Wang Y, et al. Involvement of the microglial NLRP3 inflammasome in the anti-inflammatory effect of the antidepressant clomipramine. J Affect Disord. 2019;254:15–25.CrossRefPubMed Gong W, Zhang S, Zong Y, Halim M, Ren Z, Wang Y, et al. Involvement of the microglial NLRP3 inflammasome in the anti-inflammatory effect of the antidepressant clomipramine. J Affect Disord. 2019;254:15–25.CrossRefPubMed
132.
Zurück zum Zitat Yue N, Li B, Yang L, Han QQ, Huang HJ, Wang YL, et al. Electro-acupuncture alleviates chronic unpredictable stress-induced depressive- and anxiety-like behavior and hippocampal neuroinflammation in rat model of depression. Front Mol Neurosci. 2018;11:149.CrossRefPubMedPubMedCentral Yue N, Li B, Yang L, Han QQ, Huang HJ, Wang YL, et al. Electro-acupuncture alleviates chronic unpredictable stress-induced depressive- and anxiety-like behavior and hippocampal neuroinflammation in rat model of depression. Front Mol Neurosci. 2018;11:149.CrossRefPubMedPubMedCentral
133.
Zurück zum Zitat Garrison AM, Parrott JM, Tuñon A, Delgado J, Redus L, O’Connor JC. Kynurenine pathway metabolic balance influences microglia activity: targeting kynurenine monooxygenase to dampen neuroinflammation. Psychoneuroendocrinology. 2018;94:1–10.CrossRefPubMedPubMedCentral Garrison AM, Parrott JM, Tuñon A, Delgado J, Redus L, O’Connor JC. Kynurenine pathway metabolic balance influences microglia activity: targeting kynurenine monooxygenase to dampen neuroinflammation. Psychoneuroendocrinology. 2018;94:1–10.CrossRefPubMedPubMedCentral
134.
Zurück zum Zitat Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, et al. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem. 2001;78(4):842–53.CrossRefPubMed Guillemin GJ, Kerr SJ, Smythe GA, Smith DG, Kapoor V, Armati PJ, et al. Kynurenine pathway metabolism in human astrocytes: a paradox for neuronal protection. J Neurochem. 2001;78(4):842–53.CrossRefPubMed
135.
Zurück zum Zitat Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain. 1992;115:1249–73.CrossRefPubMed Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, et al. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain. 1992;115:1249–73.CrossRefPubMed
136.
Zurück zum Zitat Birner A, Platzer M, Bengesser SA, Dalkner N, Fellendorf FT, Queissner R, et al. Increased breakdown of kynurenine towards its neurotoxic branch in bipolar disorder. PLoS ONE. 2017;12(2): e0172699.CrossRefPubMedPubMedCentral Birner A, Platzer M, Bengesser SA, Dalkner N, Fellendorf FT, Queissner R, et al. Increased breakdown of kynurenine towards its neurotoxic branch in bipolar disorder. PLoS ONE. 2017;12(2): e0172699.CrossRefPubMedPubMedCentral
137.
Zurück zum Zitat Dantzer R. Role of the kynurenine metabolism pathway in inflammation-induced depression: preclinical approaches. Curr Top Behav Neurosci. 2017;31:117–38.CrossRefPubMedPubMedCentral Dantzer R. Role of the kynurenine metabolism pathway in inflammation-induced depression: preclinical approaches. Curr Top Behav Neurosci. 2017;31:117–38.CrossRefPubMedPubMedCentral
138.
Zurück zum Zitat Busse M, Busse S, Myint AM, Gos T, Dobrowolny H, Müller UJ, et al. Decreased quinolinic acid in the hippocampus of depressive patients: evidence for local anti-inflammatory and neuroprotective responses? Eur Arch Psychiatry Clin Neurosci. 2015;265(4):321–9.CrossRefPubMed Busse M, Busse S, Myint AM, Gos T, Dobrowolny H, Müller UJ, et al. Decreased quinolinic acid in the hippocampus of depressive patients: evidence for local anti-inflammatory and neuroprotective responses? Eur Arch Psychiatry Clin Neurosci. 2015;265(4):321–9.CrossRefPubMed
139.
Zurück zum Zitat Ogyu K, Kubo K, Noda Y, Iwata Y, Tsugawa S, Omura Y, et al. Kynurenine pathway in depression: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2018;90:16–25.CrossRefPubMed Ogyu K, Kubo K, Noda Y, Iwata Y, Tsugawa S, Omura Y, et al. Kynurenine pathway in depression: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2018;90:16–25.CrossRefPubMed
140.
Zurück zum Zitat Achtyes E, Keaton SA, Smart L, Burmeister AR, Heilman PL, Krzyzanowski S, et al. Inflammation and kynurenine pathway dysregulation in post-partum women with severe and suicidal depression. Brain Behav Immun. 2020;83:239–47.CrossRefPubMed Achtyes E, Keaton SA, Smart L, Burmeister AR, Heilman PL, Krzyzanowski S, et al. Inflammation and kynurenine pathway dysregulation in post-partum women with severe and suicidal depression. Brain Behav Immun. 2020;83:239–47.CrossRefPubMed
141.
Zurück zum Zitat Öztürk M, Yalın Sapmaz Ş, Kandemir H, Taneli F, Aydemir Ö. The role of the kynurenine pathway and quinolinic acid in adolescent major depressive disorder. Int J Clin Pract. 2021;75: e13739.PubMedCrossRef Öztürk M, Yalın Sapmaz Ş, Kandemir H, Taneli F, Aydemir Ö. The role of the kynurenine pathway and quinolinic acid in adolescent major depressive disorder. Int J Clin Pract. 2021;75: e13739.PubMedCrossRef
142.
Zurück zum Zitat Walker AK, Budac DP, Bisulco S, Lee AW, Smith RA, Beenders B, et al. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology. 2013;38:1609–16.CrossRefPubMedPubMedCentral Walker AK, Budac DP, Bisulco S, Lee AW, Smith RA, Beenders B, et al. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology. 2013;38:1609–16.CrossRefPubMedPubMedCentral
143.
Zurück zum Zitat Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry. 2010;15:393–403.CrossRefPubMed Raison CL, Dantzer R, Kelley KW, Lawson MA, Woolwine BJ, Vogt G, et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Mol Psychiatry. 2010;15:393–403.CrossRefPubMed
144.
Zurück zum Zitat Mithaiwala MN, Santana-Coelho D, Porter GA, O’Connor JC. Neuroinflammation and the kynurenine pathway in CNS disease: molecular mechanisms and therapeutic implications. Cells. 2021;10:1548.CrossRefPubMedPubMedCentral Mithaiwala MN, Santana-Coelho D, Porter GA, O’Connor JC. Neuroinflammation and the kynurenine pathway in CNS disease: molecular mechanisms and therapeutic implications. Cells. 2021;10:1548.CrossRefPubMedPubMedCentral
145.
Zurück zum Zitat Verdonk F, Petit AC, Abdel-Ahad P, Vinckier F, Jouvion G, de Maricourt P, et al. Microglial production of quinolinic acid as a target and a biomarker of the antidepressant effect of ketamine. Brain Behav Immun. 2019;81:361–73.CrossRefPubMed Verdonk F, Petit AC, Abdel-Ahad P, Vinckier F, Jouvion G, de Maricourt P, et al. Microglial production of quinolinic acid as a target and a biomarker of the antidepressant effect of ketamine. Brain Behav Immun. 2019;81:361–73.CrossRefPubMed
146.
Zurück zum Zitat Liu XC, Erhardt S, Goiny M, Engberg G, Mathé AA. Decreased levels of kynurenic acid in prefrontal cortex in a genetic animal model of depression. Acta Neuropsychiatr. 2017;29:54–8.CrossRefPubMed Liu XC, Erhardt S, Goiny M, Engberg G, Mathé AA. Decreased levels of kynurenic acid in prefrontal cortex in a genetic animal model of depression. Acta Neuropsychiatr. 2017;29:54–8.CrossRefPubMed
147.
Zurück zum Zitat Chen HB, Li F, Wu S, An SC. Hippocampus quinolinic acid modulates glutamate and NMDAR/mGluR1 in chronic unpredictable mild stress-induced depression. Sheng Li Xue Bao. 2013;65:577–85.PubMed Chen HB, Li F, Wu S, An SC. Hippocampus quinolinic acid modulates glutamate and NMDAR/mGluR1 in chronic unpredictable mild stress-induced depression. Sheng Li Xue Bao. 2013;65:577–85.PubMed
148.
Zurück zum Zitat Deng YY, Zhou MF, Wang JF, Yao JX, Yu J, Liu WW, et al. Involvement of the microbiota-gut-brain axis in chronic restraint stress: disturbances of the kynurenine metabolic pathway in both the gut and brain. Gut Microbes. 2021;13:1–16.PubMedCrossRef Deng YY, Zhou MF, Wang JF, Yao JX, Yu J, Liu WW, et al. Involvement of the microbiota-gut-brain axis in chronic restraint stress: disturbances of the kynurenine metabolic pathway in both the gut and brain. Gut Microbes. 2021;13:1–16.PubMedCrossRef
149.
Zurück zum Zitat Imbeault S, Goiny M, Liu X, Erhardt S. Effects of IDO1 and TDO2 inhibition on cognitive deficits and anxiety following LPS-induced neuroinflammation. Acta Neuropsychiatr. 2020;32:43–53.CrossRefPubMed Imbeault S, Goiny M, Liu X, Erhardt S. Effects of IDO1 and TDO2 inhibition on cognitive deficits and anxiety following LPS-induced neuroinflammation. Acta Neuropsychiatr. 2020;32:43–53.CrossRefPubMed
150.
Zurück zum Zitat Thomas J, Khanam R, Vohora D. Augmentation of antidepressant effects of venlafaxine by agomelatine in mice are independent of kynurenine pathway. Neurochem Int. 2016;99:103–9.CrossRefPubMed Thomas J, Khanam R, Vohora D. Augmentation of antidepressant effects of venlafaxine by agomelatine in mice are independent of kynurenine pathway. Neurochem Int. 2016;99:103–9.CrossRefPubMed
151.
Zurück zum Zitat Koo YS, Kim H, Park JH, Kim MJ, Shin YI, Choi BT, et al. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism contributes to poststroke depression induced in mice by ischemic stroke along with spatial restraint stress. Oxid Med Cell Longev. 2018;2018:2413841.CrossRefPubMedPubMedCentral Koo YS, Kim H, Park JH, Kim MJ, Shin YI, Choi BT, et al. Indoleamine 2,3-dioxygenase-dependent neurotoxic kynurenine metabolism contributes to poststroke depression induced in mice by ischemic stroke along with spatial restraint stress. Oxid Med Cell Longev. 2018;2018:2413841.CrossRefPubMedPubMedCentral
152.
Zurück zum Zitat Fuertig R, Azzinnari D, Bergamini G, Cathomas F, Sigrist H, Seifritz E, et al. Mouse chronic social stress increases blood and brain kynurenine pathway activity and fear behaviour: Both effects are reversed by inhibition of indoleamine 2,3-dioxygenase. Brain Behav Immun. 2016;54:59–72.CrossRefPubMed Fuertig R, Azzinnari D, Bergamini G, Cathomas F, Sigrist H, Seifritz E, et al. Mouse chronic social stress increases blood and brain kynurenine pathway activity and fear behaviour: Both effects are reversed by inhibition of indoleamine 2,3-dioxygenase. Brain Behav Immun. 2016;54:59–72.CrossRefPubMed
153.
Zurück zum Zitat Kopschina Feltes P, Doorduin J, Klein HC, Juárez-Orozco LE, Dierckx RA, Moriguchi-Jeckel CM, et al. Anti-inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J Psychopharmacol. 2017;31:1149–65.CrossRefPubMedPubMedCentral Kopschina Feltes P, Doorduin J, Klein HC, Juárez-Orozco LE, Dierckx RA, Moriguchi-Jeckel CM, et al. Anti-inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J Psychopharmacol. 2017;31:1149–65.CrossRefPubMedPubMedCentral
154.
Zurück zum Zitat Liu LM, Zhao ZX, Lu LW, Liu JQ, Sun J, Dong JC. Icariin and icaritin ameliorated hippocampus neuroinflammation via mediating HMGB1 expression in social defeat model in mice. Int Immunopharmacol. 2019;75: 105799.CrossRefPubMed Liu LM, Zhao ZX, Lu LW, Liu JQ, Sun J, Dong JC. Icariin and icaritin ameliorated hippocampus neuroinflammation via mediating HMGB1 expression in social defeat model in mice. Int Immunopharmacol. 2019;75: 105799.CrossRefPubMed
155.
Zurück zum Zitat Cheng J, Chen M, Wan HQ, Chen XQ, Li CF, Zhu JX, et al. Paeoniflorin exerts antidepressant-like effects through enhancing neuronal FGF-2 by microglial inactivation. J Ethnopharmacol. 2021;274: 114046.CrossRefPubMed Cheng J, Chen M, Wan HQ, Chen XQ, Li CF, Zhu JX, et al. Paeoniflorin exerts antidepressant-like effects through enhancing neuronal FGF-2 by microglial inactivation. J Ethnopharmacol. 2021;274: 114046.CrossRefPubMed
156.
Zurück zum Zitat Iwata M, Ishida H, Kaneko K, Shirayama Y. Learned helplessness activates hippocampal microglia in rats: a potential target for the antidepressant imipramine. Pharmacol Biochem Behav. 2016;150:138–46.CrossRefPubMed Iwata M, Ishida H, Kaneko K, Shirayama Y. Learned helplessness activates hippocampal microglia in rats: a potential target for the antidepressant imipramine. Pharmacol Biochem Behav. 2016;150:138–46.CrossRefPubMed
157.
Zurück zum Zitat Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H. Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology. 2000;22:370–9.CrossRefPubMed Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H. Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology. 2000;22:370–9.CrossRefPubMed
158.
Zurück zum Zitat Warner-Schmidt JL, Vanover KE, Chen EY, Marshall JJ, Greengard P. Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proc Natl Acad Sci U S A. 2011;108(22):9262–7.CrossRefPubMedPubMedCentral Warner-Schmidt JL, Vanover KE, Chen EY, Marshall JJ, Greengard P. Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proc Natl Acad Sci U S A. 2011;108(22):9262–7.CrossRefPubMedPubMedCentral
159.
Zurück zum Zitat Chung HS, Kim H, Bae H. Phenelzine (monoamine oxidase inhibitor) increases production of nitric oxide and proinflammatory cytokines via the NF-κB pathway in lipopolysaccharide-activated microglia cells. Neurochem Res. 2012;37:2117–24.CrossRefPubMed Chung HS, Kim H, Bae H. Phenelzine (monoamine oxidase inhibitor) increases production of nitric oxide and proinflammatory cytokines via the NF-κB pathway in lipopolysaccharide-activated microglia cells. Neurochem Res. 2012;37:2117–24.CrossRefPubMed
160.
Zurück zum Zitat Tan SJ, Wang Y, Chen K, Long ZF, Zou J. Ketamine alleviates depressive-like behaviors via down-regulating inflammatory cytokines induced by chronic restraint stress in mice. Biol Pharm Bull. 2017;40:1260–7.CrossRefPubMed Tan SJ, Wang Y, Chen K, Long ZF, Zou J. Ketamine alleviates depressive-like behaviors via down-regulating inflammatory cytokines induced by chronic restraint stress in mice. Biol Pharm Bull. 2017;40:1260–7.CrossRefPubMed
161.
Zurück zum Zitat Zhang K, Yang C, Chang LX, Sakamoto A, Suzuki T, Fujita Y, et al. Essential role of microglial transforming growth factor-β1 in antidepressant actions of (R)-ketamine and the novel antidepressant TGF-β1. Transl Psychiatry. 2020;10:32.CrossRefPubMedPubMedCentral Zhang K, Yang C, Chang LX, Sakamoto A, Suzuki T, Fujita Y, et al. Essential role of microglial transforming growth factor-β1 in antidepressant actions of (R)-ketamine and the novel antidepressant TGF-β1. Transl Psychiatry. 2020;10:32.CrossRefPubMedPubMedCentral
162.
Zurück zum Zitat Xu N, Tang XH, Pan W, Xie ZM, Zhang GF, Ji MH, et al. Spared nerve injury increases the expression of microglia M1 markers in the prefrontal cortex of rats and provokes depression-like behaviors. Front Neurosci. 2017;11:209.CrossRefPubMedPubMedCentral Xu N, Tang XH, Pan W, Xie ZM, Zhang GF, Ji MH, et al. Spared nerve injury increases the expression of microglia M1 markers in the prefrontal cortex of rats and provokes depression-like behaviors. Front Neurosci. 2017;11:209.CrossRefPubMedPubMedCentral
163.
Zurück zum Zitat Burke NN, Kerr DM, Moriarty O, Finn DP, Roche M. Minocycline modulates neuropathic pain behaviour and cortical M1–M2 microglial gene expression in a rat model of depression. Brain Behav Immun. 2014;42:147–56.CrossRefPubMed Burke NN, Kerr DM, Moriarty O, Finn DP, Roche M. Minocycline modulates neuropathic pain behaviour and cortical M1–M2 microglial gene expression in a rat model of depression. Brain Behav Immun. 2014;42:147–56.CrossRefPubMed
164.
Zurück zum Zitat Majidi J, Kosari-Nasab M, Salari AA. Developmental minocycline treatment reverses the effects of neonatal immune activation on anxiety- and depression-like behaviors, hippocampal inflammation, and HPA axis activity in adult mice. Brain Res Bull. 2016;120:1–13.CrossRefPubMed Majidi J, Kosari-Nasab M, Salari AA. Developmental minocycline treatment reverses the effects of neonatal immune activation on anxiety- and depression-like behaviors, hippocampal inflammation, and HPA axis activity in adult mice. Brain Res Bull. 2016;120:1–13.CrossRefPubMed
165.
Zurück zum Zitat Peng ZL, Zhang C, Yan L, Zhang YP, Yang ZY, Wang JJ, et al. EPA is more effective than DHA to improve depression-like behavior, glia cell dysfunction and hippocampal apoptosis signaling in a chronic stress-induced rat model of depression. Int J Mol Sci. 2020;21:1769.CrossRefPubMedCentral Peng ZL, Zhang C, Yan L, Zhang YP, Yang ZY, Wang JJ, et al. EPA is more effective than DHA to improve depression-like behavior, glia cell dysfunction and hippocampal apoptosis signaling in a chronic stress-induced rat model of depression. Int J Mol Sci. 2020;21:1769.CrossRefPubMedCentral
166.
Zurück zum Zitat Wang YL, Han QQ, Gong WQ, Pan DH, Wang LZ, Hu W, et al. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J Neuroinflammation. 2018;15:21.CrossRefPubMedPubMedCentral Wang YL, Han QQ, Gong WQ, Pan DH, Wang LZ, Hu W, et al. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J Neuroinflammation. 2018;15:21.CrossRefPubMedPubMedCentral
167.
Zurück zum Zitat Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry. 2014;19:699–709.CrossRefPubMed Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, et al. Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry. 2014;19:699–709.CrossRefPubMed
168.
Zurück zum Zitat Hinwood M, Tynan RJ, Charnley JL, Beynon SB, Day TA, Walker FR. Chronic stress induced remodeling of the prefrontal cortex: structural re-organization of microglia and the inhibitory effect of minocycline. Cereb Cortex. 2013;23:1784–97.CrossRefPubMed Hinwood M, Tynan RJ, Charnley JL, Beynon SB, Day TA, Walker FR. Chronic stress induced remodeling of the prefrontal cortex: structural re-organization of microglia and the inhibitory effect of minocycline. Cereb Cortex. 2013;23:1784–97.CrossRefPubMed
169.
Zurück zum Zitat Zhao QY, Wu XH, Yan S, Xie XF, Fan YH, Zhang JQ, et al. The antidepressant-like effects of pioglitazone in a chronic mild stress mouse model are associated with PPARγ-mediated alteration of microglial activation phenotypes. J Neuroinflammation. 2016;13:259.CrossRefPubMedPubMedCentral Zhao QY, Wu XH, Yan S, Xie XF, Fan YH, Zhang JQ, et al. The antidepressant-like effects of pioglitazone in a chronic mild stress mouse model are associated with PPARγ-mediated alteration of microglial activation phenotypes. J Neuroinflammation. 2016;13:259.CrossRefPubMedPubMedCentral
170.
Zurück zum Zitat Farooq RK, Tanti A, Ainouche S, Roger S, Belzung C, Camus V. A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Psychoneuroendocrinology. 2018;97:120–30.CrossRefPubMed Farooq RK, Tanti A, Ainouche S, Roger S, Belzung C, Camus V. A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Psychoneuroendocrinology. 2018;97:120–30.CrossRefPubMed
171.
Zurück zum Zitat Xu X, Piao HN, Aosai F, Zeng XY, Cheng JH, Cui YX, et al. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways. Br J Pharmacol. 2020;177:5224–45.CrossRefPubMedPubMedCentral Xu X, Piao HN, Aosai F, Zeng XY, Cheng JH, Cui YX, et al. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways. Br J Pharmacol. 2020;177:5224–45.CrossRefPubMedPubMedCentral
172.
Zurück zum Zitat Lu Y, Xu X, Jiang T, Jin L, Zhao XD, Cheng JH, et al. Sertraline ameliorates inflammation in CUMS mice and inhibits TNF-α-induced inflammation in microglia cells. Int Immunopharmacol. 2019;67:119–28.CrossRefPubMed Lu Y, Xu X, Jiang T, Jin L, Zhao XD, Cheng JH, et al. Sertraline ameliorates inflammation in CUMS mice and inhibits TNF-α-induced inflammation in microglia cells. Int Immunopharmacol. 2019;67:119–28.CrossRefPubMed
173.
Zurück zum Zitat Ramirez K, Sheridan JF. Antidepressant imipramine diminishes stress-induced inflammation in the periphery and central nervous system and related anxiety- and depressive- like behaviors. Brain Behav Immun. 2016;57:293–303.CrossRefPubMedPubMedCentral Ramirez K, Sheridan JF. Antidepressant imipramine diminishes stress-induced inflammation in the periphery and central nervous system and related anxiety- and depressive- like behaviors. Brain Behav Immun. 2016;57:293–303.CrossRefPubMedPubMedCentral
174.
Zurück zum Zitat Molteni R, Macchi F, Zecchillo C, Dell’agli M, Colombo E, Calabrese F, et al. Modulation of the inflammatory response in rats chronically treated with the antidepressant agomelatine. Eur Neuropsychopharmacol. 2013;23:1645–55.CrossRefPubMed Molteni R, Macchi F, Zecchillo C, Dell’agli M, Colombo E, Calabrese F, et al. Modulation of the inflammatory response in rats chronically treated with the antidepressant agomelatine. Eur Neuropsychopharmacol. 2013;23:1645–55.CrossRefPubMed
175.
Zurück zum Zitat Duan CM, Zhang JR, Wan TF, Wang Y, Chen HS, Liu L. SRT2104 attenuates chronic unpredictable mild stress-induced depressive-like behaviors and imbalance between microglial M1 and M2 phenotypes in the mice. Behav brain Res. 2020;378: 112296.CrossRefPubMed Duan CM, Zhang JR, Wan TF, Wang Y, Chen HS, Liu L. SRT2104 attenuates chronic unpredictable mild stress-induced depressive-like behaviors and imbalance between microglial M1 and M2 phenotypes in the mice. Behav brain Res. 2020;378: 112296.CrossRefPubMed
176.
Zurück zum Zitat Su WJ, Zhang T, Jiang CL, Wang W. Clemastine alleviates depressive-like behavior through reversing the imbalance of microglia-related pro-inflammatory state in mouse hippocampus. Front Cell Neurosci. 2018;12:412.CrossRefPubMedPubMedCentral Su WJ, Zhang T, Jiang CL, Wang W. Clemastine alleviates depressive-like behavior through reversing the imbalance of microglia-related pro-inflammatory state in mouse hippocampus. Front Cell Neurosci. 2018;12:412.CrossRefPubMedPubMedCentral
177.
Zurück zum Zitat Takahashi K, Nakagawasai O, Nemoto W, Kadota S, Isono J, Odaira T, et al. Memantine ameliorates depressive-like behaviors by regulating hippocampal cell proliferation and neuroprotection in olfactory bulbectomized mice. Neuropharmacology. 2018;137:141–55.CrossRefPubMed Takahashi K, Nakagawasai O, Nemoto W, Kadota S, Isono J, Odaira T, et al. Memantine ameliorates depressive-like behaviors by regulating hippocampal cell proliferation and neuroprotection in olfactory bulbectomized mice. Neuropharmacology. 2018;137:141–55.CrossRefPubMed
178.
Zurück zum Zitat Yu XB, Zhang HN, Dai Y, Zhou ZY, Xu RA, Hu L-F, et al. Simvastatin prevents and ameliorates depressive behaviors via neuroinflammatory regulation in mice. J Affect Disord. 2019;245:939–49.CrossRefPubMed Yu XB, Zhang HN, Dai Y, Zhou ZY, Xu RA, Hu L-F, et al. Simvastatin prevents and ameliorates depressive behaviors via neuroinflammatory regulation in mice. J Affect Disord. 2019;245:939–49.CrossRefPubMed
179.
Zurück zum Zitat Nozaki K, Ito H, Ohgidani M, Yamawaki Y, Sahin EH, Kitajima T, et al. Antidepressant effect of the translocator protein antagonist ONO-2952 on mouse behaviors under chronic social defeat stress. Neuropharmacology. 2020;162: 107835.CrossRefPubMed Nozaki K, Ito H, Ohgidani M, Yamawaki Y, Sahin EH, Kitajima T, et al. Antidepressant effect of the translocator protein antagonist ONO-2952 on mouse behaviors under chronic social defeat stress. Neuropharmacology. 2020;162: 107835.CrossRefPubMed
180.
Zurück zum Zitat Zhao XJ, Zhao Z, Yang DD, Cao LL, Zhang L, Ji J, et al. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus. Brain Res Bull. 2017;130:146–55.CrossRefPubMed Zhao XJ, Zhao Z, Yang DD, Cao LL, Zhang L, Ji J, et al. Activation of ATP-sensitive potassium channel by iptakalim normalizes stress-induced HPA axis disorder and depressive behaviour by alleviating inflammation and oxidative stress in mouse hypothalamus. Brain Res Bull. 2017;130:146–55.CrossRefPubMed
181.
Zurück zum Zitat Zhou SH, Chen SS, Xie WX, Guo XX, Zhao JF. Microglia polarization of hippocampus is involved in the mechanism of Apelin-13 ameliorating chronic water immersion restraint stress-induced depression-like behavior in rats. Neuropeptides. 2020;81: 102006.CrossRefPubMed Zhou SH, Chen SS, Xie WX, Guo XX, Zhao JF. Microglia polarization of hippocampus is involved in the mechanism of Apelin-13 ameliorating chronic water immersion restraint stress-induced depression-like behavior in rats. Neuropeptides. 2020;81: 102006.CrossRefPubMed
182.
Zurück zum Zitat Wu B, Song QG, Zhang YK, Wang CS, Yang MQ, Zhang J, et al. Antidepressant activity of ω-3 polyunsaturated fatty acids in ovariectomized rats: role of neuroinflammation and microglial polarization. Lipids Health Dis. 2020;19:4.CrossRefPubMedPubMedCentral Wu B, Song QG, Zhang YK, Wang CS, Yang MQ, Zhang J, et al. Antidepressant activity of ω-3 polyunsaturated fatty acids in ovariectomized rats: role of neuroinflammation and microglial polarization. Lipids Health Dis. 2020;19:4.CrossRefPubMedPubMedCentral
183.
Zurück zum Zitat Guo YX, Gan XH, Zhou HF, Zhou HJ, Pu SY, Long X, et al. Fingolimod suppressed the chronic unpredictable mild stress-induced depressive-like behaviors via affecting microglial and NLRP3 inflammasome activation. Life Sci. 2020;263: 118582.CrossRefPubMed Guo YX, Gan XH, Zhou HF, Zhou HJ, Pu SY, Long X, et al. Fingolimod suppressed the chronic unpredictable mild stress-induced depressive-like behaviors via affecting microglial and NLRP3 inflammasome activation. Life Sci. 2020;263: 118582.CrossRefPubMed
184.
Zurück zum Zitat Graf BA, Milbury PE, Blumberg JB. Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food. 2005;8:281–90.CrossRefPubMed Graf BA, Milbury PE, Blumberg JB. Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food. 2005;8:281–90.CrossRefPubMed
185.
Zurück zum Zitat Zhang CYY, Zeng MJ, Zhou LP, Li YQ, Zhao F, Shang ZY, et al. Baicalin exerts neuroprotective effects via inhibiting activation of GSK3β/NF-κB/NLRP3 signal pathway in a rat model of depression. Int Immunopharmacol. 2018;64:175–82.CrossRefPubMed Zhang CYY, Zeng MJ, Zhou LP, Li YQ, Zhao F, Shang ZY, et al. Baicalin exerts neuroprotective effects via inhibiting activation of GSK3β/NF-κB/NLRP3 signal pathway in a rat model of depression. Int Immunopharmacol. 2018;64:175–82.CrossRefPubMed
186.
Zurück zum Zitat Guo LT, Wang SQ, Su J, Xu LX, Ji ZY, Zhang RY, et al. Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J Neuroinflammation. 2019;16:95.CrossRefPubMedPubMedCentral Guo LT, Wang SQ, Su J, Xu LX, Ji ZY, Zhang RY, et al. Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J Neuroinflammation. 2019;16:95.CrossRefPubMedPubMedCentral
187.
Zurück zum Zitat Rinwa P, Kumar A. Quercetin suppress microglial neuroinflammatory response and induce antidepressant-like effect in olfactory bulbectomized rats. Neuroscience. 2013;255:86–98.CrossRefPubMed Rinwa P, Kumar A. Quercetin suppress microglial neuroinflammatory response and induce antidepressant-like effect in olfactory bulbectomized rats. Neuroscience. 2013;255:86–98.CrossRefPubMed
188.
Zurück zum Zitat Fang K, Li HR, Chen XX, Gao XR, Huang LL, Du AQ, et al. Quercetin alleviates LPS-induced depression-like behavior in rats regulating BDNF-related imbalance of copine 6 and TREM1/2 in the hippocampus and PFC. Front Pharmacol. 2019;10:1544.CrossRefPubMed Fang K, Li HR, Chen XX, Gao XR, Huang LL, Du AQ, et al. Quercetin alleviates LPS-induced depression-like behavior in rats regulating BDNF-related imbalance of copine 6 and TREM1/2 in the hippocampus and PFC. Front Pharmacol. 2019;10:1544.CrossRefPubMed
189.
Zurück zum Zitat Francis G, Kerem Z, Makkar HPS, Becker K. The biological action of saponins in animal systems: a review. Br J Nutr. 2002;88:587–605.CrossRefPubMed Francis G, Kerem Z, Makkar HPS, Becker K. The biological action of saponins in animal systems: a review. Br J Nutr. 2002;88:587–605.CrossRefPubMed
190.
Zurück zum Zitat Su J, Pan YW, Wang SQ, Li XZ, Huang F, Ma SP. Saikosaponin-d attenuated lipopolysaccharide-induced depressive-like behaviors via inhibiting microglia activation and neuroinflammation. Int Immunopharmacol. 2020;80: 106181.CrossRefPubMed Su J, Pan YW, Wang SQ, Li XZ, Huang F, Ma SP. Saikosaponin-d attenuated lipopolysaccharide-induced depressive-like behaviors via inhibiting microglia activation and neuroinflammation. Int Immunopharmacol. 2020;80: 106181.CrossRefPubMed
191.
Zurück zum Zitat Li HY, Zhao YH, Zeng MJ, Fang F, Li M, Qin TT, et al. Saikosaponin D relieves unpredictable chronic mild stress induced depressive-like behavior in rats: involvement of HPA axis and hippocampal neurogenesis. Psychopharmacology. 2017;234:3385–94.CrossRefPubMed Li HY, Zhao YH, Zeng MJ, Fang F, Li M, Qin TT, et al. Saikosaponin D relieves unpredictable chronic mild stress induced depressive-like behavior in rats: involvement of HPA axis and hippocampal neurogenesis. Psychopharmacology. 2017;234:3385–94.CrossRefPubMed
192.
Zurück zum Zitat Dong SQ, Zhang QP, Zhu JX, Chen M, Li CF, Liu Q, et al. Gypenosides reverses depressive behavior via inhibiting hippocampal neuroinflammation. Biomed Pharmacother. 2018;106:1153–60.CrossRefPubMed Dong SQ, Zhang QP, Zhu JX, Chen M, Li CF, Liu Q, et al. Gypenosides reverses depressive behavior via inhibiting hippocampal neuroinflammation. Biomed Pharmacother. 2018;106:1153–60.CrossRefPubMed
193.
Zurück zum Zitat Mu RH, Fang XY, Wang SS, Li CF, Chen SM, Chen XM, et al. Antidepressant-like effects of standardized gypenosides: involvement of brain-derived neurotrophic factor signaling in hippocampus. Psychopharmacology. 2016;233:3211–21.CrossRefPubMed Mu RH, Fang XY, Wang SS, Li CF, Chen SM, Chen XM, et al. Antidepressant-like effects of standardized gypenosides: involvement of brain-derived neurotrophic factor signaling in hippocampus. Psychopharmacology. 2016;233:3211–21.CrossRefPubMed
194.
Zurück zum Zitat Nah SY, Kim DH, Rhim H. Ginsenosides: are any of them candidates for drugs acting on the central nervous system? CNS Drug Rev. 2007;13:381–404.PubMedPubMedCentral Nah SY, Kim DH, Rhim H. Ginsenosides: are any of them candidates for drugs acting on the central nervous system? CNS Drug Rev. 2007;13:381–404.PubMedPubMedCentral
195.
196.
Zurück zum Zitat Wang GL, He ZM, Zhu HY, Gao YG, Zhao Y, Yang H, et al. Involvement of serotonergic, noradrenergic and dopaminergic systems in the antidepressant-like effect of ginsenoside Rb1, a major active ingredient of Panax ginseng. J Ethnopharmacol. 2017;204:118–24.CrossRefPubMed Wang GL, He ZM, Zhu HY, Gao YG, Zhao Y, Yang H, et al. Involvement of serotonergic, noradrenergic and dopaminergic systems in the antidepressant-like effect of ginsenoside Rb1, a major active ingredient of Panax ginseng. J Ethnopharmacol. 2017;204:118–24.CrossRefPubMed
197.
Zurück zum Zitat Guo Y, Xie JP, Zhang LC, Yang LL, Ma JQ, Bai YF, et al. Ginsenoside Rb1 exerts antidepressant-like effects via suppression inflammation and activation of AKT pathway. Neurosci Lett. 2021;744: 135561.CrossRefPubMed Guo Y, Xie JP, Zhang LC, Yang LL, Ma JQ, Bai YF, et al. Ginsenoside Rb1 exerts antidepressant-like effects via suppression inflammation and activation of AKT pathway. Neurosci Lett. 2021;744: 135561.CrossRefPubMed
198.
Zurück zum Zitat Li DW, Zhou FZ, Sun XC, Li SC, Yang JB, Sun HH, et al. Ginsenoside Rb1 protects dopaminergic neurons from inflammatory injury induced by intranigral lipopolysaccharide injection. Neural Regen Res. 2019;14:1814–22.CrossRefPubMedPubMedCentral Li DW, Zhou FZ, Sun XC, Li SC, Yang JB, Sun HH, et al. Ginsenoside Rb1 protects dopaminergic neurons from inflammatory injury induced by intranigral lipopolysaccharide injection. Neural Regen Res. 2019;14:1814–22.CrossRefPubMedPubMedCentral
199.
Zurück zum Zitat Wang D, Zhao SX, Pan JW, Wang Z, Li Y, Xu XX, et al. Ginsenoside Rb1 attenuates microglia activation to improve spinal cord injury via microRNA-130b-5p/TLR4/NF-κB axis. J Cell Physiol. 2021;236:2144–55.CrossRefPubMed Wang D, Zhao SX, Pan JW, Wang Z, Li Y, Xu XX, et al. Ginsenoside Rb1 attenuates microglia activation to improve spinal cord injury via microRNA-130b-5p/TLR4/NF-κB axis. J Cell Physiol. 2021;236:2144–55.CrossRefPubMed
200.
Zurück zum Zitat Fan CQ, Song QQ, Wang P, Li Y, Yang M, Yu SY. Neuroprotective effects of ginsenoside-Rg1 against depression-like behaviors via suppressing glial activation, synaptic deficits, and neuronal apoptosis in rats. Front Immunol. 2018;9:2889.CrossRefPubMedPubMedCentral Fan CQ, Song QQ, Wang P, Li Y, Yang M, Yu SY. Neuroprotective effects of ginsenoside-Rg1 against depression-like behaviors via suppressing glial activation, synaptic deficits, and neuronal apoptosis in rats. Front Immunol. 2018;9:2889.CrossRefPubMedPubMedCentral
201.
Zurück zum Zitat Park SM, Choi MS, Sohn NW, Shin JW. Ginsenoside Rg3 attenuates microglia activation following systemic lipopolysaccharide treatment in mice. Biol Pharm Bull. 2012;35:1546–52.CrossRefPubMed Park SM, Choi MS, Sohn NW, Shin JW. Ginsenoside Rg3 attenuates microglia activation following systemic lipopolysaccharide treatment in mice. Biol Pharm Bull. 2012;35:1546–52.CrossRefPubMed
202.
Zurück zum Zitat Wang HX, Jiang N, Lv JW, Huang H, Liu XM. Ginsenoside Rd reverses cognitive deficits by modulating BDNF-dependent CREB pathway in chronic restraint stress mice. Life Sci. 2020;258: 118107.CrossRefPubMed Wang HX, Jiang N, Lv JW, Huang H, Liu XM. Ginsenoside Rd reverses cognitive deficits by modulating BDNF-dependent CREB pathway in chronic restraint stress mice. Life Sci. 2020;258: 118107.CrossRefPubMed
203.
Zurück zum Zitat Yang CJ, Shi ZY, You LT, Du YY, Ni J, Yan D. Neuroprotective effect of catalpol anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. Front Pharmacol. 2020;11:690.CrossRefPubMedPubMedCentral Yang CJ, Shi ZY, You LT, Du YY, Ni J, Yan D. Neuroprotective effect of catalpol anti-oxidative, anti-inflammatory, and anti-apoptotic mechanisms. Front Pharmacol. 2020;11:690.CrossRefPubMedPubMedCentral
204.
Zurück zum Zitat Wang JM, Yang LH, Zhang YY, Niu CL, Cui Y, Feng WS, et al. BDNF and COX-2 participate in anti-depressive mechanisms of catalpol in rats undergoing chronic unpredictable mild stress. Physiol Behav. 2015;151:360–8.CrossRefPubMed Wang JM, Yang LH, Zhang YY, Niu CL, Cui Y, Feng WS, et al. BDNF and COX-2 participate in anti-depressive mechanisms of catalpol in rats undergoing chronic unpredictable mild stress. Physiol Behav. 2015;151:360–8.CrossRefPubMed
205.
Zurück zum Zitat Wang YL, Wu HR, Zhang SS, Xiao HL, Yu J, Ma YY, et al. Catalpol ameliorates depressive-like behaviors in CUMS mice via oxidative stress-mediated NLRP3 inflammasome and neuroinflammation. Transl Psychiatry. 2021;11:353.CrossRefPubMedPubMedCentral Wang YL, Wu HR, Zhang SS, Xiao HL, Yu J, Ma YY, et al. Catalpol ameliorates depressive-like behaviors in CUMS mice via oxidative stress-mediated NLRP3 inflammasome and neuroinflammation. Transl Psychiatry. 2021;11:353.CrossRefPubMedPubMedCentral
206.
Zurück zum Zitat Liu SN, Zheng ML, Li YX, He L, Chen T. The protective effect of Geniposide on diabetic cognitive impairment through BTK/TLR4/NF-κB pathway. Psychopharmacology. 2020;237:465–77.CrossRefPubMed Liu SN, Zheng ML, Li YX, He L, Chen T. The protective effect of Geniposide on diabetic cognitive impairment through BTK/TLR4/NF-κB pathway. Psychopharmacology. 2020;237:465–77.CrossRefPubMed
207.
Zurück zum Zitat Chen T, Liu SN, Zheng ML, Li YX, He L. The effect of geniposide on chronic unpredictable mild stress-induced depressive mice through BTK/TLR4/NF-κB and BDNF/TrkB signaling pathways. Phytother Res. 2021;35:932–45.CrossRefPubMed Chen T, Liu SN, Zheng ML, Li YX, He L. The effect of geniposide on chronic unpredictable mild stress-induced depressive mice through BTK/TLR4/NF-κB and BDNF/TrkB signaling pathways. Phytother Res. 2021;35:932–45.CrossRefPubMed
208.
Zurück zum Zitat Zheng ML, Li K, Chen T, Liu SN, He L. Geniposide protects depression through BTK/JAK2/STAT1 signaling pathway in lipopolysaccharide-induced depressive mice. Brain Res Bull. 2021;170:65–73.CrossRefPubMed Zheng ML, Li K, Chen T, Liu SN, He L. Geniposide protects depression through BTK/JAK2/STAT1 signaling pathway in lipopolysaccharide-induced depressive mice. Brain Res Bull. 2021;170:65–73.CrossRefPubMed
209.
Zurück zum Zitat Wang W, Pan Q, Han XY, Wang J, Tan RQ, He F, et al. Simultaneous determination of arctiin and its metabolites in rat urine and feces by HPLC. Fitoterapia. 2013;86:6.CrossRefPubMed Wang W, Pan Q, Han XY, Wang J, Tan RQ, He F, et al. Simultaneous determination of arctiin and its metabolites in rat urine and feces by HPLC. Fitoterapia. 2013;86:6.CrossRefPubMed
210.
Zurück zum Zitat Xu X, Zeng XY, Cui YX, Li YB, Cheng JH, Zhao XD, et al. Antidepressive effect of arctiin by attenuating neuroinflammation via HMGB1/TLR4- and TNF-α/TNFR1-mediated NF-κB activation. ACS Chem Neurosci. 2020;11:2214–30.CrossRefPubMed Xu X, Zeng XY, Cui YX, Li YB, Cheng JH, Zhao XD, et al. Antidepressive effect of arctiin by attenuating neuroinflammation via HMGB1/TLR4- and TNF-α/TNFR1-mediated NF-κB activation. ACS Chem Neurosci. 2020;11:2214–30.CrossRefPubMed
211.
Zurück zum Zitat Wang SX, Hu LM, Gao XM, Guo H, Fan GW. Anti-inflammatory activity of salvianolic acid B in microglia contributes to its neuroprotective effect. Neurochem Res. 2010;35(7):1029–37.CrossRefPubMed Wang SX, Hu LM, Gao XM, Guo H, Fan GW. Anti-inflammatory activity of salvianolic acid B in microglia contributes to its neuroprotective effect. Neurochem Res. 2010;35(7):1029–37.CrossRefPubMed
212.
Zurück zum Zitat Liu CS, Cheng Y, Hu JF, Zhang W, Chen NH, Zhang JT. Comparison of antioxidant activities between salvianolic acid B and Ginkgo biloba extract (EGb 761). Acta Pharmacol Sin. 2006;27:1137–45.CrossRefPubMed Liu CS, Cheng Y, Hu JF, Zhang W, Chen NH, Zhang JT. Comparison of antioxidant activities between salvianolic acid B and Ginkgo biloba extract (EGb 761). Acta Pharmacol Sin. 2006;27:1137–45.CrossRefPubMed
213.
Zurück zum Zitat Zhang JQ, Wu XH, Feng Y, Xie XF, Fan YH, Yan S, et al. Salvianolic acid B ameliorates depressive-like behaviors in chronic mild stress-treated mice: involvement of the neuroinflammatory pathway. Acta Pharmacol Sin. 2016;37:1141–53.CrossRefPubMedPubMedCentral Zhang JQ, Wu XH, Feng Y, Xie XF, Fan YH, Yan S, et al. Salvianolic acid B ameliorates depressive-like behaviors in chronic mild stress-treated mice: involvement of the neuroinflammatory pathway. Acta Pharmacol Sin. 2016;37:1141–53.CrossRefPubMedPubMedCentral
214.
Zurück zum Zitat Samarghandian S, Azimi-Nezhad M, Farkhondeh T, Samini F. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomed Pharmacother. 2017;87:223–9.CrossRefPubMed Samarghandian S, Azimi-Nezhad M, Farkhondeh T, Samini F. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomed Pharmacother. 2017;87:223–9.CrossRefPubMed
215.
Zurück zum Zitat Kodali M, Hattiangady B, Shetty GA, Bates A, Shuai B, Shetty AK. Curcumin treatment leads to better cognitive and mood function in a model of Gulf War Illness with enhanced neurogenesis, and alleviation of inflammation and mitochondrial dysfunction in the hippocampus. Brain Behav Immun. 2018;69:499–514.CrossRefPubMedPubMedCentral Kodali M, Hattiangady B, Shetty GA, Bates A, Shuai B, Shetty AK. Curcumin treatment leads to better cognitive and mood function in a model of Gulf War Illness with enhanced neurogenesis, and alleviation of inflammation and mitochondrial dysfunction in the hippocampus. Brain Behav Immun. 2018;69:499–514.CrossRefPubMedPubMedCentral
216.
Zurück zum Zitat Ranaware AM, Banik K, Deshpande V, Padmavathi G, Roy NK, Sethi G, et al. Magnolol: a neolignan from the magnolia family for the prevention and treatment of cancer. Int J Mol Sci. 2018;19:2362.CrossRefPubMedCentral Ranaware AM, Banik K, Deshpande V, Padmavathi G, Roy NK, Sethi G, et al. Magnolol: a neolignan from the magnolia family for the prevention and treatment of cancer. Int J Mol Sci. 2018;19:2362.CrossRefPubMedCentral
217.
Zurück zum Zitat Matsui N, Akae H, Hirashima N, Kido Y, Tanabe S, Koseki M, et al. Magnolol enhances hippocampal neurogenesis and exerts antidepressant-like effects in olfactory bulbectomized mice. Phytother Res. 2016;30:1856–61.CrossRefPubMed Matsui N, Akae H, Hirashima N, Kido Y, Tanabe S, Koseki M, et al. Magnolol enhances hippocampal neurogenesis and exerts antidepressant-like effects in olfactory bulbectomized mice. Phytother Res. 2016;30:1856–61.CrossRefPubMed
218.
Zurück zum Zitat Li LF, Lu J, Li XM, Xu CL, Deng JM, Qu R, et al. Antidepressant-like effect of magnolol on BDNF up-regulation and serotonergic system activity in unpredictable chronic mild stress treated rats. Phytother Res. 2012;26:1189–94.CrossRefPubMed Li LF, Lu J, Li XM, Xu CL, Deng JM, Qu R, et al. Antidepressant-like effect of magnolol on BDNF up-regulation and serotonergic system activity in unpredictable chronic mild stress treated rats. Phytother Res. 2012;26:1189–94.CrossRefPubMed
219.
Zurück zum Zitat Tao WW, Hu YW, Chen ZY, Dai YX, Hu Y, Qi MM. Magnolol attenuates depressive-like behaviors by polarizing microglia towards the M2 phenotype through the regulation of Nrf2/HO-1/NLRP3 signaling pathway. Phytomedicine. 2021;91: 153692.CrossRefPubMed Tao WW, Hu YW, Chen ZY, Dai YX, Hu Y, Qi MM. Magnolol attenuates depressive-like behaviors by polarizing microglia towards the M2 phenotype through the regulation of Nrf2/HO-1/NLRP3 signaling pathway. Phytomedicine. 2021;91: 153692.CrossRefPubMed
220.
Zurück zum Zitat Navarro G, Martínez-Pinilla E, Ortiz R, Noé V, Ciudad CJ, Franco R. Resveratrol and related stilbenoids, nutraceutical/dietary complements with health-promoting actions: industrial production, safety, and the search for mode of action. Compr Rev Food Sci Food Saf. 2018;17:808–26.CrossRefPubMed Navarro G, Martínez-Pinilla E, Ortiz R, Noé V, Ciudad CJ, Franco R. Resveratrol and related stilbenoids, nutraceutical/dietary complements with health-promoting actions: industrial production, safety, and the search for mode of action. Compr Rev Food Sci Food Saf. 2018;17:808–26.CrossRefPubMed
221.
Zurück zum Zitat Ali SH, Madhana RM, Athira KV, Kasala ER, Bodduluru LN, Pitta S, et al. Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice. Steroids. 2015;101:37–42.CrossRefPubMed Ali SH, Madhana RM, Athira KV, Kasala ER, Bodduluru LN, Pitta S, et al. Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice. Steroids. 2015;101:37–42.CrossRefPubMed
222.
Zurück zum Zitat Ge JF, Peng L, Cheng JQ, Pan CX, Tang J, Chen FH, et al. Antidepressant-like effect of resveratrol: involvement of antioxidant effect and peripheral regulation on HPA axis. Pharmacol Biochem Behav. 2013;114:64–9.CrossRefPubMed Ge JF, Peng L, Cheng JQ, Pan CX, Tang J, Chen FH, et al. Antidepressant-like effect of resveratrol: involvement of antioxidant effect and peripheral regulation on HPA axis. Pharmacol Biochem Behav. 2013;114:64–9.CrossRefPubMed
223.
Zurück zum Zitat Ge L, Liu LW, Liu H, Liu S, Xue H, Wang XE, et al. Resveratrol abrogates lipopolysaccharide-induced depressive-like behavior, neuroinflammatory response, and CREB/BDNF signaling in mice. Eur J Pharmacol. 2015;768:49–57.CrossRefPubMed Ge L, Liu LW, Liu H, Liu S, Xue H, Wang XE, et al. Resveratrol abrogates lipopolysaccharide-induced depressive-like behavior, neuroinflammatory response, and CREB/BDNF signaling in mice. Eur J Pharmacol. 2015;768:49–57.CrossRefPubMed
224.
Zurück zum Zitat Liu L, Zhang Q, Cai YL, Sun DY, He X, Wang L, et al. Resveratrol counteracts lipopolysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis. Oncotarget. 2016;7:56045–59.CrossRefPubMedPubMedCentral Liu L, Zhang Q, Cai YL, Sun DY, He X, Wang L, et al. Resveratrol counteracts lipopolysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis. Oncotarget. 2016;7:56045–59.CrossRefPubMedPubMedCentral
225.
Zurück zum Zitat Xu L, Yang Y, Gao LX, Zhao JH, Cai YL, Huang J, et al. Protective effects of resveratrol on the inhibition of hippocampal neurogenesis induced by ethanol during early postnatal life. Biochim Biophys Acta. 2015;1852:1298–310.CrossRefPubMed Xu L, Yang Y, Gao LX, Zhao JH, Cai YL, Huang J, et al. Protective effects of resveratrol on the inhibition of hippocampal neurogenesis induced by ethanol during early postnatal life. Biochim Biophys Acta. 2015;1852:1298–310.CrossRefPubMed
226.
Zurück zum Zitat Zhang L, Previn R, Lu L, Liao RF, Jin Y, Wang RK. Crocin, a natural product attenuates lipopolysaccharide-induced anxiety and depressive-like behaviors through suppressing NF-κB and NLRP3 signaling pathway. Brain Res Bull. 2018;142:352–9.CrossRefPubMed Zhang L, Previn R, Lu L, Liao RF, Jin Y, Wang RK. Crocin, a natural product attenuates lipopolysaccharide-induced anxiety and depressive-like behaviors through suppressing NF-κB and NLRP3 signaling pathway. Brain Res Bull. 2018;142:352–9.CrossRefPubMed
227.
Zurück zum Zitat Zhang L, Zhang L, Sui RB. Ganoderic acid A-mediated modulation of microglial polarization is involved in depressive-like behaviors and neuroinflammation in a rat model of post-stroke depression. Neuropsychiatr Dis Treat. 2021;17:2671–81.CrossRefPubMedPubMedCentral Zhang L, Zhang L, Sui RB. Ganoderic acid A-mediated modulation of microglial polarization is involved in depressive-like behaviors and neuroinflammation in a rat model of post-stroke depression. Neuropsychiatr Dis Treat. 2021;17:2671–81.CrossRefPubMedPubMedCentral
228.
Zurück zum Zitat Zhang JQ, Yi SN, Li YH, Xiao CH, Liu C, Jiang WK, et al. The antidepressant effects of asperosaponin VI are mediated by the suppression of microglial activation and reduction of TLR4/NF-κB-induced IDO expression. Psychopharmacology. 2020;237:2531–45.CrossRefPubMed Zhang JQ, Yi SN, Li YH, Xiao CH, Liu C, Jiang WK, et al. The antidepressant effects of asperosaponin VI are mediated by the suppression of microglial activation and reduction of TLR4/NF-κB-induced IDO expression. Psychopharmacology. 2020;237:2531–45.CrossRefPubMed
229.
Zurück zum Zitat Jiang N, Lv JW, Wang HX, Huang H, Wang Q, Zeng GR, et al. Ginsenoside 20(S)-protopanaxadiol attenuates depressive-like behaviour and neuroinflammation in chronic unpredictable mild stress-induced depressive rats. Behav brain res. 2020;393: 112710.CrossRefPubMed Jiang N, Lv JW, Wang HX, Huang H, Wang Q, Zeng GR, et al. Ginsenoside 20(S)-protopanaxadiol attenuates depressive-like behaviour and neuroinflammation in chronic unpredictable mild stress-induced depressive rats. Behav brain res. 2020;393: 112710.CrossRefPubMed
230.
Zurück zum Zitat Bian HT, Wang GH, Huang JJ, Liang L, Xiao L, Wang HL. Scutellarin protects against lipopolysaccharide-induced behavioral deficits by inhibiting neuroinflammation and microglia activation in rats. Int Immunopharmacol. 2020;88: 106943.CrossRefPubMed Bian HT, Wang GH, Huang JJ, Liang L, Xiao L, Wang HL. Scutellarin protects against lipopolysaccharide-induced behavioral deficits by inhibiting neuroinflammation and microglia activation in rats. Int Immunopharmacol. 2020;88: 106943.CrossRefPubMed
231.
Zurück zum Zitat Tong Y, Fu HL, Xia CB, Song W, Li YJ, Zhao JJ, et al. Astragalin exerted antidepressant-like action through SIRT1 signaling modulated NLRP3 inflammasome deactivation. ACS Chem Neurosci. 2020;11:1495–503.CrossRefPubMed Tong Y, Fu HL, Xia CB, Song W, Li YJ, Zhao JJ, et al. Astragalin exerted antidepressant-like action through SIRT1 signaling modulated NLRP3 inflammasome deactivation. ACS Chem Neurosci. 2020;11:1495–503.CrossRefPubMed
232.
Zurück zum Zitat Xie LL, Gu ZM, Liu HZ, Jia BT, Wang YY, Cao M, et al. The anti-depressive effects of hesperidin and the relative mechanisms based on the NLRP3 inflammatory signaling pathway. Front Pharmacol. 2020;11:1251.CrossRefPubMedPubMedCentral Xie LL, Gu ZM, Liu HZ, Jia BT, Wang YY, Cao M, et al. The anti-depressive effects of hesperidin and the relative mechanisms based on the NLRP3 inflammatory signaling pathway. Front Pharmacol. 2020;11:1251.CrossRefPubMedPubMedCentral
233.
Zurück zum Zitat Sun XL, Zhang TW, Zhao Y, Cai EB, Zhu HY, Liu SL. The protective effect of 5-O-methylvisammioside on LPS-induced depression in mice by inhibiting the over activation of BV-2 microglia through Nf-κB/IκB-α pathway. Phytomedicine. 2020;79: 153348.CrossRefPubMed Sun XL, Zhang TW, Zhao Y, Cai EB, Zhu HY, Liu SL. The protective effect of 5-O-methylvisammioside on LPS-induced depression in mice by inhibiting the over activation of BV-2 microglia through Nf-κB/IκB-α pathway. Phytomedicine. 2020;79: 153348.CrossRefPubMed
234.
Zurück zum Zitat Ge YB, Xu W, Zhang LJ, Liu MY. Ginkgolide B attenuates myocardial infarction-induced depression-like behaviors via repressing IL-1β in central nervous system. Int Immunopharmacol. 2020;85: 106652.CrossRefPubMed Ge YB, Xu W, Zhang LJ, Liu MY. Ginkgolide B attenuates myocardial infarction-induced depression-like behaviors via repressing IL-1β in central nervous system. Int Immunopharmacol. 2020;85: 106652.CrossRefPubMed
235.
Zurück zum Zitat Jia MM, Li CX, Zheng Y, Ding XJ, Chen M, Ding JH, et al. Leonurine exerts antidepressant-like effects in the chronic mild stress-induced depression model in mice by inhibiting neuroinflammation. Int J Neuropsychopharmacol. 2017;20:886–95.CrossRefPubMedPubMedCentral Jia MM, Li CX, Zheng Y, Ding XJ, Chen M, Ding JH, et al. Leonurine exerts antidepressant-like effects in the chronic mild stress-induced depression model in mice by inhibiting neuroinflammation. Int J Neuropsychopharmacol. 2017;20:886–95.CrossRefPubMedPubMedCentral
236.
Zurück zum Zitat Liu YM, Shen JD, Xu LP, Li HB, Li YC, Yi LT. Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress. Int Immunopharmacol. 2017;45:128–34.CrossRefPubMed Liu YM, Shen JD, Xu LP, Li HB, Li YC, Yi LT. Ferulic acid inhibits neuro-inflammation in mice exposed to chronic unpredictable mild stress. Int Immunopharmacol. 2017;45:128–34.CrossRefPubMed
237.
Zurück zum Zitat Ito N, Hirose E, Ishida T, Hori A, Nagai T, Kobayashi Y, et al. Kososan, a Kampo medicine, prevents a social avoidance behavior and attenuates neuroinflammation in socially defeated mice. J Neuroinflammation. 2017;14:98.CrossRefPubMedPubMedCentral Ito N, Hirose E, Ishida T, Hori A, Nagai T, Kobayashi Y, et al. Kososan, a Kampo medicine, prevents a social avoidance behavior and attenuates neuroinflammation in socially defeated mice. J Neuroinflammation. 2017;14:98.CrossRefPubMedPubMedCentral
238.
Zurück zum Zitat Lee HY, Lee JS, Kim HG, Kim WY, Lee SB, Choi YH, et al. The ethanol extract of Aquilariae Lignum ameliorates hippocampal oxidative stress in a repeated restraint stress mouse model. BMC Complement Altern Med. 2017;17:397.CrossRefPubMedPubMedCentral Lee HY, Lee JS, Kim HG, Kim WY, Lee SB, Choi YH, et al. The ethanol extract of Aquilariae Lignum ameliorates hippocampal oxidative stress in a repeated restraint stress mouse model. BMC Complement Altern Med. 2017;17:397.CrossRefPubMedPubMedCentral
239.
Zurück zum Zitat Guo Y, Xie JP, Li X, Yuan Y, Zhang LC, Hu WY, et al. Antidepressant effects of Rosemary extracts associate with anti-inflammatory effect and rebalance of gut microbiota. Front Pharmacol. 2018;9:1126.CrossRefPubMedPubMedCentral Guo Y, Xie JP, Li X, Yuan Y, Zhang LC, Hu WY, et al. Antidepressant effects of Rosemary extracts associate with anti-inflammatory effect and rebalance of gut microbiota. Front Pharmacol. 2018;9:1126.CrossRefPubMedPubMedCentral
240.
Zurück zum Zitat Zhou YF, Yan MZ, Pan R, Wang Z, Tao X, Li CC, et al. Radix Polygalae extract exerts antidepressant effects in behavioral despair mice and chronic restraint stress-induced rats probably by promoting autophagy and inhibiting neuroinflammation. J Ethnopharmacol. 2021;265: 113317.CrossRefPubMed Zhou YF, Yan MZ, Pan R, Wang Z, Tao X, Li CC, et al. Radix Polygalae extract exerts antidepressant effects in behavioral despair mice and chronic restraint stress-induced rats probably by promoting autophagy and inhibiting neuroinflammation. J Ethnopharmacol. 2021;265: 113317.CrossRefPubMed
241.
Zurück zum Zitat Park BK, Kim NS, Kim YR, Yang C, Jung IC, Jang IS, et al. Antidepressant and anti-neuroinflammatory effects of Bangpungtongsung-San. Front Pharmacol. 2020;11:958.CrossRefPubMedPubMedCentral Park BK, Kim NS, Kim YR, Yang C, Jung IC, Jang IS, et al. Antidepressant and anti-neuroinflammatory effects of Bangpungtongsung-San. Front Pharmacol. 2020;11:958.CrossRefPubMedPubMedCentral
242.
Zurück zum Zitat Yan YM, Li T, Wang D, Zhao BB, Zhou Q. Antidepressant effect of Xingnao Jieyu decoction mediated by alleviating neuroinflammation in a rat model of post-stroke depression. J Tradit Chin Med. 2019;39:658–66.PubMed Yan YM, Li T, Wang D, Zhao BB, Zhou Q. Antidepressant effect of Xingnao Jieyu decoction mediated by alleviating neuroinflammation in a rat model of post-stroke depression. J Tradit Chin Med. 2019;39:658–66.PubMed
243.
Zurück zum Zitat Li HR, Xiao YH, Han L, Jia Y, Luo SL, Zhang DD, et al. Ganoderma lucidum polysaccharides ameliorated depression-like behaviors in the chronic social defeat stress depression model via modulation of dectin-1 and the innate immune system. Brain Res Bull. 2021;171:16–24.CrossRefPubMed Li HR, Xiao YH, Han L, Jia Y, Luo SL, Zhang DD, et al. Ganoderma lucidum polysaccharides ameliorated depression-like behaviors in the chronic social defeat stress depression model via modulation of dectin-1 and the innate immune system. Brain Res Bull. 2021;171:16–24.CrossRefPubMed
244.
Zurück zum Zitat Lin YE, Wang HL, Lu KH, Huang YJ, Panyod S, Liu WT, et al. Water extract of Armillaria mellea (Vahl) P. Kumm. alleviates the depression-like behaviors in acute- and chronic mild stress-induced rodent models via anti-inflammatory action. J Ethnopharmacol. 2021;265:113395.CrossRefPubMed Lin YE, Wang HL, Lu KH, Huang YJ, Panyod S, Liu WT, et al. Water extract of Armillaria mellea (Vahl) P. Kumm. alleviates the depression-like behaviors in acute- and chronic mild stress-induced rodent models via anti-inflammatory action. J Ethnopharmacol. 2021;265:113395.CrossRefPubMed
245.
Zurück zum Zitat Jiao HY, Yang HJ, Yan ZY, Chen JB, Xu MB, Jiang YM, et al. Traditional Chinese formula Xiaoyaosan alleviates depressive-like behavior in CUMS mice by regulating PEBP1-GPX4-mediated ferroptosis in the hippocampus. Neuropsychiatr Dis Treat. 2021;17:1001–19.CrossRefPubMedPubMedCentral Jiao HY, Yang HJ, Yan ZY, Chen JB, Xu MB, Jiang YM, et al. Traditional Chinese formula Xiaoyaosan alleviates depressive-like behavior in CUMS mice by regulating PEBP1-GPX4-mediated ferroptosis in the hippocampus. Neuropsychiatr Dis Treat. 2021;17:1001–19.CrossRefPubMedPubMedCentral
246.
Zurück zum Zitat Ano Y, Ohya R, Kita M, Taniguchi Y, Kondo K. Theaflavins improve memory impairment and depression-like behavior by regulating microglial activation. Molecules. 2019;24:467.CrossRefPubMedCentral Ano Y, Ohya R, Kita M, Taniguchi Y, Kondo K. Theaflavins improve memory impairment and depression-like behavior by regulating microglial activation. Molecules. 2019;24:467.CrossRefPubMedCentral
247.
Zurück zum Zitat Masuda T, Sankowski R, Staszewski O, Prinz M. Microglia heterogeneity in the single-cell era. Cell Rep. 2020;30:1271–81.CrossRefPubMed Masuda T, Sankowski R, Staszewski O, Prinz M. Microglia heterogeneity in the single-cell era. Cell Rep. 2020;30:1271–81.CrossRefPubMed
248.
Zurück zum Zitat DeRidder L, Sharma A, Liaw K, Sharma R, John J, Kannan S, et al. Dendrimer-tesaglitazar conjugate induces a phenotype shift of microglia and enhances β-amyloid phagocytosis. Nanoscale. 2021;13:939–52.CrossRefPubMed DeRidder L, Sharma A, Liaw K, Sharma R, John J, Kannan S, et al. Dendrimer-tesaglitazar conjugate induces a phenotype shift of microglia and enhances β-amyloid phagocytosis. Nanoscale. 2021;13:939–52.CrossRefPubMed
249.
Zurück zum Zitat Hussain G, Huang J, Rasul A, Anwar H, Imran A, Maqbool J, et al. Putative roles of plant-derived tannins in neurodegenerative and neuropsychiatry disorders: an updated review. Molecules. 2019;24:2213.CrossRefPubMedCentral Hussain G, Huang J, Rasul A, Anwar H, Imran A, Maqbool J, et al. Putative roles of plant-derived tannins in neurodegenerative and neuropsychiatry disorders: an updated review. Molecules. 2019;24:2213.CrossRefPubMedCentral
250.
Zurück zum Zitat Espín JC, González-Sarrías A, Tomás-Barberán FA. The gut microbiota: a key factor in the therapeutic effects of (poly)phenols. Biochem Pharmacol. 2017;139:82–93.CrossRefPubMed Espín JC, González-Sarrías A, Tomás-Barberán FA. The gut microbiota: a key factor in the therapeutic effects of (poly)phenols. Biochem Pharmacol. 2017;139:82–93.CrossRefPubMed
251.
Zurück zum Zitat Cao P, Chen CM, Liu A, Shan QH, Zhu X, Jia CH, et al. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron. 2021;109:2573–89.CrossRefPubMed Cao P, Chen CM, Liu A, Shan QH, Zhu X, Jia CH, et al. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines. Neuron. 2021;109:2573–89.CrossRefPubMed
252.
Zurück zum Zitat Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19:987–91.CrossRefPubMed Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci. 2016;19:987–91.CrossRefPubMed
253.
Zurück zum Zitat Ji J, Xue TF, Guo XD, Yang J, Guo RB, Wang J, et al. Antagonizing peroxisome proliferator-activated receptor γ facilitates M1-to-M2 shift of microglia by enhancing autophagy via the LKB1-AMPK signaling pathway. Aging Cell. 2018;17: e12774.CrossRefPubMedPubMedCentral Ji J, Xue TF, Guo XD, Yang J, Guo RB, Wang J, et al. Antagonizing peroxisome proliferator-activated receptor γ facilitates M1-to-M2 shift of microglia by enhancing autophagy via the LKB1-AMPK signaling pathway. Aging Cell. 2018;17: e12774.CrossRefPubMedPubMedCentral
254.
Zurück zum Zitat Jia XN, Gao ZH, Hu HL. Microglia in depression: current perspectives. Sci China Life Sci. 2021;64:911–25.CrossRefPubMed Jia XN, Gao ZH, Hu HL. Microglia in depression: current perspectives. Sci China Life Sci. 2021;64:911–25.CrossRefPubMed
255.
Zurück zum Zitat Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity. 2019;50:253–71.CrossRefPubMed Hammond TR, Dufort C, Dissing-Olesen L, Giera S, Young A, Wysoker A, et al. Single-cell RNA sequencing of microglia throughout the mouse lifespan and in the injured brain reveals complex cell-state changes. Immunity. 2019;50:253–71.CrossRefPubMed
Metadaten
Titel
Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression
verfasst von
Haixia Wang
Yi He
Zuoli Sun
Siyu Ren
Mingxia Liu
Gang Wang
Jian Yang
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Journal of Neuroinflammation / Ausgabe 1/2022
Elektronische ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-022-02492-0

Weitere Artikel der Ausgabe 1/2022

Journal of Neuroinflammation 1/2022 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

Fehlerkultur in der Medizin – Offenheit zählt!

Darüber reden und aus Fehlern lernen, sollte das Motto in der Medizin lauten. Und zwar nicht nur im Sinne der Patientensicherheit. Eine negative Fehlerkultur kann auch die Behandelnden ernsthaft krank machen, warnt Prof. Dr. Reinhard Strametz. Ein Plädoyer und ein Leitfaden für den offenen Umgang mit kritischen Ereignissen in Medizin und Pflege.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Was nützt die Kraniektomie bei schwerer tiefer Hirnblutung?

17.05.2024 Hirnblutung Nachrichten

Eine Studie zum Nutzen der druckentlastenden Kraniektomie nach schwerer tiefer supratentorieller Hirnblutung deutet einen Nutzen der Operation an. Für überlebende Patienten ist das dennoch nur eine bedingt gute Nachricht.