Skip to main content
Erschienen in: Annals of Intensive Care 1/2022

Open Access 01.12.2022 | Review

Prediction of fluid responsiveness. What’s new?

verfasst von: Xavier Monnet, Rui Shi, Jean-Louis Teboul

Erschienen in: Annals of Intensive Care | Ausgabe 1/2022

Abstract

Although the administration of fluid is the first treatment considered in almost all cases of circulatory failure, this therapeutic option poses two essential problems: the increase in cardiac output induced by a bolus of fluid is inconstant, and the deleterious effects of fluid overload are now clearly demonstrated. This is why many tests and indices have been developed to detect preload dependence and predict fluid responsiveness. In this review, we take stock of the data published in the field over the past three years. Regarding the passive leg raising test, we detail the different stroke volume surrogates that have recently been described to measure its effects using minimally invasive and easily accessible methods. We review the limits of the test, especially in patients with intra-abdominal hypertension. Regarding the end-expiratory occlusion test, we also present recent investigations that have sought to measure its effects without an invasive measurement of cardiac output. Although the limits of interpretation of the respiratory variation of pulse pressure and of the diameter of the vena cava during mechanical ventilation are now well known, several recent studies have shown how changes in pulse pressure variation itself during other tests reflect simultaneous changes in cardiac output, allowing these tests to be carried out without its direct measurement. This is particularly the case during the tidal volume challenge, a relatively recent test whose reliability is increasingly well established. The mini-fluid challenge has the advantage of being easy to perform, but it requires direct measurement of cardiac output, like the classic fluid challenge. Initially described with echocardiography, recent studies have investigated other means of judging its effects. We highlight the problem of their precision, which is necessary to evidence small changes in cardiac output. Finally, we point out other tests that have appeared more recently, such as the Trendelenburg manoeuvre, a potentially interesting alternative for patients in the prone position.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
EEO
End-expiratory occlusion
ICU
Intensive care unit
LVOT
Left ventricular outflow tract
PLR
Passive leg raising
PPV
Pulse pressure variation
SVV
Stroke volume variation
Vt
Tidal volume
VTI
Velocity time integral

Background

Fluids, administered to patients with shock and hypotension in the operating room or intensive care unit (ICU), are drugs. On the one hand, their effect is inconstant, due to inter-individual variability in the relationship between cardiac output and preload [1]. When fluid responsiveness is not assessed, a fluid bolus increases cardiac output in only half of the cases. This means that many patients will inadvertently receive fluids while there is no cardiac output response [1, 2]. On the other hand, the deleterious effects of fluid administration are now clearly demonstrated. Increase in fluid balance is a factor independently associated with mortality of patients in shock, especially during septic shock [3], and with an increased rate of complications after surgery [4].
Therefore, it is logical to condition the infusion of fluid boluses on the prediction of their effectiveness. The main goal of this prediction is to avoid administering ineffective fluid, which would only have deleterious effects without generating any benefit. For this purpose, several tests and indices have been developed.
The aim of this review is to provide an up-to-date summary of knowledge regarding these tests and indices, emphasizing the literature published in the last three years. What do recent studies add regarding their reliability? How should they be performed in practice, and how should their effects be assessed? What is new regarding their conditions of use? What new tests have been developed? These are the questions we will try to answer.

Passive leg raising

What do we already know about the test?

Transferring a patient from a semi-recumbent position to a position where the trunk is horizontal and the lower limbs are elevated at 30–45° mobilizes blood from the splanchnic territory and the lower limbs and significantly increases mean systemic pressure, the upstream pressure of systemic venous return [5]. The passive leg raising (PLR) test increases cardiac preload and allows the assessment of preload responsiveness of both ventricles. The advantage of this “self-transfusion” of roughly 300 mL of blood [6] is that it is reversible. In addition, the test does not depend on ventilation and heart rate, and it remains reliable in patients with spontaneous ventilation and cardiac arrhythmia [7].
The reliability of the PLR test for detecting preload responsiveness is well established, after the publication of numerous studies [8] and some meta-analyses [9, 10]. The test not only has good sensitivity and specificity (85 and 91%, respectively) [9], but also very good positive and negative predictive values and likelihood ratios [11]. Use of the test has grown [7] and it is recommended in the haemodynamic management of septic shock by the Surviving Sepsis Campaign [12].
However, it has long been clear that unfortunately the haemodynamic effects of PLR cannot be measured on simple arterial pressure measured invasively [9] and, a fortiori, non-invasively [13]. Even changes in arterial pulse pressure, which is best related to stroke volume, only imperfectly follow the effects of PLR on cardiac output, as is the case for the fluid challenge [14]. Thus, the effects of PLR should be measured directly on cardiac output (Table 1).
Table 1
Characteristics of tests assessing preload responsiveness by mimicking a classic fluid challenge
Test
Advantages
Limitations
Confounding factors
Criterion of judgement
Diagnostic threshold
Level of evidence*
Passive leg raising
→Reversible, no fluid infusion
→Requires a direct estimation of CO/SV
→Possible false negatives in case of intra-abdominal hypertension
→False negatives in case of venous compression stockings
↗ CO
 ≥ 10%
++++
 
→Works regardless of breathing activity, cardiac rhythm, Vt, lung compliance
→False negatives in case of IAH
↗ VTI
 ≥ 10%
++++
 
→Very well validated
 
↗ end-tidal CO2
 ≥ 5%
 ≥ 2 mmHg
++
   
↗ perfusion index
 ≥ 9%
+
   
↘ PPV/SVV
 ≥ − 1 to 4 points
+
   
↘ capillary refill time
 ≥ − 27%
+
Mini-fluid challenge
→Easy to perform
→Requires a direct estimation of CO/SV
→Poor precision of the technique measuring cardiac output
→Volume of fluid infused (minimum: 100 mL)
↗ CO
 ≥ 5%
++
 
→Works regardless of breathing activity, cardiac rhythm, Vt, lung compliance, IAP
→Requires a precise estimation of CO/SV
→Still requires fluid infusion
↗ VTI
 ≥ 10%
+
Trendelenburg manoeuvre
→Reversible, no fluid infusion
→Possible even in prone position, on the operating table or under ECMO
→Works regardless of breathing activity, cardiac rhythm, Vt, lung compliance
→Possible gastric reflux
→Requires more validation
→Intra-abdominal hypertension?
↗ CO
 ≥ 8 to 10%
+
CO cardiac output, IAH intra-abdominal hypertension, ECMO extracorporeal membrane oxygenation, PPV pulse pressure variation, SV stroke volume, SVV stroke volume variation, Vt tidal volume under mechanical ventilation, VTI velocity-time integral in the left ventricular outflow tract
*Takes into account the number of positive studies (confirming reliability) and of negative studies (denying reliability)
What haemodynamic monitoring techniques can be used for this purpose? Since the effects of PLR are sometimes limited in time (the increase in cardiac output peaks in the minute after starting the test, and then diminishes in some patients), cardiac output must be estimated in real time (Fig. 1). Pulse wave analysis is perfectly suited and simple to use [15]. Even though the estimation of cardiac output by uncalibrated systems is less reliable when arterial tone changes, which makes these techniques unsuitable for intensive care patients [16], they remain reliable for estimating the effects of PLR since it does not modify vascular resistance. This is also true when PLR is assessed with the volume clamp technique, which estimates cardiac output through the uncalibrated analysis of an arterial curve obtained non-invasively through a finger cuff [17]. Echocardiography and oesophageal Doppler, which estimate stroke volume beat-to-beat, are quite suitable. With cardiac ultrasound, for the sake of the precision of the measurement, it is wise to keep the probe on the patient’s skin and the ultrasound beam in the left ventricular outflow tract (LVOT). In ventilated patients in the absence of any spontaneous respiratory activity, changes in end-tidal carbon dioxide measured at the tip of the tracheal tube reflect changes in cardiac output and allow monitoring of the effects of the PLR test [1820]. This offers an attractive alternative to previous methods, especially during surgery and anaesthesia.

What's new?

Monitoring technique

In recent years, many more studies have been devoted to the description of alternative methods to estimate the haemodynamic effects of PLR, less invasive than pulse contour analysis and simpler to perform than echocardiography.
This is the case for bioreactance (Starling, Baxter, Deerfield, USA), at least in its latest version, in which the duration over which cardiac output values are averaged and the frequency at which their refreshed display are compatible with the duration of the PLR effects [21]. However, the repeatability of bioreactance cardiac output measurements during PLR has recently been questioned [22]. Bioimpedance systems, which are more subject to artifacts than bioreactance systems, seem to be less reliable [23].
Another non-invasive and easy-to-use solution may come from the plethysmography signal. Its amplitude is estimated by the perfusion index, the ratio between its pulsatile portion, which is displayed on bedside screens, and the non-pulsatile portion. This index is determined by vasomotor tone, which decreases its amplitude, and stroke volume, which increases it [24]. Then, even though it does not provide an absolute value of cardiac output, it may follow its trends. The respiratory variation of the perfusion index, quantified by the pleth variability index, has been demonstrated to indicate preload responsiveness [25], even though some poorer results have been reported in critically ill patients receiving norepinephrine [26], which may alter the quality of the plethysmographic signal.
During PLR, two studies by our group showed that the increase in perfusion index, which is automatically measured by some monitors, followed changes in cardiac output during a PLR test and that these changes detected a preload responsive state [27, 28]. An unstable signal in some patients could be a limitation of the method [28]. These results should be confirmed by further studies by other groups, but suggest that plethysmography might be a non-invasive, cheap, and widely used alternative to all previous techniques used to estimate PLR effects.
Another attractive way to assess PLR effects might be to assess changes not in a surrogate of cardiac output but in the respiratory variation of arterial pulse pressure (PPV) or stroke volume (SVV) in mechanically ventilated patients. Indeed, it has recently been reported that the decrease in PPV induced by a PLR test, reflecting the decrease in preload responsiveness induced by the preload challenge, detects preload responsiveness [29, 30] (Table 1). Likewise, another study, conducted on patients with protective ventilation in a cardiac surgery ICU, reported similar results, this time with a decrease in SVV [31] (Table 1). However, the best diagnostic threshold is not well defined at the moment, as studies are few and provide different values (Table 1). In addition, these relatively low diagnostic thresholds of PPV drops may pose the problem of measurement accuracy.
Preload responsiveness could even be detected by the effects of the PLR test on capillary refill time [32], although it reflects skin perfusion and sympathetic vasoconstriction without being a direct surrogate of cardiac output. A decrease of 27% or more was the reported diagnostic threshold (Table 1). However, this threshold was close to the reproducibility limit of the measurement. Moreover, it was performed in a very standardized way (standardized pressure applied on the skin, video recording of the skin colour under standard lighting, etc.) [32]. Thus, the method might be difficult to implement in practice. Moreover, other studies should confirm that there is a close relationship between capillary refill time and cardiac output, as they are not directly related physiologically.
The use of carotid or femoral arterial flow during the PLR test is more doubtful. Indeed, published studies are highly contradictory, some showing that these arterial flows follow the changes induced by the PLR test [33], while others demonstrate the method is unreliable [34, 35]. More generally, doubts exist regarding the ability of carotid blood flow to track changes in cardiac output [36, 37]. One should thus be cautious before considering this technique for clinical practice.

Limitations

PLR testing is contraindicated in patients with intracranial hypertension, and it is difficult to perform during surgery. Venous compression stockings likely result in false negatives by reducing the mobilized blood volume [38]. However, the test is still valid in circumstances that limit the use of PPV and SVV, such as spontaneous breathing, cardiac arrhythmia, low tidal volume (Vt) ventilation, low lung compliance, or right heart failure [38].
More recently, a study suggested that intra-abdominal hypertension, which would reduce the splanchnic blood volume mobilized during PLR, or even interrupt the inferior vena cava flow by a waterfall phenomenon, would generate some false negatives [39]. The results of this single study need to be confirmed [40] but, in the meantime, it is reasonable to advise caution in interpreting the PLR test in cases of intra-abdominal hypertension (Table 1).

End-expiratory occlusion test

What do we already know about the test?

As PPV and SVV, the end-expiratory occlusion (EEO) test detects preload dependence by taking advantage of cardiopulmonary interactions [41]. In mechanically ventilated patients, each insufflation increases intrathoracic pressure, thereby increasing right atrial pressure and decreasing right cardiac preload. Thus, interrupting ventilation in expiration for a few seconds, while the alveolar pressure is maintained at the level of positive end-expiratory pressure (PEEP), stops this cyclical decrease in cardiac preload. In preload-responsive patients, cardiac output significantly increases [42]. Studies testing the reliability of the EEO test have been the subject of three recent meta-analyses [4345] confirming its reliability. The diagnostic threshold is a 5% increase in cardiac output [43] (Table 2).
Table 2
Characteristics of tests and indices assessing preload responsiveness based on heart–lung interactions
Test/index
Advantages
Limitations
Confounding factors
Criterion of judgement
Diagnostic threshold
Level of evidence
PPV
→Automatically measured
→Widely available (invasive or non-invasive arterial pressure curve)
→Requires no manoeuvre
→Very well validated
→Impossible to use in many patients because of confounding factors
→False positives in case of cardiac arrhythmias, spontaneous breathing activity and possibly right ventricular failure
→False negatives in case of low Vt, low lung compliance and IAH
Absolute value itself
 ≥ 15%
++++
SVV
→Automatically measured
→Requires no manoeuvre
→Well validated
→Impossible to use in many patients because of confounding factors
→Requires a device for pulse contour analysis
→Those of PPV
→An arterial pressure of poor quality may provide wrong values
Absolute value itself
 ≥ 15%
+++
EEO test
→Easy to perform
→Works regardless of breathing activity, cardiac rhythm, Vt, lung compliance
→Well validated
→Requires a direct estimation of CO/SV
→Requires mechanical ventilation
→Cannot be used if the patient interrupts the 15-s EEO
→Interruption of the test before its end by breathing efforts of the patient
↗ CO
 ≥ 5%
+++
   
↗ VTI (better with additional EIO)
EEO alone: ≥ 5%
EEO + EIO: ≥ 13%
+
   
↗ perfusion index
 ≥ 2.5%
+
Vt challenge
→Requires no measurement in CO/SV (just an invasive or non-invasive arterial pressure curve)
→Reliable in prone position and in spontaneously breathing patients
→Requires mechanical ventilation
→Different diagnostic thresholds reported
→Requires more validation
→Cardiac arrhythmias?
→Intra-abdominal hypertension?
↗ PPV
 ≥ 1 to 3.5%
++
Vena cava distensibility
→Requires no measurement in CO/SV
→False positives in case of spontaneous breathing activity and possibly right ventricular failure
→False negatives in case of low Vt, low lung compliance
→Quite low reliability
→Not reliable in case of IAH
→For SVC: requires TOE
→Those of PPV (except cardiac arrhythmia)
Absolute value itself
IVC: ≥ 12%
SVC: ≥ 12 to 36%
+
CO cardiac output, EEO end-expiratory occlusion, EIO end-inspiratory occlusion, IAH intra-abdominal hypertension, IVC inferior vena cava, PPV pulse pressure variation, SV stroke volume, SVC superior vena cava, SVV stroke volume variation, TOE trans-oesophageal echocardiography, Vt tidal volume under mechanical ventilation, VTI velocity-time integral in the left ventricular outflow tract
*Takes into account the number of positive studies (confirming reliability) and of negative studies (denying reliability)
The duration of the EEO must be longer than 12 s [42], to allow the increased preload to be transmitted from the right to the left cardiac side (pulmonary transit time) and also to allow devices that average cardiac output values over several seconds to display this increase. Thus, the test is not feasible in patients interrupting the end-expiratory pause because of too-marked respiratory activity [42] (Table 2).
On the other hand, the advantage of the test is that it is easy to perform (Fig. 2). It is valid even in the event of small Vt or cardiac arrhythmia and in patients with spontaneous respiratory activity, provided that it is not too marked [42] (Table 2).
The effects of the EEO test are fleeting, as they begin to wear off as soon as mechanical ventilation resumes. In addition, they are relatively small, so, therefore, is the diagnostic threshold. Thus, measuring the effects of the EEO test requires an estimate of cardiac output that is both in real time and precise [42] (Fig. 2).
For this purpose, the drawback of arterial pulse pressure is that its changes during a 15-s EEO cannot be seen simply on bedside monitors [46]. The pulse wave contour analysis, a real-time and very precise measurement (the smallest detectable significant change is of the order of only 1–2% [47]) is perfectly adapted but is an expensive and invasive technique.

What's new?

Monitoring technique

As with the PLR test, several recent studies have looked at the method that can be used to detect the effects of the EEO test. The drawback of cardiac ultrasound for measuring the effects of the test is that its precision is relatively low. As underlined before, the smallest detectable change in stroke volume (i.e., changes in the velocity-time integral (VTI) in the LVOT) is 10%, below the diagnostic threshold for the EEO test [48]. Therefore, it was suggested to combine a 15-s EEO with a 15-s end-inspiratory hold, separated from the EEO by a resumption of mechanical ventilation [49]. During the end-inspiratory occlusion, conversely to what occurs during EEO, stroke volume increases more in the case of preload responsiveness than of preload unresponsiveness. The addition of the VTI changes (in absolute value) observed during the two respiratory holds allows one to detect preload responsiveness with good diagnostic reliability and with a threshold of 13% [48] compatible with the precision of transthoracic echocardiography [49]. This combination of end-inspiratory and EEO tests, with repeated measurements of the VTI in the LVOT, takes time. However, it opens up the possibility of assessment by echocardiography, which is often the only cardiac output measurement technique available.
When using oesophageal Doppler, which has the same precision issues as cardiac ultrasound, the combination of EEO and end-inspiratory occlusion can also be used [50]. It was recently shown that a portable carotid Doppler tool could also track changes in stroke volume during combined end-inspiratory and end-expiratory occlusions [51], a result that is interesting but needs confirmation.
In one study, changes in the plethysmographic perfusion index were shown to closely follow changes in the cardiac index during EEO, as it did during PLR [27]. A diagnostic threshold of 2.5% was obtained (Table 2), while the smallest significant change in the perfusion index was 2% [27]. As for PLR, although this single study opens up the prospect of easy monitoring of the EEO test, it must be confirmed.
Finally, tools that track changes in cardiac output or stroke volume during the EEO test must be able to capture relatively brief effects. Thus, the commercial version of the bioreactance system, which averages cardiac output over 24 s, cannot track the effects of the test. However, a modified version bioreactance system that reduces the cardiac output averaging time to 8 s was recently shown to be quite appropriate [27]. Such results highlight the fact that the technical characteristics of monitoring tools must be carefully considered.

Limitations

One study reported that the EEO test was reliable at 8 mL/kg Vt but not at a 6 mL/kg Vt [52]. However, several studies which clearly demonstrated the validity of the EEO test had included ventilated patients with a Vt less than 8 mL/kg, and even less than 7 mL/kg [42, 53]. This was even recently confirmed by a meta-analysis that only included studies performed under conditions of low Vt [54]. In addition, the EEO test has been shown to be reliable regardless of the level of respiratory driving pressure [55]. Thus, low Vt ventilation is likely not a limitation of the EEO test.
Two studies also suggested that the EEO test was unreliable in the prone position [56, 57]. In one of the studies, reliability was only acceptable in patients whose central venous pressure increased during EEO [56]. However, there is no obvious reason why the test should be less reliable in the prone position than in the supine position, and this point also needs confirmation.
Finally, a study recently suggested that the EEO test loses sensitivity during laparoscopic surgery [58]. It is possible that the decrease in transdiaphragmatic pressure explains this possible limitation of the test, but this requires confirmation.

Pulse pressure and stroke volume variations

What do we already know about the indices?

PPV, which is an easy way to quantify the decrease in systolic arterial pressure induced by the inspiratory decrease in cardiac preload under mechanical ventilation (delta down), is the preload responsiveness index that has the highest level of evidence [59]. However, PPV and SVV are limited by the fact that they cannot be used in many clinical conditions, which can be easily remembered through the acronym LIMITS [60]: Low heart rate/respiratory rate ratio (extremely high respiratory rates), which creates some false negatives, Irregular heartbeats (false positives), Mechanical ventilation with low tidal volume (false negatives), Increased abdominal pressure (false positives), Thorax open (false negatives) and Spontaneous breathing (false positives) (Table 2). Then, PPV and SVV can only be used in a minority of patients, especially in the ICU [59].

What's new?

Limitations

The question of false positives of PPV induced by right heart failure remains unresolved. The reality of this theoretical limitation is not certain, as it was evaluated by only one human study with many limitations [61]. A recent study in pigs suggests that elevation in the level of PEEP and the accompanying increase in right ventricular afterload increase PPV independently of variations in preload [62]. However, the animals in this study did not have right ventricular failure [62]. Despite these limitations, recent studies have shown that the relative changes in PPV and SVV may help assess fluid responsiveness, even in cases where its absolute value is not interpretable. During tests that are usually performed by assessing changes in cardiac output, changes in PPV and SVV might be used as surrogates of cardiac output, allowing one to perform these tests with a simple arterial line and no haemodynamic monitor. Changes in PPV and/or SVV may allow one to assess the PLR test [2931] as mentioned above and the mini-fluid challenge as detailed below [63, 64].

Tidal volume challenge

What do we already know about the test?

This test makes it possible to overcome the unreliability of PPV in the event of low Vt ventilation. When Vt is at 6 mL/kg of predicted body weight, the test consists of increasing it transiently from 6 to 8 mL/kg and measuring the induced changes in PPV [52]. If the absolute value of PPV increases significantly, this implies that both ventricles are preload-dependent (Table 2).
The Vt challenge has been validated by far fewer studies than the PLR test, for example, although its reliability has been confirmed in a recent meta-analysis [54]. Moreover, the diagnostic thresholds differ slightly between the few available studies (Table 2), which in addition expressed the change in PPV either as an absolute value [30, 52, 65]} or as a percent change [56, 66, 67], or both [29].

What's new?

Recent publications suggest the interest in the Vt challenge in the operating room context [66, 67], where the PLR test is not feasible during many interventions. In particular, the test has been demonstrated to be reliable in patients in prone position during neurosurgery [57]. If confirmed in patients with ARDS in the ICU, this would provide a solution in this context, where PLR cannot be used.
The test can be used in patients with some spontaneous breathing under mechanical ventilation [30]. This has been demonstrated with PPV. However, when the effects of the Vt challenge are assessed on the changes not in PPV but in inferior vena cava distensibility, the diagnostic value of the test seems to be notoriously insufficient as shown by another recent study [29]. This is probably due to the lower intrinsic reliability of the inferior vena cava variations, as detailed below.

Respiratory variation in the diameter of the vena cava

What do we already know about the index?

Variation in the diameter of the vena cava has long been proposed for the detection of preload dependence in mechanically ventilated patients [68]. The advantage of this index is that it can be easily obtained using transthoracic cardiac ultrasound, without requiring extensive experience in ultrasound. Conversely, the collapsibility of the superior vena cava requires transoesophageal ultrasound, which requires more experience [41] (Table 2).
The distensibility of the vena cava unfortunately shares with PPV and SVV the fact that it cannot be used when Vt is low, as has been recently shown [29], when lung compliance is low and when there is spontaneous breathing (Table 2). Intra-abdominal hypertension considerably impairs the reliability of this index. In addition, as detailed below, recent publications have confirmed the low reliability of these indices of fluid responsiveness.

What's new?

Reliability

The reliability of variations in the diameter of the vena cava has been reported to be quite low in several studies and meta-analyses published in recent years [6971]. A large study confirmed that changes in diameter, especially of the inferior vena cava, have low diagnostic sensitivity and specificity in detecting preload responsiveness, as assessed by the PLR test [72]. Only the extreme values, observed in very few patients, were informative [72].
This may have a physiological explanation. Variations of the vena cava do not depend only on the state of preload responsiveness, but on other factors as well. For the inferior vena cava, while it is true that its intramural pressure, the central venous pressure, varies more in amplitude in the event of preload responsiveness [73], which tends to vary its diameter, it is not the only factor that comes into play. Compliance of the vena cava, which is supposed to be higher in the case of hypovolemia, extramural pressure, i.e., the intra-abdominal pressure, and its respiratory variations, which depend on the thoracoabdominal transmission of the intrathoracic pressure, also play a role. Accordingly, it has been shown that the diagnostic value of variations in the inferior vena cava becomes very low during intra-abdominal hypertension [72]. Moreover, the site of measurement of inferior vena cava diameter affects the accuracy of its variability for predicting fluid responsiveness [7476].
However, in septic non-intubated patients, a recent study suggested that preload responsiveness was detected by changes in the diameter of the inferior vena cava induced by a standardized respiratory manoeuvre [77]. Nevertheless, the echographic measurement should be performed 4 cm from the right atrium [74], which might be challenging, especially in the semi-recumbent position during respiratory distress [76]. In addition, patients must be able to cooperate and standardize their breath, and must have no active expiration [76].
In addition to intra-abdominal hypertension, vena cava distensibility shares with PPV some conditions in which it is less reliable: spontaneous breathing, low tidal volume and lung compliance (Table 2). Considering all these limitations, it is surprising to see that vena cava distensibility is often thought to be the key index for assessing fluid requirements in point-of-care ultrasound [78]. Its ease of measurement, and the few skills that are necessary for assessing it, do not compensate for its lack of reliability. With echocardiography, preload responsiveness is better assessed with the PLR test, the EEO test combined with expiratory tests or with the mini-fluid challenge.

Mini-fluid challenge

What do we already know about the test?

The most obvious way to detect preload responsiveness is to infuse a bolus of fluid and measure its effects on cardiac output. The fluid challenge has for years been proposed to guide fluid therapy [79].
However, it is easy to understand that a "classic" fluid challenge, with the infusion of 200–500 mL of fluid, is not a "challenge", but the treatment itself. If there is no preload responsiveness, which occurs in half of the cases, it is not possible to withdraw the fluid administered in excess. The classic fluid challenge inevitably leads to fluid overload. In addition, the fact that cardiac output increases following the infusion of 200–500 mL of fluid does not necessarily imply that this will be the case for the next bolus. The volume is indeed large enough to convert preload-dependent ventricles into independent ones.
Therefore, the idea of administering only a “mini-fluid challenge”, performed with a quite small volume of fluid to assess preload responsiveness is interesting [80]. It consists in infusing 100 to 150 mL of crystalloid or colloid over 60 to 120 s and measuring the response of cardiac output or one of its surrogates. This response predicts the effects on cardiac output of the rest of the fluid bolus, generally of 350–400 mL. Over the past ten years, several studies have shown that the mini-fluid challenge reliably predicts the response to volume expansion [45].

What's new?

Reliability

After relatively small studies, two recent meta-analyses confirmed the reliability of the mini-fluid challenge [45, 54]. This has been confirmed by a multicentre study involving more than 100 patients in the operating theatre [81] so that one can now reasonably consider that this is a reliable way to detect preload responsiveness (Table 1).

Monitoring technique

The mini-fluid challenge requires direct estimation of cardiac output or stroke volume, that is, it cannot be done by just measuring arterial pressure changes (Fig. 3). During a classic fluid challenge, it is well demonstrated that changes in arterial pressure, even in arterial pulse pressure—best related to stroke volume—follow changes in cardiac output only very imprecisely [14, 82]. The same is obviously true for a mini-fluid challenge, the administered volume of which is smaller.
In addition, the diagnostic threshold for the mini-fluid challenge is relatively small (5% on average (Table 1) [45]). Then, the technique used for measuring cardiac output during the test must be precise, that is, it must be able to measure small changes in cardiac output (Fig. 3). The analysis of the pulse wave contour is very suitable for this, for the smallest change in cardiac output it can detect reliably is around 1–2%, as has recently been established [47]. Note, however, that even with this technique, the reliability of the mini-fluid challenge is lower if the volume infused is only 50 mL [83].
In contrast, the precision of echocardiography in measuring the LVOT VTI may not be good enough, as its least significant change is 12% [48]. So, if this is the technique that is used, one should ensure the best possible precision in estimating stroke volume. In particular, one should keep the ultrasound probe on the patient's chest during the fluid infusion, without changing the position of the ultrasound flow in the LVOT chamber, thus improving measurement precision [48].
The decrease in PPV and SVV during a mini-fluid challenge, which would indicate a decrease in the degree of preload responsiveness, might be used as a surrogate for an increase in cardiac output to assess the effects of the test. Two small studies recently showed that the decrease in PPV and SVV during a 100 mL mini-fluid challenge predicted the response to volume expansion with acceptable reliability [63, 64] (Table 1). If results obtained with PPV are confirmed, this would allow one to assess the mini-fluid challenge effects without any cardiac output monitoring, but just from an arterial pressure trace.

Limitations

The majority of studies that have investigated the reliability of the mini-fluid challenge pose a methodological problem [84]. In fact, these studies showed that the response to the mini-fluid challenge (100–150 mL) predicted the response to the whole fluid bolus (generally 500 mL), including that already administered during the test itself. Thus, the mini-fluid challenge predominantly predicted the effects of the mini-fluid challenge itself. This could have led to an overestimation of the test reliability [85]. Further studies should clarify whether this is a significant limitation.
Beyond this methodological limitation, the major drawback of the mini-fluid challenge is that it still involves the infusion of fluid which cannot be removed if ineffective. If repeated, it may inherently induce fluid overload, although the risk is lower than with a classic fluid challenge.

Other tests

Other tests using the ventilator

Recruitment manoeuvres, in the operating theatre or during acute respiratory distress syndrome, change cardiac loading conditions, and in particular, decrease cardiac preload. The decrease in stroke volume during a recruitment manoeuvre (application of continuous positive airway pressure of 30 cm H2O for 30 s [86, 87], or of 25 cmH2O for 25 s [88]) predicted the response to a subsequent bolus of fluid in surgical patients during anaesthesia [86, 88] and during one-lung ventilation [87]. Interestingly, changes in the plethysmographic perfusion index were tested under the same conditions but had less diagnostic value [89]. To our knowledge, these studies have not been repeated.
In the same vein, it was recently proposed that preload responsiveness can be tested by performing four sigh manoeuvres at 0, 15, 25 and 35 cmH2O and by measuring the slope of the drop in systolic blood pressure induced [90]. This test looks like the respiratory systolic variation test, which has been developed years ago [91]. It consists in measuring the slope of the lowest systolic pressure values during a standardized manoeuvre consisting of three successive incremental pressure-controlled breaths. The advantage of such tests is that they might be automated by coupling the ventilator and the haemodynamic monitoring devices.

Trendelenburg manoeuvre

In prone positioned patients, the PLR test cannot of course be performed. However, a Trendelenburg manoeuvre, which could also transfer part of the venous blood from the lower body to the heart chambers, may be an alternative. One study showed that an increase in cardiac output during such a manoeuvre correctly detected preload responsiveness (Table 1) [56]. Note that some other tests like EEO and Vt challenge might also be suitable in the case of prone positioning. Similar results with the Trendelenburg manoeuvre have been described in patients under veno-arterial extracorporeal membrane oxygenation [92] and during the surgical intervention [93].

Place of preload responsiveness assessment in patient management

No magic value!

First of all, it must be remembered that no test or diagnostic index is perfect, for preload responsiveness tests or for any other tests. The further the result from the diagnostic threshold, the more likely the diagnosis. This is what some have conceptualized with the concept of a "grey zone", in which a greater or lesser number of patients are located depending on the test considered.
Additionally, it should be kept in mind that while patients are classified as "preload responders" and "preload non-responders" in studies, to determine sensitivity and specificity, the degree of preload dependence is a physiologically continuous variable. Thus, if the result of a test or index takes an intermediate value, close to the diagnostic threshold provided by the studies, this perhaps corresponds to an intermediate degree of preload dependence, not to a weakness of the diagnostic tool.

Preload responsiveness: not always!

There are cases where the positive response of cardiac output to a bolus of fluid is certain, and in which the patient’s ventricles must work on the steep part of the Frank-Starling curve. This is certain if cardiac preload is very low. In clinical practice, this corresponds to obvious hypovolaemia, the initial phase of septic shock before any volume expansion, because of the strong relative hypovolaemia, haemorrhage… In these cases, preload responsiveness is present for sure, and testing it may only delay urgent fluid administration.
In contrast, in all other cases, fluid infusion increases cardiac output in only half of the cases, if fluid responsiveness is not tested. In this context, a dynamic measurement of preload responsiveness is recommended, as during sepsis for example [12].

The presence of preload responsiveness does not mean that fluid should be infused

First, the assessment of fluid responsiveness cannot be dissociated from the clinical context, and no fluid should be administered if it is not obvious that cardiac output needs to be increased. There is no need to test for preload responsiveness if there is no acute circulatory failure as suggested by the absence of clinical signs of organ hypoperfusion (oliguria or anuria, increased capillary refill time, skin mottling, increase in blood lactate or veno-arterial gradient in carbon dioxide partial pressure, decrease in venous oxygen saturation). In such a case, a positive index or test of preload responsiveness must not lead to volume expansion. Preload responsiveness is a physiological state, and it makes no sense to want to fix it systematically.
Second, the need for infusing fluid boluses must be tested along with the risk of administering fluids. Even if preload responsiveness is present, if the risk exceeds the benefit, fluid should not be infused. In assessing risk, many indices may be considered, as a high central venous pressure or pulmonary artery occlusion pressure, a high level of extravascular lung water and severely impaired blood oxygenation, or an elevated intra-abdominal pressure, for instance [94]. Alternatives to fluid may be considered for improving the haemodynamic status, as using the preload effect of norepinephrine in septic shock patients [95, 96] or simply decreasing the level of PEEP, for instance.

Testing preload responsiveness: which applications?T esting fluid responsiveness

The real need in assessing fluid responsiveness is that fluid should not be given in the case of fluid unresponsiveness, as if it is ineffective fluid will only contribute to fluid overload and its deleterious effects. It is now well established that an increase in fluid balance during an ICU stay [3] or after cardiac surgery [4] worsens patient outcome, regardless of other factors of severity.
From this perspective, testing preload responsiveness can also serve to guide fluid removal at the therapeutic de-escalation phase in shock patients. Indeed, in the absence of preload responsiveness, it is likely that the fluid can be withdrawn in a safe manner, without the risk of lowering cardiac output and causing hypotension [9]. In addition, an absence of preload responsiveness, which indicates the inability of the heart to cope with significant changes in its loading conditions, makes it likely that weaning from mechanical ventilation will fail due to cardiac dysfunction [97].

Testing fluid responsiveness… and assessing the response to fluids

If the detection of a preload responsive state is to precede the administration of fluid, it is important to verify, if a bolus of fluid has been administered, that it has indeed increased cardiac output (Figs. 1, 2, 3). First, none of the diagnostic methods are perfect, and false positives or false negatives are always possible. Then, if a significant response of cardiac output to fluid administration is noted, it is possible that a preload responsiveness state persists, so that the question of renewing a fluid bolus may arise.
Finally, the ultimate goal of volume expansion is to correct tissue hypoxia. Due to the non-linear relationship between oxygen consumption and oxygen delivery in some cases, the fluid-induced increase in cardiac output is not always accompanied by improved tissue oxygenation [98]. It is therefore important to evaluate it according to the usual indices (skin mottling, capillary refill time, lactate, venous oxygen saturation and carbon dioxide-derived indices) [94].

Any effect on patient outcome?

Recent studies and meta-analyses have addressed the issue of whether a strategy guided by the assessment of preload responsiveness improves patient outcome, in the ICU or in the operating theatre.
It seems that these two settings should be considered differently. In the operating theatre, there are quite a few studies comparing an interventional fluid strategy guided by preload responsiveness assessment with a standard strategy. They were of relatively small size, but their meta-analyses suggested a benefit of the interventional fluid strategy regarding different outcomes. In a 2017 meta-analysis including 13 trials (1652 patients), 12 of which were performed in post-surgical patients, a fluid strategy based on a fluid responsiveness assessment significantly decreased mortality and ICU length of stay [99]. This meta-analysis confirmed the results of an earlier one, performed specifically in post-surgical patients, showing that a goal-directed strategy based on dynamic parameters decreased post-surgical morbidity and ICU length of stay [100]. This was confirmed in a meta-analysis of 11 studies (1015 patients) performed in surgical ICU patients and in which a strategy based on SVV reduced the ICU and hospital lengths of stay and tended to decrease mortality [101].
In addition, in the peri-operative period, several studies have examined the effect on outcome of using a goal-directed therapy, which included, in addition to other therapeutic interventions, a fluid strategy guided by assessing preload responsiveness. Several of these studies and their meta-analyses [102] have shown that such a goal-directed approach is beneficial, especially in decreasing post-operative complications. A recent meta-analysis including 21 randomized control trials enrolling 2729 patients found that goal-directed therapy was associated with a reduction in post-operative complications and a trend toward reduced mortality [103].
In non-surgical ICU patients, far fewer studies are available. Three randomized control trials only have been published in English in peer-reviewed journals [104106] (Table 3). They were all performed on septic shock patients in the early phase, and all used the PLR test to assess preload responsiveness in the protocol group. As summarized in Table 3, in two of them, the primary goal of reducing the volume of fluid administered through a PLR-guided strategy was achieved. In addition, the trial that included the largest number of patients evidenced a reduction in the need for renal replacement therapy and for mechanical ventilation in the intervention group [104]. A reduction in mortality, which was not the primary goal of these studies, was not observed, as confirmed in two meta-analyses [107, 108].
Table 3
Summary of the studies investigating the effects on the outcome of strategies using an assessment of preload responsiveness of critically ill patients
First author
(year of publication)
Number of patients
Number of centres
Primary end-point
Effect of fluid administration*
Effect on mortality*
Other tested effects*
Chen [96]
82
1
Volume of fluids administered by days 3 and 5 and cumulative fluid balance by days 3 and 5
Fluid balance at Day-3
1 952 [48–5003] mL
vs
3 124 [767–10103] mL, p = 0.20
In-hospital
56% vs. 49%, p = 0.51
Ventilator-free days
5.5 [0–12.25] days
vs
5.5 [0–16.75] days, p =0 .05
      
Need for renal replacement therapy
41.5%
vs
39.0%, p = 0.82
      
Vasopressor-free days
5.5 [0–10] days
vs
5 [0–16] days, p = 0.84
Richard [97]
60
1
Duration of cardiovascular failure
Daily volume of fluids for volume expansion
383 (211 to 604) mL/day vs
917 (639 to 1,511) mL/day,
p = 0.01
28-day
23% vs. 47%, p = 0.10
Time to shock resolution
2.0 (1.2 to 3.1) days
vs
2.3 (1.4 to 5.6) days, p = 0.29
     
Red cell transfusions
103 (0 to 183) mL
vs
178 (82 to 304) mL, p = 0.04
     
Ventilator-free days
14 [0–24] days
vs
8 [0–21] days, p = 0.35
Douglas [95]
150
13
Positive fluid balance at 72 h or ICU discharge
Fluid balance at 72 h or ICU discharge
0.65 ± 2.85 L
vs
2.02 ± 3.44 L,
p = 0.02
30-day
20% vs. 21%, p = 0.42
Need for rate of renal replacement therapy
5.1%
vs
17.5%, p = 0.04
      
Need mechanical ventilation
17.7% ± 34.1%, p = 0.04
Results in the intervention arm are presented first, and results in the control arm second. P values <0.05 are indicated in bold.
ICU intensive care unit
Finally, in a multicentre observational study in Argentina including 787 septic shock patients, the use of various indices and tests assessing fluid responsiveness was associated with a better outcome in logistic regression analysis [109]. Nevertheless, the observational nature of the study precludes any definitive conclusion.
At the very least, it can be said that a strategy using the assessment of preload responsiveness in septic shock patients is certainly not deleterious and that it does not excessively delay therapeutic management.
However, even if further studies on larger numbers of patients were carried out, it is not at all certain that they could show improved survival. Indeed, a decrease in mortality may not be the ideal outcome for demonstrating the benefit of a treatment in critically ill patients [110]. In patients as heterogeneous as those with circulatory failure, in a disease as multifactorial as shock, it is not certain that any reasonable management algorithm can be established, nor that the change of only one aspect of treatment can demonstrate an effect on survival. In addition, demonstrating the effect of any intervention on outcome requires a large difference between the intervention and the control groups. Such a demonstration may be more difficult today than earlier, as the outcome of the control group has improved in many instances.
Finally, should we wait for the results of survival studies to implement methods assessing preload responsiveness in clinical practice? Since these methods are harmless, as they often use cardiac output monitoring which is recommended anyway in shock patients [111] and patients at high surgical risk [102], they could be chosen for the simple reason that they allow potentially dangerous treatment to be administered only to patients who benefit from it. It seems logical to condition the infusion of fluid boluses on the presence of preload responsiveness, simply because it protects patients from the useless administration of dangerous drugs. This can only help tailor the treatments, as we should strive for, especially during septic shock [112].

Conclusion

The most recent studies in the prediction of fluid responsiveness have primarily described means of measuring the effects of well-established preload responsiveness tests, such as the PLR test, the EEO test and the mini-fluid challenge. In particular, methods replacing invasive and costly measurements of cardiac output have been described. In addition, the limits of these tests have been better defined. Some recent studies have also developed and validated new tests, the best validated of which is the Vt challenge, which has the advantage of being assessed with no direct estimation of cardiac output. There is now some evidence that in the peri-operative period the use of a therapeutic strategy adapting fluid resuscitation to the detection of preload responsiveness reduces post-operative complications. In non-surgical critically ill patients, such as septic shock patients, few outcome studies have been performed, suggesting a reduction in the amount of administered fluid.

Acknowledgements

None.

Declarations

All authors accepted publication.

Competing interests

Xavier MONNET and Jean-Louis TEBOUL are members of the medical advisory board of Pulsion Medical Systems. Xavier MONNET and Jean-Louis TEBOUL have given lectures for Baxter. Xavier MONNET has given lectures for Philips Healthcare. Rui SHI declares that she has no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Malbrain M, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann Intensive Care. 2018;8:66.PubMedPubMedCentralCrossRef Malbrain M, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann Intensive Care. 2018;8:66.PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Malbrain M, Langer T, Annane D, Gattinoni L, Elbers P, Hahn RG, et al. Intravenous fluid therapy in the perioperative and critical care setting: executive summary of the International Fluid Academy (IFA). Ann Intensive Care. 2020;10:64.PubMedPubMedCentralCrossRef Malbrain M, Langer T, Annane D, Gattinoni L, Elbers P, Hahn RG, et al. Intravenous fluid therapy in the perioperative and critical care setting: executive summary of the International Fluid Academy (IFA). Ann Intensive Care. 2020;10:64.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Tigabu BM, Davari M, Kebriaeezadeh A, Mojtahedzadeh M. Fluid volume, fluid balance and patient outcome in severe sepsis and septic shock: a systematic review. J Crit Care. 2018;48:153–9.PubMedCrossRef Tigabu BM, Davari M, Kebriaeezadeh A, Mojtahedzadeh M. Fluid volume, fluid balance and patient outcome in severe sepsis and septic shock: a systematic review. J Crit Care. 2018;48:153–9.PubMedCrossRef
4.
Zurück zum Zitat Messina A, Robba C, Calabro L, Zambelli D, Iannuzzi F, Molinari E, et al. Perioperative liberal versus restrictive fluid strategies and postoperative outcomes: a systematic review and metanalysis on randomised-controlled trials in major abdominal elective surgery. Crit Care. 2021;25:205.PubMedPubMedCentralCrossRef Messina A, Robba C, Calabro L, Zambelli D, Iannuzzi F, Molinari E, et al. Perioperative liberal versus restrictive fluid strategies and postoperative outcomes: a systematic review and metanalysis on randomised-controlled trials in major abdominal elective surgery. Crit Care. 2021;25:205.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Guerin L, Teboul JL, Persichini R, Dres M, Richard C, Monnet X. Effects of passive leg raising and volume expansion on mean systemic pressure and venous return in shock in humans. Crit Care. 2015;19:411.PubMedPubMedCentralCrossRef Guerin L, Teboul JL, Persichini R, Dres M, Richard C, Monnet X. Effects of passive leg raising and volume expansion on mean systemic pressure and venous return in shock in humans. Crit Care. 2015;19:411.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Jabot J, Teboul JL, Richard C, Monnet X. Passive leg raising for predicting fluid responsiveness: importance of the postural change. Intensive Care Med. 2009;35:85–90.PubMedCrossRef Jabot J, Teboul JL, Richard C, Monnet X. Passive leg raising for predicting fluid responsiveness: importance of the postural change. Intensive Care Med. 2009;35:85–90.PubMedCrossRef
7.
Zurück zum Zitat Mesquida J, Gruartmoner G, Ferrer R. Passive leg raising for assessment of volume responsiveness: a review. Curr Opin Crit Care. 2017;23:237–43.PubMedCrossRef Mesquida J, Gruartmoner G, Ferrer R. Passive leg raising for assessment of volume responsiveness: a review. Curr Opin Crit Care. 2017;23:237–43.PubMedCrossRef
8.
Zurück zum Zitat Pickett JD, Bridges E, Kritek PA, Whitney JD. Passive leg-raising and prediction of fluid responsiveness: systematic review. Crit Care Nurse. 2017;37:32–47.PubMedCrossRef Pickett JD, Bridges E, Kritek PA, Whitney JD. Passive leg-raising and prediction of fluid responsiveness: systematic review. Crit Care Nurse. 2017;37:32–47.PubMedCrossRef
9.
Zurück zum Zitat Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1935–47.PubMedCrossRef Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis. Intensive Care Med. 2016;42:1935–47.PubMedCrossRef
10.
Zurück zum Zitat Cherpanath TG, Hirsch A, Geerts BF, Lagrand WK, Leeflang MM, Schultz MJ, et al. predicting fluid responsiveness by passive leg raising: a systematic review and meta-analysis of 23 clinical trials. Crit Care Med. 2016;44:981–91.PubMedCrossRef Cherpanath TG, Hirsch A, Geerts BF, Lagrand WK, Leeflang MM, Schultz MJ, et al. predicting fluid responsiveness by passive leg raising: a systematic review and meta-analysis of 23 clinical trials. Crit Care Med. 2016;44:981–91.PubMedCrossRef
11.
Zurück zum Zitat Monnet X, Dres M, Ferre A, Le Teuff G, Jozwiak M, Bleibtreu A, et al. Prediction of fluid responsiveness by a continuous non-invasive assessment of arterial pressure in critically ill patients: comparison with four other dynamic indices. Br J Anaesth. 2012;109:330–8.PubMedCrossRef Monnet X, Dres M, Ferre A, Le Teuff G, Jozwiak M, Bleibtreu A, et al. Prediction of fluid responsiveness by a continuous non-invasive assessment of arterial pressure in critically ill patients: comparison with four other dynamic indices. Br J Anaesth. 2012;109:330–8.PubMedCrossRef
12.
Zurück zum Zitat Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Executive summary: surviving sepsis campaign: international guidelines for the management of sepsis and septic shock 2021. Crit Care Med. 2021;49:1974–82.PubMedCrossRef Evans L, Rhodes A, Alhazzani W, Antonelli M, Coopersmith CM, French C, et al. Executive summary: surviving sepsis campaign: international guidelines for the management of sepsis and septic shock 2021. Crit Care Med. 2021;49:1974–82.PubMedCrossRef
13.
Zurück zum Zitat Pickett JD, Bridges E, Kritek PA, Whitney JD. Noninvasive blood pressure monitoring and prediction of fluid responsiveness to passive leg raising. Am J Crit Care. 2018;27:228–37.PubMedCrossRef Pickett JD, Bridges E, Kritek PA, Whitney JD. Noninvasive blood pressure monitoring and prediction of fluid responsiveness to passive leg raising. Am J Crit Care. 2018;27:228–37.PubMedCrossRef
14.
Zurück zum Zitat Monnet X, Letierce A, Hamzaoui O, Chemla D, Anguel N, Osman D, et al. Arterial pressure allows monitoring the changes in cardiac output induced by volume expansion but not by norepinephrine*. Crit Care Med. 2011;39:1394–9.PubMedCrossRef Monnet X, Letierce A, Hamzaoui O, Chemla D, Anguel N, Osman D, et al. Arterial pressure allows monitoring the changes in cardiac output induced by volume expansion but not by norepinephrine*. Crit Care Med. 2011;39:1394–9.PubMedCrossRef
15.
16.
Zurück zum Zitat Teboul JL, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016;42:1350–9.PubMedCrossRef Teboul JL, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016;42:1350–9.PubMedCrossRef
17.
Zurück zum Zitat Ameloot K, Palmers PJ, Malbrain ML. The accuracy of noninvasive cardiac output and pressure measurements with finger cuff: a concise review. Curr Opin Crit Care. 2015;21:232–9.PubMedCrossRef Ameloot K, Palmers PJ, Malbrain ML. The accuracy of noninvasive cardiac output and pressure measurements with finger cuff: a concise review. Curr Opin Crit Care. 2015;21:232–9.PubMedCrossRef
18.
Zurück zum Zitat Monnet X, Bataille A, Magalhaes E, Barrois J, Le Corre M, Gosset C, et al. End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Med. 2013;39:93–100.PubMedCrossRef Monnet X, Bataille A, Magalhaes E, Barrois J, Le Corre M, Gosset C, et al. End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Med. 2013;39:93–100.PubMedCrossRef
19.
Zurück zum Zitat Monge Garcia MI, Gil Cano A, Gracia Romero M, Monterroso Pintado R, Perez Madueno V, Diaz Monrove JC. Non-invasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver. Ann Intensive Care. 2012;2:9.PubMedPubMedCentralCrossRef Monge Garcia MI, Gil Cano A, Gracia Romero M, Monterroso Pintado R, Perez Madueno V, Diaz Monrove JC. Non-invasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver. Ann Intensive Care. 2012;2:9.PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Toupin F, Clairoux A, Deschamps A, Lebon JS, Lamarche Y, Lambert J, et al. Assessment of fluid responsiveness with end-tidal carbon dioxide using a simplified passive leg raising maneuver: a prospective observational study. Can J Anaesth. 2016;63:1033–41.PubMedCrossRef Toupin F, Clairoux A, Deschamps A, Lebon JS, Lamarche Y, Lambert J, et al. Assessment of fluid responsiveness with end-tidal carbon dioxide using a simplified passive leg raising maneuver: a prospective observational study. Can J Anaesth. 2016;63:1033–41.PubMedCrossRef
21.
Zurück zum Zitat Galarza L, Mercado P, Teboul JL, Girotto V, Beurton A, Richard C, et al. Estimating the rapid haemodynamic effects of passive leg raising in critically ill patients using bioreactance. Br J Anaesth. 2018;121:567–73.PubMedCrossRef Galarza L, Mercado P, Teboul JL, Girotto V, Beurton A, Richard C, et al. Estimating the rapid haemodynamic effects of passive leg raising in critically ill patients using bioreactance. Br J Anaesth. 2018;121:567–73.PubMedCrossRef
22.
Zurück zum Zitat Chopra S, Thompson J, Shahangian S, Thapamagar S, Moretta D, Gasho C, et al. Precision and consistency of the passive leg raising maneuver for determining fluid responsiveness with bioreactance non-invasive cardiac output monitoring in critically ill patients and healthy volunteers. PLoS ONE. 2019;14: e0222956.PubMedPubMedCentralCrossRef Chopra S, Thompson J, Shahangian S, Thapamagar S, Moretta D, Gasho C, et al. Precision and consistency of the passive leg raising maneuver for determining fluid responsiveness with bioreactance non-invasive cardiac output monitoring in critically ill patients and healthy volunteers. PLoS ONE. 2019;14: e0222956.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Li L, Ai Y, Huang L, Ai M, Peng Q, Zhang L. Can bioimpedance cardiography assess hemodynamic response to passive leg raising in critically ill patients: a STROBE-compliant study. Medicine (Baltimore). 2020;99: e23764.CrossRef Li L, Ai Y, Huang L, Ai M, Peng Q, Zhang L. Can bioimpedance cardiography assess hemodynamic response to passive leg raising in critically ill patients: a STROBE-compliant study. Medicine (Baltimore). 2020;99: e23764.CrossRef
24.
Zurück zum Zitat Elshal MM, Hasanin AM, Mostafa M, Gamal RM. Plethysmographic peripheral perfusion index: could it be a new vital sign? Front Med (Lausanne). 2021;8: 651909.CrossRef Elshal MM, Hasanin AM, Mostafa M, Gamal RM. Plethysmographic peripheral perfusion index: could it be a new vital sign? Front Med (Lausanne). 2021;8: 651909.CrossRef
25.
Zurück zum Zitat Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O, et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth. 2008;101:200–6.PubMedCrossRef Cannesson M, Desebbe O, Rosamel P, Delannoy B, Robin J, Bastien O, et al. Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth. 2008;101:200–6.PubMedCrossRef
26.
Zurück zum Zitat Monnet X, Guerin L, Jozwiak M, Bataille A, Julien F, Richard C, et al. Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. Br J Anaesth. 2013;110:207–13.PubMedCrossRef Monnet X, Guerin L, Jozwiak M, Bataille A, Julien F, Richard C, et al. Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. Br J Anaesth. 2013;110:207–13.PubMedCrossRef
27.
Zurück zum Zitat Beurton A, Gavelli F, Teboul JL, De Vita N, Monnet X. Changes in the plethysmographic perfusion index during an end-expiratory occlusion detect a positive passive leg raising test. Crit Care Med. 2021;49:e151–60.PubMedCrossRef Beurton A, Gavelli F, Teboul JL, De Vita N, Monnet X. Changes in the plethysmographic perfusion index during an end-expiratory occlusion detect a positive passive leg raising test. Crit Care Med. 2021;49:e151–60.PubMedCrossRef
28.
Zurück zum Zitat Beurton A, Teboul JL, Gavelli F, Gonzalez FA, Girotto V, Galarza L, et al. The effects of passive leg raising may be detected by the plethysmographic oxygen saturation signal in critically ill patients. Crit Care. 2019;23:19.PubMedPubMedCentralCrossRef Beurton A, Teboul JL, Gavelli F, Gonzalez FA, Girotto V, Galarza L, et al. The effects of passive leg raising may be detected by the plethysmographic oxygen saturation signal in critically ill patients. Crit Care. 2019;23:19.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Taccheri T, Gavelli F, Teboul JL, Shi R, Monnet X. Do changes in pulse pressure variation and inferior vena cava distensibility during passive leg raising and tidal volume challenge detect preload responsiveness in case of low tidal volume ventilation? Crit Care. 2021;25:110.PubMedPubMedCentralCrossRef Taccheri T, Gavelli F, Teboul JL, Shi R, Monnet X. Do changes in pulse pressure variation and inferior vena cava distensibility during passive leg raising and tidal volume challenge detect preload responsiveness in case of low tidal volume ventilation? Crit Care. 2021;25:110.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Hamzaoui O, Shi R, Carelli S, Sztrymf B, Prat D, Jacobs F, et al. Changes in pulse pressure variation to assess preload responsiveness in mechanically ventilated patients with spontaneous breathing activity: an observational study. Br J Anaesth. 2021;127:532–8.PubMedCrossRef Hamzaoui O, Shi R, Carelli S, Sztrymf B, Prat D, Jacobs F, et al. Changes in pulse pressure variation to assess preload responsiveness in mechanically ventilated patients with spontaneous breathing activity: an observational study. Br J Anaesth. 2021;127:532–8.PubMedCrossRef
31.
Zurück zum Zitat Ma GG, Tu GW, Zheng JL, Zhu DM, Hao GW, Hou JY, et al. Changes in stroke volume variation induced by passive leg raising to predict fluid responsiveness in cardiac surgical patients with protective ventilation. J Cardiothorac Vasc Anesth. 2020;34:1526–33.PubMedCrossRef Ma GG, Tu GW, Zheng JL, Zhu DM, Hao GW, Hou JY, et al. Changes in stroke volume variation induced by passive leg raising to predict fluid responsiveness in cardiac surgical patients with protective ventilation. J Cardiothorac Vasc Anesth. 2020;34:1526–33.PubMedCrossRef
32.
Zurück zum Zitat Jacquet-Lagreze M, Bouhamri N, Portran P, Schweizer R, Baudin F, Lilot M, et al. Capillary refill time variation induced by passive leg raising predicts capillary refill time response to volume expansion. Crit Care. 2019;23:281.PubMedPubMedCentralCrossRef Jacquet-Lagreze M, Bouhamri N, Portran P, Schweizer R, Baudin F, Lilot M, et al. Capillary refill time variation induced by passive leg raising predicts capillary refill time response to volume expansion. Crit Care. 2019;23:281.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Barjaktarevic I, Toppen WE, Hu S, Aquije ME, Ong S, Buhr R, et al. Ultrasound assessment of the change in carotid corrected flow time in fluid responsiveness in undifferentiated shock. Crit Care Med. 2018;46:e1040–6.PubMedPubMedCentralCrossRef Barjaktarevic I, Toppen WE, Hu S, Aquije ME, Ong S, Buhr R, et al. Ultrasound assessment of the change in carotid corrected flow time in fluid responsiveness in undifferentiated shock. Crit Care Med. 2018;46:e1040–6.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Girotto V, Teboul JL, Beurton A, Galarza L, Guedj T, Richard C, et al. Carotid and femoral Doppler do not allow the assessment of passive leg raising effects. Ann Intensive Care. 2018;8:67.PubMedPubMedCentralCrossRef Girotto V, Teboul JL, Beurton A, Galarza L, Guedj T, Richard C, et al. Carotid and femoral Doppler do not allow the assessment of passive leg raising effects. Ann Intensive Care. 2018;8:67.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Chowhan G, Kundu R, Maitra S, Arora MK, Batra RK, Subramaniam R, et al. Efficacy of left ventricular outflow tract and carotid artery velocity time integral as predictors of fluid responsiveness in patients with sepsis and septic shock. Indian J Crit Care Med. 2021;25:310–6.PubMedPubMedCentralCrossRef Chowhan G, Kundu R, Maitra S, Arora MK, Batra RK, Subramaniam R, et al. Efficacy of left ventricular outflow tract and carotid artery velocity time integral as predictors of fluid responsiveness in patients with sepsis and septic shock. Indian J Crit Care Med. 2021;25:310–6.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat van Houte J, Mooi FJ, Montenij LJ, Meijs LPB, Suriani I, Conjaerts BCM, et al. Correlation of carotid Doppler blood flow with invasive cardiac output measurements in cardiac surgery patients. J Cardiothorac Vasc Anesth. 2021;36(4):1081–91.PubMedCrossRef van Houte J, Mooi FJ, Montenij LJ, Meijs LPB, Suriani I, Conjaerts BCM, et al. Correlation of carotid Doppler blood flow with invasive cardiac output measurements in cardiac surgery patients. J Cardiothorac Vasc Anesth. 2021;36(4):1081–91.PubMedCrossRef
37.
Zurück zum Zitat Roehrig C, Govier M, Robinson J, Aneman A. Carotid Doppler flowmetry correlates poorly with thermodilution cardiac output following cardiac surgery. Acta Anaesthesiol Scand. 2017;61:31–8.PubMedCrossRef Roehrig C, Govier M, Robinson J, Aneman A. Carotid Doppler flowmetry correlates poorly with thermodilution cardiac output following cardiac surgery. Acta Anaesthesiol Scand. 2017;61:31–8.PubMedCrossRef
39.
Zurück zum Zitat Beurton A, Teboul JL, Girotto V, Galarza L, Anguel N, Richard C, et al. Intra-abdominal hypertension is responsible for false negatives to the passive leg raising test. Crit Care Med. 2019;47:e639–47.PubMedCrossRef Beurton A, Teboul JL, Girotto V, Galarza L, Anguel N, Richard C, et al. Intra-abdominal hypertension is responsible for false negatives to the passive leg raising test. Crit Care Med. 2019;47:e639–47.PubMedCrossRef
40.
Zurück zum Zitat Minini A, Abraham P, Malbrain M. Predicting fluid responsiveness with the passive leg raising test: don’t be fooled by intra-abdominal hypertension! Ann Transl Med. 2020;8:799.PubMedPubMedCentralCrossRef Minini A, Abraham P, Malbrain M. Predicting fluid responsiveness with the passive leg raising test: don’t be fooled by intra-abdominal hypertension! Ann Transl Med. 2020;8:799.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Gavelli F, Shi R, Teboul JL, Azzolina D, Monnet X. The end-expiratory occlusion test for detecting preload responsiveness: a systematic review and meta-analysis. Ann Intensive Care. 2020;10:65.PubMedPubMedCentralCrossRef Gavelli F, Shi R, Teboul JL, Azzolina D, Monnet X. The end-expiratory occlusion test for detecting preload responsiveness: a systematic review and meta-analysis. Ann Intensive Care. 2020;10:65.PubMedPubMedCentralCrossRef
44.
Zurück zum Zitat Si X, Song X, Lin Q, Nie Y, Zhang G, Xu H, et al. does end-expiratory occlusion test predict fluid responsiveness in mechanically ventilated patients? A systematic review and meta-analysis. Shock. 2020;54:751–60.PubMedCrossRef Si X, Song X, Lin Q, Nie Y, Zhang G, Xu H, et al. does end-expiratory occlusion test predict fluid responsiveness in mechanically ventilated patients? A systematic review and meta-analysis. Shock. 2020;54:751–60.PubMedCrossRef
45.
Zurück zum Zitat Messina A, Dell’Anna A, Baggiani M, Torrini F, Maresca GM, Bennett V, et al. Functional hemodynamic tests: a systematic review and a metanalysis on the reliability of the end-expiratory occlusion test and of the mini-fluid challenge in predicting fluid responsiveness. Crit Care. 2019;23:264.PubMedPubMedCentralCrossRef Messina A, Dell’Anna A, Baggiani M, Torrini F, Maresca GM, Bennett V, et al. Functional hemodynamic tests: a systematic review and a metanalysis on the reliability of the end-expiratory occlusion test and of the mini-fluid challenge in predicting fluid responsiveness. Crit Care. 2019;23:264.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37:951–6.PubMedCrossRef Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37:951–6.PubMedCrossRef
47.
Zurück zum Zitat de Courson H, Ferrer L, Cane G, Verchere E, Sesay M, Nouette-Gaulain K, et al. Evaluation of least significant changes of pulse contour analysis-derived parameters. Ann Intensive Care. 2019;9:116.PubMedPubMedCentralCrossRef de Courson H, Ferrer L, Cane G, Verchere E, Sesay M, Nouette-Gaulain K, et al. Evaluation of least significant changes of pulse contour analysis-derived parameters. Ann Intensive Care. 2019;9:116.PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Jozwiak M, Mercado P, Teboul JL, Benmalek A, Gimenez J, Depret F, et al. What is the lowest change in cardiac output that transthoracic echocardiography can detect? Crit Care. 2019.CrossRefPubMedPubMedCentral Jozwiak M, Mercado P, Teboul JL, Benmalek A, Gimenez J, Depret F, et al. What is the lowest change in cardiac output that transthoracic echocardiography can detect? Crit Care. 2019.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Jozwiak M, Depret F, Teboul JL, Alphonsine JE, Lai C, Richard C, et al. Predicting fluid responsiveness in critically ill patients by using combined end-expiratory and end-inspiratory occlusions with echocardiography. Crit Care Med. 2017;45:e1131–8.PubMedCrossRef Jozwiak M, Depret F, Teboul JL, Alphonsine JE, Lai C, Richard C, et al. Predicting fluid responsiveness in critically ill patients by using combined end-expiratory and end-inspiratory occlusions with echocardiography. Crit Care Med. 2017;45:e1131–8.PubMedCrossRef
50.
Zurück zum Zitat Depret F, Jozwiak M, Teboul JL, Alphonsine JE, Richard C, Monnet X. Esophageal Doppler can predict fluid responsiveness through end-expiratory and end-inspiratory occlusion tests. Crit Care Med. 2019;47:e96–102.PubMedCrossRef Depret F, Jozwiak M, Teboul JL, Alphonsine JE, Richard C, Monnet X. Esophageal Doppler can predict fluid responsiveness through end-expiratory and end-inspiratory occlusion tests. Crit Care Med. 2019;47:e96–102.PubMedCrossRef
51.
Zurück zum Zitat Kenny JS, Barjaktarevic I, Eibl AM, Parrotta M, Long BF, Eibl JK. A wearable carotid Doppler tracks changes in the descending aorta and stroke volume induced by end-inspiratory and end-expiratory occlusion: a pilot study. Health Sci Rep. 2020;3: e190.PubMedPubMedCentralCrossRef Kenny JS, Barjaktarevic I, Eibl AM, Parrotta M, Long BF, Eibl JK. A wearable carotid Doppler tracks changes in the descending aorta and stroke volume induced by end-inspiratory and end-expiratory occlusion: a pilot study. Health Sci Rep. 2020;3: e190.PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul JL. The changes in pulse pressure variation or stroke volume variation after a “tidal volume challenge” reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med. 2017;45:415–21.PubMedCrossRef Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul JL. The changes in pulse pressure variation or stroke volume variation after a “tidal volume challenge” reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med. 2017;45:415–21.PubMedCrossRef
53.
Zurück zum Zitat Biais M, Larghi M, Henriot J, de Courson H, Sesay M, Nouette-Gaulain K. End-expiratory occlusion test predicts fluid responsiveness in patients with protective ventilation in the operating room. Anesth Analg. 2017;125:1889–95.PubMedCrossRef Biais M, Larghi M, Henriot J, de Courson H, Sesay M, Nouette-Gaulain K. End-expiratory occlusion test predicts fluid responsiveness in patients with protective ventilation in the operating room. Anesth Analg. 2017;125:1889–95.PubMedCrossRef
54.
Zurück zum Zitat Alvarado Sanchez JI, Caicedo Ruiz JD, Diaztagle Fernandez JJ, Amaya Zuniga WF, Ospina-Tascon GA, Cruz Martinez LE. Predictors of fluid responsiveness in critically ill patients mechanically ventilated at low tidal volumes: systematic review and meta-analysis. Ann Intensive Care. 2021;11:28.PubMedPubMedCentralCrossRef Alvarado Sanchez JI, Caicedo Ruiz JD, Diaztagle Fernandez JJ, Amaya Zuniga WF, Ospina-Tascon GA, Cruz Martinez LE. Predictors of fluid responsiveness in critically ill patients mechanically ventilated at low tidal volumes: systematic review and meta-analysis. Ann Intensive Care. 2021;11:28.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Silva S, Jozwiak M, Teboul JL, Persichini R, Richard C, Monnet X. End-expiratory occlusion test predicts preload responsiveness independently of positive end-expiratory pressure during acute respiratory distress syndrome. Crit Care Med. 2013;41:1692–701.PubMedCrossRef Silva S, Jozwiak M, Teboul JL, Persichini R, Richard C, Monnet X. End-expiratory occlusion test predicts preload responsiveness independently of positive end-expiratory pressure during acute respiratory distress syndrome. Crit Care Med. 2013;41:1692–701.PubMedCrossRef
56.
Zurück zum Zitat Yonis H, Bitker L, Aublanc M, Perinel RS, Riad Z, Lissonde F, et al. Change in cardiac output during Trendelenburg maneuver is a reliable predictor of fluid responsiveness in patients with acute respiratory distress syndrome in the prone position under protective ventilation. Crit Care. 2017;21:295.PubMedPubMedCentralCrossRef Yonis H, Bitker L, Aublanc M, Perinel RS, Riad Z, Lissonde F, et al. Change in cardiac output during Trendelenburg maneuver is a reliable predictor of fluid responsiveness in patients with acute respiratory distress syndrome in the prone position under protective ventilation. Crit Care. 2017;21:295.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Messina A, Montagnini C, Cammarota G, Giuliani F, Muratore L, Baggiani M, et al. Assessment of fluid responsiveness in prone neurosurgical patients undergoing protective ventilation: role of dynamic indices, tidal volume challenge, and end-expiratory occlusion test. Anesth Analg. 2020;130:752–61.PubMedCrossRef Messina A, Montagnini C, Cammarota G, Giuliani F, Muratore L, Baggiani M, et al. Assessment of fluid responsiveness in prone neurosurgical patients undergoing protective ventilation: role of dynamic indices, tidal volume challenge, and end-expiratory occlusion test. Anesth Analg. 2020;130:752–61.PubMedCrossRef
58.
Zurück zum Zitat Weil G, Motamed C, Monnet X, Eghiaian A, Le Maho AL. End-expiratory occlusion test to predict fluid responsiveness is not suitable for laparotomic surgery. Anesth Analg. 2020;130:151–8.PubMedCrossRef Weil G, Motamed C, Monnet X, Eghiaian A, Le Maho AL. End-expiratory occlusion test to predict fluid responsiveness is not suitable for laparotomic surgery. Anesth Analg. 2020;130:151–8.PubMedCrossRef
59.
Zurück zum Zitat Teboul JL, Monnet X, Chemla D, Michard F. Arterial pulse pressure variation with mechanical ventilation. Am J Respir Crit Care Med. 2019;199:22–31.PubMedCrossRef Teboul JL, Monnet X, Chemla D, Michard F. Arterial pulse pressure variation with mechanical ventilation. Am J Respir Crit Care Med. 2019;199:22–31.PubMedCrossRef
61.
Zurück zum Zitat Mahjoub Y, Pila C, Friggeri A, Zogheib E, Lobjoie E, Tinturier F, et al. Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med. 2009;37:2570–5.PubMedCrossRef Mahjoub Y, Pila C, Friggeri A, Zogheib E, Lobjoie E, Tinturier F, et al. Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med. 2009;37:2570–5.PubMedCrossRef
62.
Zurück zum Zitat Valenti E, Moller PW, Takala J, Berger D. Collapsibility of caval vessels and right ventricular afterload: decoupling of stroke volume variation from preload during mechanical ventilation. J Appl Physiol. 1985;2021(130):1562–72. Valenti E, Moller PW, Takala J, Berger D. Collapsibility of caval vessels and right ventricular afterload: decoupling of stroke volume variation from preload during mechanical ventilation. J Appl Physiol. 1985;2021(130):1562–72.
63.
Zurück zum Zitat Fot EV, Izotova NN, Smetkin AA, Kuzkov VV, Kirov MY. Dynamic tests to predict fluid responsiveness after off-pump coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 2020;34:926–31.PubMedCrossRef Fot EV, Izotova NN, Smetkin AA, Kuzkov VV, Kirov MY. Dynamic tests to predict fluid responsiveness after off-pump coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 2020;34:926–31.PubMedCrossRef
64.
Zurück zum Zitat Mallat J, Meddour M, Durville E, Lemyze M, Pepy F, Temime J, et al. Decrease in pulse pressure and stroke volume variations after mini-fluid challenge accurately predicts fluid responsiveness. Br J Anaesth. 2015;115:449–56.PubMedCrossRef Mallat J, Meddour M, Durville E, Lemyze M, Pepy F, Temime J, et al. Decrease in pulse pressure and stroke volume variations after mini-fluid challenge accurately predicts fluid responsiveness. Br J Anaesth. 2015;115:449–56.PubMedCrossRef
65.
Zurück zum Zitat Elsayed AI, Selim KA, Zaghla HE, Mowafy HE, Fakher MA. Comparison of changes in PPV using a tidal volume challenge with a passive leg raising test to predict fluid responsiveness in patients ventilated using low tidal volume. Indian J Crit Care Med. 2021;25:685–90.PubMedPubMedCentralCrossRef Elsayed AI, Selim KA, Zaghla HE, Mowafy HE, Fakher MA. Comparison of changes in PPV using a tidal volume challenge with a passive leg raising test to predict fluid responsiveness in patients ventilated using low tidal volume. Indian J Crit Care Med. 2021;25:685–90.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Messina A, Montagnini C, Cammarota G, De Rosa S, Giuliani F, Muratore L, et al. Tidal volume challenge to predict fluid responsiveness in the operating room: a prospective trial on neurosurgical patients undergoing protective ventilation. Eur J Anaesthesiol. 2019;36(8):581–93.CrossRef Messina A, Montagnini C, Cammarota G, De Rosa S, Giuliani F, Muratore L, et al. Tidal volume challenge to predict fluid responsiveness in the operating room: a prospective trial on neurosurgical patients undergoing protective ventilation. Eur J Anaesthesiol. 2019;36(8):581–93.CrossRef
67.
Zurück zum Zitat Messina A, Montagnini C, Cammarota G, De Rosa S, Giuliani F, Muratore L, et al. Tidal volume challenge to predict fluid responsiveness in the operating room: an observational study. Eur J Anaesthesiol. 2019;36:583–91.PubMedCrossRef Messina A, Montagnini C, Cammarota G, De Rosa S, Giuliani F, Muratore L, et al. Tidal volume challenge to predict fluid responsiveness in the operating room: an observational study. Eur J Anaesthesiol. 2019;36:583–91.PubMedCrossRef
68.
Zurück zum Zitat Shi R, Monnet X, Teboul JL. Parameters of fluid responsiveness. Curr Opin Crit Care. 2020;26:319–26.PubMedCrossRef Shi R, Monnet X, Teboul JL. Parameters of fluid responsiveness. Curr Opin Crit Care. 2020;26:319–26.PubMedCrossRef
69.
Zurück zum Zitat Zhang H, Zhang Q, Chen X, Wang X, Liu D, Chinese Critical Ultrasound Study G. Respiratory variations of inferior vena cava fail to predict fluid responsiveness in mechanically ventilated patients with isolated left ventricular dysfunction. Ann Intensive Care. 2019;9:113.PubMedPubMedCentralCrossRef Zhang H, Zhang Q, Chen X, Wang X, Liu D, Chinese Critical Ultrasound Study G. Respiratory variations of inferior vena cava fail to predict fluid responsiveness in mechanically ventilated patients with isolated left ventricular dysfunction. Ann Intensive Care. 2019;9:113.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Das SK, Choupoo NS, Pradhan D, Saikia P, Monnet X. Diagnostic accuracy of inferior vena caval respiratory variation in detecting fluid unresponsiveness: a systematic review and meta-analysis. Eur J Anaesthesiol. 2018;35:831–9.PubMedCrossRef Das SK, Choupoo NS, Pradhan D, Saikia P, Monnet X. Diagnostic accuracy of inferior vena caval respiratory variation in detecting fluid unresponsiveness: a systematic review and meta-analysis. Eur J Anaesthesiol. 2018;35:831–9.PubMedCrossRef
71.
Zurück zum Zitat Huang H, Shen Q, Liu Y, Xu H, Fang Y. Value of variation index of inferior vena cava diameter in predicting fluid responsiveness in patients with circulatory shock receiving mechanical ventilation: a systematic review and meta-analysis. Crit Care. 2018;22:204.PubMedPubMedCentralCrossRef Huang H, Shen Q, Liu Y, Xu H, Fang Y. Value of variation index of inferior vena cava diameter in predicting fluid responsiveness in patients with circulatory shock receiving mechanical ventilation: a systematic review and meta-analysis. Crit Care. 2018;22:204.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Vignon P, Repesse X, Begot E, Leger J, Jacob C, Bouferrache K, et al. Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients. Am J Respir Crit Care Med. 2017;195:1022–32.PubMedCrossRef Vignon P, Repesse X, Begot E, Leger J, Jacob C, Bouferrache K, et al. Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients. Am J Respir Crit Care Med. 2017;195:1022–32.PubMedCrossRef
73.
Zurück zum Zitat Magder S, Georgiadis G, Cheong T. Respiratory variations in right atrial pressure predict the response to fluid challenge. J Crit Care. 1992;1992:76–85.CrossRef Magder S, Georgiadis G, Cheong T. Respiratory variations in right atrial pressure predict the response to fluid challenge. J Crit Care. 1992;1992:76–85.CrossRef
74.
Zurück zum Zitat Caplan M, Durand A, Bortolotti P, Colling D, Goutay J, Duburcq T, et al. Measurement site of inferior vena cava diameter affects the accuracy with which fluid responsiveness can be predicted in spontaneously breathing patients: a post hoc analysis of two prospective cohorts. Ann Intensive Care. 2020;10:168.PubMedPubMedCentralCrossRef Caplan M, Durand A, Bortolotti P, Colling D, Goutay J, Duburcq T, et al. Measurement site of inferior vena cava diameter affects the accuracy with which fluid responsiveness can be predicted in spontaneously breathing patients: a post hoc analysis of two prospective cohorts. Ann Intensive Care. 2020;10:168.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Caplan M, Howsam M, Favory R, Preau S. Predicting fluid responsiveness in non-intubated COVID-19 patients: two methods are better than one. Ann Intensive Care. 2021;11:34.PubMedPubMedCentralCrossRef Caplan M, Howsam M, Favory R, Preau S. Predicting fluid responsiveness in non-intubated COVID-19 patients: two methods are better than one. Ann Intensive Care. 2021;11:34.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Preau S, Bortolotti P, Colling D, Dewavrin F, Colas V, Voisin B, et al. Diagnostic accuracy of the inferior vena cava collapsibility to predict fluid responsiveness in spontaneously breathing patients with sepsis and acute circulatory failure. Crit Care Med. 2017;45:e290–7.PubMedCrossRef Preau S, Bortolotti P, Colling D, Dewavrin F, Colas V, Voisin B, et al. Diagnostic accuracy of the inferior vena cava collapsibility to predict fluid responsiveness in spontaneously breathing patients with sepsis and acute circulatory failure. Crit Care Med. 2017;45:e290–7.PubMedCrossRef
78.
Zurück zum Zitat Hofkens PJ, Verrijcken A, Merveille K, Neirynck S, Van Regenmortel N, De Laet I, et al. Common pitfalls and tips and tricks to get the most out of your transpulmonary thermodilution device: results of a survey and state-of-the-art review. Anaesthesiol Intensive Ther. 2015;47:89–116.PubMedCrossRef Hofkens PJ, Verrijcken A, Merveille K, Neirynck S, Van Regenmortel N, De Laet I, et al. Common pitfalls and tips and tricks to get the most out of your transpulmonary thermodilution device: results of a survey and state-of-the-art review. Anaesthesiol Intensive Ther. 2015;47:89–116.PubMedCrossRef
80.
Zurück zum Zitat Muller L, Toumi M, Bousquet PJ, Riu-Poulenc B, Louart G, Candela D, et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011;115:541–7.PubMedCrossRef Muller L, Toumi M, Bousquet PJ, Riu-Poulenc B, Louart G, Candela D, et al. An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology. 2011;115:541–7.PubMedCrossRef
81.
Zurück zum Zitat Messina A, Lionetti G, Foti L, Bellotti E, Marcomini N, Cammarota G, et al. Mini fluid chAllenge aNd End-expiratory occlusion test to assess flUid responsiVEness in the opeRating room (MANEUVER study): a multicentre cohort study. Eur J Anaesthesiol. 2021;38:422–31.PubMedCrossRef Messina A, Lionetti G, Foti L, Bellotti E, Marcomini N, Cammarota G, et al. Mini fluid chAllenge aNd End-expiratory occlusion test to assess flUid responsiVEness in the opeRating room (MANEUVER study): a multicentre cohort study. Eur J Anaesthesiol. 2021;38:422–31.PubMedCrossRef
82.
Zurück zum Zitat Pierrakos C, Velissaris D, Scolletta S, Heenen S, De Backer D, Vincent JL. Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock? Intensive Care Med. 2012;38:422–8.PubMedCrossRef Pierrakos C, Velissaris D, Scolletta S, Heenen S, De Backer D, Vincent JL. Can changes in arterial pressure be used to detect changes in cardiac index during fluid challenge in patients with septic shock? Intensive Care Med. 2012;38:422–8.PubMedCrossRef
83.
Zurück zum Zitat Biais M, de Courson H, Lanchon R, Pereira B, Bardonneau G, Griton M, et al. Mini-fluid challenge of 100 ml of crystalloid predicts fluid responsiveness in the operating room. Anesthesiology. 2017;127:450–6.PubMedCrossRef Biais M, de Courson H, Lanchon R, Pereira B, Bardonneau G, Griton M, et al. Mini-fluid challenge of 100 ml of crystalloid predicts fluid responsiveness in the operating room. Anesthesiology. 2017;127:450–6.PubMedCrossRef
84.
Zurück zum Zitat Vistisen ST, Scheeren TWL. Challenge of the mini-fluid challenge: filling twice without creating a self-fulfilling prophecy design. Anesthesiology. 2018;128:1043–4.PubMedCrossRef Vistisen ST, Scheeren TWL. Challenge of the mini-fluid challenge: filling twice without creating a self-fulfilling prophecy design. Anesthesiology. 2018;128:1043–4.PubMedCrossRef
85.
Zurück zum Zitat Enevoldsen J, Scheeren TWL, Berg JM, Vistisen ST. Existing fluid responsiveness studies using the mini-fluid challenge may be misleading: methodological considerations and simulations. Acta Anaesthesiol Scand. 2021;66(1):17–24.PubMedCrossRef Enevoldsen J, Scheeren TWL, Berg JM, Vistisen ST. Existing fluid responsiveness studies using the mini-fluid challenge may be misleading: methodological considerations and simulations. Acta Anaesthesiol Scand. 2021;66(1):17–24.PubMedCrossRef
86.
Zurück zum Zitat Biais M, Lanchon R, Sesay M, Le Gall L, Pereira B, Futier E, et al. Changes in stroke volume induced by lung recruitment maneuver predict fluid responsiveness in mechanically ventilated patients in the operating room. Anesthesiology. 2017;126:260–7.PubMedCrossRef Biais M, Lanchon R, Sesay M, Le Gall L, Pereira B, Futier E, et al. Changes in stroke volume induced by lung recruitment maneuver predict fluid responsiveness in mechanically ventilated patients in the operating room. Anesthesiology. 2017;126:260–7.PubMedCrossRef
87.
Zurück zum Zitat Kimura A, Suehiro K, Juri T, Fujimoto Y, Yoshida H, Tanaka K, et al. Hemodynamic changes via the lung recruitment maneuver can predict fluid responsiveness in stroke volume and arterial pressure during one-lung ventilation. Anesth Analg. 2021;133:44–52.PubMedCrossRef Kimura A, Suehiro K, Juri T, Fujimoto Y, Yoshida H, Tanaka K, et al. Hemodynamic changes via the lung recruitment maneuver can predict fluid responsiveness in stroke volume and arterial pressure during one-lung ventilation. Anesth Analg. 2021;133:44–52.PubMedCrossRef
88.
Zurück zum Zitat De Broca B, Garnier J, Fischer MO, Archange T, Marc J, Abou-Arab O, et al. Stroke volume changes induced by a recruitment maneuver predict fluid responsiveness in patients with protective ventilation in the operating theater. Medicine (Baltimore). 2016;95: e4259.CrossRef De Broca B, Garnier J, Fischer MO, Archange T, Marc J, Abou-Arab O, et al. Stroke volume changes induced by a recruitment maneuver predict fluid responsiveness in patients with protective ventilation in the operating theater. Medicine (Baltimore). 2016;95: e4259.CrossRef
89.
Zurück zum Zitat de Courson H, Michard F, Chavignier C, Verchere E, Nouette-Gaulain K, Biais M. Do changes in perfusion index reflect changes in stroke volume during preload-modifying manoeuvres? J Clin Monit Comput. 2020;34:1193–8.PubMedCrossRef de Courson H, Michard F, Chavignier C, Verchere E, Nouette-Gaulain K, Biais M. Do changes in perfusion index reflect changes in stroke volume during preload-modifying manoeuvres? J Clin Monit Comput. 2020;34:1193–8.PubMedCrossRef
90.
Zurück zum Zitat Messina A, Colombo D, Barra FL, Cammarota G, De Mattei G, Longhini F, et al. Sigh maneuver to enhance assessment of fluid responsiveness during pressure support ventilation. Crit Care. 2019;23:31.PubMedPubMedCentralCrossRef Messina A, Colombo D, Barra FL, Cammarota G, De Mattei G, Longhini F, et al. Sigh maneuver to enhance assessment of fluid responsiveness during pressure support ventilation. Crit Care. 2019;23:31.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Preisman S, Kogan S, Berkenstadt H, Perel A. Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. Br J Anaesth. 2005;95:746–55.PubMedCrossRef Preisman S, Kogan S, Berkenstadt H, Perel A. Predicting fluid responsiveness in patients undergoing cardiac surgery: functional haemodynamic parameters including the Respiratory Systolic Variation Test and static preload indicators. Br J Anaesth. 2005;95:746–55.PubMedCrossRef
92.
Zurück zum Zitat Luo JC, Su Y, Dong LL, Hou JY, Li X, Zhang Y, et al. Trendelenburg maneuver predicts fluid responsiveness in patients on veno-arterial extracorporeal membrane oxygenation. Ann Intensive Care. 2021;11:16.PubMedPubMedCentralCrossRef Luo JC, Su Y, Dong LL, Hou JY, Li X, Zhang Y, et al. Trendelenburg maneuver predicts fluid responsiveness in patients on veno-arterial extracorporeal membrane oxygenation. Ann Intensive Care. 2021;11:16.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Ma GG, Xu LY, Luo JC, Hou JY, Hao GW, Su Y, et al. Change in left ventricular velocity time integral during Trendelenburg maneuver predicts fluid responsiveness in cardiac surgical patients in the operating room. Quant Imaging Med Surg. 2021;11:3133–45.PubMedPubMedCentralCrossRef Ma GG, Xu LY, Luo JC, Hou JY, Hao GW, Su Y, et al. Change in left ventricular velocity time integral during Trendelenburg maneuver predicts fluid responsiveness in cardiac surgical patients in the operating room. Quant Imaging Med Surg. 2021;11:3133–45.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Adda I, Lai C, Teboul JL, Guerin L, Gavelli F, Monnet X. Norepinephrine potentiates the efficacy of volume expansion on mean systemic pressure in septic shock. Crit Care. 2021;25:302.PubMedPubMedCentralCrossRef Adda I, Lai C, Teboul JL, Guerin L, Gavelli F, Monnet X. Norepinephrine potentiates the efficacy of volume expansion on mean systemic pressure in septic shock. Crit Care. 2021;25:302.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Persichini R, Silva S, Teboul JL, Jozwiak M, Chemla D, Richard C, et al. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit Care Med. 2012;40:3146–53.PubMedCrossRef Persichini R, Silva S, Teboul JL, Jozwiak M, Chemla D, Richard C, et al. Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit Care Med. 2012;40:3146–53.PubMedCrossRef
97.
Zurück zum Zitat Dres M, Teboul JL, Anguel N, Guerin L, Richard C, Monnet X. Passive leg raising performed before a spontaneous breathing trial predicts weaning-induced cardiac dysfunction. Intensive Care Med. 2015;41:487–94.PubMedCrossRef Dres M, Teboul JL, Anguel N, Guerin L, Richard C, Monnet X. Passive leg raising performed before a spontaneous breathing trial predicts weaning-induced cardiac dysfunction. Intensive Care Med. 2015;41:487–94.PubMedCrossRef
98.
Zurück zum Zitat Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41:1412–20.PubMedCrossRef Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41:1412–20.PubMedCrossRef
99.
Zurück zum Zitat Bednarczyk JM, Fridfinnson JA, Kumar A, Blanchard L, Rabbani R, Bell D, et al. Incorporating dynamic assessment of fluid responsiveness into goal-directed therapy: a systematic review and meta-analysis. Crit Care Med. 2017;45:1538–45.PubMedPubMedCentralCrossRef Bednarczyk JM, Fridfinnson JA, Kumar A, Blanchard L, Rabbani R, Bell D, et al. Incorporating dynamic assessment of fluid responsiveness into goal-directed therapy: a systematic review and meta-analysis. Crit Care Med. 2017;45:1538–45.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Benes J, Giglio M, Brienza N, Michard F. The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Crit Care. 2014;18:584.PubMedPubMedCentralCrossRef Benes J, Giglio M, Brienza N, Michard F. The effects of goal-directed fluid therapy based on dynamic parameters on post-surgical outcome: a meta-analysis of randomized controlled trials. Crit Care. 2014;18:584.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Dave C, Shen J, Chaudhuri D, Herritt B, Fernando SM, Reardon PM, et al. Dynamic assessment of fluid responsiveness in surgical ICU patients through stroke volume variation is associated with decreased length of stay and costs: a systematic review and meta-analysis. J Intensive Care Med. 2020;35:14–23.PubMedCrossRef Dave C, Shen J, Chaudhuri D, Herritt B, Fernando SM, Reardon PM, et al. Dynamic assessment of fluid responsiveness in surgical ICU patients through stroke volume variation is associated with decreased length of stay and costs: a systematic review and meta-analysis. J Intensive Care Med. 2020;35:14–23.PubMedCrossRef
102.
Zurück zum Zitat Fellahi JL, Futier E, Vaisse C, Collange O, Huet O, Loriau J, et al. Perioperative hemodynamic optimization: from guidelines to implementation-an experts’ opinion paper. Ann Intensive Care. 2021;11:58.PubMedPubMedCentralCrossRef Fellahi JL, Futier E, Vaisse C, Collange O, Huet O, Loriau J, et al. Perioperative hemodynamic optimization: from guidelines to implementation-an experts’ opinion paper. Ann Intensive Care. 2021;11:58.PubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Messina A, Robba C, Calabro L, Zambelli D, Iannuzzi F, Molinari E, et al. Association between perioperative fluid administration and postoperative outcomes: a 20-year systematic review and a meta-analysis of randomized goal-directed trials in major visceral/noncardiac surgery. Crit Care. 2021;25:43.PubMedPubMedCentralCrossRef Messina A, Robba C, Calabro L, Zambelli D, Iannuzzi F, Molinari E, et al. Association between perioperative fluid administration and postoperative outcomes: a 20-year systematic review and a meta-analysis of randomized goal-directed trials in major visceral/noncardiac surgery. Crit Care. 2021;25:43.PubMedPubMedCentralCrossRef
104.
Zurück zum Zitat Douglas IS, Alapat PM, Corl KA, Exline MC, Forni LG, Holder AL, et al. Fluid response evaluation in sepsis hypotension and shock: a randomized clinical trial. Chest. 2020;158:1431–45.PubMedCrossRef Douglas IS, Alapat PM, Corl KA, Exline MC, Forni LG, Holder AL, et al. Fluid response evaluation in sepsis hypotension and shock: a randomized clinical trial. Chest. 2020;158:1431–45.PubMedCrossRef
105.
Zurück zum Zitat Chen C, Kollef MH. Targeted fluid minimization following initial resuscitation in septic shock: a pilot study. Chest. 2015;148:1462–9.PubMedCrossRef Chen C, Kollef MH. Targeted fluid minimization following initial resuscitation in septic shock: a pilot study. Chest. 2015;148:1462–9.PubMedCrossRef
106.
Zurück zum Zitat Richard JC, Bayle F, Bourdin G, Leray V, Debord S, Delannoy B, et al. Preload dependence indices to titrate volume expansion during septic shock: a randomized controlled trial. Crit Care. 2015;19:5.PubMedPubMedCentralCrossRef Richard JC, Bayle F, Bourdin G, Leray V, Debord S, Delannoy B, et al. Preload dependence indices to titrate volume expansion during septic shock: a randomized controlled trial. Crit Care. 2015;19:5.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Ehrman RR, Gallien JZ, Smith RK, Akers KG, Malik AN, Harrison NE, et al. Resuscitation guided by volume responsiveness does not reduce mortality in sepsis: a meta-analysis. Crit Care Explor. 2019;1: e0015.PubMedPubMedCentralCrossRef Ehrman RR, Gallien JZ, Smith RK, Akers KG, Malik AN, Harrison NE, et al. Resuscitation guided by volume responsiveness does not reduce mortality in sepsis: a meta-analysis. Crit Care Explor. 2019;1: e0015.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Dubin A, Loudet C, Kanoore EV, S., Osatnik J., Rios F., Vasquez D., et al. Characteristics of resuscitation, and association between use of dynamic tests of fluid responsiveness and outcomes in septic patients: results of a multicenter prospective cohort study in Argentina. Ann Intensive Care. 2020;10:40.PubMedPubMedCentralCrossRef Dubin A, Loudet C, Kanoore EV, S., Osatnik J., Rios F., Vasquez D., et al. Characteristics of resuscitation, and association between use of dynamic tests of fluid responsiveness and outcomes in septic patients: results of a multicenter prospective cohort study in Argentina. Ann Intensive Care. 2020;10:40.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Vincent JL, Sakr Y. Clinical trial design for unmet clinical needs: a spotlight on sepsis. Expert Rev Clin Pharmacol. 2019;12:893–900.PubMedCrossRef Vincent JL, Sakr Y. Clinical trial design for unmet clinical needs: a spotlight on sepsis. Expert Rev Clin Pharmacol. 2019;12:893–900.PubMedCrossRef
111.
Zurück zum Zitat Cecconi M, Arulkumaran N, Kilic J, Ebm C, Rhodes A. Update on hemodynamic monitoring and management in septic patients. Minerva Anestesiol. 2014;80:701–11.PubMed Cecconi M, Arulkumaran N, Kilic J, Ebm C, Rhodes A. Update on hemodynamic monitoring and management in septic patients. Minerva Anestesiol. 2014;80:701–11.PubMed
112.
Zurück zum Zitat Vincent JL, Singer M, Einav S, Moreno R, Wendon J, Teboul JL, et al. Equilibrating SSC guidelines with individualized care. Crit Care. 2021;25:397.PubMedPubMedCentralCrossRef Vincent JL, Singer M, Einav S, Moreno R, Wendon J, Teboul JL, et al. Equilibrating SSC guidelines with individualized care. Crit Care. 2021;25:397.PubMedPubMedCentralCrossRef
Metadaten
Titel
Prediction of fluid responsiveness. What’s new?
verfasst von
Xavier Monnet
Rui Shi
Jean-Louis Teboul
Publikationsdatum
01.12.2022
Verlag
Springer International Publishing
Erschienen in
Annals of Intensive Care / Ausgabe 1/2022
Elektronische ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-022-01022-8

Weitere Artikel der Ausgabe 1/2022

Annals of Intensive Care 1/2022 Zur Ausgabe

Mehr Frauen im OP – weniger postoperative Komplikationen

21.05.2024 Allgemeine Chirurgie Nachrichten

Ein Frauenanteil von mindestens einem Drittel im ärztlichen Op.-Team war in einer großen retrospektiven Studie aus Kanada mit einer signifikanten Reduktion der postoperativen Morbidität assoziiert.

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

Delir bei kritisch Kranken – Antipsychotika versus Placebo

16.05.2024 Delir Nachrichten

Um die Langzeitfolgen eines Delirs bei kritisch Kranken zu mildern, wird vielerorts auf eine Akuttherapie mit Antipsychotika gesetzt. Eine US-amerikanische Forschungsgruppe äußert jetzt erhebliche Vorbehalte gegen dieses Vorgehen. Denn es gibt neue Daten zum Langzeiteffekt von Haloperidol bzw. Ziprasidon versus Placebo.

Klinikreform soll zehntausende Menschenleben retten

15.05.2024 Klinik aktuell Nachrichten

Gesundheitsminister Lauterbach hat die vom Bundeskabinett beschlossene Klinikreform verteidigt. Kritik an den Plänen kommt vom Marburger Bund. Und in den Ländern wird über den Gang zum Vermittlungsausschuss spekuliert.

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.