Skip to main content
Erschienen in: Nutrition Journal 1/2011

Open Access 01.12.2011 | Research

Macronutrients, vitamins and minerals intake and risk of esophageal squamous cell carcinoma: a case-control study in Iran

verfasst von: Mahsa Jessri, Bahram Rashidkhani, Bahareh Hajizadeh, Maryam Jessri, Carolyn Gotay

Erschienen in: Nutrition Journal | Ausgabe 1/2011

Abstract

Background

Although Iran is a high-risk region for esophageal squamous cell carcinoma (ESCC), dietary factors that may contribute to this high incidence have not been thoroughly studied. The aim of this study was to evaluate the effect of macronutrients, vitamins and minerals on the risk of ESCC.

Methods

In this hospital-based case-control study, 47 cases with incident ESCC and 96 controls were interviewed and usual dietary intakes were collected using a validated food frequency questionnaire. Data were modeled through unconditional multiple logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI), controlling for age, sex, gastrointestinal reflux, body mass index, smoking history (status, intensity and duration), physical activity, and education.

Results

ESCC cases consumed significantly more hot foods and beverages and fried and barbecued meals, compared to the controls (p < 0.05). After adjusting for potential confounders, the risk of ESCC increased significantly in the highest tertiles of saturated fat [OR:2.88,95%CI:1.15-3.08], cholesterol [OR:1.53, 95%CI: 1.41-4.13], discretionary calorie [OR:1.51, 95%CI: 1.06-3.84], sodium [OR:1.49,95%CI:1.12-2.89] and total fat intakes [OR:1.48, 95%CI:1.09-3.04]. In contrast, being in the highest tertile of carbohydrate, dietary fiber and (n-3) fatty acid intake reduced the ESCC risk by 78%, 71% and 68%, respectively. The most cancer-protective effect was observed for the combination of high folate and vitamin E intakes (OR: 0.02, 95%CI: 0.00-0.87; p < 0.001). Controls consumed 623.5 times higher selenium, 5.48 times as much β-carotene and 1.98 times as much α-tocopherol as the amount ESCC cases consumed.

Conclusion

This study suggests that high intake of nutrients primarily found in plant-based foods is associated with a reduced esophageal cancer risk. Some nutrients such as folate, vitamin E and selenium might play major roles in the etiology of ESCC and their status may eventually be used as an epidemiological marker for esophageal cancer in Iran, and perhaps other high-risk regions.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1475-2891-10-137) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

M.J contributed to the conception and design of this study, data analysis, interpretation and drafting of the manuscript. B.R assisted in conception, design, data acquisition, analysis and drafting of manuscript. B.H collected the data and participated in designing the study. M.J. critically reviewed and helped to draft the manuscript. C.G provided methodological feedback and gave the final approval to the manuscript to be published. All authors have read and approved the final manuscript.

Background

Esophageal squamous cell carcinoma (ESCC) is the sixth most common cancer in the world and the fourth most common in the developing countries [1, 2] with a remarkable variation in incidence in different regions of the world [13]. The latest epidemiologic report indicated the highest rate of ESCC to be in Iran, followed by other countries located on the "esophageal cancer belt" such as China, South Africa and France [2, 4]. Both histologic types of esophageal malignancy (adenocarcinoma and squamous cell carcinoma) are highly lethal with five-year survival rates of less than 10% [5]. The incidence rate of esophageal cancer (EC) is 5-10 per 100,000 in North America and Europe, and more than 100 per 100,000 in China and Iran [3, 6]. Although the incidence of EC is higher in males in most parts of the world [7], in very high incidence areas, such as Iran and China, the male to female ratio is close to one [7] and smoking and alcohol are not important risk factors as in western countries [818].
The alarmingly high incidence of ESCC and its equal sex distribution in Iran highlights the likelihood of a very strong environmental risk factor as the main culprit [19]. Gross nutritional deficiencies and unbalanced diets have long been suspected to play roles in ESCC risk, particularly in high-risk regions of the world where tobacco smoking and alcohol consumption are not very common [7, 20]. Several studies have evaluated the effect of micronutrients, such as beta-carotene, folate, vitamin C and vitamin E on ESCC risk [2130] and some have proved an inverse association [3133]. In addition, dietary fat [3335], butter, eggs [28], cholesterol [36] and starchy foods [28, 37] have been directly related to the esophageal cancer risk, while dietary fiber is suggested to decrease the risk [33, 34, 38]. Data regarding the role of protein intake in ESCC etiology are conflicting [28, 36, 39].
While previous studies have mostly focused on food items in relation to ESCC risk, studying macro- and micronutrients could offer advantages mainly through providing better understanding of underlying mechanisms of disease [40]. According to Willet, when an association with overall intake of a nutrient is observed, the association with the etiology of a particular cancer type is strengthened, and hence by conducting analyses at the level of nutrients, maximal information on the cancer etiology will be obtained [41]. Previous studies in Iran have shown a widespread deficient intake of several nutrients such as riboflavin, vitamin A and vitamin C [4244]; however, the impact of a wide range of macro- and micronutrient residual intakes in the etiology of ESCC has not been examined in this high-risk population. The aim of the present study was therefore, to evaluate the effect of major macronutrients, vitamins and minerals intakes on the risk of ESCC in a case-control study in Iran, and to compare the nutritional adequacy of cases and controls.

Methods

Population and sampling

This hospital-based case-control study was conducted in Kurdistan, a high-risk province of Iran. Cases were patients aged 40-75 years, who visited major general hospitals and had incident histologically-confirmed ESCC. Cases did not have history of carcinoma of other sites and were interviewed within 6 months after their ESCC was diagnosed. Controls were chosen from individuals admitted to the same hospitals as the cases for a wide spectrum of acute non-neoplastic diseases including traumas (25.9%, mostly fractures and sprains), surgical conditions (20.1%, mostly abdominal such as acute appendicitis and kidney stones), non-traumatic orthopedic conditions (4.2%, mostly disk disorders and back pain) and miscellaneous diseases (49.8%, including acute eye, nose, skin and throat disorders). Cases and controls were frequency-matched according to the sex and age (5-year groups).

Measurements

Generally, 50 patients with ESCC and 100 hospital controls were interviewed face-to-face by professionally-trained interviewers using structured pre-tested questionnaires which evaluated socio-demographic characteristics (age, sex, education, monthly family income, and place of residence), smoking history (status, duration and intensity), eating habits (food and beverage temperature, cooking method), medical history, medication use (specifically aspirin and non-aspirin non-steroidal anti-inflammatory drugs (NSAIDs)), gastroesophageal reflux disease (GERD) symptoms (heartburn and acid regurgitation) and familial cancer history [45]. Questions on opium and alcohol consumption were not answered by our participants due to their cultural barriers and religious beliefs, and were hence excluded from the analyses. No proxy interviews were required.
Weight was measured with subjects clothed minimally, standing on digital scales (Soehne, Berlin, Germany) without shoes and was recorded to the nearest 100 grams. Height was measured using a non-stretch tape meter fixed to a wall with subjects standing without shoes and was recorded to the nearest 0.5 cm. Body mass index (BMI) was then calculated by dividing weight in kilograms by square of height in meters. Physical activity was measured using a validated questionnaire comprising of different metabolic equivalent (MET) categories [46], and it was then expressed as MET-hrs/day to estimate the physical activity level of participants [47, 48].
Two patients were excluded from the analyses since their reported energy intakes were below or above 3 standard deviations from the mean, indicating errors in reporting dietary intakes [49]. We further excluded 5 patients due to missing information or due to poor response to dietary questions. Finally data analyses were conducted on 47 ESCC cases and 96 controls for whom the association of dietary patterns and food group intakes with ESCC risk had been documented previously [45, 50].

Dietary intake assessment

A validated semi-quantitative food frequency questionnaire (FFQ) was used by trained dietitians in face-to-face interviews to evaluate the usual dietary intakes of participants during the previous year [45, 50]. Habitual dietary intakes of the controls 1 year before interview and the cases one year before diagnosis of ESCC were evaluated. The FFQ consisted of 125 Iranian food items and has previously shown to be a valid and reproducible tool for assessing food and nutrient intakes in Iranian adults [51, 52]. Previous studies have revealed good correlations between dietary intakes assessed by this FFQ and those obtained from 24-h dietary recalls [52]. A comparison of crude, energy-adjusted and deattenuated correlation coefficients for overall nutrient intakes between 24-h dietary recalls and this FFQ have been 0.44 and 0.37 in ≤35 and >35 year-olds, respectively, and for individual nutrients it ranged from 0.24 to 0.71 in men and from 0.11 to 0.60 in women. On the other hand, the mean reliability coefficients, ranged from 0.48 in ≤35 year-olds to 0.65 in >35 year-olds. This FFQ produced exact agreement rates ranging from 39.6% to 68.3% in men and from 39.6% to 59.1% in women, respectively. The validity coefficients, with the sample correlation between the questionnaires and biological markers as the lower limit and the estimates from the triad method as the upper limit were 0.21-0.56 for protein and 0.37-0.61 for energy [52].
Portion sizes of consumed foods were specified according to the US Department of Agriculture (USDA) standard portion sizes (e.g. apple, 1 medium; bread, 1 slice; dairy, 1 cup) and were then converted to grams. When using the USDA portion sizes was impossible, household measures (e.g. beans, 1 tablespoon; chicken meat, 1 leg or wing; rice, 1 large or small plate) were used alternatively [53]. Patients were asked to report their consumption frequency on a daily, weekly or monthly basis, and data were then converted to the mean daily intakes assuming one month equals 30.5 days.
Average daily intake of each food item was calculated by multiplying the consumption frequency of each food by its standard item-specific portion size from the exchange list; these scores were then summed to estimate nutrient intakes. The estimates of nutrient intakes in the present paper are derived from the dietary sources alone. Since Iranian food composition table (FCT) is incomplete and provides data only on a few nutrients [54], analyses of energy and nutrients were carried out using the USDA FCT [55]. However, for some dairy products (such as Kashk), vetch, wild plum, mint, sweet canned cherry and sour cherry that are not listed in the USDA FCT, Iranian FCT was used alternatively [54]. For analyzing the energy and nutrient contents of mixed food items (e.g. pizza), usual restaurant recipes were used.

Statistical analysis

For ordinal variables, chi-square test or Fisher's exact test and for continuous variables, Kruskal-Wallis test or t-student test were used to compare case and control groups. Macro- and micronutrient intakes were adjusted for total energy consumption using the residual method as suggested by Willet and Stampfer [56]. Energy-adjusted nutrients were then categorized into tertiles, due to the appropriateness of tertiles over quartiles for smaller sample sizes in case-control studies [57]. Tertile 1 served as the reference category for all regression analyses. Unconditional multiple logistic regression was used to estimate the odds ratio (OR) and 95% confidence intervals (CI) for the risk of ESCC tumor in the highest nutrient intake category compared to the lowest.
For comparison purposes, we calculated a base regression model and a fully-adjusted model for each analysis. The base model was adjusted for the matching variables, i.e. age (years) and sex (male/female), which are controlled for automatically by design. The fully-adjusted model, on the other hand, included the following covariates: age (years), sex (male/female), GERD symptoms (yes/no), BMI (≤24.9, >24.9 kg/m2kg/m2), smoking status (never/former/current), smoking intensity and duration (<20, ≥20 pack-years), physical activity (MET) (light/heavy), and education level (illiterate, literate).
Potential confounders were included in the multivariate models based on the review of literature, comparison of cases and controls and whether they modified the risk estimates 10% or more. These factors were selected since they are potentially related to both the disease outcome (ESCC risk) and also the risk factor (nutrient intakes). Other potential confounders such as monthly family income, place of residence (rural/urban), familial cancer history, cooking method and food and beverage temperature did not alter the main effect estimates for dietary factors and therefore were not included in the final models.
As a basis for trend testing, scores were constructed from the categorized variables as successive integers and were used in further analyses. All statistical tests were carried out using the Statistical Package for Social Sciences, version 16 (SPSS, Inc., Chicago, IL, USA) and a two-tailed P-value of <0.05 was considered statistically significant

Ethical considerations

The present study was approved by all regional ethics committees in Iran and also the "Ethics Committee of the National Nutrition and Food Technology Research Institute", Shahid Beheshti University of Medical Sciences, Tehran, Iran. Written informed consents were taken from each subject prior to the interviews.

Results

Table 1 presents the characteristics of 47 cases and 96 controls by gender categories. By design, age and sex distributions were similar among cases and controls. The majority of participants, particularly women, had no or limited education (p < 0.001).Despite the significant gender differences (p < 0.001), smoking status, duration and intensity did not differ among cases and controls (p > 0.05). Female cases experienced symptoms of GERD significantly more than their control peers (34.5% vs. 5.2%; p < 0.001). Among male participants, 11.1% of ESCC cases were overweight and obese (BMI > 24.9), compared to 47.4% in the control group (p = 0.04). In addition, BMI values and physical activity level of male and females differed significantly, with females being less physically active and more overweight/obese (p = 0.01). Compared to the controls, cases were more likely to consume hot foods and beverages (83.3% vs. 15.8%, in males and 58.6% vs. 15.5%, in females; p < 0.001) and fried/barbecued meals (44.4% vs. 7.9%, in males; and 20.7% vs. 5.2%, in females; p = 0.01).
Table 1
Distribution of cases and controls stratified by sex among selected risk factors in a case-control study of esophageal squamous cell carcinoma in Iran1
Variable
Male
Female
P-value2
 
Cases
Control
Cases
Control
 
Participants, n
18 (32.1)
38 (67.9)
29(33.3)
58(66.7)
 
Age3, year
60.0(54.75-67.00)
60.0 (54.25-67.00)
57.0(50.00-70.50)
58.0 (48.75-72.25)
0.17
   ≤58
8(44.4)
17(44.7)
17(58.6)
32(55.2)
 
   >58
10(55.6)
21(55.3)
12(41.4)
26(44.8)
 
Education, year
     
   Illiterate
14(77.8)
25(65.8)
28(96.6)
55(94.8)
<0.001
   Literate
4(22.2)
13(34.2)
1(3.4)
3(5.2)
 
Monthly family income, US $
     
   <300
15 (83.3)
33 (86.8)
28 (96.6)
53 (91.4)
0.14
   ≥300
3 (16.7)
5(13.2)
1 (3.4)
5 (8.6)
 
Place of residence
     
   Rural
11(61.1)
20(52.6)
22(75.9)
28(48.3)*
0.80
   Urban
7(38.9)
18(47.4)
7(24.1)
30(51.7)*
 
Smoking history
     
   Never smoker
5(27.8)
17(44.7)
23(79.3)
51(87.9)
<0.001
   Ex-smoker, pack year < 10
3(16.7)
3(7.9)
3(10.3)
4(6.9)
 
   Ex-smoker, pack year≥10
1(5.5)
11(28.9)
3(10.3)
1(1.7)
 
   Current smoker, pack year < 20
3(16.7)
4(10.5)
0(0.0)
1(1.7)
 
   Current smoker, pack year ≥20
6(33.3)
3(7.9)
0(0.0)
1(1.7)
 
Having symptoms of GERD4
6(33.3)
6(15.8)
10(34.5)
3(5.2)*
0.31
Familial cancer history
1(5.6)
0(0.0)
3(10.3)
0(0.0)*
0.48
Physical activity
     
   Light
13(72.2)
21(55.3)*
16(75.9)
35(60.4)*
0.001
   Heavy
5(27.8)
17(44.7)*
7(24.1)
23(39.6)*
 
BMI, kg/m 2
19.9(3.1)5
24.8(4.0)*
20.8(3.3)
25.7(4.3)*
0.01
   ≤24.9
16(88.9)
20(52.6)*
24(82.8)
27(46.6)
 
   >24.9
2(11.1)
18(47.4)*
5(17.2)
31(53.4)
 
NSAIDs use
     
   Aspirin
2(11.2)
0(0.0)
1(5.6)
0(0.0)
0.63
   Non-aspirin
3(7.9)
0(0.0)
1(3.4)
0(0.0)
 
Food and beverage temperature
     
   Hot
15(83.3)
6(15.8)*
17(58.6)
9(15.5)*
0.03
   Warm/cold
3(16.7)
32(84.2)*
12(41.4)
49(84.5)*
 
Cooking method
     
   Fried/barbecued
8(44.4)
3(7.9)*
6(20.7)
3(5.2)*
0.14
   Boiled
7(38.9)
21(55.3)*
10(34.5)
49(84.5)*
 
   Both
3(16.7)
14(36.8)*
13(44.8)
6(10.3)*
 
GERD: Gastro-esophageal reflux disease; BMI: Body mass index; NSAIDs: Non-steroidal anti-inflammatory drugs
*Statistically significant between case and control groups (p < 0.05)
1Values are n (%), unless otherwise noted
2P-values were estimated using chi-square statistics, Fishers' exact test or independent t-test for the difference between genders
3Median (interquartile range (IQR))
4Patients who present with the typical GERD symptoms of heartburn and acid regurgitation
5Mean (SD)
The calorie-adjusted mean values for selected macronutrients and relative risk estimates of ESCC by tertiles of macronutrient intake residuals are presented in Table 2 and Additional file 1. Cases consumed significantly more SFA and discretionary calories (energy derived from solid fat and added sugar), compared to the controls (p = 0.006). On the other hand, controls consumed significantly more (n-3) fatty acids, dietary fiber, carbohydrate and vegetable oil than their case peers (p = 0.04).
Table 2
Relationship between energy-adjusted macronutrient intakes and risk of esophageal squamous cell carcinoma in a case-control study in Iran
Macronutrients
Tertiles of Intake1OR (95%CI)
 
Model 12
Model 23
 
Tertile1 5
Tertile2
Tertile3
P-trend 6
Tertile 1 4
Tertile 2
Tertile 3
P-trend 5
Total energy, Kcal Number
1.00 (46)
0.80 (0.24-2.13) (48)
1.11 (0.25-1.98) (49)
0.52
1.00
0.62 (0.03-2.65)
1.23 (0.86-2.14)
0.29
Total fat, g Number
1.00 (46)
1.23 (1.04-2.95) (46)
1.94(1.05-3.28) (51)
0.02
1.00
1.11 (0.80-2.67)
1.48 (1.09-3.04)
0.005
SFA, g Number
1.00 (48)
1.70 (1.21-4.93) (47)
3.52 (1.10-3.89) (48)
0.01
1.00
1.32 (1.20-2.93)
2.88 (1.15-3.08)
0.01
PUFA, g Number
1.00 (47)
2.83 (0.34-3.60) (48)
0.71 (0.13-1.62) (48)
0.98
1.00
1.19 (0.42-2.57)
0.98 (0.31-2.64)
0.14
MUFA, g Number
1.00 (48)
1.39 (0.95 -2.79) (47)
1.39 (0.29-2.16) (48)
0.23
1.00
0.97 (0.15-1.74)
1.19 (0.42-2.75)
0.81
(n-3)fatty acids, g Number
1.00 (48)
0.42 (0.21-0.75) (47)
0.51 (0.08-0.90) (48)
0.01
1.00
0.86 (0.16-0.97)
0.32 (0.07-0.84)
<0.001
Dietary fiber, g Number
1.00 (48)
0.72 (0.31-2.18) (47)
0.46 (0.01-0.88) (48)
<0.001
1.00
0.71 (0.02-2.03)
0.29 (0.13-0.76)
0.02
Carbohydrate, g Number
1.00 (46)
0.70 (0.31-2.93) (46)
0.17 (0.06-0.92) (51)
0.04
1.00
0.79 (0.32-1.56)
0.22 (0.05-0.84)
<0.001
Protein, g Number
1.00 (48)
1.25 (0.59-2.74) (48)
1.61 (1.49-4.13) (47)
<0.02
1.00
1.13 (0.54-1.64)
1.93 (0.60-3.18)
0.52
Cholesterol, mg Number
1.00 (47)
0.92 (0.09-1.39) (49)
3.71(1.49-2.60) (47)
<0.001
1.00
0.68 (0.22-1.73)
1.53 (1.41-4.13)
<0.001
Vegetable Oil, g 6 Number
1.00 (47)
0.59 (0.21-3.58) (47)
0.95 (0.16-2.24) (49)
0.87
1.00
1.25 (0.35-1.93)
1.44 (0.08-2.23)
0.61
Discretionary calorie, % total energy intake 7 Number
1.00 (48)
1.68 (1.07-3.95) (48)
2.33(1.58-2.90) (47)
<0.001
1.00
1.17 (1.02-2.65)
1.51 (1.06-3.84)
0.002
OR: Odds ratio; CI: Confidence interval; SFA: Saturated fatty acid; PUFA: Poly unsaturated fatty acid; MUFA: Mono unsaturated fatty acid
1Nutrient intakes are adjusted for energy intake using the residual method [56]
2Base model; adjusted for age (years) and sex (male/female)
3Fully-adjusted model; adjusted for age (years), sex (male/female), gastroesophageal reflux disease symptoms (yes/no), body mass index (≤24.9, >24.9 kg/m2), smoking status (never/former/current), smoking intensity and duration (<20, ≥20 pack-years), physical activity (MET) (light/heavy), and education level (illiterate, literate)
4Reference category
5The P-value for trend was calculated using the linear regression coefficient for the tertiles of macronutrient intake
6Described as fat from vegetable oil, fish, nuts and seeds sources
7Described as the energy derived from solid fat and added sugar
In the fully-adjusted model, those in the highest tertile of SFA intake had 2.88 times higher ESCC risk (95% CI: 1.15-3.08; p-trend = 0.01), followed by those in the highest intake tertile of cholesterol (OR: 1.53, 95% CI: 1.41-4.13; p-trend < 0.001), discretionary calorie (OR: 1.51, 95% CI: 1.06-3.84; p-trend = 0.002) and total fat intake (OR: 1.48, 95% CI: 1.09-3.04; p- trend = 0.005). On the other hand, being in the highest tertiles of carbohydrate, dietary fiber and (n-3) fatty acid reduced the risk of ESCC by 78%, 71% and 68%, respectively. In the preliminary age- and sex- adjusted analysis (original matching criteria), a positive association also emerged with an increased protein intake, which was not significant in the fully-adjusted model.
The adjusted mean intakes of vitamin A, β-Carotene, vitamin D, vitamin E, α-Tocopherol, thiamin, riboflavin, vitamin B6, folate, vitamin B12, vitamin C, iron, calcium, phosphorus, methionine and selenium were significantly higher among controls compared to ESCC cases (p < 0.05), while average adjusted sodium intake was significantly higher among cases compared to the controls ( p < 0.001) (Additional file 2). Controls consumed 623.5 times as much selenium (p < 0.001), 5.48 times as much β-carotene and 1.98 times as much α-tocopherol as the amount ESCC cases consumed. In the fully-adjusted model, the most protective effects against ESCC risk were associated with higher intakes of folate (OR: 0.08, 95% CI: 0.02-0.90; p-trend <0.001) and vitamin E intakes (OR: 0.11, 95% CI: 0.03-0.74; p-trend < 0.001), closely followed by selenium (OR: 0.15, 95% CI: 0.01-0.76; p-trend < 0.001), vitamin B6 (OR: 0.17, 95%CI: 0.05-0.91, p-trend = 0.003) and riboflavin intakes (OR: 0.22, 95%CI: 0.07-0.86; p-trend = 0.01) (Table 3). Being in the highest tertile of sodium intake residual was associated with 1.49 fold increase in the ESCC risk (p < 0.001). A significant inverse relationship between ESCC risk and higher intakes of α-tocopherol, thiamine and potassium observed in the base model, disappeared when other potential confounders were taken into account.
Table 3
Relationship between energy-adjusted micronutrients intakes and risk of esophageal squamous cell carcinoma in a case-control study in Iran1
Micronutrients
Tertiles of Intake2OR (95%CI)
 
Model 13
 
Model 24
 
 
Tertile1 6
Tertile2
Tertile3
P-trend 7
Tertile 1 5
Tertile 2
Tertile 3
P-trend 6
Vitamin A, RAE Number
1.00 (48)
0.82 (0.19-1.50) (49)
0.93 (0.50-2.86) (46)
0.94
1.00
0.83 (0.09-1.86)
0.72 (0.38-2.12)
0.53
β-carotene, μg Number
1.00 (48)
1.59 (0.32-2.86) (47)
1.29 (0.51-3.65) (48)
0.71
1.00
1.21 (0.13-2.68)
1.07 (0.81-2.13)
0.14
Vitamin D, μg Number
1.00 (48)
1.10 (0.62-1.75) (47)
0.28 (0.17-0.89) (48)
<0.001
1.00
0.84 (0.39-2.74)
0.28 (0.02-0.91)
<0.001
Vitamin E, mg TE Number
1.00 (47)
0.19 (0.03-0.94) (48)
0.07 (0.01-0.63) (48)
<0.001
1.00
0.32 (0.12-0.91)
0.11 (0.03-0.74)
<0.001
α-tocopherol, mg Number
1.00 (47)
0.61 (0.12-0.95) (48)
0.26 (0.09-0.74) (48)
<0.001
1.00
0.86 (0.14-1.17)
0.47 (0.02-1.85)
0.31
Thiamine, mg Number
1.00 (47)
0.57(0.21-2.73) (48)
0.41 (0.05-0.89) (48)
0.04
1.00
0.85 (0.61-1.58)
0.34 (0.06-2.85)
0.97
Riboflavin, mg Number
1.00 (47)
0.90 (0.22-1.85) (48)
0.33 (0.15-0.87) (48)
<0.001
1.00
1.90 (0.17-2.12)
0.22 (0.07-0.86)
0.01
Niacin, mg Number
1.00 (48)
0.37 (0.06-2.10) (47)
0.48 (0.10-1.69) (48)
0.17
1.00
0.86 (0.05-2.63)
0.38 (0.15-1.82)
0.09
Panthothenic acid, mg Number
1.00 (47)
0.55 (0.07-2.16) (48)
0.86 (0.29-1.11) (48)
0.50
1.00
0.86 (0.20-1.18)
0.49 (0.35-2.08)
0.74
Vitamin B6, mg Number
1.00 (47)
0.48 (0.15-0.79) (47)
0.11(0.08-0.93) (49)
<0.001
1.00
0.76 (0.12-2.33)
0.17 (0.05-0.91)
0.003
Folate, μg Number
1.00 (48)
0.26 (0.07-0.90) (47)
0.08 (0.01-0.92) (48)
<0.001
1.00
0.32 (0.01-0.57)
0.08 (0.02-0.90)
<0.001
Vitamin B12, μg Number
1.00 (47)
0.58(0.19-1.83) (49)
1.02 (0.39-2.12) (47)
0.14
1.00
0.87 (0.10-2.61)
1.33 (0.60-3.03)
0.15
Vitamin C, mg Number
1.00 (47)
0.69 (0.13-0.75) (49)
0.39 (0.11-0.84) (48)
0.02
1.00
0.76 (0.09-2.43)
0.37 (0.11-0.93)
0.02
Iron, mg Number
1.00 (47)
0.51 (0.07-0.93) (49)
0.69 (0.17-2.60) (47)
0.66
1.00
0.72 (0.35-1.63)
0.61 (0.22-2.48)
0.13
Calcium, mg Number
1.00 (47)
0.27(0.12-0.87) (49)
0.17 (0.03-0.94) (47)
<0.001
1.00
0.51 (0.17-1.82)
0.49 (0.15-0.87)
0.03
Phosphorous, mg Number
1.00 (48)
1.09 (0.62-3.29) (47)
0.77 (0.01-2.56) (48)
0.62
1.00
1.35 (0.11-2.95)
1.31 (0.36-2.60)
0.92
Potassium, mg Number
1.00 (48)
0.51 (0.07-1.98) (47)
0.24 (0.11-0.78) (48)
0.03
1.00
0.51 (0.18-2.93)
0.23 (0.03-1.76)
0.44
Sodium, mg Number
1.00 (48)
1.13 (0.22-2.07) (47)
1.52 (1.17-3.44) (48)
<0.001
1.00
1.17 (1.05-2.15)
1.49 (1.12-2.89)
<0.001
Zinc, mg Number
1.00 (47)
0.79 (0.16-0.73) (48)
0.49 (0.11-0.85) (48)
0.01
1.00
1.39 (0.58-2.17)
0.73 (0.12-0.98)
0.01
Methionine, g Number
1.00 (47)
0.85 (0.09-2.34) (48)
0.63 (0.09-0.96) (48)
<0.001
1.00
0.79 (0.06-1.98)
0.29 (0.13-0.95)
0.004
Selenium, μg Number
1.00 (47)
0.32 (0.12-0.94) (48)
0.12 (0.04-0.69) (48)
0.03
1.00
0.63 (0.12-0.91)
0.15 (0.01-0.76)
<0.001
OR: Odds ratio; CI: Confidence interval; RAE = Retinol Activity Equivalents; TE= Tocopherol Equivalents
1Only micronutrients from food sources are considered.
2Nutrient intakes are adjusted for energy intake using the residual method [56]
3Base model; adjusted for age (years) and sex (male/female)
4Fully-adjusted model; adjusted for age (years), sex (male/female), gastroesophageal reflux disease symptoms (yes/no), body mass index (≤24.9, >24.9 kg/m2), smoking status (never/former/current), smoking intensity and duration (<20, ≥20 pack-years), physical activity (MET) (light/heavy), and education level (illiterate, literate).
5Reference category
6The P-value for trend was calculated using the linear regression coefficient for the tertiles of micronutrient intake
Table 4 shows the OR (95% CI) for the joint effect of vitamin E and folate intake residuals on ESCC risk. After mutual adjustment for several potential confounders, the combination of high intakes of both chemicals was associated with a strong protective effect against ESCC risk (OR: 0.02, 95% CI: 0.00-0.87; p < 0.001).There was a statistically significant interaction between vitamin E and dietary folate intake when evaluated in the model (p-value for interaction = 0.03).
Table 4
Odds ratios (ORs) and 95% confidence intervals (CI) for joint effect of energy-adjusted vitamin E and folate intake on esophageal squamous cell carcinoma risk in a case-control study in Iran1,2
 
Folate
 
Model 13
Model 24
 
Low
Medium
High
Low
Medium
High
Vitamin E
      
Low Number
1.00 (32)
0.51 (0.19-0.72) (15)
0.44 (0.13-0.90) (4)
1.00
0.48 (0.11-0.75)
0.48 (0.11-0.75)
Medium Number
0.63 (0.09-0.86) (14)
0.08 (0.01-0.47) (23)
0.07 (0.01-0.69) (11)
0.52 (0.09-0.81)
0.05 (0.01-0.39)
0.05 (0.02-0.41)
High Number
0.22 (0.01-0.79) (2)
0.05 (0.00-0.76) (9)
0.01 (0.00-0.79) (33)
0.19 (0.05-0.66)
0.04 (0.01-0.42)
0.02 (0.00-0.87)
1Nutrient intakes are adjusted for energy intake using the residual method [62]
2P for interaction = 0.03
3Base model; adjusted for age (years) and sex (male/female)
4Fully-adjusted model; adjusted for age (years), sex (male/female), gastroesophageal reflux disease symptoms (yes/no), body mass index (≤24.9, >24.9 kg/m2), smoking status (never/former/current), smoking intensity and duration (<20, ≥20 pack-years), physical activity (MET) (light/heavy), and education level (illiterate, literate)

Discussion

Results of the present study suggest that among macronutrients, consuming more carbohydrate, dietary fiber and (n-3) fatty acids and among micronutrients, higher intakes of folate, vitamin E and selenium have the most protective effects against ESCC in a high-risk population in Iran. An increased ESCC risk estimate was observed among those with highest intakes of SFA, cholesterol, discretionary calorie, sodium and total fat. Most importantly, being in the highest tertile of joint folate and vitamin E intake was associated with 98% reduction in the ESCC risk.
This is the first study in a high-risk population to evaluate the impact of a wide range of macronutrients, minerals and vitamins on risk of ESCC. Similar to previous case-control studies, we found a decreased ESCC risk associated with higher intakes of nutrients with plant origin and an increased risk for intake of several nutrients found primarily in animal-based foods [28, 29, 5861]. In addition to the differences in nutritional composition of animal- and plant-based foods that contribute to this effect, heterocyclic amines that are potent mutagens, and animal carcinogens formed during cooking of meats are also responsible [62]. The highest level of mutagenic activity is produced during frying, broiling and barbecuing animal products [59], which could potentially injure the esophageal mucosa [63].
Epidemiological studies have shown a positive association between total fat, cholesterol and SFA intakes with ESCC and esophageal adenocarcinoma risk [33, 39, 57, 6467]. In the present study, more than one-thirds of total energy intake among ESCC cases was derived from dietary fat and those with higher intakes of total fat, SFA, cholesterol and discretionary calories had an increased risk of ESCC. According to the Dietary Guidelines for Americans 2005 [68], 12-20% of total energy intake could be taken from discretionary calories, while in the present study more than 50% of total calories consumed were from discretionary calories, which is of concern since those in higher tertiles of discretionary calorie intake had about 1.5 times higher risk of ESCC. Since all our analyses were adjusted for usual adult BMI, the risk-enhancing effect of high fat diet on ESCC observed in the present study was independent of adiposity, which is a strong risk factor for carcinogenesis. Further effect modification by BMI revealed that although ESCC risk was higher among those with higher BMI values, p for interaction was not significant (data not shown). However, this effect is likely to have been underestimated since ESCC patients tend to decrease their dietary fat intake in an effort to prevent exacerbation of reflux symptoms, and hence our result is likely to have been distorted through underestimation of magnitude of true association for dietary fat. Although some studies have shown an inverse association between EC risk and intakes of added oil and PUFAs [33], we failed to show a significant relationship.
Findings of previous studies have been inconclusive regarding the role of protein intake in esophageal cancer risk with some classic studies suggesting an inverse relationship [28, 69]. We observed a positive association between protein intake and ESCC risk, which is in line with more recent studies [33, 38, 39, 57, 67, 70]; however, this effect was only statistically significant in the age- and sex-adjusted model.
High intake of dietary fiber in the present study decreased ESCC risk by about 70%. Although few studies have questioned the role of dietary fiber in cancer protection [7174], most have proved a strong inverse association between fiber intake and risk of ESCC, esophageal adenocarcinoma and stomach cancer [33, 34, 38, 57, 59, 60, 67, 70, 75, 76]. The role of carbohydrate intake in esophageal cancer risk is not yet clear with some studies showing a negative association [57], but not all [7779]. In the present study, participants with higher carbohydrate intakes had markedly reduced ESCC risk. However, carbohydrate intake was also negatively correlated with fat intakes (correlation coefficient = -0.615) and hence a higher percentage of carbohydrate may just reflect lower intakes of fat and explain its inverse association with ESCC [57]. In addition, higher consumption of carbohydrate could be reflection of more plant-based food intakes, and especially fruit and vegetable; although in the present research, the correlation between carbohydrate and fruits and vegetable intakes was not significant (r = 0.064).
It has been suggested that the cancer-protective effects of fruits and vegetables intake is mediated through their several antioxidants and dietary components, such as folate, vitamin A, β-carotene, vitamin C and dietary fiber [64, 69, 8083]. Previously we showed an inverse association between fruit and vegetable consumption and risk of ESCC in the same population [50], and in the present study, after adjustment for fruit and vegetable intake, the association of dietary folate, vitamin E and selenium with ESCC risk remained significant, suggesting an independent protective role for these nutrients.
Epidemiological evidence regarding the role of folate intake in ESCC risk are scanty [21, 67, 84, 85]. Findings of the present research are in agreement with those of the previous studies showing a strong inverse association between dietary folate intake and risk of ESCC [21, 22, 57, 67, 85]. However, it is likely that we have more clearly observed an inverse relationship between folate intake and ESCC compared to other studies [22], since in Iran there is no mandatory folate fortification and the use of dietary supplements is very uncommon; hence, folate is mainly taken from diet in this population. In populations with mandatory folate fortification and frequent supplement use, most of the population may have sufficient folate intakes to prevent cancer from these sources and little further benefit may be seen for dietary folate intake. On the other hand, the marked cancer-protective effect we observed for high folate intakes could be partly attributed to the comparatively high rates of folate intake deficiency, as more than 90% of cases and 50% of controls in this study had intakes below the Recommended Dietary Allowances (RDA) (data not shown) [86]. Folate is an important cofactor in DNA metabolism and its deficiency has been linked to higher risk of epithelial tumors [22, 23, 25, 70, 87]. Several mechanisms have been proposed to explain the protective effect of folate, which are mainly focused on prevention of hypomethylation and maintenance of the DNA repair system by influencing the nucleotide pool for DNA replication and repair [8890].
Similar to folate, vitamin B2, B6, B12 and methionine have major roles in one-carbon metabolism. Previous studies in Iran have reported inadequate riboflavin intakes among patients with esophageal cancer [44]. This is in line with findings from this research and those of previous studies, which have shown protective effects for this nutrient against the risk of EC [28, 69, 82, 91]. Inadequate vitamin B6 intakes among ESCC cases also, might leads to chromosome breakage [92], defective DNA synthesis and methylation and could increase the ESCC risk [35, 67, 85].
In this study, we failed to observe a significant association between vitamin B12 intake and ESCC risk. However, it has been suggested that the positive relationship between vitamin B12 and EC risk observed in some studies [67], could be explained by the fact that vitamin B12 is derived exclusively from animal sources and hence may be simply a marker for consumption of animal protein and other factors or nutrients in these foods [67]. It has also been documented that individuals living in the high ESCC risk regions have significantly lower vitamin B9 and B12 intakes, compared to those living in the low risk areas [93] and those with vitamin B12 deficiency disorders (e.g. pernicious anemia) are at greater risk of EC [94, 95]. Overall, causal relationship between vitamin B12 intake and ESCC risk is not yet clear and evidence in this regard is lacking. In the present study, high methionine intake was inversely associated with ESCC risk, which might be explained through its involvement in SAM production, which is necessary for retaining folate in body [96]
Higher intakes of vitamin E and vitamin D in this study were associated with about 90% and 70% ESCC risk reduction, respectively. The finding of a strong inverse association between ESCC with vitamin D intake in this study is consistent with some studies [97, 98], although in contrast with others [67]. This contradiction could be explained by the fact that dietary and supplemental vitamin D intakes only comprise a relatively small proportion of the variation in 25-hydroxy vitamin D levels in the body, and sunlight exposure, skin pigmentation, geographic region of residence, season, BMI, and differences in vitamin D receptor expressions (genetic differences) are the major predictors of 25(OH) D levels in the body [99, 100].
Dietary antioxidants (vitamin C, β-carotene and vitamin E) have been shown to decrease the EC risk [27, 28, 33, 38, 39, 65, 82, 98, 101] through several mechanisms such as deactivating excited oxygen molecules and preventing lipid peroxidation. [27, 28, 38, 61, 65]. Dietary antioxidants also play major roles in prevention of damage to the mucosa of the upper aerodigestive tract caused by oxidative stress of smoking and alcohol consumption. In the Linxian China trial, supplementation with a combination of vitamin E, β-carotene, and selenium reduced the incidence of esophageal/gastric cardia cancer by 6% [102]; this is consistent with our findings of a strong inverse association between vitamin E and selenium with the risk of ESCC. Dietary selenium is inversely associated with cell cycle predictors of neoplastic progression and the ESCC risk [103105]. The potential of combined supplementation in the Linxian trial in reducing the EC risk has been mainly attributed to the effect of selenium, which has a highly deficient intake in Chinese population. This is in agreement with results of our study in which none of the cases had adequate selenium intakes, and higher intake of selenium was associated with 85% reduction in ESCC risk.
Vitamin A and β-carotene were not significantly associated with ESCC risk in our population, which is in line with several studies [57, 69, 81, 98, 106] and in contrast with others [107, 108]. Our inability to detect a significant relationship may be due to considering vitamin A intakes from both plant and animal origins together, while it has been suggested that vitamin A of plant origin is associated with decreased ESCC risk, whereas vitamin A of animal origin increases the level of risk [67, 109]. In addition, the protective effect of high carotene intake observed in some of the previous studies could have been mediated through high intakes of plant-based foods, which contain different micronutrients and hence contribute to the general effect [59, 61, 98]. High intake of vitamin C in this study was associated with more than 60% reduction in ESCC risk. Vitamin C, as an important antioxidant and inhibitor of endogenous synthesis of N-nitroso compounds [109111] prevents carcinogenesis of esophageal cells [110]. However, an intervention trial in China failed to show a reduction in esophageal cancer incidence and mortality in individuals taking 120 mg/day vitamin C for 5.25 years [102].
In the present study, higher sodium intake was associated with almost 50% increase in the ESCC risk. Some epidemiological studies have suggested a role for higher salt intake in carcinogenesis. Although salt is not a carcinogen per se, it acts as an irritant to the esophageal protective mucosal layer, which results in inflammatory regenerative response, increased DNA synthesis and cell proliferation [23] and may also enhance carcinogenesis induced by other carcinogens [112].
Deficiency of several vitamins/minerals has been associated with higher EC incidence, with the most pronounced effect observed in the developing countries [64]. Previous studies in Iran have reported high rates of vitamin/mineral deficiencies among EC patients [4244]; which is in line with previous research showing deficiency of zinc [113], calcium [114] and potassium [97] to be widespread among EC patients. Calcium intake from foods in this study was associated with about 50% reduction in ESCC risk. However, supplemental calcium intake has previously failed to show beneficial effects on EC risk, which could been explained by the confounding effect of higher calcium supplement intakes in the form of GERD medication by cases compared to the controls [67].
This study has several limitations. Firstly, as with other case-control studies, recall bias and selection bias were inevitable. In case-control studies, there is the possibility that cases may recall their diets differently after a cancer diagnosis. However, our participants were generally of low literacy and socioeconomic status with little knowledge about the role of diet and nutrients in the cancer risk, which should have reduced the possibility of recall bias. Moreover, using hospital controls and administering validated FFQs by trained interviewers in a hospital setting might have further reduced the recall bias and improved comparability of information of cases and controls [115, 116]. With regards to the selection bias, high participation rates (94% among cases and 91% among controls) in this study minimized the potential for selective participation according to the lifestyle practices (such as diet).
Not having data on participants' alcohol consumption was yet another barrier. Our subjects refrained from reporting their alcohol intake due to the fact that consuming alcohol is legally prohibited in Iran [117, 118]. In addition, since the import of alcoholic beverages is banned in Iran, the contents of alcoholic beverages that Iranians consume may differ from those consumed in other countries [117, 118]. On the other hand, the Iranian FCT does not provide data on any type of alcoholic beverages [54]. Opium use was also not answered by our participants due to the cultural barriers and sensitivity of this issue among Iranian population [10], which could have resulted in confounded estimates in the present study due to the possible role of opium in ESCC risk. However, it has been suggested that opium contributes to ESCC development only in a subgroup of patients and not in the majority [6, 19]. In contrast to low-incidence regions for EC, a much smaller proportion of esophageal cancer cases are attributed to alcohol, tobacco and opium use in high-risk regions [9, 13, 19, 119]. This suggests a more prominent role for nutritional deficiencies in EC development in high-risk areas, such as Iran and China, where a larger number of cases could be attributed to insufficient nutritional intakes [19, 28, 42, 44, 75, 102, 120].
The third limitation is the possibility of some micronutrient misclassification due to not having data on supplement use. However, it has been suggested that dietary supplements and fortified foods, mask the beneficial effect of food intakes in reducing the cancer risk [121] and some of them have independent positive association with esophageal cancer risk [85]. In addition, supplement intake is very uncommon among our population since the majority of participants in the present study were rural dwellers with little or no education and low socioeconomic status. The average monthly family income in Iran is about 975 US$ [122] while in the present study only one of the controls had an income higher than this average and there were no significant differences between cases and controls (160.91 US $ in cases and 189.69 US $ in controls). This might relate to the sampling method in the present research which was performed in general hospitals of one of the high-risk regions of Iran. Generally, lack of information on supplement use would most likely have negligible effects on our estimates and if anything, would likely results in underestimation of association between ESCC and nutrient intakes.
Another limitation of the present study was using a semi-quantitative FFQ, which despite its common use for characterizing the habitual dietary intakes, is well-recognized for its weakness in quantification of nutrient intakes [123]. Using a semi-quantitative dietary assessment tool limits our conclusions mostly to comparisons between cases and controls and hence conclusions about adequacy of diet are relative and should be interpreted by caution, since these types of comparisons generally overestimate the true effect of exposure on the outcome. However, the theoretical basics that formed the food frequency method have been based on the good correlation of "frequency" of food intake and the "total weights" of the same foods consumed over a several-day period [124, 125]. However, the potential source of error in the use of FFQ in the present study results from lack of a standardized Iranian FCT [118], although we employed the same FCTs used for validation of the Iranian FFQ [51, 52]. The fundamental concept behind the calculation of nutrients from FCTs is that the nutrient contents of specific foods are relatively constant, and their variability might not be large enough to distort calculations [126]. In addition, much of the errors relating to sample-to-sample variation in nutrient composition of foods are reduced by using the estimates of long-term nutrient intakes obtained from the FFQs [126].
Another drawback of this study was using nutrient values in the statistical analyses without directly referring to the foods which contributed most to the nutrient intake and its variation. According to Willet, an optimal approach to epidemiologic analysis is to employ both foods and nutrients to represent diets [127]; in this way the case for causality is strengthened when an association is observed both with the overall intake of a nutrient and also with more than one source of that nutrient, especially when the food sources are different. Previously we evaluated the role of food group intakes in the etiology of esophageal squamous cell carcinoma (ESCC) among the same population [50]; by conducting the present study, we aimed at providing preliminary evidence on the extent to which certain nutrients could influence the ESCC risk in such a high-risk region.
Another potential source of error is that several naturally continuous variables (e.g. BMI, physical activity) were categorized for the purpose of analysis, which might have increased the possibility of residual confounding and decreased the precision and power of the study. However, we compensated for this limitation by choosing categories with multiple sufficiently narrow intervals to decrease the residual confounding and heterogeneity of subjects within intervals.
Additionally, availability of B-vitamins is influenced by diet, supplement use, alcohol consumption and generic polymorphism and B-vitamins are all involved in one-carbon metabolism which requires vitamin B2, B6, B9 and B12. This complexity added to the problems of using estimated intake of nutrients obtained at one point in time must be considered when interpreting the results of this study. Small sample size is also a limitation which might have resulted in unstable results and extreme relative risk estimates observed in some of the subgroups, although this is one of the largest sample series in an Iranian population and a number of strong consistent findings have emerged from this sample [45, 50].
This study has several strengths. Firstly, eliminating information bias associated with use of proxy data enabled us to consider numerous potential cofounders. Detailed assessment and adjustment for several important confounders and total energy intake are other important aspects of this study. We attempted to reduce the measurement error and false-positive effect by calculating nutrient intake residuals standardized for total energy intake rather than reporting absolute nutrient values. This further accounted for the confounding effect of total energy intake on nutrient intake estimates [127].
In the present study, a validated FFQ was used which provided subjects with the option of answering in terms of day, week or month which enhanced reporting precision considering the fact that frequency of consumption is a truly continuous variable [128]. In addition, we asked incident ESCC patients diagnosed within 6 month of the interview to recall their diets from 1 year before diagnosis in order to capture a full cycle of seasons so that responses should not be dependent on the time of the year and be representative of habitual long-term intakes [127]. This is of note since short FFQs that have been previously used for collecting dietary data are considered the main reasons for the contradictory findings on the role of nutrients in cancer risk [56]. In addition, 24-hour dietary recalls which have been used in several studies to assess recent or current diets in relation to cancer risk, could severely compromise the accuracy of mean intake estimates due to the day-to-day variation in dietary intakes [129]. Moreover, study design further limits the reliability of short-term recalls in case control studies, since dietary recall provides information on post-diagnosis diet, while the relevant exposures have occurred earlier [127]. Given the long latency period of cancer, remote dietary intakes are far more important than the recent diet in cancer incidence studies since current dietary intake underestimates the true role of diet in cancer etiology [130].
Finally, evaluating the nutrient-cancer relationship in a population without mandatory nutrient fortification, where supplement use is uncommon and nutrient intakes are low has enabled us to capture the association of nutrients and ESCC more clearly compared to previous studies [22]; as such, results of the present study should be considered representative of the influence of vitamins and minerals that are found naturally in foods.

Conclusion

In conclusion, findings of the present study suggest that higher SFA, cholesterol, discretionary calorie, sodium and fat intakes significantly increase the risk of ESCC, whereas dietary antioxidants, especially folate, vitamin E and selenium could prevent the damage to the esophagus caused by oxidative stress, even if consumed in moderate amounts. Our results suggest that dietary patterns rich in carbohydrate, dietary fiber and (n-3) PUFAs along with high physical activity and low consumption of hot foods and beverages and fried/barbecued meals should be promoted in order to prevent ESCC in Iranian population. However, prospective cohort studies that evaluate diet before the cancer diagnosis, as well as interventional studies that address nutrient deficiencies are warranted to clarify whether changes in dietary practices and/or vitamin and mineral supplementation can reduce the incidence of ESCC in Iran.
Overall, this study has mainly the character of a pilot hypothesis-generating study conducted in a region with low prevalence of alcohol consumption and high rates of ESCC, allowing a further search for risk factors of this cancer site. It is recommended that these findings should be replicated, particularly in comparable samples (i.e., those who have low alcohol and supplement use) to identify dietary factors that could substitute for the dominating role of alcohol and smoking for cancers of the upper gastrointestinal tract seen in many Western societies.

Acknowledgements

We are grateful to all filed investigators, staffs and participants of the present study. This study was supported by grant No. 4030 from the "National Nutrition and Food Technology Research Institute (WHO Collaborating Center)", Shahid Beheshti University of Medical Sciences, Tehran, Iran. Authors would like to thank Ms. Shaneshin for organizing data files.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

M.J contributed to the conception and design of this study, data analysis, interpretation and drafting of the manuscript. B.R assisted in conception, design, data acquisition, analysis and drafting of manuscript. B.H collected the data and participated in designing the study. M.J. critically reviewed and helped to draft the manuscript. C.G provided methodological feedback and gave the final approval to the manuscript to be published. All authors have read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Levi F, Pasche C, Lucchini F, Bosetti C, Franceschi S, Monnier P, La Vecchia C: Food groups and oesophageal cancer risk in Vaud, Switzerland. Eur J Cancer Prev. 2000, 9 (4): 257-63. 10.1097/00008469-200008000-00005.PubMed Levi F, Pasche C, Lucchini F, Bosetti C, Franceschi S, Monnier P, La Vecchia C: Food groups and oesophageal cancer risk in Vaud, Switzerland. Eur J Cancer Prev. 2000, 9 (4): 257-63. 10.1097/00008469-200008000-00005.PubMed
2.
Zurück zum Zitat Boyle P, Levin B: World cancer report. 2008, Lyon, France: IARC Press Boyle P, Levin B: World cancer report. 2008, Lyon, France: IARC Press
3.
Zurück zum Zitat Islami F, Kamangar F, Nasrollahzadeh D, Møller H, Boffetta P, Malekzadeh R: Oesophageal cancer in Golestan Province, a high-incidence area in northern Iran - a review. Eur J Cancer. 2009, 45 (18): 3156-65. 10.1016/j.ejca.2009.09.018.PubMed Islami F, Kamangar F, Nasrollahzadeh D, Møller H, Boffetta P, Malekzadeh R: Oesophageal cancer in Golestan Province, a high-incidence area in northern Iran - a review. Eur J Cancer. 2009, 45 (18): 3156-65. 10.1016/j.ejca.2009.09.018.PubMed
4.
Zurück zum Zitat Munoz N: Epidemiological aspects of oesophageal cancer. Endoscopy. 1993, 25: 609-612. 10.1055/s-2007-1010415.PubMed Munoz N: Epidemiological aspects of oesophageal cancer. Endoscopy. 1993, 25: 609-612. 10.1055/s-2007-1010415.PubMed
5.
Zurück zum Zitat Samadi F, Babaei M, Yazdanbod A, Fallah M, Nouraie M, Nasrollahzadeh D, Sadjadi A, Derakhshan MH, Shokuhi B, Fuladi R, Malekzadeh R: Survival rate of gastric and esophageal cancers in Ardabil province, North-West of Iran. Arch Iran Med. 2007, 10 (1): 32-7.PubMed Samadi F, Babaei M, Yazdanbod A, Fallah M, Nouraie M, Nasrollahzadeh D, Sadjadi A, Derakhshan MH, Shokuhi B, Fuladi R, Malekzadeh R: Survival rate of gastric and esophageal cancers in Ardabil province, North-West of Iran. Arch Iran Med. 2007, 10 (1): 32-7.PubMed
6.
Zurück zum Zitat Kamangar F, Malekzadeh R, Dawsey SM, Saidi F: Esophageal cancer in Northeastern Iran: a review. Arch Iran Med. 2007, 10 (1): 70-82. ReviewPubMed Kamangar F, Malekzadeh R, Dawsey SM, Saidi F: Esophageal cancer in Northeastern Iran: a review. Arch Iran Med. 2007, 10 (1): 70-82. ReviewPubMed
7.
Zurück zum Zitat Blot WJ, McLaughlin JK, Fraumeni JF: Esophageal Cancer. Cancer Epidemiology and Prevention. Edited by: Schottenfeld D, Fraumeni JF. 2006, New York: Oxford University Press, 697-707. 3 Blot WJ, McLaughlin JK, Fraumeni JF: Esophageal Cancer. Cancer Epidemiology and Prevention. Edited by: Schottenfeld D, Fraumeni JF. 2006, New York: Oxford University Press, 697-707. 3
8.
Zurück zum Zitat Cook-Mozaffari PJ, Azordegan F, Day NE, Ressicaud A, Sabai C, Aramesh B: Oesophageal cancer studies in the Caspian Littoral of Iran: results of a case-control study. Br J Cancer. 1979, 39: 293-309. 10.1038/bjc.1979.54.PubMedPubMedCentral Cook-Mozaffari PJ, Azordegan F, Day NE, Ressicaud A, Sabai C, Aramesh B: Oesophageal cancer studies in the Caspian Littoral of Iran: results of a case-control study. Br J Cancer. 1979, 39: 293-309. 10.1038/bjc.1979.54.PubMedPubMedCentral
9.
Zurück zum Zitat Tran GD, Sun XD, Abnet CC, Fan JH, Dawsey SM, Dong ZW, Mark SD, Qiao YL, Taylor PR: Prospective study of risk factors for esophageal and gastric cancers in the Linxian general population trial cohort in China. Int J Cancer. 2005, 113: 456-63. 10.1002/ijc.20616.PubMed Tran GD, Sun XD, Abnet CC, Fan JH, Dawsey SM, Dong ZW, Mark SD, Qiao YL, Taylor PR: Prospective study of risk factors for esophageal and gastric cancers in the Linxian general population trial cohort in China. Int J Cancer. 2005, 113: 456-63. 10.1002/ijc.20616.PubMed
10.
Zurück zum Zitat Nasrollahzadeh D, Kamangar F, Aghcheli K, Sotoudeh M, Islami F, Abnet CC, Shakeri R, Pourshams A, Marjani HA, Nouraie M, Khatibian M, Semnani S, Ye W, Boffetta P, Dawsey SM, Malekzadeh R: Opium, tobacco, and alcohol use in relation to oesophageal squamous cell carcinoma in a high-risk area of Iran. Br J Cancer. 2008, 98 (11): 1857-63. 10.1038/sj.bjc.6604369.PubMedPubMedCentral Nasrollahzadeh D, Kamangar F, Aghcheli K, Sotoudeh M, Islami F, Abnet CC, Shakeri R, Pourshams A, Marjani HA, Nouraie M, Khatibian M, Semnani S, Ye W, Boffetta P, Dawsey SM, Malekzadeh R: Opium, tobacco, and alcohol use in relation to oesophageal squamous cell carcinoma in a high-risk area of Iran. Br J Cancer. 2008, 98 (11): 1857-63. 10.1038/sj.bjc.6604369.PubMedPubMedCentral
11.
Zurück zum Zitat Abnet CC, Saadatian-Elahi M, Pourshams A, Boffetta P, Feizzadeh A, Brennan P, Taylor PR, Kamangar F, Dawsey SM, Malekzadeh R: Reliability and validity of opiate use self-report in a population at high risk for esophageal cancer in Golestan, Iran. Cancer Epidemiol Biomarkers Prev. 2004, 13 (6): 1068-70.PubMed Abnet CC, Saadatian-Elahi M, Pourshams A, Boffetta P, Feizzadeh A, Brennan P, Taylor PR, Kamangar F, Dawsey SM, Malekzadeh R: Reliability and validity of opiate use self-report in a population at high risk for esophageal cancer in Golestan, Iran. Cancer Epidemiol Biomarkers Prev. 2004, 13 (6): 1068-70.PubMed
12.
Zurück zum Zitat Sepehr A, Kamangar F, Fahimi S, Saidi F, Abnet CC, Dawsey SM: Poor oral health as a risk factor for esophageal squamous dysplasia in northeastern Iran. Anticancer Res. 2005, 25 (1B): 543-6.PubMed Sepehr A, Kamangar F, Fahimi S, Saidi F, Abnet CC, Dawsey SM: Poor oral health as a risk factor for esophageal squamous dysplasia in northeastern Iran. Anticancer Res. 2005, 25 (1B): 543-6.PubMed
13.
Zurück zum Zitat Islami F, Kamangar F, Aghcheli K, Fahimi S, Semnani S, Taghavi N, Marjani HA, Merat S, Nasseri-Moghaddam S, Pourshams A, Nouraie M, Khatibian M, Abedi B, Brazandeh MH, Ghaziani R, Sotoudeh M, Dawsey SM, Abnet CC, Taylor PR, Malekzadeh R: Epidemiologic features of upper gastrointestinal tract cancers in Northeastern Iran. Br J Cancer. 2004, 90 (7): 1402-6. 10.1038/sj.bjc.6601737.PubMedPubMedCentral Islami F, Kamangar F, Aghcheli K, Fahimi S, Semnani S, Taghavi N, Marjani HA, Merat S, Nasseri-Moghaddam S, Pourshams A, Nouraie M, Khatibian M, Abedi B, Brazandeh MH, Ghaziani R, Sotoudeh M, Dawsey SM, Abnet CC, Taylor PR, Malekzadeh R: Epidemiologic features of upper gastrointestinal tract cancers in Northeastern Iran. Br J Cancer. 2004, 90 (7): 1402-6. 10.1038/sj.bjc.6601737.PubMedPubMedCentral
14.
Zurück zum Zitat Akbari MR, Malekzadeh R, Nasrollahzadeh D, Amanian D, Islami F, Li S, Zandvakili I, Shakeri R, Sotoudeh M, Aghcheli K, Salahi R, Pourshams A, Semnani S, Boffetta P, Dawsey SM, Ghadirian P, Narod SA: Germline BRCA2 mutations and the risk of esophageal squamous cell carcinoma. Oncogene. 2008, 27 (9): 1290-6. 10.1038/sj.onc.1210739.PubMed Akbari MR, Malekzadeh R, Nasrollahzadeh D, Amanian D, Islami F, Li S, Zandvakili I, Shakeri R, Sotoudeh M, Aghcheli K, Salahi R, Pourshams A, Semnani S, Boffetta P, Dawsey SM, Ghadirian P, Narod SA: Germline BRCA2 mutations and the risk of esophageal squamous cell carcinoma. Oncogene. 2008, 27 (9): 1290-6. 10.1038/sj.onc.1210739.PubMed
15.
Zurück zum Zitat Kamangar F, Strickland PT, Pourshams A, Malekzadeh R, Boffetta P, Roth MJ, Abnet CC, Saadatian-Elahi M, Rakhshani N, Brennan P, Etemadi A, Dawsey SM: High exposure to polycyclic aromatic hydrocarbons may contribute to high risk of esophageal cancer in northeastern Iran. Anticancer Res. 2005, 25 (1B): 425-8.PubMed Kamangar F, Strickland PT, Pourshams A, Malekzadeh R, Boffetta P, Roth MJ, Abnet CC, Saadatian-Elahi M, Rakhshani N, Brennan P, Etemadi A, Dawsey SM: High exposure to polycyclic aromatic hydrocarbons may contribute to high risk of esophageal cancer in northeastern Iran. Anticancer Res. 2005, 25 (1B): 425-8.PubMed
16.
Zurück zum Zitat Taghavi N, Nasrollahzadeh D, Merat S, Yazdanbod A, Hormazdi M, Sotoudeh M, Semnani S, Eslami F, Marjani HA, Fahimi S, Khademi H, Malekzadeh R: Epidemiology of upper gastrointestinal cancers in Iran: a sub site analysis of 761 cases. World J Gastroenterol. 2007, 13 (40): 5367-70.PubMedPubMedCentral Taghavi N, Nasrollahzadeh D, Merat S, Yazdanbod A, Hormazdi M, Sotoudeh M, Semnani S, Eslami F, Marjani HA, Fahimi S, Khademi H, Malekzadeh R: Epidemiology of upper gastrointestinal cancers in Iran: a sub site analysis of 761 cases. World J Gastroenterol. 2007, 13 (40): 5367-70.PubMedPubMedCentral
17.
Zurück zum Zitat Nouarie M, Pourshams A, Kamangar F, Sotoudeh M, Derakhshan MH, Akbari MR, Fakheri H, Zahedi MJ, Caldwell K, Abnet CC, Taylor PR, Malekzadeh R, Dawsey SM: Ecologic study of serum selenium and upper gastrointestinal cancers in Iran. World J Gastroenterol. 2004, 10 (17): 2544-6.PubMed Nouarie M, Pourshams A, Kamangar F, Sotoudeh M, Derakhshan MH, Akbari MR, Fakheri H, Zahedi MJ, Caldwell K, Abnet CC, Taylor PR, Malekzadeh R, Dawsey SM: Ecologic study of serum selenium and upper gastrointestinal cancers in Iran. World J Gastroenterol. 2004, 10 (17): 2544-6.PubMed
18.
Zurück zum Zitat Zambon P, Talamini R, La Vecchia C, Dal Maso L, Negri E, Tognazzo S, Simonato L, Franceschi S: Smoking, type of alcoholic beverage and squamous-cell oesophageal cancer in northern Italy. Int J Cancer. 2000, 86 (1): 144-9. 10.1002/(SICI)1097-0215(20000401)86:1<144::AID-IJC23>3.0.CO;2-B.PubMed Zambon P, Talamini R, La Vecchia C, Dal Maso L, Negri E, Tognazzo S, Simonato L, Franceschi S: Smoking, type of alcoholic beverage and squamous-cell oesophageal cancer in northern Italy. Int J Cancer. 2000, 86 (1): 144-9. 10.1002/(SICI)1097-0215(20000401)86:1<144::AID-IJC23>3.0.CO;2-B.PubMed
19.
Zurück zum Zitat Sajadi A, Marjani H, Semnani SH, Nasseri-Moghaddam S: Esophageal cancer in Iran: A review. Middle East J Cancer. 2010, 1 (1): 5-14. Sajadi A, Marjani H, Semnani SH, Nasseri-Moghaddam S: Esophageal cancer in Iran: A review. Middle East J Cancer. 2010, 1 (1): 5-14.
20.
Zurück zum Zitat Bosetti C, Gallus S, Trichopoulou A, Talamini R, Franceschi S, Negri E, La Vecchia C: Influence of the Mediterranean diet on the risk of cancers of the upper aerodigestive tract. Cancer Epidemiol Biomarkers Prev. 2003, 12 (10): 1091-4.PubMed Bosetti C, Gallus S, Trichopoulou A, Talamini R, Franceschi S, Negri E, La Vecchia C: Influence of the Mediterranean diet on the risk of cancers of the upper aerodigestive tract. Cancer Epidemiol Biomarkers Prev. 2003, 12 (10): 1091-4.PubMed
21.
Zurück zum Zitat Galeone C, Pelucchi C, Levi F, Negri E, Talamini R, Franceschi S, La Vecchia C: Folate intake and squamous-cell carcinoma of the oesophagus in Italian and Swiss men. Ann Oncol. 2006, 17 (3): 521-5. 10.1093/annonc/mdj107.PubMed Galeone C, Pelucchi C, Levi F, Negri E, Talamini R, Franceschi S, La Vecchia C: Folate intake and squamous-cell carcinoma of the oesophagus in Italian and Swiss men. Ann Oncol. 2006, 17 (3): 521-5. 10.1093/annonc/mdj107.PubMed
22.
Zurück zum Zitat Aune D, Deneo-Pellegrini H, Ronco AL, Boffetta P, Acosta G, Mendilaharsu M, De Stefani E: Dietary folate intake and the risk of 11 types of cancer: a case-control study in Uruguay. Ann Oncol. 2011, 22 (2): 444-51. 10.1093/annonc/mdq356.PubMed Aune D, Deneo-Pellegrini H, Ronco AL, Boffetta P, Acosta G, Mendilaharsu M, De Stefani E: Dietary folate intake and the risk of 11 types of cancer: a case-control study in Uruguay. Ann Oncol. 2011, 22 (2): 444-51. 10.1093/annonc/mdq356.PubMed
23.
Zurück zum Zitat World Cancer Research Fund/American Institute for Cancer Research: Food, nutrition, physical activity and the prevention of cancer; A global perspective. 2007, Washington, DC: AICR World Cancer Research Fund/American Institute for Cancer Research: Food, nutrition, physical activity and the prevention of cancer; A global perspective. 2007, Washington, DC: AICR
24.
Zurück zum Zitat Sanjoaquin MA, Allen N, Couto E, Roddam AW, Key TJ: Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer. 2005, 113 (5): 825-8. 10.1002/ijc.20648.PubMed Sanjoaquin MA, Allen N, Couto E, Roddam AW, Key TJ: Folate intake and colorectal cancer risk: a meta-analytical approach. Int J Cancer. 2005, 113 (5): 825-8. 10.1002/ijc.20648.PubMed
25.
Zurück zum Zitat Larsson SC, Giovannucci E, Wolk A: Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer: a meta-analysis. Gastroenterology. 2006, 131 (4): 1271-83. 10.1053/j.gastro.2006.08.010.PubMed Larsson SC, Giovannucci E, Wolk A: Folate intake, MTHFR polymorphisms, and risk of esophageal, gastric, and pancreatic cancer: a meta-analysis. Gastroenterology. 2006, 131 (4): 1271-83. 10.1053/j.gastro.2006.08.010.PubMed
26.
Zurück zum Zitat Chainani-Wu N: Diet and oral, pharyngeal, and esophageal cancer. Nutr Cancer. 2002, 44: 104-126. 10.1207/S15327914NC4402_01.PubMed Chainani-Wu N: Diet and oral, pharyngeal, and esophageal cancer. Nutr Cancer. 2002, 44: 104-126. 10.1207/S15327914NC4402_01.PubMed
27.
Zurück zum Zitat Terry P, Lagergren J, Ye W, Nyrén O, Wolk A: Antioxidants and cancers of the esophagus and gastric cardia. Int J Cancer. 2000, 87 (5): 750-4. 10.1002/1097-0215(20000901)87:5<750::AID-IJC19>3.0.CO;2-6.PubMed Terry P, Lagergren J, Ye W, Nyrén O, Wolk A: Antioxidants and cancers of the esophagus and gastric cardia. Int J Cancer. 2000, 87 (5): 750-4. 10.1002/1097-0215(20000901)87:5<750::AID-IJC19>3.0.CO;2-6.PubMed
28.
Zurück zum Zitat Tuyns AJ, Riboli E, Doornbos G, Péquignot G: Diet and esophageal cancer in Calvados (France). Nutr Cancer. 1987, 9 (2-3): 81-92. 10.1080/01635588709513915.PubMed Tuyns AJ, Riboli E, Doornbos G, Péquignot G: Diet and esophageal cancer in Calvados (France). Nutr Cancer. 1987, 9 (2-3): 81-92. 10.1080/01635588709513915.PubMed
29.
Zurück zum Zitat Decarli A, Liati P, Negri E, Franceschi S, La Vecchia C: Vitamin A and other dietary factors in the etiology of esophageal cancer. Nutr Cancer. 1987, 10 (1-2): 29-37. 10.1080/01635588709513938.PubMed Decarli A, Liati P, Negri E, Franceschi S, La Vecchia C: Vitamin A and other dietary factors in the etiology of esophageal cancer. Nutr Cancer. 1987, 10 (1-2): 29-37. 10.1080/01635588709513938.PubMed
30.
Zurück zum Zitat Nomura AM, Ziegler RG, Stemmermann GN, Chyou PH, Craft NE: Serum micronutrients and upper aerodigestive tract cancer. Cancer Epidemiol Biomarkers Prev. 1997, 6 (6): 407-12.PubMed Nomura AM, Ziegler RG, Stemmermann GN, Chyou PH, Craft NE: Serum micronutrients and upper aerodigestive tract cancer. Cancer Epidemiol Biomarkers Prev. 1997, 6 (6): 407-12.PubMed
31.
Zurück zum Zitat IARC: Fruit and Vegetables, IARC Handbook of Cancer Prevention. 2003, Lyon: IARC Press, (Vol. 8) IARC: Fruit and Vegetables, IARC Handbook of Cancer Prevention. 2003, Lyon: IARC Press, (Vol. 8)
32.
Zurück zum Zitat La Vecchia C, Altieri A, Tavani A: Vegetables, fruit, antioxidants and cancer: a review of Italian studies. Eur J Nutr. 2001, 40 (6): 261-7. 10.1007/s394-001-8354-9. ReviewPubMed La Vecchia C, Altieri A, Tavani A: Vegetables, fruit, antioxidants and cancer: a review of Italian studies. Eur J Nutr. 2001, 40 (6): 261-7. 10.1007/s394-001-8354-9. ReviewPubMed
33.
Zurück zum Zitat Tzonou A, Lipworth L, Garidou A, Signorello LB, Lagiou P, Hsieh C, Trichopoulos D: Diet and risk of esophageal cancer by histologic type in a low-risk population. Int J Cancer. 1996, 68 (3): 300-4. 10.1002/(SICI)1097-0215(19961104)68:3<300::AID-IJC6>3.0.CO;2-5.PubMed Tzonou A, Lipworth L, Garidou A, Signorello LB, Lagiou P, Hsieh C, Trichopoulos D: Diet and risk of esophageal cancer by histologic type in a low-risk population. Int J Cancer. 1996, 68 (3): 300-4. 10.1002/(SICI)1097-0215(19961104)68:3<300::AID-IJC6>3.0.CO;2-5.PubMed
34.
Zurück zum Zitat Kabat GC, Ng SK, Wynder EL: Tobacco, alcohol intake, and diet in relation to adenocarcinoma of the esophagus and gastric cardia. Cancer Causes Control. 1993, 4 (2): 123-32. 10.1007/BF00053153.PubMed Kabat GC, Ng SK, Wynder EL: Tobacco, alcohol intake, and diet in relation to adenocarcinoma of the esophagus and gastric cardia. Cancer Causes Control. 1993, 4 (2): 123-32. 10.1007/BF00053153.PubMed
35.
Zurück zum Zitat Zhang ZF, Kurtz RC, Yu GP, Sun M, Gargon N, Karpeh M, Fein JS, Harlap S: Adenocarcinomas of the esophagus and gastric cardia: the role of diet. Nutr Cancer. 1997, 27 (3): 298-309. 10.1080/01635589709514541.PubMed Zhang ZF, Kurtz RC, Yu GP, Sun M, Gargon N, Karpeh M, Fein JS, Harlap S: Adenocarcinomas of the esophagus and gastric cardia: the role of diet. Nutr Cancer. 1997, 27 (3): 298-309. 10.1080/01635589709514541.PubMed
36.
Zurück zum Zitat Palli D, Bianchi S, Decarli A, Cipriani F, Avellini C, Cocco P, Falcini F, Puntoni R, Russo A, Vindigni C, Fraumeni JF, Blot WJ, Buiatti E: A case-control study of cancers of the gastric cardia in Italy. Br J Cancer. 1992, 65 (2): 263-6. 10.1038/bjc.1992.52.PubMedPubMedCentral Palli D, Bianchi S, Decarli A, Cipriani F, Avellini C, Cocco P, Falcini F, Puntoni R, Russo A, Vindigni C, Fraumeni JF, Blot WJ, Buiatti E: A case-control study of cancers of the gastric cardia in Italy. Br J Cancer. 1992, 65 (2): 263-6. 10.1038/bjc.1992.52.PubMedPubMedCentral
37.
Zurück zum Zitat Franceschi S: Role of nutrition in the aetiology of oesophageal cancer in developed countries. Endoscopy. 1993, 25 (9): 613-6. 10.1055/s-2007-1010416. ReviewPubMed Franceschi S: Role of nutrition in the aetiology of oesophageal cancer in developed countries. Endoscopy. 1993, 25 (9): 613-6. 10.1055/s-2007-1010416. ReviewPubMed
38.
Zurück zum Zitat Brown LM, Swanson CA, Gridley G, Swanson GM, Schoenberg JB, Greenberg RS, Silverman DT, Pottern LM, Hayes RB, Schwartz AG, Fraumeni JF, Hoover RN: Adenocarcinoma of the esophagus: role of obesity and diet. J Natl Cancer Inst. 1995, 87 (2): 104-9. 10.1093/jnci/87.2.104.PubMed Brown LM, Swanson CA, Gridley G, Swanson GM, Schoenberg JB, Greenberg RS, Silverman DT, Pottern LM, Hayes RB, Schwartz AG, Fraumeni JF, Hoover RN: Adenocarcinoma of the esophagus: role of obesity and diet. J Natl Cancer Inst. 1995, 87 (2): 104-9. 10.1093/jnci/87.2.104.PubMed
39.
Zurück zum Zitat De Stefani E, Ronco A, Mendilaharsu M, Deneo-Pellegrini H: Diet and risk of cancer of the upper aerodigestive tract--II. Nutrients. Oral Oncol. 1999, 35 (1): 22-6. 10.1016/S1368-8375(98)00061-X.PubMed De Stefani E, Ronco A, Mendilaharsu M, Deneo-Pellegrini H: Diet and risk of cancer of the upper aerodigestive tract--II. Nutrients. Oral Oncol. 1999, 35 (1): 22-6. 10.1016/S1368-8375(98)00061-X.PubMed
40.
Zurück zum Zitat De Stefani E, Deneo-Pellegrini H, Boffetta P, Mendilaharsu M: Meat intake and risk of squamous cell esophageal cancer: a case-control study in Uruguay. Int J Cancer. 1999, 82 (1): 33-7. 10.1002/(SICI)1097-0215(19990702)82:1<33::AID-IJC7>3.0.CO;2-7.PubMed De Stefani E, Deneo-Pellegrini H, Boffetta P, Mendilaharsu M: Meat intake and risk of squamous cell esophageal cancer: a case-control study in Uruguay. Int J Cancer. 1999, 82 (1): 33-7. 10.1002/(SICI)1097-0215(19990702)82:1<33::AID-IJC7>3.0.CO;2-7.PubMed
41.
Zurück zum Zitat Willet WC: Diet and nutrition. Cancer epidemiology and prevention. Edited by: Schottenfeld D, Fraumeni Jr JF. 1996, New York: Oxford University Press, 438-462. 2 Willet WC: Diet and nutrition. Cancer epidemiology and prevention. Edited by: Schottenfeld D, Fraumeni Jr JF. 1996, New York: Oxford University Press, 438-462. 2
42.
Zurück zum Zitat Hormozdiari H, Day NE, Aramesh B, Mahboubi E: Dietary factors and esophageal cancer in the Caspian Littoral of Iran. Cancer Res. 1975, 35: 3493-3498.PubMed Hormozdiari H, Day NE, Aramesh B, Mahboubi E: Dietary factors and esophageal cancer in the Caspian Littoral of Iran. Cancer Res. 1975, 35: 3493-3498.PubMed
43.
Zurück zum Zitat Kmet J, McLaren DS, Siassi F: Epidemiology of esophageal cancer with specific reference to nutritional studies among the Turkoman of Iran. Adv Modem Hum Nutr. 1980, 1: 343-65. Kmet J, McLaren DS, Siassi F: Epidemiology of esophageal cancer with specific reference to nutritional studies among the Turkoman of Iran. Adv Modem Hum Nutr. 1980, 1: 343-65.
44.
Zurück zum Zitat Siassi F, Ghadirian P: Riboflavin deficiency and esophageal cancer: a case control-household study in the Caspian Littoral of Iran. Cancer Detect Prev. 2005, 29 (5): 464-9. 10.1016/j.cdp.2005.08.001.PubMed Siassi F, Ghadirian P: Riboflavin deficiency and esophageal cancer: a case control-household study in the Caspian Littoral of Iran. Cancer Detect Prev. 2005, 29 (5): 464-9. 10.1016/j.cdp.2005.08.001.PubMed
45.
Zurück zum Zitat Hajizadeh B, Rashidkhani B, Rad AH, Moasheri SM, Saboori H: Dietary patterns and risk of oesophageal squamous cell carcinoma: a case-control study. Public Health Nutr. 2010, 13 (7): 1107-12. 10.1017/S1368980010000145.PubMed Hajizadeh B, Rashidkhani B, Rad AH, Moasheri SM, Saboori H: Dietary patterns and risk of oesophageal squamous cell carcinoma: a case-control study. Public Health Nutr. 2010, 13 (7): 1107-12. 10.1017/S1368980010000145.PubMed
46.
Zurück zum Zitat Kelishadi R, Rabiee K, Khosravi A, Famouri F, Sadeghi M, Roohafza H, Shirani Sh: Assessment of physical activity in adolescents of Isfahan. Journal of Shahrekord University of Medical Sciences. 2001, 3: 55-65. Kelishadi R, Rabiee K, Khosravi A, Famouri F, Sadeghi M, Roohafza H, Shirani Sh: Assessment of physical activity in adolescents of Isfahan. Journal of Shahrekord University of Medical Sciences. 2001, 3: 55-65.
47.
Zurück zum Zitat Ainsworth BE, Haskell WL, Leon AS, Jacobs DR, Montoye HJ, Sallis JF, Paffenbarger RS: Compendium of physical activities: classification of energy costs of human physical activities. Medicine and Science in Sports and Exercise. 1993, 25: 71-80. 10.1249/00005768-199301000-00011.PubMed Ainsworth BE, Haskell WL, Leon AS, Jacobs DR, Montoye HJ, Sallis JF, Paffenbarger RS: Compendium of physical activities: classification of energy costs of human physical activities. Medicine and Science in Sports and Exercise. 1993, 25: 71-80. 10.1249/00005768-199301000-00011.PubMed
48.
Zurück zum Zitat Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O'Brien WL, Bassett DR, Schmitz KH, Emplaincourt PO, Jacobs DR, Leon AS: Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000, 32 (Suppl 9): S498-504.PubMed Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O'Brien WL, Bassett DR, Schmitz KH, Emplaincourt PO, Jacobs DR, Leon AS: Compendium of physical activities: an update of activity codes and MET intensities. Med Sci Sports Exerc. 2000, 32 (Suppl 9): S498-504.PubMed
49.
Zurück zum Zitat Rashidkhani B, Akesson A, Lindblad P, Wolk A: Major dietary patterns and risk of renal cell carcinoma in a prospective cohort of Swedish women. J Nutr. 2005, 135 (7): 1757-62.PubMed Rashidkhani B, Akesson A, Lindblad P, Wolk A: Major dietary patterns and risk of renal cell carcinoma in a prospective cohort of Swedish women. J Nutr. 2005, 135 (7): 1757-62.PubMed
50.
Zurück zum Zitat Hajizadeh B, Jessri M, Moasheri SM, Houshiar Rad A, Rashidkhani B: Fruits and vegetables consumption and esophageal squamous cell carcinoma: a case- control study. Nutr Cancer. 2011, 1: Hajizadeh B, Jessri M, Moasheri SM, Houshiar Rad A, Rashidkhani B: Fruits and vegetables consumption and esophageal squamous cell carcinoma: a case- control study. Nutr Cancer. 2011, 1:
51.
Zurück zum Zitat Mirmiran P, Hosseini Esfahani F, Mehrabi Y, Hedayati M, Azizi F: Reliability and relative validity of a food frequency questionnaire for nutrients in the Tehran Lipid and Glucose Study. Public Health Nutr. 2010, 13 (5): 654-62. 10.1017/S1368980009991698.PubMed Mirmiran P, Hosseini Esfahani F, Mehrabi Y, Hedayati M, Azizi F: Reliability and relative validity of a food frequency questionnaire for nutrients in the Tehran Lipid and Glucose Study. Public Health Nutr. 2010, 13 (5): 654-62. 10.1017/S1368980009991698.PubMed
52.
Zurück zum Zitat Esfahani FH, Asghari G, Mirmiran P, Azizi F: Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. J Epidemiol. 2010, 20 (2): 150-8. 10.2188/jea.JE20090083.PubMed Esfahani FH, Asghari G, Mirmiran P, Azizi F: Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. J Epidemiol. 2010, 20 (2): 150-8. 10.2188/jea.JE20090083.PubMed
53.
Zurück zum Zitat Ghaffarpour M, Houshiar-Rad A, Kianfar H: The manual for household measures, cooking yields factors and edible portion of food. 1999, Tehran: Keshaverzi press Ghaffarpour M, Houshiar-Rad A, Kianfar H: The manual for household measures, cooking yields factors and edible portion of food. 1999, Tehran: Keshaverzi press
54.
Zurück zum Zitat Azar M, Sarkisian E: Food Composition Table of Iran. 1980, Tehran: National Nutrition and Food Research Institute. Shahid Beheshti University Press Azar M, Sarkisian E: Food Composition Table of Iran. 1980, Tehran: National Nutrition and Food Research Institute. Shahid Beheshti University Press
56.
Zurück zum Zitat Willett W, Stampfer MJ: Total energy intake: implications for epidemiologic analyses. Am J Epidemiol. 1986, 124 (1): 17-27. ReviewPubMed Willett W, Stampfer MJ: Total energy intake: implications for epidemiologic analyses. Am J Epidemiol. 1986, 124 (1): 17-27. ReviewPubMed
57.
Zurück zum Zitat Chen H, Tucker KL, Graubard BI, Heineman EF, Markin RS, Potischman NA, Russell RM, Weisenburger DD, Ward MH: Nutrient intakes and adenocarcinoma of the esophagus and distal stomach. Nutr Cancer. 2002, 42 (1): 33-40. 10.1207/S15327914NC421_5.PubMed Chen H, Tucker KL, Graubard BI, Heineman EF, Markin RS, Potischman NA, Russell RM, Weisenburger DD, Ward MH: Nutrient intakes and adenocarcinoma of the esophagus and distal stomach. Nutr Cancer. 2002, 42 (1): 33-40. 10.1207/S15327914NC421_5.PubMed
58.
Zurück zum Zitat Sun L, Yu S: Meta-analysis: non-steroidal anti-inflammatory drug use and the risk of esophageal squamous cell carcinoma. Dis Esophagus. 2011 Sun L, Yu S: Meta-analysis: non-steroidal anti-inflammatory drug use and the risk of esophageal squamous cell carcinoma. Dis Esophagus. 2011
59.
Zurück zum Zitat Brown LM, Swanson CA, Gridley G, Swanson GM, Silverman DT, Greenberg RS, Hayes RB, Schoenberg JB, Pottern LM, Schwartz AG, Liff JM, Hoover R, Fraumeni JF: Dietary factors and the risk of squamous cell esophageal cancer among black and white men in the United States. Cancer Causes Control. 1998, 9 (5): 467-74. 10.1023/A:1008861806923.PubMed Brown LM, Swanson CA, Gridley G, Swanson GM, Silverman DT, Greenberg RS, Hayes RB, Schoenberg JB, Pottern LM, Schwartz AG, Liff JM, Hoover R, Fraumeni JF: Dietary factors and the risk of squamous cell esophageal cancer among black and white men in the United States. Cancer Causes Control. 1998, 9 (5): 467-74. 10.1023/A:1008861806923.PubMed
60.
Zurück zum Zitat Brown LM, Blot WJ, Schuman SH, Smith VM, Ershow AG, Marks RD, Fraumeni JF: Environmental factors and high risk of esophageal cancer among men in coastal South Carolina. J Natl Cancer Inst. 1988, 80 (20): 1620-5. 10.1093/jnci/80.20.1620. 21PubMed Brown LM, Blot WJ, Schuman SH, Smith VM, Ershow AG, Marks RD, Fraumeni JF: Environmental factors and high risk of esophageal cancer among men in coastal South Carolina. J Natl Cancer Inst. 1988, 80 (20): 1620-5. 10.1093/jnci/80.20.1620. 21PubMed
61.
Zurück zum Zitat Graham S, Marshall J, Haughey B, Brasure J, Freudenheim J, Zielezny M, Wilkinson G, Nolan J: Nutritional epidemiology of cancer of the esophagus. Am J Epidemiol. 1990, 131 (3): 454-67.PubMed Graham S, Marshall J, Haughey B, Brasure J, Freudenheim J, Zielezny M, Wilkinson G, Nolan J: Nutritional epidemiology of cancer of the esophagus. Am J Epidemiol. 1990, 131 (3): 454-67.PubMed
62.
Zurück zum Zitat Layton DW, Bogen KT, Knize MG, Hatch FT, Johnson VM, Felton JS: Cancer risk of heterocyclic amines in cooked foods: an analysis and implications for research. Carcinogenesis. 1995, 16 (1): 39-52. 10.1093/carcin/16.1.39. ReviewPubMed Layton DW, Bogen KT, Knize MG, Hatch FT, Johnson VM, Felton JS: Cancer risk of heterocyclic amines in cooked foods: an analysis and implications for research. Carcinogenesis. 1995, 16 (1): 39-52. 10.1093/carcin/16.1.39. ReviewPubMed
63.
Zurück zum Zitat Ibiebele TI, Taylor AR, Whiteman DC, van der Pols JC, Australian Cancer Study: Eating habits and risk of esophageal cancers: a population-based case-control study. Cancer Causes Control. 2010a, 21 (9): 1475-84. 10.1007/s10552-010-9576-8. Ibiebele TI, Taylor AR, Whiteman DC, van der Pols JC, Australian Cancer Study: Eating habits and risk of esophageal cancers: a population-based case-control study. Cancer Causes Control. 2010a, 21 (9): 1475-84. 10.1007/s10552-010-9576-8.
64.
Zurück zum Zitat Cheng KK, Day NE: Nutrition and esophageal cancer. Cancer Causes Control. 1996, 7 (1): 33-40. 10.1007/BF00115636. ReviewPubMed Cheng KK, Day NE: Nutrition and esophageal cancer. Cancer Causes Control. 1996, 7 (1): 33-40. 10.1007/BF00115636. ReviewPubMed
65.
Zurück zum Zitat Steinmetz KA, Potter JD: Vegetables, fruit, and cancer. II. Mechanisms. Cancer Causes Control. 1991, 2 (6): 427-42. 10.1007/BF00054304. ReviewPubMed Steinmetz KA, Potter JD: Vegetables, fruit, and cancer. II. Mechanisms. Cancer Causes Control. 1991, 2 (6): 427-42. 10.1007/BF00054304. ReviewPubMed
66.
Zurück zum Zitat Dresser CM: From nutrient data to a data base for a health and nutrition examination survey. Organization, coding, and values-real or imputed. Proceeding of the 8th National Nutrient Data Base Conference:. 1983, July ; Minneapolis, MN Dresser CM: From nutrient data to a data base for a health and nutrition examination survey. Organization, coding, and values-real or imputed. Proceeding of the 8th National Nutrient Data Base Conference:. 1983, July ; Minneapolis, MN
67.
Zurück zum Zitat Mayne ST, Risch HA, Dubrow R, Chow WH, Gammon MD, Vaughan TL, Farrow DC, Schoenberg JB, Stanford JL, Ahsan H, West AB, Rotterdam H, Blot WJ, Fraumeni JF: Nutrient intake and risk of subtypes of esophageal and gastric cancer. Cancer Epidemiol Biomarkers Prev. 2001, 10 (10): 1055-62.PubMed Mayne ST, Risch HA, Dubrow R, Chow WH, Gammon MD, Vaughan TL, Farrow DC, Schoenberg JB, Stanford JL, Ahsan H, West AB, Rotterdam H, Blot WJ, Fraumeni JF: Nutrient intake and risk of subtypes of esophageal and gastric cancer. Cancer Epidemiol Biomarkers Prev. 2001, 10 (10): 1055-62.PubMed
68.
Zurück zum Zitat US Department of Agriculture and Department of Health and Human Services: Dietary Guidelines for Americans, 2005. 2005, Washington, DC: USDA, 6 US Department of Agriculture and Department of Health and Human Services: Dietary Guidelines for Americans, 2005. 2005, Washington, DC: USDA, 6
69.
Zurück zum Zitat Ziegler RG, Morris LE, Blot WJ, Pottern LM, Hoover R, Fraumeni JF: Esophageal cancer among black men in Washington, D.C. II. Role of nutrition. J Natl Cancer Inst. 1981, 67 (6): 1199-206.PubMed Ziegler RG, Morris LE, Blot WJ, Pottern LM, Hoover R, Fraumeni JF: Esophageal cancer among black men in Washington, D.C. II. Role of nutrition. J Natl Cancer Inst. 1981, 67 (6): 1199-206.PubMed
70.
Zurück zum Zitat Zhang S, Hunter DJ, Hankinson SE, Giovannucci EL, Rosner BA, Colditz GA, Speizer FE, Willett WC: A prospective study of folate intake and the risk of breast cancer. JAMA. 1999, 281 (17): 1632-7. 10.1001/jama.281.17.1632.PubMed Zhang S, Hunter DJ, Hankinson SE, Giovannucci EL, Rosner BA, Colditz GA, Speizer FE, Willett WC: A prospective study of folate intake and the risk of breast cancer. JAMA. 1999, 281 (17): 1632-7. 10.1001/jama.281.17.1632.PubMed
71.
Zurück zum Zitat Terry P, Jain M, Miller AB, Howe GR, Rohan TE: No association among total dietary fiber, fiber fractions, and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2002, 11 (11): 1507-8.PubMed Terry P, Jain M, Miller AB, Howe GR, Rohan TE: No association among total dietary fiber, fiber fractions, and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2002, 11 (11): 1507-8.PubMed
72.
Zurück zum Zitat Fuchs CS, Giovannucci EL, Colditz GA, Hunter DJ, Stampfer MJ, Rosner B, Speizer FE, Willett WC: Dietary fiber and the risk of colorectal cancer and adenoma in women. N Engl J Med. 1999, 340 (3): 169-76. 10.1056/NEJM199901213400301.PubMed Fuchs CS, Giovannucci EL, Colditz GA, Hunter DJ, Stampfer MJ, Rosner B, Speizer FE, Willett WC: Dietary fiber and the risk of colorectal cancer and adenoma in women. N Engl J Med. 1999, 340 (3): 169-76. 10.1056/NEJM199901213400301.PubMed
73.
Zurück zum Zitat Schatzkin A, Lanza E, Corle D, Lance P, Iber F, Caan B, Shike M, Weissfeld J, Burt R, Cooper MR, Kikendall JW, Cahill J: Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. Polyp Prevention Trial Study Group. N Engl J Med. 2000, 342 (16): 1149-55. 10.1056/NEJM200004203421601.PubMed Schatzkin A, Lanza E, Corle D, Lance P, Iber F, Caan B, Shike M, Weissfeld J, Burt R, Cooper MR, Kikendall JW, Cahill J: Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. Polyp Prevention Trial Study Group. N Engl J Med. 2000, 342 (16): 1149-55. 10.1056/NEJM200004203421601.PubMed
74.
Zurück zum Zitat Alberts DS, Martínez ME, Roe DJ, Guillén-Rodríguez JM, Marshall JR, van Leeuwen JB, Reid ME, Ritenbaugh C, Vargas PA, Bhattacharyya AB, Earnest DL, Sampliner RE: Lack of effect of a high-fiber cereal supplement on the recurrence of colorectal adenomas. Phoenix Colon Cancer Prevention Physicians' Network. N Engl J Med. 2000, 342 (16): 1156-62. 10.1056/NEJM200004203421602.PubMed Alberts DS, Martínez ME, Roe DJ, Guillén-Rodríguez JM, Marshall JR, van Leeuwen JB, Reid ME, Ritenbaugh C, Vargas PA, Bhattacharyya AB, Earnest DL, Sampliner RE: Lack of effect of a high-fiber cereal supplement on the recurrence of colorectal adenomas. Phoenix Colon Cancer Prevention Physicians' Network. N Engl J Med. 2000, 342 (16): 1156-62. 10.1056/NEJM200004203421602.PubMed
75.
Zurück zum Zitat Malekshah AF, Kimiagar M, Pourshams A, Yazdani J, Kaiedi Majd S, Goglani G, Jaafari E, Semnani S, Malekzadeh R: Vitamin deficiency in Golestan Province, northern Iran: a high-risk area for esophageal cancer. Arch Iran Med. 2010, 13 (5): 391-4.PubMed Malekshah AF, Kimiagar M, Pourshams A, Yazdani J, Kaiedi Majd S, Goglani G, Jaafari E, Semnani S, Malekzadeh R: Vitamin deficiency in Golestan Province, northern Iran: a high-risk area for esophageal cancer. Arch Iran Med. 2010, 13 (5): 391-4.PubMed
76.
Zurück zum Zitat Bravi F, Edefonti V, Randi G, Garavello W, La Vecchia C, Ferraroni M, Talamini R, Franceschi S, Decarli A: Dietary patterns and the risk of esophageal cancer. Ann Oncol. 2011 Bravi F, Edefonti V, Randi G, Garavello W, La Vecchia C, Ferraroni M, Talamini R, Franceschi S, Decarli A: Dietary patterns and the risk of esophageal cancer. Ann Oncol. 2011
77.
Zurück zum Zitat Li JY, Ershow AG, Chen ZJ, Wacholder S, Li GY, Guo W, Li B, Blot WJ: A case-control study of cancer of the esophagus and gastric cardia in Linxian. Int J Cancer. 1989, 43 (5): 755-61. 10.1002/ijc.2910430502.PubMed Li JY, Ershow AG, Chen ZJ, Wacholder S, Li GY, Guo W, Li B, Blot WJ: A case-control study of cancer of the esophagus and gastric cardia in Linxian. Int J Cancer. 1989, 43 (5): 755-61. 10.1002/ijc.2910430502.PubMed
78.
Zurück zum Zitat Franceschi S, Bidoli E, Barón AE, La Vecchia C: Maize and risk of cancers of the oral cavity, pharynx, and esophagus in northeastern Italy. J Natl Cancer Inst. 1990, 82 (17): 1407-11. 10.1093/jnci/82.17.1407.PubMed Franceschi S, Bidoli E, Barón AE, La Vecchia C: Maize and risk of cancers of the oral cavity, pharynx, and esophagus in northeastern Italy. J Natl Cancer Inst. 1990, 82 (17): 1407-11. 10.1093/jnci/82.17.1407.PubMed
79.
Zurück zum Zitat Chatenoud L, La Vecchia C, Franceschi S, Tavani A, Jacobs DR, Parpinel MT, Soler M, Negri E: Refined-cereal intake and risk of selected cancers in italy. Am J Clin Nutr. 1999, 70 (6): 1107-10.PubMed Chatenoud L, La Vecchia C, Franceschi S, Tavani A, Jacobs DR, Parpinel MT, Soler M, Negri E: Refined-cereal intake and risk of selected cancers in italy. Am J Clin Nutr. 1999, 70 (6): 1107-10.PubMed
80.
Zurück zum Zitat Negri E, La Vecchia C, Franceschi S, D'Avanzo B, Parazzini F: Vegetable and fruit consumption and cancer risk. Int J Cancer. 1991, 48 (3): 350-4. 10.1002/ijc.2910480307.PubMed Negri E, La Vecchia C, Franceschi S, D'Avanzo B, Parazzini F: Vegetable and fruit consumption and cancer risk. Int J Cancer. 1991, 48 (3): 350-4. 10.1002/ijc.2910480307.PubMed
81.
Zurück zum Zitat Tavani A, Negri E, Franceschi S, La Vecchia C: Risk factors for esophageal cancer in women in northern Italy. Cancer. 1993, 72 (9): 2531-6. 10.1002/1097-0142(19931101)72:9<2531::AID-CNCR2820720903>3.0.CO;2-T.PubMed Tavani A, Negri E, Franceschi S, La Vecchia C: Risk factors for esophageal cancer in women in northern Italy. Cancer. 1993, 72 (9): 2531-6. 10.1002/1097-0142(19931101)72:9<2531::AID-CNCR2820720903>3.0.CO;2-T.PubMed
82.
Zurück zum Zitat Gao YT, McLaughlin JK, Gridley G, Blot WJ, Ji BT, Dai Q, Fraumeni JF: Risk factors for esophageal cancer in Shanghai, China. II. Role of diet and nutrients. Int J Cancer. 1994, 58 (2): 197-202. 10.1002/ijc.2910580209.PubMed Gao YT, McLaughlin JK, Gridley G, Blot WJ, Ji BT, Dai Q, Fraumeni JF: Risk factors for esophageal cancer in Shanghai, China. II. Role of diet and nutrients. Int J Cancer. 1994, 58 (2): 197-202. 10.1002/ijc.2910580209.PubMed
83.
Zurück zum Zitat Zheng W, Sellers TA, Doyle TJ, Kushi LH, Potter JD, Folsom AR: Retinol, antioxidant vitamins, and cancers of the upper digestive tract in a prospective cohort study of postmenopausal women. Am J Epidemiol. 1995, 142 (9): 955-60.PubMed Zheng W, Sellers TA, Doyle TJ, Kushi LH, Potter JD, Folsom AR: Retinol, antioxidant vitamins, and cancers of the upper digestive tract in a prospective cohort study of postmenopausal women. Am J Epidemiol. 1995, 142 (9): 955-60.PubMed
84.
Zurück zum Zitat Franceschi S, Bidoli E, Negri E, Zambon P, Talamini R, Ruol A, Parpinel M, Levi F, Simonato L, La Vecchia C: Role of macronutrients, vitamins and minerals in the aetiology of squamous-cell carcinoma of the oesophagus. Int J Cancer. 2000, 86 (5): 626-31. 10.1002/(SICI)1097-0215(20000601)86:5<626::AID-IJC4>3.0.CO;2-Y.PubMed Franceschi S, Bidoli E, Negri E, Zambon P, Talamini R, Ruol A, Parpinel M, Levi F, Simonato L, La Vecchia C: Role of macronutrients, vitamins and minerals in the aetiology of squamous-cell carcinoma of the oesophagus. Int J Cancer. 2000, 86 (5): 626-31. 10.1002/(SICI)1097-0215(20000601)86:5<626::AID-IJC4>3.0.CO;2-Y.PubMed
85.
Zurück zum Zitat Ibiebele TI, Hughes MC, Pandeya N, Zhao Z, Montgomery G, Hayward N, Green AC, Whiteman DC, Webb PM, for the Study of Digestive Health and Australian Cancer Study: High Intake of Folate from Food Sources Is Associated with Reduced Risk of Esophageal Cancer in an Australian Population. J Nutr. 2011, 141 (2): 274-83. 10.3945/jn.110.131235.PubMed Ibiebele TI, Hughes MC, Pandeya N, Zhao Z, Montgomery G, Hayward N, Green AC, Whiteman DC, Webb PM, for the Study of Digestive Health and Australian Cancer Study: High Intake of Folate from Food Sources Is Associated with Reduced Risk of Esophageal Cancer in an Australian Population. J Nutr. 2011, 141 (2): 274-83. 10.3945/jn.110.131235.PubMed
87.
Zurück zum Zitat Kato I, Dnistrian AM, Schwartz M, Toniolo P, Koenig K, Shore RE, Akhmedkhanov A, Zeleniuch-Jacquotte A, Riboli E: Serum folate, homocysteine and colorectal cancer risk in women: a nested case-control study. Br J Cancer. 79 (11-12): 1917-22. Kato I, Dnistrian AM, Schwartz M, Toniolo P, Koenig K, Shore RE, Akhmedkhanov A, Zeleniuch-Jacquotte A, Riboli E: Serum folate, homocysteine and colorectal cancer risk in women: a nested case-control study. Br J Cancer. 79 (11-12): 1917-22.
88.
Zurück zum Zitat Wei Q, Shen H, Wang LE, Duphorne CM, Pillow PC, Guo Z, Qiao Y, Spitz MR: Association between low dietary folate intake and suboptimal cellular DNA repair capacity. Cancer Epidemiol Biomarkers Prev. 2003, 12 (10): 963-9.PubMed Wei Q, Shen H, Wang LE, Duphorne CM, Pillow PC, Guo Z, Qiao Y, Spitz MR: Association between low dietary folate intake and suboptimal cellular DNA repair capacity. Cancer Epidemiol Biomarkers Prev. 2003, 12 (10): 963-9.PubMed
89.
Zurück zum Zitat Potter JD: Colorectal cancer: molecules and populations. J Natl Cancer Inst. 1999, 91 (11): 916-32. 10.1093/jnci/91.11.916. ReviewPubMed Potter JD: Colorectal cancer: molecules and populations. J Natl Cancer Inst. 1999, 91 (11): 916-32. 10.1093/jnci/91.11.916. ReviewPubMed
90.
Zurück zum Zitat Mason JB, Levesque T: Folate: effects on carcinogenesis and the potential for cancer chemoprevention. Oncology (Williston Park). 1996, 10 (11): 1727-36. 1742-3; discussion 1743-4. Review Mason JB, Levesque T: Folate: effects on carcinogenesis and the potential for cancer chemoprevention. Oncology (Williston Park). 1996, 10 (11): 1727-36. 1742-3; discussion 1743-4. Review
91.
Zurück zum Zitat Guo WD, Hsing AW, Li JY, Chen JS, Chow WH, Blot WJ: Correlation of cervical cancer mortality with reproductive and dietary factors, and serum markers in China. Int J Epidemiol. 1994, 23 (6): 1127-32. 10.1093/ije/23.6.1127.PubMed Guo WD, Hsing AW, Li JY, Chen JS, Chow WH, Blot WJ: Correlation of cervical cancer mortality with reproductive and dietary factors, and serum markers in China. Int J Epidemiol. 1994, 23 (6): 1127-32. 10.1093/ije/23.6.1127.PubMed
92.
Zurück zum Zitat Ames BN: DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat Res. 2001, 475 (1-2): 7-20. 10.1016/S0027-5107(01)00070-7. ReviewPubMed Ames BN: DNA damage from micronutrient deficiencies is likely to be a major cause of cancer. Mutat Res. 2001, 475 (1-2): 7-20. 10.1016/S0027-5107(01)00070-7. ReviewPubMed
93.
Zurück zum Zitat Jaskiewicz K, Marasas WF, Lazarus C, Beyers AD, Van Helden PD: Association of esophageal cytological abnormalities with vitamin and lipotrope deficiencies in populations at risk for esophageal cancer. Anticancer Res. 1988, 8: 711-715.PubMed Jaskiewicz K, Marasas WF, Lazarus C, Beyers AD, Van Helden PD: Association of esophageal cytological abnormalities with vitamin and lipotrope deficiencies in populations at risk for esophageal cancer. Anticancer Res. 1988, 8: 711-715.PubMed
94.
Zurück zum Zitat Hsing AW, Hansson LE, McLaughlin JK, Nyren O, Blot WJ, Ekbom A, Fraumeni JF: Pernicious anemia and subsequent cancer. A population-based cohort study. Cancer (Phila.). 1993, 71: 745-750. 10.1002/1097-0142(19930201)71:3<745::AID-CNCR2820710316>3.0.CO;2-1. Hsing AW, Hansson LE, McLaughlin JK, Nyren O, Blot WJ, Ekbom A, Fraumeni JF: Pernicious anemia and subsequent cancer. A population-based cohort study. Cancer (Phila.). 1993, 71: 745-750. 10.1002/1097-0142(19930201)71:3<745::AID-CNCR2820710316>3.0.CO;2-1.
95.
Zurück zum Zitat Karlson BM, Ekbom A, Wacholder S, McLaughlin JK, Hsing AW: Cancer of the upper gastrointestinal tract among patients with pernicious anemia: a case-cohort study. Scand J Gastroenterol. 2000, 35: 847-851. 10.1080/003655200750023228.PubMed Karlson BM, Ekbom A, Wacholder S, McLaughlin JK, Hsing AW: Cancer of the upper gastrointestinal tract among patients with pernicious anemia: a case-cohort study. Scand J Gastroenterol. 2000, 35: 847-851. 10.1080/003655200750023228.PubMed
96.
Zurück zum Zitat Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB, Ames BN: Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci USA. 1997, 94 (7): 3290-5. 10.1073/pnas.94.7.3290.PubMedPubMedCentral Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB, Ames BN: Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci USA. 1997, 94 (7): 3290-5. 10.1073/pnas.94.7.3290.PubMedPubMedCentral
97.
Zurück zum Zitat Lipworth L, Rossi M, McLaughlin JK, Negri E, Talamini R, Levi F, Franceschi S, La Vecchia C: Dietary vitamin D and cancers of the oral cavity and esophagus. Ann Oncol. 2009, 20 (9): 1576-81. 10.1093/annonc/mdp036.PubMed Lipworth L, Rossi M, McLaughlin JK, Negri E, Talamini R, Levi F, Franceschi S, La Vecchia C: Dietary vitamin D and cancers of the oral cavity and esophagus. Ann Oncol. 2009, 20 (9): 1576-81. 10.1093/annonc/mdp036.PubMed
98.
Zurück zum Zitat Launoy G, Milan C, Day NE, Pienkowski MP, Gignoux M, Faivre J: Diet and squamous-cell cancer of the oesophagus: a French multicentre case-control study. Int J Cancer. 1998, 76 (1): 7-12. 10.1002/(SICI)1097-0215(19980330)76:1<7::AID-IJC2>3.0.CO;2-4.PubMed Launoy G, Milan C, Day NE, Pienkowski MP, Gignoux M, Faivre J: Diet and squamous-cell cancer of the oesophagus: a French multicentre case-control study. Int J Cancer. 1998, 76 (1): 7-12. 10.1002/(SICI)1097-0215(19980330)76:1<7::AID-IJC2>3.0.CO;2-4.PubMed
99.
Zurück zum Zitat Giovannucci E, Liu Y, Rimm EB, Hollis BW, Fuchs CS, Stampfer MJ, Willett WC: Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J Natl Cancer Inst. 2006, 98: 451-459. 10.1093/jnci/djj101.PubMed Giovannucci E, Liu Y, Rimm EB, Hollis BW, Fuchs CS, Stampfer MJ, Willett WC: Prospective study of predictors of vitamin D status and cancer incidence and mortality in men. J Natl Cancer Inst. 2006, 98: 451-459. 10.1093/jnci/djj101.PubMed
100.
Zurück zum Zitat Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ: Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr. 2003, 77: 204-210.PubMed Heaney RP, Davies KM, Chen TC, Holick MF, Barger-Lux MJ: Human serum 25-hydroxycholecalciferol response to extended oral dosing with cholecalciferol. Am J Clin Nutr. 2003, 77: 204-210.PubMed
101.
Zurück zum Zitat Taylor PR, Qiao YL, Abnet CC, Dawsey SM, Yang CS, Gunter EW, Wang W, Blot WJ, Dong ZW, Mark SD: Prospective study of serum vitamin E levels and esophageal and gastric cancers. J Natl Cancer Inst. 2003, 95 (18): 1414-6. 10.1093/jnci/djg044.PubMed Taylor PR, Qiao YL, Abnet CC, Dawsey SM, Yang CS, Gunter EW, Wang W, Blot WJ, Dong ZW, Mark SD: Prospective study of serum vitamin E levels and esophageal and gastric cancers. J Natl Cancer Inst. 2003, 95 (18): 1414-6. 10.1093/jnci/djg044.PubMed
102.
Zurück zum Zitat Blot WJ, Li JY, Taylor PR, Guo W, Dawsey S, Wang GQ, Yang CS, Zheng SF, Gail M, Li GY, Yu Y, Liu B, Tangrea J, Sun Y, Fusheng L, Fraumeni JF, Zhang Y, Li B: Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. J Natl Cancer Inst. 1993, 85 (18): 1483-92. 10.1093/jnci/85.18.1483.PubMed Blot WJ, Li JY, Taylor PR, Guo W, Dawsey S, Wang GQ, Yang CS, Zheng SF, Gail M, Li GY, Yu Y, Liu B, Tangrea J, Sun Y, Fusheng L, Fraumeni JF, Zhang Y, Li B: Nutrition intervention trials in Linxian, China: supplementation with specific vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general population. J Natl Cancer Inst. 1993, 85 (18): 1483-92. 10.1093/jnci/85.18.1483.PubMed
103.
Zurück zum Zitat Moe GL, Kristal AR, Levine DS, Vaughan TL, Reid BJ: Waist-to-hip ratio, weight gain, and dietary and serum selenium are associated with DNA content flow cytometry in Barrett's esophagus. Nutr Cancer. 2000, 36 (1): 7-13. 10.1207/S15327914NC3601_2.PubMed Moe GL, Kristal AR, Levine DS, Vaughan TL, Reid BJ: Waist-to-hip ratio, weight gain, and dietary and serum selenium are associated with DNA content flow cytometry in Barrett's esophagus. Nutr Cancer. 2000, 36 (1): 7-13. 10.1207/S15327914NC3601_2.PubMed
104.
Zurück zum Zitat Mark SD, Qiao YL, Dawsey SM, Wu YP, Katki H, Gunter EW, Fraumeni JF, Blot WJ, Dong ZW, Taylor PR: Prospective study of serum selenium levels and incident esophageal and gastric cancers. J Natl Cancer Inst. 2000, 92 (21): 1753-63. 10.1093/jnci/92.21.1753.PubMed Mark SD, Qiao YL, Dawsey SM, Wu YP, Katki H, Gunter EW, Fraumeni JF, Blot WJ, Dong ZW, Taylor PR: Prospective study of serum selenium levels and incident esophageal and gastric cancers. J Natl Cancer Inst. 2000, 92 (21): 1753-63. 10.1093/jnci/92.21.1753.PubMed
105.
Zurück zum Zitat Wei WQ, Abnet CC, Qiao YL, Dawsey SM, Dong ZW, Sun XD, Fan JH, Gunter EW, Taylor PR, Mark SD: Prospective study of serum selenium concentrations and esophageal and gastric cardia cancer, heart disease, stroke, and total death. Am J Clin Nutr. 2004, 79 (1): 80-5.PubMed Wei WQ, Abnet CC, Qiao YL, Dawsey SM, Dong ZW, Sun XD, Fan JH, Gunter EW, Taylor PR, Mark SD: Prospective study of serum selenium concentrations and esophageal and gastric cardia cancer, heart disease, stroke, and total death. Am J Clin Nutr. 2004, 79 (1): 80-5.PubMed
106.
Zurück zum Zitat Hu J, Nyrén O, Wolk A, Bergström R, Yuen J, Adami HO, Guo L, Li H, Huang G, Xu X, Zhao F, Chen Y, Wang C, Qin H, Hu C, Li Y: Risk factors for oesophageal cancer in northeast China. Int J Cancer. 1994, 57 (1): 38-46. 10.1002/ijc.2910570108.PubMed Hu J, Nyrén O, Wolk A, Bergström R, Yuen J, Adami HO, Guo L, Li H, Huang G, Xu X, Zhao F, Chen Y, Wang C, Qin H, Hu C, Li Y: Risk factors for oesophageal cancer in northeast China. Int J Cancer. 1994, 57 (1): 38-46. 10.1002/ijc.2910570108.PubMed
107.
Zurück zum Zitat Smith TA: Carotenoids and cancer: prevention and potential therapy. Br J Biomed Sci. 1998, 55 (4): 268-75. ReviewPubMed Smith TA: Carotenoids and cancer: prevention and potential therapy. Br J Biomed Sci. 1998, 55 (4): 268-75. ReviewPubMed
108.
Zurück zum Zitat Hughes DA: Effects of carotenoids on human immune function. Proc Nutr Soc. 1999, 58 (3): 713-8. 10.1017/S0029665199000932. ReviewPubMed Hughes DA: Effects of carotenoids on human immune function. Proc Nutr Soc. 1999, 58 (3): 713-8. 10.1017/S0029665199000932. ReviewPubMed
109.
Zurück zum Zitat Mettlin C, Graham S, Priore R, Marshall J, Swanson M: Diet and cancer of the esophagus. Nutr Cancer. 1981, 2 (3): 143-7. 10.1080/01635588109513674.PubMed Mettlin C, Graham S, Priore R, Marshall J, Swanson M: Diet and cancer of the esophagus. Nutr Cancer. 1981, 2 (3): 143-7. 10.1080/01635588109513674.PubMed
110.
Zurück zum Zitat Mirvish SS: Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett. 1995, 93 (1): 17-48. 10.1016/0304-3835(95)03786-V. Review. Erratum in: Cancer Lett 1995;97(2):271PubMed Mirvish SS: Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett. 1995, 93 (1): 17-48. 10.1016/0304-3835(95)03786-V. Review. Erratum in: Cancer Lett 1995;97(2):271PubMed
111.
Zurück zum Zitat Sies H, Stahl W: Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am J Clin Nutr. 1995, 62 (6 Suppl): 1315S-1321S.PubMed Sies H, Stahl W: Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am J Clin Nutr. 1995, 62 (6 Suppl): 1315S-1321S.PubMed
112.
Zurück zum Zitat Cohen A, Roe F: Evaluation of the aetiological role of dietary salt exposure in gastric and other cancers in humans. Food Chem Toxicol. 1997, 35: 271-293. 10.1016/S0278-6915(96)00114-7.PubMed Cohen A, Roe F: Evaluation of the aetiological role of dietary salt exposure in gastric and other cancers in humans. Food Chem Toxicol. 1997, 35: 271-293. 10.1016/S0278-6915(96)00114-7.PubMed
113.
Zurück zum Zitat Rogers MA, Thomas DB, Davis S, Vaughan TL, Nevissi AE: A case-control study of element levels and cancer of the upper aerodigestive tract. Cancer Epidemiol Biomarkers Prev. 1993, 2 (4): 305-12.PubMed Rogers MA, Thomas DB, Davis S, Vaughan TL, Nevissi AE: A case-control study of element levels and cancer of the upper aerodigestive tract. Cancer Epidemiol Biomarkers Prev. 1993, 2 (4): 305-12.PubMed
114.
Zurück zum Zitat Chyou PH, Nomura AM, Stemmermann GN: Diet, alcohol, smoking and cancer of the upper aerodigestive tract: a prospective study among Hawaii Japanese men. Int J Cancer. 1995, 60 (5): 616-21. 10.1002/ijc.2910600508.PubMed Chyou PH, Nomura AM, Stemmermann GN: Diet, alcohol, smoking and cancer of the upper aerodigestive tract: a prospective study among Hawaii Japanese men. Int J Cancer. 1995, 60 (5): 616-21. 10.1002/ijc.2910600508.PubMed
115.
Zurück zum Zitat D' Avanzo B, La Vecchia C, Katsouyanni K, Negri E, Trichopoulos D: Reliability of information on cigarette smoking and beverage consumption provided by hospital controls. Epidemiology. 1996, 7 (3): 312-5. 10.1097/00001648-199605000-00018. D' Avanzo B, La Vecchia C, Katsouyanni K, Negri E, Trichopoulos D: Reliability of information on cigarette smoking and beverage consumption provided by hospital controls. Epidemiology. 1996, 7 (3): 312-5. 10.1097/00001648-199605000-00018.
116.
Zurück zum Zitat D'Avanzo B, La Vecchia C, Katsouyanni K, Negri E, Trichopoulos D: An assessment, and reproducibility of food frequency data provided by hospital controls. Eur J Cancer Prev. 1997, 6 (3): 288-93.PubMed D'Avanzo B, La Vecchia C, Katsouyanni K, Negri E, Trichopoulos D: An assessment, and reproducibility of food frequency data provided by hospital controls. Eur J Cancer Prev. 1997, 6 (3): 288-93.PubMed
117.
Zurück zum Zitat Hosseini-Esfahani F, Jessri M, Mirmiran P, Bastan S, Azizi F: Adherence to dietary recommendations and risk of metabolic syndrome: Tehran Lipid and Glucose Study. Metabolism. 2010, 59 (12): 1833-42. 10.1016/j.metabol.2010.06.013.PubMed Hosseini-Esfahani F, Jessri M, Mirmiran P, Bastan S, Azizi F: Adherence to dietary recommendations and risk of metabolic syndrome: Tehran Lipid and Glucose Study. Metabolism. 2010, 59 (12): 1833-42. 10.1016/j.metabol.2010.06.013.PubMed
118.
Zurück zum Zitat Mirmiran P, Hosseini-Esfahanil F, Jessri M, Mahan LK, Shiva N, Azizis F: Does dietary intake by Tehranian adults align with the 2005 dietary guidelines for Americans? Observations from the Tehran lipid and glucose study. J Health Popul Nutr. 2011, 29 (1): 39-52.PubMedPubMedCentral Mirmiran P, Hosseini-Esfahanil F, Jessri M, Mahan LK, Shiva N, Azizis F: Does dietary intake by Tehranian adults align with the 2005 dietary guidelines for Americans? Observations from the Tehran lipid and glucose study. J Health Popul Nutr. 2011, 29 (1): 39-52.PubMedPubMedCentral
119.
Zurück zum Zitat Pourshams A, Saadatian-Elahi M, Nouraie M, Fazeltabar A, Rakhshani N, Salahi R, Semnani S, Saadatian-Elahi M, Abnet CC, Kamangar F, Dawsey SM, Brennan P, Boffetta P, Malekzadeh R: Golestan cohort study of oesophageal cancer: feasibility and first results. Br J Cancer. 2004, 92: 176-181.PubMedCentral Pourshams A, Saadatian-Elahi M, Nouraie M, Fazeltabar A, Rakhshani N, Salahi R, Semnani S, Saadatian-Elahi M, Abnet CC, Kamangar F, Dawsey SM, Brennan P, Boffetta P, Malekzadeh R: Golestan cohort study of oesophageal cancer: feasibility and first results. Br J Cancer. 2004, 92: 176-181.PubMedCentral
120.
Zurück zum Zitat Siassi F, Pouransari Z, Ghadirian P: Nutrient intake and esophageal cancer in the Caspian littoral of Iran: a case-control study. Cancer Detect Prev. 2000, 24: 295-3.PubMed Siassi F, Pouransari Z, Ghadirian P: Nutrient intake and esophageal cancer in the Caspian littoral of Iran: a case-control study. Cancer Detect Prev. 2000, 24: 295-3.PubMed
121.
Zurück zum Zitat Key TJ, Schatzkin A, Willett WC, Allen NE, Spencer EA, Travis RC: Diet, nutrition and the prevention of cancer. Public Health Nutr. 2004, 7 (1A): 187-200.PubMed Key TJ, Schatzkin A, Willett WC, Allen NE, Spencer EA, Travis RC: Diet, nutrition and the prevention of cancer. Public Health Nutr. 2004, 7 (1A): 187-200.PubMed
123.
Zurück zum Zitat Schatzkin A, Kipnis V, Carroll RJ, Midthune D, Subar AF, Bingham S, Schoeller DA, Troiano RP, Freedman LS: A comparison of a food frequency questionnaire with a 24-hour recall for use in an epidemiological cohort study: results from the biomarker-based Observing Protein and Energy Nutrition (OPEN) study. Int J Epidemiol. 2003, 32 (6): 1054-62. 10.1093/ije/dyg264.PubMed Schatzkin A, Kipnis V, Carroll RJ, Midthune D, Subar AF, Bingham S, Schoeller DA, Troiano RP, Freedman LS: A comparison of a food frequency questionnaire with a 24-hour recall for use in an epidemiological cohort study: results from the biomarker-based Observing Protein and Energy Nutrition (OPEN) study. Int J Epidemiol. 2003, 32 (6): 1054-62. 10.1093/ije/dyg264.PubMed
124.
Zurück zum Zitat Heady JA: Diets of bank clerks: development of a method of classifying the diets of individuals for use in epidemiologic studies. J R Stat Soc Ser A. 1961, 124: 336-361. 10.2307/2343242. Heady JA: Diets of bank clerks: development of a method of classifying the diets of individuals for use in epidemiologic studies. J R Stat Soc Ser A. 1961, 124: 336-361. 10.2307/2343242.
125.
Zurück zum Zitat Humble CG, Samet JM, Skipper BE: Use of quantified and frequency indices of vitamin A intake in a case-control study of lung cancer. Int J Epidemiol. 1987, 16: 341-346. 10.1093/ije/16.3.341.PubMed Humble CG, Samet JM, Skipper BE: Use of quantified and frequency indices of vitamin A intake in a case-control study of lung cancer. Int J Epidemiol. 1987, 16: 341-346. 10.1093/ije/16.3.341.PubMed
126.
Zurück zum Zitat Willet WC: Nutritional epidemiology. 1998, Oxford: Oxford University Press, 18-32. (Monographs in epidemiology and biostatics series, v. 30, 2nd edition.) Willet WC: Nutritional epidemiology. 1998, Oxford: Oxford University Press, 18-32. (Monographs in epidemiology and biostatics series, v. 30, 2nd edition.)
127.
Zurück zum Zitat Willett WC: Nutritional Epidemiology. Modern Epidemiology. Edited by: Rothman K, Greenland S, Lash TL. 2008, Lippincott Williams & Wilkins, 580-597. 3 Willett WC: Nutritional Epidemiology. Modern Epidemiology. Edited by: Rothman K, Greenland S, Lash TL. 2008, Lippincott Williams & Wilkins, 580-597. 3
128.
Zurück zum Zitat Block G, Hartman AM, Dresser CM, Carroll MD, Gannon J, Gardner L: A data-based approach to diet questionnaire design and testing. Am J Epidemiol. 1986, 3: 453-469. Block G, Hartman AM, Dresser CM, Carroll MD, Gannon J, Gardner L: A data-based approach to diet questionnaire design and testing. Am J Epidemiol. 1986, 3: 453-469.
129.
Zurück zum Zitat Dwyer JT, Gardner J, Halvorsen K, Krall EA, Cohen A, Valadian I: Memory of food intake in the distant past. Am J Epidemiol. 1989, 130: 1033-1046.PubMed Dwyer JT, Gardner J, Halvorsen K, Krall EA, Cohen A, Valadian I: Memory of food intake in the distant past. Am J Epidemiol. 1989, 130: 1033-1046.PubMed
130.
Zurück zum Zitat Ambrosini GL, van Roosbroeck SA, Mackerras D, Fritschi L, de Klerk NH, Musk AW: The reliability of ten-year dietary recall: implications for cancer research. J Nutr. 2003, 133 (8): 2663-8.PubMed Ambrosini GL, van Roosbroeck SA, Mackerras D, Fritschi L, de Klerk NH, Musk AW: The reliability of ten-year dietary recall: implications for cancer research. J Nutr. 2003, 133 (8): 2663-8.PubMed
Metadaten
Titel
Macronutrients, vitamins and minerals intake and risk of esophageal squamous cell carcinoma: a case-control study in Iran
verfasst von
Mahsa Jessri
Bahram Rashidkhani
Bahareh Hajizadeh
Maryam Jessri
Carolyn Gotay
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Nutrition Journal / Ausgabe 1/2011
Elektronische ISSN: 1475-2891
DOI
https://doi.org/10.1186/1475-2891-10-137

Weitere Artikel der Ausgabe 1/2011

Nutrition Journal 1/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Strenge Blutdruckeinstellung lohnt auch im Alter noch

30.04.2024 Arterielle Hypertonie Nachrichten

Ältere Frauen, die von chronischen Erkrankungen weitgehend verschont sind, haben offenbar die besten Chancen, ihren 90. Geburtstag zu erleben, wenn ihr systolischer Blutdruck < 130 mmHg liegt. Das scheint selbst für 80-Jährige noch zu gelten.

Frauen bekommen seltener eine intensive Statintherapie

30.04.2024 Statine Nachrichten

Frauen in den Niederlanden erhalten bei vergleichbarem kardiovaskulärem Risiko seltener eine intensive Statintherapie als Männer. Ihre LDL-Zielwerte erreichen sie aber fast ähnlich oft.

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.