Skip to main content
Erschienen in: Journal of Translational Medicine 1/2016

Open Access 01.12.2016 | Research

New perspective in diagnostics of mitochondrial disorders: two years’ experience with whole-exome sequencing at a national paediatric centre

verfasst von: Ewa Pronicka, Dorota Piekutowska-Abramczuk, Elżbieta Ciara, Joanna Trubicka, Dariusz Rokicki, Agnieszka Karkucińska-Więckowska, Magdalena Pajdowska, Elżbieta Jurkiewicz, Paulina Halat, Joanna Kosińska, Agnieszka Pollak, Małgorzata Rydzanicz, Piotr Stawinski, Maciej Pronicki, Małgorzata Krajewska-Walasek, Rafał Płoski

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2016

Abstract

Background

Whole-exome sequencing (WES) has led to an exponential increase in identification of causative variants in mitochondrial disorders (MD).

Methods

We performed WES in 113 MD suspected patients from Polish paediatric reference centre, in whom routine testing failed to identify a molecular defect. WES was performed using TruSeqExome enrichment, followed by variant prioritization, validation by Sanger sequencing, and segregation with the disease phenotype in the family.

Results

Likely causative mutations were identified in 67 (59.3 %) patients; these included variants in mtDNA (6 patients) and nDNA: X-linked (9 patients), autosomal dominant (5 patients), and autosomal recessive (47 patients, 11 homozygotes). Novel variants accounted for 50.5 % (50/99) of all detected changes. In 47 patients, changes in 31 MD-related genes (ACAD9, ADCK3, AIFM1, CLPB, COX10, DLD, EARS2, FBXL4, MTATP6, MTFMT, MTND1, MTND3, MTND5, NAXE, NDUFS6, NDUFS7, NDUFV1, OPA1, PARS2, PC, PDHA1, POLG, RARS2, RRM2B, SCO2, SERAC1, SLC19A3, SLC25A12, TAZ, TMEM126B, VARS2) were identified. The ACAD9, CLPB, FBXL4, PDHA1 genes recurred more than twice suggesting higher general/ethnic prevalence. In 19 cases, variants in 18 non-MD related genes (ADAR, CACNA1A, CDKL5, CLN3, CPS1, DMD, DYSF, GBE1, GFAP, HSD17B4, MECP2, MYBPC3, PEX5, PGAP2, PIGN, PRF1, SBDS, SCN2A) were found. The percentage of positive WES results rose gradually with increasing probability of MD according to the Mitochondrial Disease Criteria (MDC) scale (from 36 to 90 % for low and high probability, respectively). The percentage of detected MD-related genes compared with non MD-related genes also grew with the increasing MD likelihood (from 20 to 97 %). Molecular diagnosis was established in 30/47 (63.8 %) neonates and in 17/28 (60.7 %) patients with basal ganglia involvement. Mutations in CLPB, SERAC1, TAZ genes were identified in neonates with 3-methylglutaconic aciduria (3-MGA) as a discriminative feature. New MD-related candidate gene (NDUFB8) is under verification.

Conclusions

We suggest WES rather than targeted NGS as the method of choice in diagnostics of MD in children, including neonates with 3-MGA aciduria, who died without determination of disease cause and with limited availability of laboratory data. There is a strong correlation between the degree of MD diagnosis by WES and MD likelihood expressed by the MDC scale.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12967-016-0930-9) contains supplementary material, which is available to authorized users.
Dorota Piekutowska-Abramczuk, Elżbieta Ciara and Joanna Trubicka contributed equally to this work
Abkürzungen
MD
mitochondrial disorders
WES
whole-exome sequencing
MDC
mitochondrial disease criteria
NGS
next generation sequencing
LA-uria
lactic aciduria
3-MGA-uria
3-methylglutaconic aciduria
nDNA
nuclear DNA

Background

The diagnostics of mitochondrial disorders (MD) remains a challenge due to clinical heterogeneity [1] and the constantly expanding amount of gene candidates [2] as well as new phenotypes of these conditions [3]. There are eight published studies evaluating diagnostic utility of next generation sequencing (NGS) in mitochondrial patient cohorts, selected either based on particular biochemical signatures of disease [48] or centre/cohort-based studies [911]. However, of these only four used whole exome sequencing (WES) [710].
A particular challenge is the diagnosis of MD in neonates below 3 months of age as these patients may account for up to 30 % of all MD cases [12, 13]. However, so far, this group has not been specifically focused on in terms of diagnostic effectiveness of WES. The prevailing majority (96.5 %) of cases with a molecular diagnosis of MD established at our national reference centre until 2013 included children older than 3 months, indicating considerable under-diagnosis rates in the youngest infants in the Polish population. We have achieved some improvement in neonatal MD detection by performing targeted DNA sequencing (frequently post mortem) in cases of neonates with lactic aciduria (LA-uria) found in selective GC–MS screening, including over 90 % of SCO2 [14] and DGUOK [15] deficiencies, and ~ 50 % of SURF1 deficiency [16].
The purpose of our study was to evaluate WES as a tool for diagnosis of MD depending on the disease probability assessed according to mitochondrial disease criteria (MDC) [17]. We considered both patients with full-range mitochondrial diagnostics (Leigh syndrome features in MRI and/or muscle biopsy evaluation) and those in whom only fragmentary clinical data e.g. abnormal result of GC–MS screening indicating the presence LA-uria and/or 3-methylglutaconic aciduria (3-MGA-uria) were available.

Methods

Patients

WES was performed in patients with probable or possible MD, in whom a molecular defect had not been identified within the analysed period. In the retrospective subgroup (88/113 patients) the lag time was 2–25 years (mean 7.5 +/5.9 years). Since 2013 WES has been considered in consecutive patients (25/113). To undergo WES, a patient had to fulfil at least one of the following criteria: 1/neonatal onset; 2/basal ganglia involvement (Leigh syndrome—LS, nonspecific basal ganglia involvement); 3/increased 3-MGA in urine (patients recruited from a group of >250 cases of 3-MGA aciduria identified by national selective GC–MS screening for metabolic disorders since 2000), and 4/genetic counselling demands. Access to biological material and informed consent of parents were sine qua non conditions for participation in the study. Details of criteria for patient selection and their clinical characteristics are shown in Table 1 and Additional file 1: Table S1.
Table 1
Characteristics of 113 MD suspected patients; inclusion criteria
ID patient
Sex
Date of birth (year)
Neonatal onset
3-MGA in urine
Basal ganglia involvement
Death
MDC score
Muscle biopsy
Period from onset to WES (year)
1
F
2009
+
  
+
5
 
5
2
F
2013
+
  
+
4
Autopsy
0
3
M
2012
+
   
5
+
2
4
F
2007
    
4
+
0
5
F
2013
+
+
 
+
5
 
0
6
F
2011
    
4
 
0
7
M
2006
  
+
 
5
+
7
8
M
2008
 
+
  
2
 
0
9
M
2011
   
+
6
+
2
10
M
2004
  
+
 
5
+
7
11
M
2005
    
2
 
2
12
M
2005
   
+
3
Autopsy
7
13
M
2014
+
+
 
+
4
Autopsy
0
14
F
2006
   
+
3
+ Autopsy
7
15
F
2008
+
+
  
4
+
5
16
M
2012
  
+
 
3
 
0
17
F
1992
  
+
 
3
+
21
18
F
2003
  
+
 
3
+
7
19
M
2009
    
5
+
3
20
M
2009
    
4
 
2
21
F
2006
   
+
6
+
8
22
M
2010
 
+
+
 
8
+
2
23
M
2011
+
  
+
4
+
3
24
F
2008
+
   
6
+
4
25
M
2010
+
  
+
7
+
3
26
M
2011
+
 
+
 
8
+
2
27
M
2008
+
+
 
+
5
 
6
28
M
2004
+
+
 
+
3
+
11
29
F
2007
+
   
5
+
7
30
F
2002
+
  
+
2
+
13
31
F
2005
  
+
 
6
+
9
32
M
2002
  
+
+
5
Autopsy
3
33
F
2006
    
3
 
2
34
M
2006
  
+
 
6
+
4
35
M
2012
   
+
6
+
2
36
M
2006
  
+
+
5
+
6
37
M
2003
+
+
+
 
7
+
12
38
M
1985
    
3
+
12
39
M
1996
    
3
+
11
40
M
2010
+
+
 
+
5
Autopsy
4
41
F
2011
  
+
 
4
+
3
42
F
2013
    
2
 
0
43
M
1967
   
+
2
 
10
44
F
1956
    
4
 
3
45
F
1995
    
2
+
11
46
M
2009
    
3
+
4
47
M
2013
    
2
 
0
48
F
2007
    
2
 
4
49
M
2012
+
  
+
6
Autopsy
2
50
M
2009
+
  
+
2
Autopsy
5
51
M
2003
+
 
+
+
5
+
12
52
F
2011
+
   
5
 
3
53
M
2007
    
6
+
7
54
M
1990
   
+
6
+
25
55
F
1981
    
4
+
21
56
F
2012
    
4
 
0
57
M
2010
  
+
 
6
+
0
58
M
2012
  
+
 
6
+
0
59
F
2010
+
   
6
+
4
60
M
2003
+
 
+
+
6
+
10
61
M
1989
   
+
8
+
23
62
M
1997
+
  
+
6
+
18
63
F
1989
    
4
+
16
64
F
2012
  
+
+
6
+
2
65
M
1991
+
 
+
 
4
+
23
66
F
2012
+
   
5
+
2
67
F
2014
+
+
  
4
 
0
68
M
2012
  
+
 
4
+
0
69
M
2013
    
3
 
0
70
F
2004
   
+
5
+
11
71
M
2001
+
  
+
5
+
14
72
M
2011
+
  
+
4
Autopsy
3
73
F
2002
+
   
3
+
11
74
F
1989
    
4
+
12
75
M
2008
+
  
+
5
+
6
76
F
2003
  
+
 
4
+
6
77
F
2011
+
 
+
+
6
+
3
78
M
1994
 
+
  
3
 
17
79
M
2004
    
3
+
6
80
F
2012
 
+
 
+
2
 
0
81
F
1990
+
  
+
4
+ Autopsy
21
82
F
2000
  
+
 
3
 
2
83
F
2003
+
  
+
4
+
12
84
M
2010
+
   
3
+
4
85
F
2013
  
+
+
3
 
0
86
M
2008
   
+
2
 
5
87
M
2010
    
3
 
0
88
M
1997
    
2
 
0
89
F
2004
+
 
+
+
4
+
11
90
M
2002
   
+
4
+
13
91
M
2009
   
+
6
+
5
92
M
1995
 
+
  
2
 
5
93
M
2011
+
  
+
3
Autopsy
3
94
F
2010
+
+
  
4
 
3
95
F
2011
+
   
4
+
3
96
M
2011
   
+
2
 
2
97
M
2005
+
  
ND
4
+
10
98
F
2012
+
+
 
+
2
Autopsy
2
99
F
1974
    
2
 
0
100
M
2009
   
+
3
+
5
101
M
2012
  
+
 
4
 
0
102
F
2006
  
+
 
3
 
0
103
F
2008
+
+
 
+
3
Autopsy
4
104
F
1988
  
+
 
4
+
18
105
F
2014
+
  
+
5
 
0
106
M
2011
+
   
3
+
2
107
M
2006
    
4
+
8
108
M
2012
+
   
3
+
2
109
M
1997
+
  
+
4
Autopsy
18
110
M
2010
    
2
+
4
111
F
2014
+
  
+
4
 
0
112
F
2010
+
  
+
3
Autopsy
4
113
M
2013
   
+
4
+
0
F female, M male
The study included cases with a high probability of MD and those in whom MD was considered possible. The level of probability was assessed according to the MDC score proposed by the Nijmegen mitochondrial team as follows: 2–4 points: MD possible; 5–8 points: MD probable [17]. The MDC scoring for this study did not include the results of muscle biopsy (panels A+B, without C). The mean MD score in the study group was 4.1 ± 1.5 (range 2–8). Muscle biopsy with subsequent OXPHOS evaluation was performed in 67 cases, and autopsy in 15 cases. The family history was positive in 26 cases and three couples were consanguineous.
In the retrospective group, DNA was isolated from fibroblast cultures or frozen tissue samples obtained by muscle/liver biopsy or by autopsy. Whenever possible, skeletal muscle was preferred. In the remaining cases, DNA was isolated from blood. Throughout the paper the genes were classified as MD-related if they had a connection with mitochondrial disorders documented in the literature [9] or non MD-related when this was not the case.
Parents of the patients gave informed consent for the WES analysis. The study protocol was in agreement with the Helsinki Convention and the study was approved by the Ethics Committee of The Children’s Memorial Health Institute.

Whole-exome sequencing

WES was performed using TruSeqExome Enrichment Kits according to the manufacturer’s instructions (Illumina). The samples were run on 1/4 of a lane on HiSeq 1500 using 2 × 100 bp paired-end reads. Bioinformatics analysis was performed as previously described [18]. Briefly, after initial processing with CASAVA, the sequencing reads were aligned to the hg19 reference genome with the Burrows-Wheeler Alignment Tool and further processed by Genome Analysis Toolkit [19]. Base quality score recalibration, indel realignment, duplicate removal, and SNP/INDEL calling were done as described [20]. The detected variants were annotated using Annovar and converted to MS Access format for final manual analyses. Alignments were viewed with Integrative Genomics Viewer [21, 22]. The complete results of WES, including VCF and/or FASTQ files, are available on demand to qualified researchers. All samples were sequenced so that min. 80 % of target was covered 20× or more.
The presence of the variants identified by WES was confirmed by Sanger sequencing.

Results

Among 67 probands, we found 99 variants in 49 different genes with a Known disease link (Table 2). They were variants in mtDNA (6 patients) and nuclear DNA (nDNA): X-linked (9 patients), autosomal dominant (5 patients), and autosomal recessive (47 patients), including 11 homozygotes. In 50.5 % (50/99) the detected variants were novel (Table 3). Sixty-six of the variants found in the study group occurred in MD-related genes, whereas 31 were found in non MD-related loci. In addition, deleterious variants in a gene not previously linked to disease in humans were identified in one proband (Table 2).
Table 2
Molecular variants identified in 67 individuals of the study group
Gene
Chromosome:RefSeq
Variant 1
Variant 2
Zygosity status
Mode
ID patient
Type
Status
Origin
Type
Status
Origin
Mitochondrial disease gene
 ACAD9
chr3:NM_014049.4
c.514G>A/p.Gly172Arg
Novel
mat
c.803C>T/p.Ser268Phe
Novel
pat
comphtz
AR
15
 ACAD9
chr3:NM_014049.4
c.1552C>T/p.Arg518Cys
Known
mat
c.1553G>A/p.Arg518His
Known
pat
comphtz
AR
23
 ACAD9
chr3:NM_014049.4
c.728C>G/p.Thr243Arg
Novel
ND
c.1552C>T/p.Arg518Cys
Known
mat
comphtz
AR
53
 ADCK3
chr1:NM_020247.4
c.827A>G/p.Lys276Arg
Novel
mat
c.1702delG/p.Gly568Argfs
Novel
pat
comp htz
AR
61
 AIFM1
chrX:NM_004208.3
c.1474T>C/p.Tyr492His
Novel
mat
 
hemi
XLR
25
 CLPB
chr11:NM_030813.4
c.2045T>A/p.Ile682Asn
Known
pat
c.1937_1938insG/p.645Gly_646Cysfs
Known
mat
comphtz
AR
5
CLPB
chr11:NM_030813.4
c.1249C>T/p.Arg417a
Known
pat
c.748C>T/p.Arg250a
Known
mat
comphtz
AR
27
 CLPB
chr11:NM_030813.4
c.1249C>T/p.Arg417a
Known
pat
c.1222A>G/p.Arg408Gly
Known
mat
comphtz
AR
67
 COX10
chr17:NM_001303.3
c.1030A>G/p.Met344Val
Novel
pat
c.1270dupC/p.Leu424Profs
Novel
mat
comphtz
AR
9
 COX10
chr17:NM_001303
c.674C>T/p.Pro225Leu
Known
mat
c.674C>T/p.Pro225Leu
Known
pat
hom
AR
36
 DLD
chr7:NM_000108.4
c.1123G>A/p.Glu375Lys
Known
mat
c.1123G>A/p.Glu375Lys
Known 
pat
hom
AR
31
 EARS2
chr16:NM_001083614.1
c.164G>A/p.Arg55His
Known
mat
c.325G>C/p.Gly109Arg
Novel
pat
comphtz
AR
7
 EARS2
chr16:NM_001083614.1
c.164G>A/p.Arg55His
Known
pat
c.1256C>T/p.Pro419Leu
Novel
mat
comphtz
AR
70
 FBXL4
chr6:NM_012160.4
c.858+1G>T/p.?
Novel
pat
c.585+5G>C/p.?
Novel
mat
comphtz
AR
3
 FBXL4
chr6:NM_012160.4
c.1303C>T/p.Arg435a
Known
ND
c.64C>T/p.Arg22a
Novel
mat
comphtz
AR
52
 FBXL4
chr6:NM_012160.4
c.64C>T/p.Arg22a
Novel
mat
c.64C>T/p.Arg22a
Novel
pat
hom
AR
55
 MTATP6
chrM:NC_012920.1
m.9185T>C/p.Leo220Pro
Known
mat
 
hompl
M
32
 MTFMT
chr15:NM_139242.3
c.994C>T/p.Arg332a
Known
ND
c.626C>T/p.Ser209Leu
Known
ND
comphtz
AR
91
 MTND1
chrM:NC_012920.1
m.3902_3908invACCTTGC/p.?
Known
de novo
 
hetpl
M
22
 MTND1
chrM:NC_012920.1
m.3688G>A/p.Ala128Thr
Known
ND
 
hompl
M
64
 MTND3
chrM:NC_012920.1
m.10254G>A/p.Asp66Asn
Known
de novo
 
hetpl
M
57
 MTND5
chrM:NC_012920.1
m.12706T>C/p.Phe124Leu
Known
de novo
 
hetpl
M
34
 MTND5
chrM:NC_012920.1
m.13513G>A/p.Asp393Asn
Known
de novo
 
hetpl
M
35
 NAXE
chr1:NM_144772.2
c.653A>T/p.Asp218Val
Known
mat
c.743_744delC/p.247Ala_248Thrfs
Known
pat 
comphtz
AR
12
 NDUFS6
chr5:NM_004553.4
c.313_315delAAAG/p.104Lys_106Thrfs
Novel
pat
c.334_359del26ins13/p.Glu112 fs
Novel
mat
comphtz
AR
1
 NDUFS7
chr19:NM_024407.4
c.376C>T/p.Leu126Phe
Novel
ND
c.504G>C/p.Arg168Ser
Novel
ND
het
AR
75
 NDUFV1
chr11:NM_007103.3
c.733G>A/p.Val245Met
Novel
pat
c.383G>T/p.Arg128Leu
Novel
mat
comphtz
AR
10
 OPA1
chr3:NM_015560.2
c.1146A>G/p.Ile382Met
Known
mat
 
htz
AD
33
 PARS2
chr1:NM_152268.3
c.1091C>G/p.Pro364Arg
Novel
mat
c.239T>C/p.Ile80Thr
Novel
pat
comphtz
AR
60
 PC
chr11:NM_000920.3
c.808C>T/p.Arg270Trp
Known
pat
c.2381_2383delTGG/p.Val794del
Novel
mat
comphtz
AR
29
 PC
chr11:NM_000920.3
c.1487G>A/p.Arg496Gln
Novel
ND
c.584C>T/p.Ala195Val
Novel
ND
comphtz
AR
71
 PDHA1
chr X:NM_000284.3
c.262C>T/p.Arg88Cys
Known
mat
 
hemi
XLD
19
 PDHA1
chrX:NM_000284.3
c.856_859dupACTT/p. Arg288Leufs
Novel
de novo
 
htz
XLD
56
 PDHA1
chrX:NM_000284.3
c.933_935del/p.Arg311del l
Known
de novo
 
htz
XLD
66
 PDHA1
chrX:NM_000284.3
c.291G>A/p.?
Novel
de novo
 
hemi, mosaic
XLD
68
 POLG
chr15:NM_001126131.1
c.2639C>A/p.Ala880Asp
Novel
pat
c.2243G>C/p.Trp748Ser
Known
mat
comphtz
AR
113
 RARS2
chr6:NM_020320.3
c.1026G>A/p.Met342Ile
Novel
mat
c.622C>T/p.Gln208a
Novel
pat
comphtz
AR
41
 RRM2B
chr8:NM_015713.4
c.414_415delCA/p.Tyr138a
Novel
mat
c.414_415delCA/p.Tyr138a
 Novel
ND
hom
AR
21
 RRM2B
chr8:NM_015713.4
c.686G>T/p.Gly229Val
Known
mat
c.686G>T/p.Gly229Val
Known
pat
hom
AR
51
 SCO2
chr22:NM_005138.2
c.418G>A/p.Glu140Lys
Known
ND
c.418G>A/p.Glu140Lys
Known
ND
hom
AR
54
 SERAC1
chr6:NM_032861.3
c.1822_1828+10delinsACCAACAGG
Known
ND
c.1822_1828+10delinsACCAACAGG
Known
ND
hom
AR
37
 SLC19A3
chr2:NM_025243.3
c.68G>T/p.Gly23Val
Known
Pending
c.68G>T/p.Gly23Val
Known 
Pending
hom
AR
58
 SLC19A3
chr2:NM_025243.3
c.74dupT/p.Ser26Leufs
Known
ND
c.74dupT/p.Ser26Leufs
Known 
ND
hom
AR
109
 SLC25A12
chr2:NM_003705.4
c.1335C>A/p.Asn445Lys
Novel
mat
c.1335C>A/p.Asn445Lys
Novel
pat
hom
AR
24
 TAZ
chrX:NM_000116.3
c.684_685insC/p.227Phe_228Profs
Novel
ND
 
hemi
XLR
28
 TMEM126B a
chr11:NM_018480.4
c.635G>T/p.Gly212Val
Known
mat
c.635G>T/p.Gly212Val
Known 
pat
hom
AR
59
 VARS2
chr6:NM_001167734.1.5
c.1100C>T/p.Thr367Ile
Known
Pending
c.1490G>A/p.Arg497His
Novel
Pending
comphtz
AR
97
Non mitochondrial disease gene
 ADAR
chr1:NM_001111.4
c.3202+1G>A/p.?
Novel
ND
c.577C>G/p.Pro193Ala
Known
ND
comphtz
AR
18
 CACNA1A
chr19:NM_001127221.1
c.1997C>T/p.Thr666Met
Known
mat
 
htz
AD
39
 CDKL5
chrX:NM_003159.2
c.1942C>T/p.Gln648a
Novel
mat
 
hemi
XLD
65
 CLN3
chr16:NM_001042432.1
c.954_962+18del27/p.Leu313_Trp321del
Known
pat
c.461-280_677+382del966
Known
Pending 
comphtz
AR
88
 CPS1
chr2:NM_001875.4
c.1837-8A>G/p.?
Known
mat
c.3691G>C/p.Ala1231Pro
Novel
Paternal
comphtz
AR
13
 CPS1
chr2:NM_001875.4
c.1289C>G/p.Ser430a
Novel
mat
c.3971_3972delT/p.1323Ile_1324Leufs
Novel
pat 
comphtz
AR
40
 DMD
chr X:NM_004006
c.31+1G>A/p.?
Novel
mat
 
hemi
XLR
38
 DYSF
chr2:NM_003494.3
c.1180+5G>A/p.?
Known
ND
c.6124C>T/p.Arg2042Cys
Known
ND
comphtz
AR
45
 GBE1
chr3:NM_000158.3
c.1621A>T/p.Asn541Tyr
Novel
mat
c.263G>A/p.Cys88Tyr
Novel
pat
comphtz
AR
14
 GFAP
chr17:NM_002055.4
c.1100G>C/p.Arg367Thr
Novel
de novo
 
htz
AD
42
 HSD17B4
chr5:NM_000414.3
c.46G>A/p.Gly16Ser
Known
ND
c.367C>T/p.His123Tyr
Novel
ND
comphtz
AR
30
 MECP2
chrX:NM_004992.3
c.89delA/p.Lys30Argfs
Novel
de novo
 
hemi
XLD
106
 MYBPC3
chr11:NM_000256.3
c.1351+1G>A/p.?
Known
pat
 
htz
AD
8
 PEX5
chr12:NM_001131025.1
c.1669C>T/p.Arg557Trp
Known
mat
c.1799C>T/p.Ser600Leu
Novel
pat
comphtz
AR
20
 PGAP2
chr11:NM_001256240.1
c.2T>G/p.Met1?
Known
mat
c.221G>A/p.Arg74His
Known
pat
comphtz
AR
73
 PIGN
chr18:NM_176787.4
c.932T>G/p.Leu311Trp
Known
mat
c.790G>A/p.Gly264Arg
Known
pat
comphtz
AR
6
 PRF1
chr10:NM_001083116.1
c.808_812delGGCAG/p.Gly270 fs
Novel
mat
c.658G>A/p.Gly220Ser
Known
pat
comphtz
AR
2
 SBDS
chr7:NM_016038.2
c.258+2T>C/p.?
Known
pat
c.184A>T/p.Lys62a
Novel
mat
comphtz
AR
95
 SCN2A
chr2:NM_021007.2
c.2948T>G/p.Leu983Trp
Novel
de novo
 
htz
AD
47
New candidate gene for mitochondrial disease
 NDUFB8
chr10:NM_005004.3
c.432C>G/p.Cys144Trp
Novel
mat
c.227C>A/p.Pro76Gln
Novel
pat
comphtz
AR
26
mat maternal, pat paternal, ND not determined (DNA not available), hom homozygote, htz heterozygote, comp htz compound heterozygote, hemi hemizygote, hompl homoplasmic, hetpl heteroplasmic, AR autosomal recessive inheritance, AD autosomal dominant inheritance, XLR X-linked recessive inheritance, XLD X-linked dominant inheritance, M mitochondrial inheritance
aData published on ESHG 2016 by Alston et al.
Table 3
Novel molecular variants identified in the study; pathogenicity status
Gene
Variant
MAF
Pathogenicity statusa
Genotype–Phenotype correlationb
Parental results status
Family history
ID patient
1000 G
POL 400
ACAD9
c.514G>A/p.Gly172Arg
0
0
Pathogenic
Moderate
in-trans
Negative
15
ACAD9
c.803C>T/p.Ser268Phe
0
0
Pathogenic
Moderate
in-trans
Negative
15
ACAD9
c.728C>G/p.Thr243Arg
0
0
Pathogenic
Low
in-trans
Negative
53
ADAR
c.3202+1G>A/p.?
0
0.0014
Pathogenic
Moderate
ND
Affected brother
18
ADCK3
c.827A>G/p.Lys276Arg
0
0
Pathogenic
High
in-trans
Negative
61
ADCK3
c.1702delG/p.Gly568Argfs
0
0
Pathogenic
High
in-trans
Negative
61
AIFM1
c.1474T>C/p.Tyr492His
0
0
Pathogenic
Moderate
X-linked
Negative
25
CDKL5
c.1942C>T/p.Gln648a
0
0
Pathogenic
Moderate
X-linked
Negative
65
COX10
c.1030A>G/p.Met344Val
0
0.0007
Pathogenic
Moderate
in-trans
Negative
9
COX10
c.1270dupC/p.Leu424Profs
0
0
Pathogenic
Moderate
in-trans
Negative
9
CPS1
c.3691G>C/p.Ala1231Pro
0
0.0014
Pathogenic
Low
In-trans
Affected sister
13
CPS1
c.1289C>G/p.Ser430a
0
0.0014
Pathogenic
Moderate
in-trans
Affected brother
40
CPS1
c.3971_3972delT/p.1323Ile_1324Leufs
0
0.0014
Pathogenic
Moderate
in-trans
Affected brother
40
DMD
c.31+1G>A/p.?
0
0
Pathogenic
Low
X-linked
Affected many males
38
EARS2
c.325G>C/p.Gly109Arg
0
0.0014
Likely pathogenic
High
in-trans
Negative
7
EARS2
c.1256C>T/p.Pro419Leu
0
0
Likely pathogenic
Moderate
in-trans
Negative
70
FBXL4
c.858+1G>T/p.?
0
0
Pathogenic
High
in-trans
Miscarriage
3
FBXL4
c.585+5G>C/p.?
0
0
Pathogenic
High
in-trans
Miscarriage
3
FBXL4
c.64C>T/p.Arg22a
0
0
Pathogenic
Moderate
in-trans
Empty ovum
52
FBXL4
c.64C>T/p.Arg22a
0
0
Pathogenic
Moderate
in-trans
Negative
55
GBE1
c.1621A>T/p.Asn541Tyr
0
0
Pathogenic
Moderate
in-trans
Negative
14
GBE1
c.263G>A/p.Cys88Tyr
0
0
Possibly pathogenic
Moderate
in-trans
Negative
14
GFAP
c.1100G>C/p.Arg367Thr
0
0
Pathogenic
Moderate
de novo
Negative
42
HSD17B4
c.367C>T/p.His123Tyr
0
0.0014
Pathogenic
Moderate
ND
Affected brother
30
MECP2
c.89delA/p.Lys30Argfs
0
0.0
Pathogenic
High
de novo
Negative
106
NDUFB8
c.432C>G/p.Cys144Trp
0
0.0014
Possibly pathogenic
Moderate
in-trans
Negative
26
NDUFB8
c.227C>A/p.Pro76Gln
0
0
Pathogenic
Moderate
in-trans
Negative
26
NDUFS6
c.313_315delAAAG/p.104Lys_106Thrfs
0
0
Pathogenic
Moderate
in-trans
Affected brother
1
NDUFS6
c.334_359del26ins13/p.Glu112 fs
0
0
Pathogenic
Moderate
in-trans
Affected brother
1
NDUFS7
c.376C>T/p.Leu126Phe
0
0
Pathogenic
Moderate
ND
Similar symptoms in brother
75
NDUFS7
c.504G>C/p.Arg168Ser
0
0
Likely Pathogenic
Moderate
ND
Similar symptoms in brother
75
NDUFV1
c.733G>A/p.Val245Met
0.0005
0
Pathogenic
High
in-trans
Negative
10
NDUFV1
c.383G>T/p.Arg128Leu
0
0
Pathogenic
High
in-trans
Negative
10
PARS2
c.1091C>G/p.Pro364Arg
0.0014
0.003
Pathogenic
Moderate
in trans
Affected sibs
60
PARS2
c.239T>C/p.Ile80Thr
0
0
Pathogenic
Moderate
in trans
Affected sibs
60
PC
c.2381_2383delTGG/p.Val794del
0
0
uncertain Pathogenic
High
in-trans
Affected brother
29
PC
c.1487G>A/p.Arg496Gln
0
0
Pathogenic
High
ND
Negative
71
PC
c.584C>T/p.Ala195Val
0
0
Pathogenic
High
ND
Negative
71
PDHA1
c.856_859dupACTT/p. Arg288Leufs
0
0
Pathogenic
High
de novo
Negative
56
PDHA1
c.291G>A/p.?
0
0.0000
Uncertain pathogenic
Moderate
de novo
Negative
68
PEX5
c.1799C>T/p.Ser600Leu
0
0
Pathogenic
Low
in-trans
Negative
20
POLG
c.2639C>A/p.Ala880Asp
0
0
Pathogenic
Moderate
in-trans
Negative
113
PRF1
c.808_812delGGCAG/p.Gly270 fs
0
0.0000
Pathogenic
Low
in trans
Negative
2
RARS2
c.1026G>A/p.Met342Ile
0
0
Likely pathogenic
Moderate
in-trans
Affected brother
41
RARS2
c.622C>T/p.Gln208a
0
0.0014
Pathogenic
Moderate
in-trans
Affected brother
41
RRM2B
c.414_415delCA/p.Tyr138a
0
0.0014
Pathogenic
High
ND
Negative
21
SBDS
c.184A>T/p.Lys62a
0
0.002
Pathogenic
Low
in-trans
PI neural tube defect
95
SCN2A
c.2948T>G/p.Leu983Trp
0
0.0013
Pathogenic
High
de novo
Negative
47
SLC25A12
c.1335C>A/p.Asn445Lys
0
0
Pathogenic
Moderate
in-trans
Negative
24
TAZ
c.684_685insC/p.227Phe_228Profs
0
0.0012
Pathogenic
Low
ND
Negative
28
VARS2
c.1490G>A/p.Arg497His
0
0
Pathogenic
Low
ND
Similar disease in sibs
97
ND not determined due to lack of clinical data or DNA not available
aPathogenicity status evaluated according to in silico prediction algorithms (CADD, MetaSVM, Polyphen2 HDIV, Polyphen HVAR, mutation assessor, LRT, MetaLR, SIFT, mutationtaster) and classified as: pathogenic—nonsense, frameshift, splicesite and missense variants with pathogenic status at least in 7 of used algorithms; likely pathogenic - missense variants with pathogenic status in 4–6 of used algorithms; possibly pathogenic—missense variants with pathogenic status <4 of used algorithms
bGenotype-Phenotypecorrelationassessed by two independent specialists in clinical genetics and metabolic medicine
Mutations in MD-related genes were found in 47 probands. Identified pathogenic variants in 31 different genes included 27 located in nDNA and 4 in mtDNA (Table 2). Eleven genes were found defective more than once (PDHA1-4x, ACAD9, CLPB, and FBXL4-3x, COX10, EARS2, MTND1, MTND5, PC, RRM2B, SLC19A3-2x). The majority of these genes were not previously screened for in our mitochondrial diagnostic centre, with the exceptions of TAZ, PDHA1 [23], SCO2, and the genes encoding MTND and MTATP subunits. Below we present the results that were analysed according to selected phenotypic features (neonatal onset, basal ganglia involvement, 3-MGA) and MD likelihood.

Subgroup of neonates

WES yielded conclusive results in 63.9 % (30/47) of neonates studied (Fig. 1a). We found mutations in 23 different genes, including 16 MD-related (ACAD9, AIFM1, CLPB, FBXL4, NDUFS6, NDUFS7, PARS2, PC, PDHA1 [23], RRM2B, SERAC1, SLC19A3, SLC25A12, TAZ, TMEM126B, VARS2) and 7 non MD-related (CDKL5, CPS1, HSD17B4, MECP2, PGAP2, PRF1, SBDS). The majority of the neonates with positive WES results came from the first pregnancy of healthy unrelated parents. Twenty-nine neonates died before establishing a diagnosis; half in the early neonatal period. In 28 cases the mitochondrial testing was completed, including MR imaging and spectroscopy, muscle biopsy and fibroblast culture collection. In the remaining cases, mitochondrial diagnostics were absent or limited only to selective GC–MS screening showing increased excretion of lactate, Krebs cycle metabolites, 3-MGA and/or ketone bodies.

Subgroup with 3-methylglutaonic aciduria

Positive WES results were obtained in seven of 16 patients with persisting 3-MGA (Fig. 1b). In two subjects [P28 and P37] we found mutations in TAZ and SERAC1 genes known to cause mitochondrial diseases with 3-MGA as a discriminative feature [24]. Ex post it was apparent that earlier some important clinical features, including hearing impairment in the patient with SERAC1 mutations and increased excretion of 3-MGA in the terminal stage in the boy with the TAZ mutation, had been overlooked.
In three unrelated 3-MGA neonates included in this study, we identified mutations in the CLPB gene, whose link to human disease was subsequently established [25]. Two of them [P5 and P27] have already been reported in the first disease description [25].
Additionally, in two 3-MGA patients [P13, P40] we found molecular variants in the CPS1, a non MD-related gene linked to urea cycle disorder. In remaining patients in whom the reason for inclusion in the study group was a single GC–MS assessment (ACAD9 and MYBPC3 patients [P15, P8]), increased excretion of 3-MGA has been apparently transient or it was within normal limits after quantitative verification (Additional file 1: Table S1). Since traces of 3-MGA excretion were also found in a number of healthy siblings and parents of the patients the transient or mild increase in patients was most likely without a causal relationship.

Basal ganglia involvement (Leigh syndrome, Leigh-like, others)

In 15 of 28 patients from this group (Fig. 1c), molecular variants in LS-associated genes, including genes responsible for deficiency of complex I (MTND1, MTND3, MTND5, NDUFV1), complex IV (COX10), complex V (MTATP6), combined OXPHOS defect (EARS2, PARS2, RARS2, RRM2B, SERAC1, SLC19A3), and pyruvate dehydrogenase complex deficiency (DLD, PDHA1) [23] were identified. In the remaining 13 patients with LS or other basal ganglia involvement WES did not reveal variants in MD-related genes as listed by Neveling [9].
In three patients with basal ganglia involvement one MD-related candidate (NDUFB8) and two known non MD-related genes (ADAR, CDKL5) were identified.
In 19 patients who were included in the study because of a possible (low probability) mitochondrial disease, mutations in various non MD-related genes (ADAR, CACNA1A, CDKL5, CLN3, CPS1, DMD, DYSF, GBE1, GFAP, HSD17B4, MECP2, MYBPC3, PEX5, PGAP2, PIGN, PRF1, SBDS, SCN2A) were identified (Table 2; Additional file 1: Table S1).
While our project was ongoing new candidate genes found by us including PARS2 [26] and CLPB have been described by other research teams [25]. The causal role of another two of our candidates has been recognized even more recently. The NAXE gene (APOA1BP according to old nomenclature), a susceptibility locus for migraine [27], in which likely pathogenic variants were found by us in two brothers with a fatal encephalitis-like disorder [P12], has been described in April 2016 as the cause of lethal infantile leukoencephalopathy in a large consanguineous family [28]. A homozygous variant in the TMEM126B gene encoding a subunit required for mitochondrial complex I assembly [29, 30], found by us in a complex I deficient girl with extra-neurological presentation [P59], has been discovered and verified functionally as a cause of the disease in a subset of other patients (ESHG 2016, Alston et al.).
The interesting remaining candidate for a novel disease gene identified in our study is NDUFB8. Compound heterozygosity for two variants in NDUFB8 was found in a boy with a typical course of LS and complex I deficiency in muscle homogenate [P26] (Additional file 1: Table S1). NDUFB8 [31] encodes a known subunit of complex I, but, to the extent of our knowledge, its association with complex I deficiency and LS in humans has not been published so far.

Mitochondrial disease criteria score

In the studied cohort there were 40 patients with high probability of MD, i.e., with an MDC score above 4 (5–8, criteria A+B, without C). Positive WES results were obtained in 36 of them (90 %). In this group, pathogenic variants were found mainly in MD-related genes (CPS1 being the exception). WES failed in four patients [P49, P62, P77, P105] with an MDC score above 4. Some of them were found to carry a deleterious variant in one of the known MD-related genes only on one allele. The definite diagnosis still remains open in these cases. Bioinformatics tools for identification of structural variants using NGS have not been applied to our data so it is possible that in some cases the disease may be caused by large deletions/duplications. The complete lists of variants detected in the subjects without fully conclusive results and/or the respective FASTQ files are available on demand to qualified researchers.
Intermediate probability of MD (MDC = 4) was associated with the occurrence of variants in both MD-related and non MD-related genes, in ten (10/31) and six (6/31) patients, respectively. MD-related genes were represented in this subset twice by ACAD9 [P15, P23] and PDHA1 [P56, P68], and in single cases by CLPB [P67], FBLX4 [P55], POLG [P113], RARS2 [P41], SLC19A3 [P109], and VARS2 [P97].
In the subgroup with low probability of MD, i.e., a MDC score of 2–3 points, positive WES results were obtained in 15 of 42 cases (36 %). Three MD-related genes (7 %) including: OPA1 [P33], TAZ [P28] and NAXE [P12] were found. Non MD-related genes were identified in 12 of 42 cases (29 %).
The percentage of positive results rose gradually as the likelihood of MD increased, as shown by the MDC score (Fig. 2). In the subset of high probability of MD (MDC above 4), the detection percentage reached 90 %. There was a broad range of MD-related genes (Table 2). Only one non MD-related gene (CPS1) was found in a neonate with a MDC score of 5.
The participation of detected MD-related genes as compared with non MD-related genes also grew as the likelihood of MD probability increased (from 20 to 97 %, data not shown).

WES diagnostics of current cases vs. archival DNA samples

Characteristics of the patients stratified by the waiting period between disease onset and WES qualification into archival material and current diagnostics subset is shown in Table 4. WES efficacy assessed as percentage of molecularly confirmed diagnoses was comparable being higher than 50 % in both subsets. Contribution of MD-related genes expressed by the ratio of MD-related/non MD-related genes was higher in the archival than current subset (3.4 vs. 1.0, respectively) indicating that this subset contained more patients with non-mitochondrial genetic disorders and that our current qualification for WES became less demanding.
Table 4
WES results related to the origin of the qualified material and to the specific inclusion criteria
Subgroups of patients
MD or non-MD genes loci of variants
Diagnostics based on archival material
Current diagnostics
Total
Disease onset (year)
1996–2012
2013–2014
1996–2014
Number of patients
88 (5.5/year)
25 (12.5/year)
113
Period from onset to WES qualification (years)
2–25 (mean 5.5 ± 5.9 )
0
0–25
MDC scale (A+B, without C)
4.2 ± 1.5 (2–8)
3.6 ± 1.2 (2–6)
4.1 ± 1.5
Ratio of MD-related/non MD related genes
3.4
1.0
2.4
Patients deceased
Total no.
41
8
44 %
MD
51.2 % (21)
2
47 % (23)
non MD
(3)
2
(5)
Patients with neonatal onset
Total no.
41
6
42 %
MD
53.7 % (22)
2
51 % (24)
non MD
(5)
2
(7)
Patients with LS or other basal ganglia involvement
Total no.
21
7
25 %
MD
61.9 % (13)
3
57 % (16)
non MD
(2)
0
(2)
3-methylglutaconic aciduria
Total no.
13
3
14 %
MD
53.8 % (7)
2
53 % (9)
non MD
0
1
(1)
Muscle biopsy
Total no.
62
5
67/113
MD
56.4 % (35)
(4)
58 % (39)
non MD
(10)
(0)
(10)
Percentage of muscle biopsy
70 %
20 %
59 %
aItalics in brackets indicates the number of patients in the given subset
LS Leigh syndrome, MD mitochondrial disorder, MD/non MD MD-related/non MD-related genes wherein variants were identified

Muscle biopsy findings

OXPHOS assessment available for 67 muscle homogenates showed isolated complex I deficiency in 16 cases, complex IV deficiency in 6 cases and combined OXPHOS defect in 10 cases. There were unspecific changes in 22 bioptates and normal OXPHOS activity in 10. The results were not conclusive in three cases due to technical problems (too small muscle specimen, low protein concentration, low citric synthase activity).
Complex I deficiency was found in 11 patients with molecular variants in MD-related genes (ACAD9 [P15, P23, P53], NDUFV1 [P10], NDUFS7 [P75], MTND1 [P64], MTND3 [P57], EARS2 [P7], SLC19A3 [P58], TMEM126B [P59]) and in one candidate (NDUFB8 [P26]. In one patient [P95] a defect in non MD-related gene (SBDS) was found. In 4 patients WES results were not conclusive.
In the subset with complex IV deficiency molecular defects were confirmed in three patients including COX10 [P9, P36] and EARS2 [P70]) while three WES analyses were not conclusive.
Combined OXPHOS defect occurred in 8 patients with variants identified in MD-related genes (FBXL4 [P3], ADCK3 [P61], RRM2B [P21, P51], AIFM1 [P25], TAZ [P28], PC [P71], MTND5 [P34]). In two cases WES results were not conclusive.
Histological and histochemical data of the patients with positive WES showed presence of ragged red fibers in four cases (ADCK3 [P61], ACAD9 [P15, P23, P53]), “lipid storage myopathy” in four (PC [P71, P29], MTND5 [P35], PDHA1 [P66]) and SMA-like pattern in three (AIFM1 [P25], SCO2 [P54], RRM2B [P51]).
Depletion of mitochondrial DNA (<30 % of reference value) was revealed in tissues of 8 patients. Molecular defect was established by WES in four of them (COX10 [P9], FBXL4 [3], RRM2B [P21, P51]).

Verification of mitochondrial genome variants

Interestingly, in six patients with typical MD phenotype the search for pathogenic variants in MD-related nuclear genes by WES was negative yet pathogenic variants were found in mtDNA. Each mtDNA variant identified by WES, was subsequently verified by Sanger sequencing using specific primers for mitochondrial genome. All detected changes are known and have been repeatedly reported. Examination of different tissues in probands and maternally related family members showed varying levels of heteroplasmy (Fig. 3).

Discussion

Our results confirm that the implementation of WES led to a significant breakthrough in the diagnostics of MD in children [32]. This is expressed by both the increased number of identified genes and faster establishment of final diagnosis. The total number of genes with likely causative defects found in the present work was 47, a very satisfactory diagnostic yield when compared with 8 genes identified by us by single-gene Sanger sequencing before the introduction of WES (203 such diagnoses per ~1200 patients studied in the period from 1996 to 2013).
In our study we observed a pronounced upward trend in the detection of the molecular background of mitochondrial diseases that was associated with increased MD probability (Fig. 2). According to the MDC scale that we used, a final genetic diagnosis was achieved in over 90 % of patients with the highest MDC scores (5–8 points). In all such cases (with one exception for a neonate with CPS1 mutation), variants were found exclusively in MD-related genes. The diagnostic yield was the lowest (36 %) in the patients with low MD suspicion (MDC score 2–3), and most of the variants in this group were present in non MD-related genes.
A similar correlation between detection rate and the level of MD probability was described recently in a similar patient group studied by WES at the Nijmegen Mitochondrial Centre [10]. However, our results differed from that study in terms of the scope of detected defects. In our cohort, mutations in MTO1, TK2, C12orf65, COA6, TUFM, GFM1 were absent and the defects in nuclear encoded complex I subunits are different. This may be a result of random patient selection, but we should also take into account ethnic differences among European populations, e.g., the Slavonic vs. north-western European populations.
In addition, we identified six rare mtDNA pathogenic variants, not included in the common mutations screening i.e. m.9185T>C in MTATP6 [3335] and in mitochondrial DNA genes encoding complex I subunits, MTND1 [3638], MTND3 and MTND5 [3942].
One-third (15/47) of the identified gene defects were discovered during last 10 years and relatively poorly characterized in terms of phenotype. These included PGAP2 [43, 44], ACAD9 [45, 46], EARS2 [47], SERAC1 [48], SLC19A3 [49, 50], MTFMT [51], SLC25A12 [52] as well as VARS2 [53], AIFM1 [54], RARS2 [55], RRM2B [56], PIGN [44, 57], ADCK3 [58, 59] which were described in just individual cases. Notably, most of these genes are generally absent from commercial NGS panels available at present.
It is worth emphasizing that in some cases WES allowed for a diagnosis in statu nascendi, that is, at the time of the first publication of the new gene. This concerned, for example, mutations in CLPB [25, 60], PARS2 [26], FBXL4 [61, 62] and recently added TMEM126B (data published on ESHG 2016 by Alston et al.), and NAXE [28] In one of the patients with the MD phenotype we identified potentially pathogenic variants in candidate NDUFB8 which role in human pathology is under verification [Piekutowska-Abramczuk et al. submitted to SSIEM 2016].
According to published literature, every third paediatric MD case (approximately 30 % of all MD diagnoses in this age group) manifests clinically shortly after birth [12, 13]. The fatal outcome in such cases precludes transport to a reference centre and proper mitochondrial diagnostics. We have previously shown significantly reduced (up to ten times, about 3 % of all diagnoses) recognition of MD in this age group in Poland [16]. Therefore, neonates with suspected MD intentionally constituted a significant proportion of patients (47/113) undergoing WES in the present study.
Surprisingly, in the neonatal subgroup WES proved to be particularly useful, allowing identification of pathogenic variants in 24 various genes in 63.8 % of patients, including those without muscle biopsy or even autopsy. Our results extend the list recommended by Honzik [13] for neonatal MD diagnostics by at least 15 genes (MD-related: RRM2B, CLPB, ACAD9, FBXL4, PC, AIFM1, SLC25A12, MTND5, NDUFS6 and non MD-related: CPS1, PGAP2 and more).
In the LS subgroup WES expanded the set of patients from our centre diagnosed with complex I deficiency by three known genes: NDUFS6 [63, 64], NDUFV1 [65, 66], NDUFS7 [67], a new candidate NDUFB8 [68] and five MTNDs mentioned above. Despite this, complex I deficiency continues to be underrepresented in our cohort in relation to complex IV deficiency because of the high carriage rate of SURF1 mutations in Poland [69]. In a number of cases with basal ganglia brain changes, WES failed to show mutations in known LS-associated genes. This was especially the case in patients without lactic acidaemia and MDC scores below 5 (MD possible but not likely). We speculate that other, still unknown, genes or non-genetic factors might influence the occurrence of LS-brain changes.
Taken together, our results indicate that WES rather than targeted NGS should be the method of choice for MD testing, at least until all MD-associated genes are identified. Furthermore, the rationale for choosing WES in MD-suspected neonates is the non-specificity of symptoms and overlapping results of biochemical tests with non-mitochondrial errors of metabolism.
In 50.5 % the molecular variants were novel (Table 3). However, a number of recurrent rare pathogenic variants found in some recently discovered MD genes (p.Arg22* in FBLX4, p.Arg518Cys in ACAD9, p.Arg417* in CLPB and c.1822_1828+10delinsACCAACAGG in SERAC1) may extend the ethnic specificity of MD in the Polish population reported earlier by us for variants p.Glu140Lys in SCO2 [14] and c.845_846delCT in SURF1 genes [69]. Confirmation of these findings could facilitate in-house diagnostics in selected suspected cases.

Conclusions

1.
In a nationwide reference centre, WES provided positive results in >90 % of children with high likelihood of MD (MDC score above 4);
 
2.
WES should be recommended for diagnostics of mitochondrial pathology considering remarkable representation of non MD-related genes among causal factors in patients with lower likelihood of MD, as well as a possibility to discover new mitochondrial genes;
 
3.
WES significantly improves recognition of MD in newborns, even in the case of limited availability of appropriate diagnostic procedures;
 
4.
Despite being a sine qua non for certain diagnoses 3-MGA is not a universal marker of mitochondrial dysfunction;
 
5.
Recurrent variants recognized in some relatively new MD genes (FBLX4, ACAD9, and CLPB) may extend the known ethnic specificity of MD in the Polish population reported earlier for SCO2 and SURF1 variants.
 

Authors’ contributions

Conception and design: EP, RP, EC, DPA, JT, DR. Analysis and interpretation of data: EP, DR, DPA, EC, JT, AKW, MPa, EJ, JK, AP, MR, MPr. Coordination and drafting the article: DPA, EC, JT, PH, EP, AP. Bioinformatic analysis: PS, RP. Revising article critically for important intellectual content EP, MPr, MKW, RP. All authors read and approved the final manuscript.

Acknowledgements

We thank all of the physicians who referred affected children to our mitochondrial centre, especially Hanna Mierzewska, Jacek Pilch, Ewa Jamroz, Jolanta Wierzba, Maria Giżewska, and others.

Competing interests

The authors declare that they have no competing interests.
The study protocol was in agreement with the Helsinki Convention and the study was approved by the Ethics Committee of The Children’s Memorial Health Institute. Parents of the patients gave informed consent for the WES analysis.

Funding

The study was supported by CMHI projects no. S136/13, no. 126/12, no. 216/12, no. 217/12, no. S134/13, no. S211/10, and by grants from the National Science Centre, 2012/05/B/NZ2/01627, 1154/B/P01/2011/40, 2857/B/P01/2010/39, and EU Structural Funds Project POIG.02.01.00-14-059/09.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat DaRe JT, Vasta V, Penn J, Tran NT, Hahn SH. Targeted exome sequencing for mitochondrial disorders reveals high genetic heterogeneity. BMC Med Genet. 2013;14:118.CrossRefPubMedPubMedCentral DaRe JT, Vasta V, Penn J, Tran NT, Hahn SH. Targeted exome sequencing for mitochondrial disorders reveals high genetic heterogeneity. BMC Med Genet. 2013;14:118.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Vasta V, Ng SB, Turner EH, Shendure J, Hahn SH. Next generation sequence analysis for mitochondrial disorders. Genome Med. 2009;110:100.CrossRef Vasta V, Ng SB, Turner EH, Shendure J, Hahn SH. Next generation sequence analysis for mitochondrial disorders. Genome Med. 2009;110:100.CrossRef
3.
Zurück zum Zitat Koene S, Smeitink J. Mitochondrial medicine. J Inherit Metab Dis. 2011;342:247–8.CrossRef Koene S, Smeitink J. Mitochondrial medicine. J Inherit Metab Dis. 2011;342:247–8.CrossRef
4.
Zurück zum Zitat Shamseldin HE, Alshammari M, Al-Sheddi T, Salih MA, Alkhalidi H, Kentab A, Repetto GM, Hashem M, Alkuraya FS. Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J Med Genet. 2012;494:234–41.CrossRef Shamseldin HE, Alshammari M, Al-Sheddi T, Salih MA, Alkhalidi H, Kentab A, Repetto GM, Hashem M, Alkuraya FS. Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J Med Genet. 2012;494:234–41.CrossRef
5.
Zurück zum Zitat Calvo SE, Compton AG, Hershman SG, Lim SC, Lieber DS, Tucker EJ, Laskowski A, Garone C, Liu S, Jaffe DB, Christodoulou J, Fletcher JM, Bruno DL, Goldblatt J, Dimauro S, Thorburn DR, Mootha VK. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci Transl Med. 2012;4118:118ra10. Calvo SE, Compton AG, Hershman SG, Lim SC, Lieber DS, Tucker EJ, Laskowski A, Garone C, Liu S, Jaffe DB, Christodoulou J, Fletcher JM, Bruno DL, Goldblatt J, Dimauro S, Thorburn DR, Mootha VK. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci Transl Med. 2012;4118:118ra10.
6.
Zurück zum Zitat Koene S, Rodenburg RJ, van der Knaap MS, Willemsen MA, Sperl W, Laugel V, Ostergaard E, Tarnopolsky M, Martin MA, Nesbitt V, Fletcher J, Edvardson S, Procaccio V, Slama A, van den Heuvel LP, Smeitink JA. Natural disease course and genotype-phenotype correlations in Complex I deficiency caused by nuclear gene defects: what we learned from 130 cases. J Inherit Metab Dis. 2012;355:737–47.CrossRef Koene S, Rodenburg RJ, van der Knaap MS, Willemsen MA, Sperl W, Laugel V, Ostergaard E, Tarnopolsky M, Martin MA, Nesbitt V, Fletcher J, Edvardson S, Procaccio V, Slama A, van den Heuvel LP, Smeitink JA. Natural disease course and genotype-phenotype correlations in Complex I deficiency caused by nuclear gene defects: what we learned from 130 cases. J Inherit Metab Dis. 2012;355:737–47.CrossRef
7.
Zurück zum Zitat Taylor RW, Pyle A, Griffin H, Blakely EL, Duff J, He L, Smertenko T, Alston CL, Neeve VC, Best A, Yarham JW, Kirschner J, Schara U, Talim B, Topaloglu H, Baric I, Holinski-Feder E, Abicht A, Czermin B, Kleinle S, Morris AA, Vassallo G, Gorman GS, Ramesh V, Turnbull DM, Santibanez-Koref M, McFarland R, Horvath R, Chinnery PF. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA. 2014;3121:68–77.CrossRef Taylor RW, Pyle A, Griffin H, Blakely EL, Duff J, He L, Smertenko T, Alston CL, Neeve VC, Best A, Yarham JW, Kirschner J, Schara U, Talim B, Topaloglu H, Baric I, Holinski-Feder E, Abicht A, Czermin B, Kleinle S, Morris AA, Vassallo G, Gorman GS, Ramesh V, Turnbull DM, Santibanez-Koref M, McFarland R, Horvath R, Chinnery PF. Use of whole-exome sequencing to determine the genetic basis of multiple mitochondrial respiratory chain complex deficiencies. JAMA. 2014;3121:68–77.CrossRef
8.
Zurück zum Zitat Kohda M, Tokuzawa Y, Kishita Y, Nyuzuki H, Moriyama Y, Mizuno Y, Hirata T, Yatsuka Y, Yamashita-Sugahara Y, Nakachi Y, Kato H, Okuda A, Tamaru S, Borna NN, Banshoya K, Aigaki T, Sato-Miyata Y, Ohnuma K, Suzuki T, Nagao A, Maehata H, Matsuda F, Higasa K, Nagasaki M, Yasuda J, Yamamoto M, Fushimi T, Shimura M, Kaiho-Ichimoto K, Harashima H, Yamazaki T, Mori M, Murayama K, Ohtake A, Okazaki Y. A Comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies. PLoS Genet. 2016;121:e1005679.CrossRef Kohda M, Tokuzawa Y, Kishita Y, Nyuzuki H, Moriyama Y, Mizuno Y, Hirata T, Yatsuka Y, Yamashita-Sugahara Y, Nakachi Y, Kato H, Okuda A, Tamaru S, Borna NN, Banshoya K, Aigaki T, Sato-Miyata Y, Ohnuma K, Suzuki T, Nagao A, Maehata H, Matsuda F, Higasa K, Nagasaki M, Yasuda J, Yamamoto M, Fushimi T, Shimura M, Kaiho-Ichimoto K, Harashima H, Yamazaki T, Mori M, Murayama K, Ohtake A, Okazaki Y. A Comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies. PLoS Genet. 2016;121:e1005679.CrossRef
9.
Zurück zum Zitat Neveling K, Feenstra I, Gilissen C, Hoefsloot LH, Kamsteeg EJ, Mensenkamp AR, Rodenburg RJ, Yntema HG, Spruijt L, Vermeer S, Rinne T, van Gassen KL, Bodmer D, Lugtenberg D, de Reuver R, Buijsman W, Derks RC, Wieskamp N, van den Heuvel B, Ligtenberg MJ, Kremer H, Koolen DA, van de Warrenburg BP, Cremers FP, Marcelis CL, Smeitink JA, Wortmann SB, van Zelst-Stams WA, Veltman JA, Brunner HG, Scheffer H, Nelen MR. A post hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat. 2013;3412:1721–6.CrossRef Neveling K, Feenstra I, Gilissen C, Hoefsloot LH, Kamsteeg EJ, Mensenkamp AR, Rodenburg RJ, Yntema HG, Spruijt L, Vermeer S, Rinne T, van Gassen KL, Bodmer D, Lugtenberg D, de Reuver R, Buijsman W, Derks RC, Wieskamp N, van den Heuvel B, Ligtenberg MJ, Kremer H, Koolen DA, van de Warrenburg BP, Cremers FP, Marcelis CL, Smeitink JA, Wortmann SB, van Zelst-Stams WA, Veltman JA, Brunner HG, Scheffer H, Nelen MR. A post hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat. 2013;3412:1721–6.CrossRef
10.
Zurück zum Zitat Wortmann SB, Koolen DA, Smeitink JA, van den Heuvel L, Rodenburg RJ. Whole exome sequencing of suspected mitochondrial patients in clinical practice. J Inherit Metab Dis. 2015;383:437–43.CrossRef Wortmann SB, Koolen DA, Smeitink JA, van den Heuvel L, Rodenburg RJ. Whole exome sequencing of suspected mitochondrial patients in clinical practice. J Inherit Metab Dis. 2015;383:437–43.CrossRef
11.
Zurück zum Zitat Legati A, Reyes A, Nasca A, Invernizzi F, Lamantea E, Tiranti V, Garavaglia B, Lamperti C, Ardissone A, Moroni I, Robinson A, Ghezzi D, Zeviani M. New genes and pathomechanisms in mitochondrial disorders unraveled by NGS technologies. Biochim Biophys Acta. 2016;13:728. Legati A, Reyes A, Nasca A, Invernizzi F, Lamantea E, Tiranti V, Garavaglia B, Lamperti C, Ardissone A, Moroni I, Robinson A, Ghezzi D, Zeviani M. New genes and pathomechanisms in mitochondrial disorders unraveled by NGS technologies. Biochim Biophys Acta. 2016;13:728.
12.
Zurück zum Zitat Garcia-Cazorla A, De Lonlay P, Nassogne MC, Rustin P, Touati G, Saudubray JM. Long-term follow-up of neonatal mitochondrial cytopathies: a study of 57 patients. Pediatrics. 2005;1165:1170–7.CrossRef Garcia-Cazorla A, De Lonlay P, Nassogne MC, Rustin P, Touati G, Saudubray JM. Long-term follow-up of neonatal mitochondrial cytopathies: a study of 57 patients. Pediatrics. 2005;1165:1170–7.CrossRef
13.
Zurück zum Zitat Honzik T, Tesarova M, Magner M, Mayr J, Jesina P, Vesela K, Wenchich L, Szentivanyi K, Hansikova H, Sperl W, Zeman J. Neonatal onset of mitochondrial disorders in 129 patients: clinical and laboratory characteristics and a new approach to diagnosis. J Inherit Metab Dis. 2012;355:749–59.CrossRef Honzik T, Tesarova M, Magner M, Mayr J, Jesina P, Vesela K, Wenchich L, Szentivanyi K, Hansikova H, Sperl W, Zeman J. Neonatal onset of mitochondrial disorders in 129 patients: clinical and laboratory characteristics and a new approach to diagnosis. J Inherit Metab Dis. 2012;355:749–59.CrossRef
14.
Zurück zum Zitat Pronicka E, Piekutowska-Abramczuk D, Szymanska-Debinska T, Bielecka L, Kowalski P, Luczak S, Karkucinska-Wieckowska A, Migdal M, Kubalska J, Zimowski J, Jamroz E, Wierzba J, Sykut-Cegielska J, Pronicki M, Zaremba J, Krajewska-Walasek M. The natural history of SCO2 deficiency in 36 Polish children confirmed the genotype-phenotype correlation. Mitochondrion. 2013;136:810–6.CrossRef Pronicka E, Piekutowska-Abramczuk D, Szymanska-Debinska T, Bielecka L, Kowalski P, Luczak S, Karkucinska-Wieckowska A, Migdal M, Kubalska J, Zimowski J, Jamroz E, Wierzba J, Sykut-Cegielska J, Pronicki M, Zaremba J, Krajewska-Walasek M. The natural history of SCO2 deficiency in 36 Polish children confirmed the genotype-phenotype correlation. Mitochondrion. 2013;136:810–6.CrossRef
15.
Zurück zum Zitat Pronicka E, Weglewska-Jurkiewicz A, Taybert J, Pronicki M, Szymanska-Debinska T, Karkucinska-Wieckowska A, Jakobkiewicz-Banecka J, Kowalski P, Piekutowska-Abramczuk D, Pajdowska M, Socha P, Sykut-Cegielska J, Wegrzyn G. Post mortem identification of deoxyguanosine kinase (DGUOK) gene mutations combined with impaired glucose homeostasis and iron overload features in four infants with severe progressive liver failure. J Appl Genet. 2011;521:61–6.CrossRef Pronicka E, Weglewska-Jurkiewicz A, Taybert J, Pronicki M, Szymanska-Debinska T, Karkucinska-Wieckowska A, Jakobkiewicz-Banecka J, Kowalski P, Piekutowska-Abramczuk D, Pajdowska M, Socha P, Sykut-Cegielska J, Wegrzyn G. Post mortem identification of deoxyguanosine kinase (DGUOK) gene mutations combined with impaired glucose homeostasis and iron overload features in four infants with severe progressive liver failure. J Appl Genet. 2011;521:61–6.CrossRef
16.
Zurück zum Zitat Pajdowska M, Gradowska W, Piekutowska-Abramczuk D, Baczyńska A, Iwanicka-Pronicka K, Sykut-Cegielska J. Urinary organic acid analysis by gas chromatography mass spectrometry (GC-MS) in the detection of mitochondrial disorders. Standardy Med Pediatria. 2012;94:552–61. Pajdowska M, Gradowska W, Piekutowska-Abramczuk D, Baczyńska A, Iwanicka-Pronicka K, Sykut-Cegielska J. Urinary organic acid analysis by gas chromatography mass spectrometry (GC-MS) in the detection of mitochondrial disorders. Standardy Med Pediatria. 2012;94:552–61.
17.
Zurück zum Zitat Morava E, van den Heuvel L, Hol F, de Vries MC, Hogeveen M, Rodenburg RJ, Smeitink JA. Mitochondrial disease criteria: diagnostic applications in children. Neurology. 2006;6710:1823–6.CrossRef Morava E, van den Heuvel L, Hol F, de Vries MC, Hogeveen M, Rodenburg RJ, Smeitink JA. Mitochondrial disease criteria: diagnostic applications in children. Neurology. 2006;6710:1823–6.CrossRef
18.
Zurück zum Zitat Ploski R, Pollak A, Muller S, Franaszczyk M, Michalak E, Kosinska J, Stawinski P, Spiewak M, Seggewiss H, Bilinska ZT. Does p. Q247X in TRIM63 cause human hypertrophic cardiomyopathy? Circ Res. 2014;1142:e2–5.CrossRef Ploski R, Pollak A, Muller S, Franaszczyk M, Michalak E, Kosinska J, Stawinski P, Spiewak M, Seggewiss H, Bilinska ZT. Does p. Q247X in TRIM63 cause human hypertrophic cardiomyopathy? Circ Res. 2014;1142:e2–5.CrossRef
19.
Zurück zum Zitat McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;209:1297–303.CrossRef McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA. The Genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;209:1297–303.CrossRef
20.
Zurück zum Zitat DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;435:491–8.CrossRef DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;435:491–8.CrossRef
21.
Zurück zum Zitat Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;3816:e164.CrossRef Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;3816:e164.CrossRef
22.
Zurück zum Zitat Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011;291:24–6.CrossRef Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011;291:24–6.CrossRef
23.
Zurück zum Zitat Ciara E, Rokicki D, Halat P, Karkucinska-Wieckowska A, Piekutowska-Abramczuk D, Mayr J, Trubicka J, Szymanska-Debinska T, Pronicki M, Pajdowska M, Dudzinska M, Gizewska M, Krajewska-Walasek M, Ksiazyk J, Sperl W, Ploski R, Pronicka E. Difficulties in recognition of pyruvate dehydrogenase complex deficiency on the basis of clinical and biochemical features. The role of next-generation sequencing. Mol Genet Metab Rep. 2016;7:70–6.CrossRefPubMedPubMedCentral Ciara E, Rokicki D, Halat P, Karkucinska-Wieckowska A, Piekutowska-Abramczuk D, Mayr J, Trubicka J, Szymanska-Debinska T, Pronicki M, Pajdowska M, Dudzinska M, Gizewska M, Krajewska-Walasek M, Ksiazyk J, Sperl W, Ploski R, Pronicka E. Difficulties in recognition of pyruvate dehydrogenase complex deficiency on the basis of clinical and biochemical features. The role of next-generation sequencing. Mol Genet Metab Rep. 2016;7:70–6.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Wortmann SB, Duran M, Anikster Y, Barth PG, Sperl W, Zschocke J, Morava E, Wevers RA. Inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature: proper classification and nomenclature. J Inherit Metab Dis. 2013;366:923–8.CrossRef Wortmann SB, Duran M, Anikster Y, Barth PG, Sperl W, Zschocke J, Morava E, Wevers RA. Inborn errors of metabolism with 3-methylglutaconic aciduria as discriminative feature: proper classification and nomenclature. J Inherit Metab Dis. 2013;366:923–8.CrossRef
25.
Zurück zum Zitat Wortmann SB, Zietkiewicz S, Kousi M, Szklarczyk R, Haack TB, Gersting SW, Muntau AC, Rakovic A, Renkema GH, Rodenburg RJ, Strom TM, Meitinger T, Rubio-Gozalbo ME, Chrusciel E, Distelmaier F, Golzio C, Jansen JH, van Karnebeek C, Lillquist Y, Lucke T, Ounap K, Zordania R, Yaplito-Lee J, van Bokhoven H, Spelbrink JN, Vaz FM, Pras-Raves M, Ploski R, Pronicka E, Klein C, Willemsen MA, de Brouwer AP, Prokisch H, Katsanis N, Wevers RA. CLPB mutations cause 3-methylglutaconic aciduria, progressive brain atrophy, intellectual disability, congenital neutropenia, cataracts, movement disorder. Am J Hum Genet. 2015;962:245–57.CrossRef Wortmann SB, Zietkiewicz S, Kousi M, Szklarczyk R, Haack TB, Gersting SW, Muntau AC, Rakovic A, Renkema GH, Rodenburg RJ, Strom TM, Meitinger T, Rubio-Gozalbo ME, Chrusciel E, Distelmaier F, Golzio C, Jansen JH, van Karnebeek C, Lillquist Y, Lucke T, Ounap K, Zordania R, Yaplito-Lee J, van Bokhoven H, Spelbrink JN, Vaz FM, Pras-Raves M, Ploski R, Pronicka E, Klein C, Willemsen MA, de Brouwer AP, Prokisch H, Katsanis N, Wevers RA. CLPB mutations cause 3-methylglutaconic aciduria, progressive brain atrophy, intellectual disability, congenital neutropenia, cataracts, movement disorder. Am J Hum Genet. 2015;962:245–57.CrossRef
26.
Zurück zum Zitat Sofou K, Kollberg G, Holmstrom M, Davila M, Darin N, Gustafsson CM, Holme E, Oldfors A, Tulinius M, Asin-Cayuela J. Whole exome sequencing reveals mutations in NARS2 and PARS2, encoding the mitochondrial asparaginyl-tRNA synthetase and prolyl-tRNA synthetase, in patients with Alpers syndrome. Mol Genet Genom Med. 2015;31:59–68.CrossRef Sofou K, Kollberg G, Holmstrom M, Davila M, Darin N, Gustafsson CM, Holme E, Oldfors A, Tulinius M, Asin-Cayuela J. Whole exome sequencing reveals mutations in NARS2 and PARS2, encoding the mitochondrial asparaginyl-tRNA synthetase and prolyl-tRNA synthetase, in patients with Alpers syndrome. Mol Genet Genom Med. 2015;31:59–68.CrossRef
27.
Zurück zum Zitat Anttila V, Winsvold BS, Gormley P, Kurth T, Bettella F, McMahon G, Kallela M, Malik R, de Vries B, Terwindt G, Medland SE, Todt U, McArdle WL, Quaye L, Koiranen M, Ikram MA, Lehtimaki T, Stam AH, Ligthart L, Wedenoja J, Dunham I, Neale BM, Palta P, Hamalainen E, Schurks M, Rose LM, Buring JE, Ridker PM, Steinberg S, Stefansson H, Jakobsson F, Lawlor DA, Evans DM, Ring SM, Farkkila M, Artto V, Kaunisto MA, Freilinger T, Schoenen J, Frants RR, Pelzer N, Weller CM, Zielman R, Heath AC, Madden PA, Montgomery GW, Martin NG, Borck G, Gobel H, Heinze A, Heinze-Kuhn K, Williams FM, Hartikainen AL, Pouta A, van den Ende J, Uitterlinden AG, Hofman A, Amin N, Hottenga JJ, Vink JM, Heikkila K, Alexander M, Muller-Myhsok B, Schreiber S, Meitinger T, Wichmann HE, Aromaa A, Eriksson JG, Traynor BJ, Trabzuni D, Rossin E, Lage K, Jacobs SB, Gibbs JR, Birney E, Kaprio J, Penninx BW, Boomsma DI, van Duijn C, Raitakari O, Jarvelin MR, Zwart JA, Cherkas L, Strachan DP, Kubisch C, Ferrari MD, van den Maagdenberg AM, Dichgans M, Wessman M, Smith GD, Stefansson K, Daly MJ, Nyholt DR, Chasman DI, Palotie A. North American Brain Expression C, Consortium UKBE, International Headache Genetics C, Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet. 2013;458:912–7.CrossRef Anttila V, Winsvold BS, Gormley P, Kurth T, Bettella F, McMahon G, Kallela M, Malik R, de Vries B, Terwindt G, Medland SE, Todt U, McArdle WL, Quaye L, Koiranen M, Ikram MA, Lehtimaki T, Stam AH, Ligthart L, Wedenoja J, Dunham I, Neale BM, Palta P, Hamalainen E, Schurks M, Rose LM, Buring JE, Ridker PM, Steinberg S, Stefansson H, Jakobsson F, Lawlor DA, Evans DM, Ring SM, Farkkila M, Artto V, Kaunisto MA, Freilinger T, Schoenen J, Frants RR, Pelzer N, Weller CM, Zielman R, Heath AC, Madden PA, Montgomery GW, Martin NG, Borck G, Gobel H, Heinze A, Heinze-Kuhn K, Williams FM, Hartikainen AL, Pouta A, van den Ende J, Uitterlinden AG, Hofman A, Amin N, Hottenga JJ, Vink JM, Heikkila K, Alexander M, Muller-Myhsok B, Schreiber S, Meitinger T, Wichmann HE, Aromaa A, Eriksson JG, Traynor BJ, Trabzuni D, Rossin E, Lage K, Jacobs SB, Gibbs JR, Birney E, Kaprio J, Penninx BW, Boomsma DI, van Duijn C, Raitakari O, Jarvelin MR, Zwart JA, Cherkas L, Strachan DP, Kubisch C, Ferrari MD, van den Maagdenberg AM, Dichgans M, Wessman M, Smith GD, Stefansson K, Daly MJ, Nyholt DR, Chasman DI, Palotie A. North American Brain Expression C, Consortium UKBE, International Headache Genetics C, Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet. 2013;458:912–7.CrossRef
28.
Zurück zum Zitat Spiegel R, Shaag A, Shalev S, Elpeleg O. Homozygous mutation in the APOA1BP is associated with a lethal infantile leukoencephalopathy. Neurogenetics. 2016. doi:10.1007/s10048-016-0483-3. Spiegel R, Shaag A, Shalev S, Elpeleg O. Homozygous mutation in the APOA1BP is associated with a lethal infantile leukoencephalopathy. Neurogenetics. 2016. doi:10.​1007/​s10048-016-0483-3.
29.
Zurück zum Zitat Heide H, Bleier L, Steger M, Ackermann J, Drose S, Schwamb B, Zornig M, Reichert AS, Koch I, Wittig I, Brandt U. Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. Cell Metab. 2012;164:538–49.CrossRef Heide H, Bleier L, Steger M, Ackermann J, Drose S, Schwamb B, Zornig M, Reichert AS, Koch I, Wittig I, Brandt U. Complexome profiling identifies TMEM126B as a component of the mitochondrial complex I assembly complex. Cell Metab. 2012;164:538–49.CrossRef
30.
Zurück zum Zitat Andrews B, Carroll J, Ding S, Fearnley IM, Walker JE. Assembly factors for the membrane arm of human complex I. Proc Natl Acad Sci USA. 2013;11047:18934–9.CrossRef Andrews B, Carroll J, Ding S, Fearnley IM, Walker JE. Assembly factors for the membrane arm of human complex I. Proc Natl Acad Sci USA. 2013;11047:18934–9.CrossRef
31.
Zurück zum Zitat Emahazion T, Brookes AJ. Mapping of the NDUFA2, NDUFA6, NDUFA7, NDUFB8, and NDUFS8 electron transport chain genes by intron based radiation hybrid mapping. Cytogenet Cell Genet. 1998;821–2:114.CrossRef Emahazion T, Brookes AJ. Mapping of the NDUFA2, NDUFA6, NDUFA7, NDUFB8, and NDUFS8 electron transport chain genes by intron based radiation hybrid mapping. Cytogenet Cell Genet. 1998;821–2:114.CrossRef
32.
Zurück zum Zitat Wong LJ. Next generation molecular diagnosis of mitochondrial disorders. Mitochondrion. 2013;134:379–87.CrossRef Wong LJ. Next generation molecular diagnosis of mitochondrial disorders. Mitochondrion. 2013;134:379–87.CrossRef
33.
Zurück zum Zitat Moslemi AR, Darin N, Tulinius M, Oldfors A, Holme E. Two new mutations in the MTATP6 gene associated with Leigh syndrome. Neuropediatrics. 2005;365:314–8.CrossRef Moslemi AR, Darin N, Tulinius M, Oldfors A, Holme E. Two new mutations in the MTATP6 gene associated with Leigh syndrome. Neuropediatrics. 2005;365:314–8.CrossRef
34.
Zurück zum Zitat Castagna AE, Addis J, McInnes RR, Clarke JT, Ashby P, Blaser S, Robinson BH. Late onset Leigh syndrome and ataxia due to a T to C mutation at bp 9,185 of mitochondrial DNA. Am J Med Genet A. 2007;143A8:808–16.CrossRef Castagna AE, Addis J, McInnes RR, Clarke JT, Ashby P, Blaser S, Robinson BH. Late onset Leigh syndrome and ataxia due to a T to C mutation at bp 9,185 of mitochondrial DNA. Am J Med Genet A. 2007;143A8:808–16.CrossRef
35.
Zurück zum Zitat Pitceathly RD, Murphy SM, Cottenie E, Chalasani A, Sweeney MG, Woodward C, Mudanohwo EE, Hargreaves I, Heales S, Land J, Holton JL, Houlden H, Blake J, Champion M, Flinter F, Robb SA, Page R, Rose M, Palace J, Crowe C, Longman C, Lunn MP, Rahman S, Reilly MM, Hanna MG. Genetic dysfunction of MT-ATP6 causes axonal Charcot-Marie-Tooth disease. Neurology. 2012;7911:1145–54.CrossRef Pitceathly RD, Murphy SM, Cottenie E, Chalasani A, Sweeney MG, Woodward C, Mudanohwo EE, Hargreaves I, Heales S, Land J, Holton JL, Houlden H, Blake J, Champion M, Flinter F, Robb SA, Page R, Rose M, Palace J, Crowe C, Longman C, Lunn MP, Rahman S, Reilly MM, Hanna MG. Genetic dysfunction of MT-ATP6 causes axonal Charcot-Marie-Tooth disease. Neurology. 2012;7911:1145–54.CrossRef
36.
Zurück zum Zitat Musumeci O, Andreu AL, Shanske S, Bresolin N, Comi GP, Rothstein R, Schon EA, DiMauro S. Intragenic inversion of mtDNA: a new type of pathogenic mutation in a patient with mitochondrial myopathy. Am J Hum Genet. 2000;666:1900–4.CrossRef Musumeci O, Andreu AL, Shanske S, Bresolin N, Comi GP, Rothstein R, Schon EA, DiMauro S. Intragenic inversion of mtDNA: a new type of pathogenic mutation in a patient with mitochondrial myopathy. Am J Hum Genet. 2000;666:1900–4.CrossRef
37.
Zurück zum Zitat Blakely EL, Rennie KJ, Jones L, Elstner M, Chrzanowska-Lightowlers ZM, White CB, Shield JP, Pilz DT, Turnbull DM, Poulton J, Taylor RW. Sporadic intragenic inversion of the mitochondrial DNA MTND1 gene causing fatal infantile lactic acidosis. Pediatr Res. 2006;593:440–4.CrossRef Blakely EL, Rennie KJ, Jones L, Elstner M, Chrzanowska-Lightowlers ZM, White CB, Shield JP, Pilz DT, Turnbull DM, Poulton J, Taylor RW. Sporadic intragenic inversion of the mitochondrial DNA MTND1 gene causing fatal infantile lactic acidosis. Pediatr Res. 2006;593:440–4.CrossRef
38.
Zurück zum Zitat Valente L, Piga D, Lamantea E, Carrara F, Uziel G, Cudia P, Zani A, Farina L, Morandi L, Mora M, Spinazzola A, Zeviani M, Tiranti V. Identification of novel mutations in five patients with mitochondrial encephalomyopathy. Biochim Biophys Acta. 2009;17875:491–501.CrossRef Valente L, Piga D, Lamantea E, Carrara F, Uziel G, Cudia P, Zani A, Farina L, Morandi L, Mora M, Spinazzola A, Zeviani M, Tiranti V. Identification of novel mutations in five patients with mitochondrial encephalomyopathy. Biochim Biophys Acta. 2009;17875:491–501.CrossRef
39.
Zurück zum Zitat Shanske S, Coku J, Lu J, Ganesh J, Krishna S, Tanji K, Bonilla E, Naini AB, Hirano M, DiMauro S. The G13513A mutation in the ND5 gene of mitochondrial DNA as a common cause of MELAS or Leigh syndrome: evidence from 12 cases. Arch Neurol. 2008;653:368–72. Shanske S, Coku J, Lu J, Ganesh J, Krishna S, Tanji K, Bonilla E, Naini AB, Hirano M, DiMauro S. The G13513A mutation in the ND5 gene of mitochondrial DNA as a common cause of MELAS or Leigh syndrome: evidence from 12 cases. Arch Neurol. 2008;653:368–72.
40.
Zurück zum Zitat Zhadanov SI, Grechanina EY, Grechanina YB, Gusar VA, Fedoseeva NP, Lebon S, Munnich A, Schurr TG. Fatal manifestation of a de novo ND5 mutation: insights into the pathogenetic mechanisms of mtDNA ND5 gene defects. Mitochondrion. 2007;74:260–6.CrossRef Zhadanov SI, Grechanina EY, Grechanina YB, Gusar VA, Fedoseeva NP, Lebon S, Munnich A, Schurr TG. Fatal manifestation of a de novo ND5 mutation: insights into the pathogenetic mechanisms of mtDNA ND5 gene defects. Mitochondrion. 2007;74:260–6.CrossRef
41.
Zurück zum Zitat Swalwell H, Kirby DM, Blakely EL, Mitchell A, Salemi R, Sugiana C, Compton AG, Tucker EJ, Ke BX, Lamont PJ, Turnbull DM, McFarland R, Taylor RW, Thorburn DR. Respiratory chain complex I deficiency caused by mitochondrial DNA mutations. Eur J Hum Genet. 2011;197:769–75.CrossRef Swalwell H, Kirby DM, Blakely EL, Mitchell A, Salemi R, Sugiana C, Compton AG, Tucker EJ, Ke BX, Lamont PJ, Turnbull DM, McFarland R, Taylor RW, Thorburn DR. Respiratory chain complex I deficiency caused by mitochondrial DNA mutations. Eur J Hum Genet. 2011;197:769–75.CrossRef
42.
Zurück zum Zitat Taylor RW, Morris AA, Hutchinson M, Turnbull DM. Leigh disease associated with a novel mitochondrial DNA ND5 mutation. Eur J Hum Genet. 2002;102:141–4.CrossRef Taylor RW, Morris AA, Hutchinson M, Turnbull DM. Leigh disease associated with a novel mitochondrial DNA ND5 mutation. Eur J Hum Genet. 2002;102:141–4.CrossRef
43.
Zurück zum Zitat Hansen L, Tawamie H, Murakami Y, Mang Y, ur Rehman S, Buchert R, Schaffer S, Muhammad S, Bak M, Nothen MM, Bennett EP, Maeda Y, Aigner M, Reis A, Kinoshita T, Tommerup N, Baig SM, AbouJamra R. Hypomorphic mutations in PGAP2, encoding a GPI-anchor-remodeling protein, cause autosomal-recessive intellectual disability. Am J Hum Genet. 2013;924:575–83.CrossRef Hansen L, Tawamie H, Murakami Y, Mang Y, ur Rehman S, Buchert R, Schaffer S, Muhammad S, Bak M, Nothen MM, Bennett EP, Maeda Y, Aigner M, Reis A, Kinoshita T, Tommerup N, Baig SM, AbouJamra R. Hypomorphic mutations in PGAP2, encoding a GPI-anchor-remodeling protein, cause autosomal-recessive intellectual disability. Am J Hum Genet. 2013;924:575–83.CrossRef
44.
Zurück zum Zitat Jezela-Stanek A, Ciara E, Piekutowska-Abramczuk D, Trubicka J, Jurkiewicz E, Rokicki D, Mierzewska H, Spychalska J, Uhrynowska M, Szwarc-Bronikowska M, Buda P, Said AR, Jamroz E, Rydzanicz M, Ploski R, Krajewska-Walasek M, Pronicka E. Congenital disorder of glycosylphosphatidylinositol (GPI)-anchor biosynthesis-The phenotype of two patients with novel mutations in the PIGN and PGAP2 genes. Eur J Paediatr Neurol. 2016;203:462–73.CrossRef Jezela-Stanek A, Ciara E, Piekutowska-Abramczuk D, Trubicka J, Jurkiewicz E, Rokicki D, Mierzewska H, Spychalska J, Uhrynowska M, Szwarc-Bronikowska M, Buda P, Said AR, Jamroz E, Rydzanicz M, Ploski R, Krajewska-Walasek M, Pronicka E. Congenital disorder of glycosylphosphatidylinositol (GPI)-anchor biosynthesis-The phenotype of two patients with novel mutations in the PIGN and PGAP2 genes. Eur J Paediatr Neurol. 2016;203:462–73.CrossRef
45.
Zurück zum Zitat Haack TB, Danhauser K, Haberberger B, Hoser J, Strecker V, Boehm D, Uziel G, Lamantea E, Invernizzi F, Poulton J, Rolinski B, Iuso A, Biskup S, Schmidt T, Mewes HW, Wittig I, Meitinger T, Zeviani M, Prokisch H. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet. 2010;4212:1131–4.CrossRef Haack TB, Danhauser K, Haberberger B, Hoser J, Strecker V, Boehm D, Uziel G, Lamantea E, Invernizzi F, Poulton J, Rolinski B, Iuso A, Biskup S, Schmidt T, Mewes HW, Wittig I, Meitinger T, Zeviani M, Prokisch H. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet. 2010;4212:1131–4.CrossRef
46.
Zurück zum Zitat Nouws J, Nijtmans L, Houten SM, van den Brand M, Huynen M, Venselaar H, Hoefs S, Gloerich J, Kronick J, Hutchin T, Willems P, Rodenburg R, Wanders R, van den Heuvel L, Smeitink J, Vogel RO. Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab. 2010;123:283–94.CrossRef Nouws J, Nijtmans L, Houten SM, van den Brand M, Huynen M, Venselaar H, Hoefs S, Gloerich J, Kronick J, Hutchin T, Willems P, Rodenburg R, Wanders R, van den Heuvel L, Smeitink J, Vogel RO. Acyl-CoA dehydrogenase 9 is required for the biogenesis of oxidative phosphorylation complex I. Cell Metab. 2010;123:283–94.CrossRef
47.
Zurück zum Zitat Steenweg ME, Ghezzi D, Haack T, Abbink TE, Martinelli D, Van berkel CG, Bley A, Diogo L, Grillo E, Te WaterNaude J, Strom TM, Bertini E, Prokisch H, Van derknaap MS, Zeviani M. Leukoencephalopathy with thalamus and brainstem involvement and high lactate ‘LTBL’ caused by EARS2 mutations. Brain. 2012;135(pt5):1387–94.CrossRefPubMed Steenweg ME, Ghezzi D, Haack T, Abbink TE, Martinelli D, Van berkel CG, Bley A, Diogo L, Grillo E, Te WaterNaude J, Strom TM, Bertini E, Prokisch H, Van derknaap MS, Zeviani M. Leukoencephalopathy with thalamus and brainstem involvement and high lactate ‘LTBL’ caused by EARS2 mutations. Brain. 2012;135(pt5):1387–94.CrossRefPubMed
48.
Zurück zum Zitat Wortmann SB, Vaz FM, Gardeitchik T, Vissers LE, Renkema GH, Schuurs-Hoeijmakers JH, Kulik W, Lammens M, Christin C, Kluijtmans LA, Rodenburg RJ, Nijtmans LG, Grunewald A, Klein C, Gerhold JM, Kozicz T, van Hasselt PM, Harakalova M, Kloosterman W, Baric I, Pronicka E, Ucar SK, Naess K, Singhal KK, Krumina Z, Gilissen C, van Bokhoven H, Veltman JA, Smeitink JA, Lefeber DJ, Spelbrink JN, Wevers RA, Morava E, de Brouwer AP. Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat Genet. 2012;447:797–802.CrossRef Wortmann SB, Vaz FM, Gardeitchik T, Vissers LE, Renkema GH, Schuurs-Hoeijmakers JH, Kulik W, Lammens M, Christin C, Kluijtmans LA, Rodenburg RJ, Nijtmans LG, Grunewald A, Klein C, Gerhold JM, Kozicz T, van Hasselt PM, Harakalova M, Kloosterman W, Baric I, Pronicka E, Ucar SK, Naess K, Singhal KK, Krumina Z, Gilissen C, van Bokhoven H, Veltman JA, Smeitink JA, Lefeber DJ, Spelbrink JN, Wevers RA, Morava E, de Brouwer AP. Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nat Genet. 2012;447:797–802.CrossRef
49.
Zurück zum Zitat Kevelam SH, Bugiani M, Salomons GS, Feigenbaum A, Blaser S, Prasad C, Haberle J, Baric I, Bakker IM, Postma NL, Kanhai WA, Wolf NI, Abbink TE, Waisfisz Q, Heutink P, Van derknaap MS. Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy. Brain. 2013;136(5):1534–43.CrossRefPubMed Kevelam SH, Bugiani M, Salomons GS, Feigenbaum A, Blaser S, Prasad C, Haberle J, Baric I, Bakker IM, Postma NL, Kanhai WA, Wolf NI, Abbink TE, Waisfisz Q, Heutink P, Van derknaap MS. Exome sequencing reveals mutated SLC19A3 in patients with an early-infantile, lethal encephalopathy. Brain. 2013;136(5):1534–43.CrossRefPubMed
50.
Zurück zum Zitat Zeng WQ, Al-Yamani E, Acierno JS Jr, Slaugenhaupt S, Gillis T, MacDonald ME, Ozand PT, Gusella JF. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am J Hum Genet. 2005;771:16–26.CrossRef Zeng WQ, Al-Yamani E, Acierno JS Jr, Slaugenhaupt S, Gillis T, MacDonald ME, Ozand PT, Gusella JF. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am J Hum Genet. 2005;771:16–26.CrossRef
51.
Zurück zum Zitat Tucker EJ, Hershman SG, Kohrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab. 2011;143:428–34.CrossRef Tucker EJ, Hershman SG, Kohrer C, Belcher-Timme CA, Patel J, Goldberger OA, Christodoulou J, Silberstein JM, McKenzie M, Ryan MT, Compton AG, Jaffe JD, Carr SA, Calvo SE, RajBhandary UL, Thorburn DR, Mootha VK. Mutations in MTFMT underlie a human disorder of formylation causing impaired mitochondrial translation. Cell Metab. 2011;143:428–34.CrossRef
52.
Zurück zum Zitat Wibom R, Lasorsa FM, Tohonen V, Barbaro M, Sterky FH, Kucinski T, Naess K, Jonsson M, Pierri CL, Palmieri F, Wedell A. AGC1 deficiency associated with global cerebral hypomyelination. N Engl J Med. 2009;3615:489–95.CrossRef Wibom R, Lasorsa FM, Tohonen V, Barbaro M, Sterky FH, Kucinski T, Naess K, Jonsson M, Pierri CL, Palmieri F, Wedell A. AGC1 deficiency associated with global cerebral hypomyelination. N Engl J Med. 2009;3615:489–95.CrossRef
53.
Zurück zum Zitat Diodato D, Melchionda L, Haack TB, Dallabona C, Baruffini E, Donnini C, Granata T, Ragona F, Balestri P, Margollicci M, Lamantea E, Nasca A, Powell CA, Minczuk M, Strom TM, Meitinger T, Prokisch H, Lamperti C, Zeviani M, Ghezzi D. VARS2 and TARS2 mutations in patients with mitochondrial encephalomyopathies. Hum Mutat. 2014;358:983–9.CrossRef Diodato D, Melchionda L, Haack TB, Dallabona C, Baruffini E, Donnini C, Granata T, Ragona F, Balestri P, Margollicci M, Lamantea E, Nasca A, Powell CA, Minczuk M, Strom TM, Meitinger T, Prokisch H, Lamperti C, Zeviani M, Ghezzi D. VARS2 and TARS2 mutations in patients with mitochondrial encephalomyopathies. Hum Mutat. 2014;358:983–9.CrossRef
54.
Zurück zum Zitat Ghezzi D, Sevrioukova I, Invernizzi F, Lamperti C, Mora M, D’Adamo P, Novara F, Zuffardi O, Uziel G, Zeviani M. Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet. 2010;864:639–49.CrossRef Ghezzi D, Sevrioukova I, Invernizzi F, Lamperti C, Mora M, D’Adamo P, Novara F, Zuffardi O, Uziel G, Zeviani M. Severe X-linked mitochondrial encephalomyopathy associated with a mutation in apoptosis-inducing factor. Am J Hum Genet. 2010;864:639–49.CrossRef
55.
Zurück zum Zitat Edvardson S, Shaag A, Kolesnikova O, Gomori JM, Tarassov I, Einbinder T, Saada A, Elpeleg O. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet. 2007;814:857–62.CrossRef Edvardson S, Shaag A, Kolesnikova O, Gomori JM, Tarassov I, Einbinder T, Saada A, Elpeleg O. Deleterious mutation in the mitochondrial arginyl-transfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet. 2007;814:857–62.CrossRef
56.
Zurück zum Zitat Bourdon A, Minai L, Serre V, Jais JP, Sarzi E, Aubert S, Chretien D, de Lonlay P, Paquis-Flucklinger V, Arakawa H, Nakamura Y, Munnich A, Rotig A. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet. 2007;396:776–80.CrossRef Bourdon A, Minai L, Serre V, Jais JP, Sarzi E, Aubert S, Chretien D, de Lonlay P, Paquis-Flucklinger V, Arakawa H, Nakamura Y, Munnich A, Rotig A. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet. 2007;396:776–80.CrossRef
57.
Zurück zum Zitat Ohba C, Okamoto N, Murakami Y, Suzuki Y, Tsurusaki Y, Nakashima M, Miyake N, Tanaka F, Kinoshita T, Matsumoto N, Saitsu H. PIGN mutations cause congenital anomalies, developmental delay, hypotonia, epilepsy, and progressive cerebellar atrophy. Neurogenetics. 2014;152:85–92.CrossRef Ohba C, Okamoto N, Murakami Y, Suzuki Y, Tsurusaki Y, Nakashima M, Miyake N, Tanaka F, Kinoshita T, Matsumoto N, Saitsu H. PIGN mutations cause congenital anomalies, developmental delay, hypotonia, epilepsy, and progressive cerebellar atrophy. Neurogenetics. 2014;152:85–92.CrossRef
58.
Zurück zum Zitat Lagier-Tourenne C, Tazir M, Lopez LC, Quinzii CM, Assoum M, Drouot N, Busso C, Makri S, Ali-Pacha L, Benhassine T, Anheim M, Lynch DR, Thibault C, Plewniak F, Bianchetti L, Tranchant C, Poch O, DiMauro S, Mandel JL, Barros MH, Hirano M, Koenig M. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet. 2008;823:661–72.CrossRef Lagier-Tourenne C, Tazir M, Lopez LC, Quinzii CM, Assoum M, Drouot N, Busso C, Makri S, Ali-Pacha L, Benhassine T, Anheim M, Lynch DR, Thibault C, Plewniak F, Bianchetti L, Tranchant C, Poch O, DiMauro S, Mandel JL, Barros MH, Hirano M, Koenig M. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet. 2008;823:661–72.CrossRef
59.
Zurück zum Zitat Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, Lombes A, Boddaert N, Desguerre I, de Lonlay P, de Baulny HO, Munnich A, Rotig A. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet. 2008;823:623–30.CrossRef Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, Lombes A, Boddaert N, Desguerre I, de Lonlay P, de Baulny HO, Munnich A, Rotig A. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet. 2008;823:623–30.CrossRef
60.
Zurück zum Zitat Saunders C, Smith L, Wibrand F, Ravn K, Bross P, Thiffault I, Christensen M, Atherton A, Farrow E, Miller N, Kingsmore SF, Ostergaard E. CLPB variants associated with autosomal-recessive mitochondrial disorder with cataract, neutropenia, epilepsy, and methylglutaconic aciduria. Am J Hum Genet. 2015;962:258–65.CrossRef Saunders C, Smith L, Wibrand F, Ravn K, Bross P, Thiffault I, Christensen M, Atherton A, Farrow E, Miller N, Kingsmore SF, Ostergaard E. CLPB variants associated with autosomal-recessive mitochondrial disorder with cataract, neutropenia, epilepsy, and methylglutaconic aciduria. Am J Hum Genet. 2015;962:258–65.CrossRef
61.
Zurück zum Zitat Gai X, Ghezzi D, Johnson MA, Biagosch CA, Shamseldin HE, Haack TB, Reyes A, Tsukikawa M, Sheldon CA, Srinivasan S, Gorza M, Kremer LS, Wieland T, Strom TM, Polyak E, Place E, Consugar M, Ostrovsky J, Vidoni S, Robinson AJ, Wong LJ, Sondheimer N, Salih MA, Al-Jishi E, Raab CP, Bean C, Furlan F, Parini R, Lamperti C, Mayr JA, Konstantopoulou V, Huemer M, Pierce EA, Meitinger T, Freisinger P, Sperl W, Prokisch H, Alkuraya FS, Falk MJ, Zeviani M. Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am J Hum Genet. 2013;933:482–95.CrossRef Gai X, Ghezzi D, Johnson MA, Biagosch CA, Shamseldin HE, Haack TB, Reyes A, Tsukikawa M, Sheldon CA, Srinivasan S, Gorza M, Kremer LS, Wieland T, Strom TM, Polyak E, Place E, Consugar M, Ostrovsky J, Vidoni S, Robinson AJ, Wong LJ, Sondheimer N, Salih MA, Al-Jishi E, Raab CP, Bean C, Furlan F, Parini R, Lamperti C, Mayr JA, Konstantopoulou V, Huemer M, Pierce EA, Meitinger T, Freisinger P, Sperl W, Prokisch H, Alkuraya FS, Falk MJ, Zeviani M. Mutations in FBXL4, encoding a mitochondrial protein, cause early-onset mitochondrial encephalomyopathy. Am J Hum Genet. 2013;933:482–95.CrossRef
62.
Zurück zum Zitat Bonnen PE, Yarham JW, Besse A, Wu P, Faqeih EA, Al-Asmari AM, Saleh MA, Eyaid W, Hadeel A, He L, Smith F, Yau S, Simcox EM, Miwa S, Donti T, Abu-Amero KK, Wong LJ, Craigen WJ, Graham BH, Scott KL, McFarland R, Taylor RW. Mutations in FBXL4 cause mitochondrial encephalopathy and a disorder of mitochondrial DNA maintenance. Am J Hum Genet. 2013;933:471–81.CrossRef Bonnen PE, Yarham JW, Besse A, Wu P, Faqeih EA, Al-Asmari AM, Saleh MA, Eyaid W, Hadeel A, He L, Smith F, Yau S, Simcox EM, Miwa S, Donti T, Abu-Amero KK, Wong LJ, Craigen WJ, Graham BH, Scott KL, McFarland R, Taylor RW. Mutations in FBXL4 cause mitochondrial encephalopathy and a disorder of mitochondrial DNA maintenance. Am J Hum Genet. 2013;933:471–81.CrossRef
63.
Zurück zum Zitat Kirby DM, Salemi R, Sugiana C, Ohtake A, Parry L, Bell KM, Kirk EP, Boneh A, Taylor RW, Dahl HH, Ryan MT, Thorburn DR. NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency. J Clin Invest. 2004;1146:837–45.CrossRef Kirby DM, Salemi R, Sugiana C, Ohtake A, Parry L, Bell KM, Kirk EP, Boneh A, Taylor RW, Dahl HH, Ryan MT, Thorburn DR. NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency. J Clin Invest. 2004;1146:837–45.CrossRef
64.
Zurück zum Zitat Spiegel R, Shaag A, Mandel H, Reich D, Penyakov M, Hujeirat Y, Saada A, Elpeleg O, Shalev SA. Mutated NDUFS6 is the cause of fatal neonatal lactic acidemia in Caucasus Jews. Eur J Hum Genet. 2009;179:1200–3.CrossRef Spiegel R, Shaag A, Mandel H, Reich D, Penyakov M, Hujeirat Y, Saada A, Elpeleg O, Shalev SA. Mutated NDUFS6 is the cause of fatal neonatal lactic acidemia in Caucasus Jews. Eur J Hum Genet. 2009;179:1200–3.CrossRef
65.
Zurück zum Zitat Schuelke M, Smeitink J, Mariman E, Loeffen J, Plecko B, Trijbels F, Stockler-Ipsiroglu S, van den Heuvel L. Mutant NDUFV1 subunit of mitochondrial complex I causes leukodystrophy and myoclonic epilepsy. Nat Genet. 1999;213:260–1. Schuelke M, Smeitink J, Mariman E, Loeffen J, Plecko B, Trijbels F, Stockler-Ipsiroglu S, van den Heuvel L. Mutant NDUFV1 subunit of mitochondrial complex I causes leukodystrophy and myoclonic epilepsy. Nat Genet. 1999;213:260–1.
66.
Zurück zum Zitat Grad LI, Lemire BD. Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis. Hum Mol Genet. 2004;133:303–14. Grad LI, Lemire BD. Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis. Hum Mol Genet. 2004;133:303–14.
67.
Zurück zum Zitat Lebon S, Rodriguez D, Bridoux D, Zerrad A, Rotig A, Munnich A, Legrand A, Slama A. A novel mutation in the human complex I NDUFS7 subunit associated with Leigh syndrome. Mol Genet Metab. 2007;904:379–82.CrossRef Lebon S, Rodriguez D, Bridoux D, Zerrad A, Rotig A, Munnich A, Legrand A, Slama A. A novel mutation in the human complex I NDUFS7 subunit associated with Leigh syndrome. Mol Genet Metab. 2007;904:379–82.CrossRef
68.
Zurück zum Zitat Davis CW, Hawkins BJ, Ramasamy S, Irrinki KM, Cameron BA, Islam K, Daswani VP, Doonan PJ, Manevich Y, Madesh M. Nitration of the mitochondrial complex I subunit NDUFB8 elicits RIP1- and RIP3-mediated necrosis. Free Radic Biol Med. 2010;482:306–17.CrossRef Davis CW, Hawkins BJ, Ramasamy S, Irrinki KM, Cameron BA, Islam K, Daswani VP, Doonan PJ, Manevich Y, Madesh M. Nitration of the mitochondrial complex I subunit NDUFB8 elicits RIP1- and RIP3-mediated necrosis. Free Radic Biol Med. 2010;482:306–17.CrossRef
69.
Zurück zum Zitat Piekutowska-Abramczuk D, Popowska E, Pronicki M, Karczmarewicz E, Tylek-Lemanska D, Sykut-Cegielska J, Szymanska-Dembinska T, Bielecka L, Krajewska-Walasek M, Pronicka E. High prevalence of SURF1 c.845_846delCT mutation in Polish Leigh patients. Eur J Paediatr Neurol. 2009;132:146–53.CrossRef Piekutowska-Abramczuk D, Popowska E, Pronicki M, Karczmarewicz E, Tylek-Lemanska D, Sykut-Cegielska J, Szymanska-Dembinska T, Bielecka L, Krajewska-Walasek M, Pronicka E. High prevalence of SURF1 c.845_846delCT mutation in Polish Leigh patients. Eur J Paediatr Neurol. 2009;132:146–53.CrossRef
Metadaten
Titel
New perspective in diagnostics of mitochondrial disorders: two years’ experience with whole-exome sequencing at a national paediatric centre
verfasst von
Ewa Pronicka
Dorota Piekutowska-Abramczuk
Elżbieta Ciara
Joanna Trubicka
Dariusz Rokicki
Agnieszka Karkucińska-Więckowska
Magdalena Pajdowska
Elżbieta Jurkiewicz
Paulina Halat
Joanna Kosińska
Agnieszka Pollak
Małgorzata Rydzanicz
Piotr Stawinski
Maciej Pronicki
Małgorzata Krajewska-Walasek
Rafał Płoski
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2016
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-016-0930-9

Weitere Artikel der Ausgabe 1/2016

Journal of Translational Medicine 1/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.