Skip to main content
Erschienen in: Journal of Cardiovascular Magnetic Resonance 1/2018

Open Access 01.12.2018 | Research

Tricuspid flow and regurgitation in congenital heart disease and pulmonary hypertension: comparison of 4D flow cardiovascular magnetic resonance and echocardiography

verfasst von: Mieke M. P. Driessen, Marjolijn A. Schings, Gertjan Tj Sieswerda, Pieter A. Doevendans, Erik H. Hulzebos, Marco C. Post, Repke J. Snijder, Jos J. M. Westenberg, Arie P. J. van Dijk, Folkert J. Meijboom, Tim Leiner

Erschienen in: Journal of Cardiovascular Magnetic Resonance | Ausgabe 1/2018

Abstract

Background

Tricuspid valve (TV) regurgitation (TR) is a common complication of pulmonary hypertension and right-sided congenital heart disease, associated with increased morbidity and mortality. Estimation of TR severity by echocardiography and conventional cardiovasvular magnetic resonance (CMR) is not well validated and has high variability. 4D velocity-encoded (4D-flow) CMR was used to measure tricuspid flow in patients with complex right ventricular (RV) geometry and varying degrees of TR. The aims of the present study were: 1) to assess accuracy of 4D-flow CMR across the TV by comparing 4D-flow CMR derived TV effective flow to 2D-flow derived effective flow across the pulmonary valve (PV); 2) to assess TV 4D-flow CMR reproducibility, and 3) to compare TR grade by 4D-flow CMR to TR grade by echocardiography.

Methods

TR was assessed by both 4D-flow CMR and echocardiography in 21 healthy subjects (41.2 ± 10.5 yrs., female 7 (33%)) and 67 RV pressure-load patients (42.7 ± 17.0 yrs., female 32 (48%)). The CMR protocol included 4D-flow CMR measurement across the TV, 2D-flow measurement across the PV and conventional planimetric measurements. TR grading on echocardiographic images was performed based on the international recommendations. Bland-Altman analysis and intra-class correlation coefficients (ICC) were used to asses correlations and agreement.

Results

TV effective flow measured by 4D-flow CMR showed good correlation and agreement with PV effective flow measured by 2D-flow CMR with ICC = 0.899 (p < 0.001) and mean difference of −1.79 ml [limits of agreement −20.39 to 16.81] (p = 0.084). Intra-observer agreement for effective flow (ICC = 0.981; mean difference − 1.51 ml [−12.88 to 9.86]) and regurgitant fraction (ICC = 0.910; mean difference 1.08% [−7.90; 10.06]) was good. Inter-observer agreement for effective flow (ICC = 0.935; mean difference 2.12 ml [−15.24 to 19.48]) and regurgitant fraction (ICC = 0.968; mean difference 1.10% [−7.96 to 5.76]) were comparable. In 25/65 (38.5%) TR grade differed by at least 1 grade using 4D-flow CMR compared to echocardiography.

Conclusion

TV effective flow derived from 4D-flow CMR showed excellent correlation to PV effective flow derived from 2D-flow CMR, and was reproducible to measure TV flow and regurgitation. Twenty-five out of 65 patients (38.5%) were classified differently by at least one TR grade using 4D-flow CMR compared to echocardiography.
Abkürzungen
2D-flow
Two-dimensional velocity-encoded imaging
4D-flow
Four-dimensional velocity-encoded imaging
CHD
Congenital heart defect(s)
CMR
Cardiovascular magnetic resonance
EDV
End-diastolic volume
EF
Ejection fraction
ESV
End-systolic volume
ICC
Intra-class correlation coefficient
PH
Pulmonary hypertension
PS
Pulmonary stenosis
PV
Pulmonary valve
RV
Right ventricular/right ventricle
RVSP
Right ventricular systolic pressure
SD
Standard deviation
SV
Stroke volume
TAPSE
Tricuspid annular plane systolic excursion
TDI
Tissue Doppler imaging
TR
Tricuspid regurgitation
TV
Tricuspid valve

Background

Tricuspid valve (TV) regurgitation (TR) frequently complicates pulmonary hypertension (PH) and congenital heart defects (CHD) associated with right ventricular (RV) pressure or volume overload. The presence and severity of TR in these patient groups is independently associated with both increased morbidity and increased mortality [13].
The complex structure of the valve and the degree of motion throughout the cardiac cycle make assessment of TR severity difficult. When the right ventricle (RV) dilates, RV geometry is altered, making valve structure and flow patterns even more difficult to evaluate [4]. Severity of TR is primarily assessed using qualitative and semi-quantitative (color) Doppler echocardiography [5, 6]. However, these measurements are less well validated for TR than for other valvular regurgitations and have high inter-observer variability [5, 7, 8]. Consequently, if only echocardiography is used, there is substantial risk of misjudging severity of TR [8], influencing clinical decision-making.
Cardiovascular magnetic resonance imaging (CMR), using 2D velocity-encoded imaging (2D-flow), is the reference standard for assessment and follow-up of aortic and pulmonary regurgitation in patients with CHD [9]. However, for both atrioventricular valves, direct flow measurement with 2D-flow CMR is regarded as less reliable [9, 10], mostly due to the large degree of valvular through-plane motion [11, 12]. Alternatively, indirect quantification – combining planimetric RV stroke volume and direct flow measurement across the pulmonary valve (PV) – is used, but this approach also introduces multiple sources of error [12, 13].
Four-dimensional velocity-encoded (4D-flow) CMR encodes velocity simultaneously in three orthogonal directions, thereby enabling direct flow measurement, perpendicular to the annular plane, throughout the entire cardiac cycle [10, 14]. Tricuspid flow measurement by 4D-flow CMR has been validated in patients with normal RVs, as well as in patients with tetralogy of Fallot without TR [14, 15]. However, to the best of our knowledge, a validation study in patients with complex RV geometry and varying degrees of TR has not been done. Furthermore, it is unknown to what extent TR grade by TV 4D-flow CMR differs from the current clinical standard for assessing TR; echocardiography.
The aims of the present study were: 1) to correlate effective flow across the TV measured by 4D-flow CMR to 2D-flow derived effective flow across the PV, in patients with complex RV geometry; 2) to assess reproducibility of 4D-flow measurement across the TV, and 3) to compare TR grade by 4D-flow CMR to TR grade by echocardiography.

Methods

A prospective, cross-sectional study was performed in three tertiary referral hospitals including healthy subjects (n = 21), patients with pulmonary hypertension (PH; n = 30), patients with isolated valvular pulmonary stenosis (PS) or tetralogy of Fallot (n = 21) and systemic RV patients (n = 16). CMR and transthoracic echocardiography were performed at a single center by dedicated and experienced staff.

In- and exclusion criteria

The PH group comprised only patients with pre-capillary pulmonary hypertension – either idiopathic pulmonary arterial hypertension or chronic thromboembolic pulmonary hypertension. In all PH patients, the diagnosis of pre-capillary PH had been previously confirmed by right heart catheterization. Pre-capillary PH was defined as mean pulmonary artery pressure of ≥ 25 mmHg and a pulmonary capillary wedge pressure of ≤ 15 mmHg [16]. All PH patients were on PH-specific therapy when entering the study. The CHD cohort consisted of two major groups: 1) patients with a systemic RV either after atrial switch procedure for transposition of the great arteries or congenitally corrected transposition of the great arteries, and 2) patients with isolated valvular pulmonary stenosis (PS) or tetralogy of Fallot with pulmonary valvular or homograft stenosis. Patients with contra-indications for CMR were excluded. A group of healthy subjects between 18 and 60 years old served as control population. Subjects were screened using physical examination, medical history and electrocardiogram and excluded if these investigations or subsequent CMR and echocardiogram showed any abnormalities.
The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki. The medical ethics committees of all participating centers approved the study and written informed consent was obtained from all participants prior to inclusion.

General patient data

Demographic data, electrocardiogram (ECG), basic echocardiographic measurements and functional capacity were obtained for each patient. Echocardiography and CMR were performed consecutively with less than 1 h in between investigations. Patients and controls did not use medication between investigations, nor did they perform any strenuous physical activity.

Cardiovascular magnetic resonance imaging

Cine imaging, 2D flow imaging & functional analysis

All participants were imaged using a pre-defined imaging protocol without sedation. A commercially available 1.5-T CMR system (Ingenia R4.1.2; Philips Healthcare, Best, the Netherlands) was used, with a dedicated chest phased-array parallel-imaging capable surface coil. Balanced steady-state free precession cine images were acquired in various orientations during repeated end-expiratory breath holds. Multi-slice cine short-axis acquisitions were acquired from the apex up to and including the atrioventricular valves and the entire left ventricle and RV. The following sequence parameters were used: TR/TE 3.4/1.69 ms, voxel size 1.3 × 1.3 × 8.0 mm, flip angle: 55o and a temporal resolution of 30 phases per cardiac cycle. Effective flow was measured at the level of the pulmonary valve - or aortic valve in case of systemic RV – using 2D-flow CMR with a retrospectively ECG-gated, velocity-encoded phase-contrast sequence (TR/TE 5.2/3.1 ms, voxel size 2.5 × 2.5x8mm, flip angle 12o, field of view 320, matrix 128 × 100, 20 phases per cardiac cycle). The VENC was set to 150 cm/s, in case of a PS it was individually adapted to yield images without aliasing artifacts.
RV volumetric analysis was performed as previously described, by manual tracing of endocardial and epicardial contours in end-diastolic and end-systolic phase in all slices, using Qmass MR Research edition (version 7.4, Medis, Leiden, The Netherlands), excluding the trabeculae and papillary muscles from the ventricular blood pool volume [17].
The following parameters were determined for the RV: end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF) and RV mass. Quantification of 2D flow across the pulmonary valve (or aortic valve in systemic RVs) was performed using Medis Qflow (version 5.5, Medis, Leiden, the Netherlands) and used to calculate the effective flow across the pulmonary valve (2D-flow PV). All volumetric data were indexed for body surface area. At end-diastole the maximum tricuspid annular diameters were measured in cine RV 2-chamber and 4-chamber views.

4-dimensional velocity encoded CMR

For planning purposes 4-chamber, 2-chamber (of both ventricles) and perpendicular views of each of the four cardiac valves were used – to ensure that the 4D-flow volume would enclose all valves during diastole and systole. Velocity data were acquired in three orthogonal directions. The 4D-flow CMR acquisition was based on the protocol previously described by Westenberg et al. [14]. The following acquisition parameters were used: TR/TE 7.3/3.9 msec, respectively; field of view 370 × 219 × 63 mm; 3D volume imaging with 63-mm slab thickness reconstructed into 28 3.5 mm slices; 10° flip angle; acquisition voxel 3.43 × 3.65 × 3.5 mm; reconstructed voxel size 2.9 × 2.9 × 3.5 mm; 1 signal acquired; retrospective gating with 20-30% acceptance window, with 30 phases reconstructed during 1 average cardiac cycle; maximal velocity encoding of 150 cm/s in all three directions. To reduce acquisition time, echo planar imaging was used with a factor of 5.
Analysis of through-plane flow across the TV was performed with Mass (version 5.1, Medis) In short, the TV plane was reconstructed in each cardiac phase using two orthogonal planes, perpendicular to the flow across the TV (Fig. 1 a-d). After the valve plane was reconstructed for each phase of the cardiac cycle, the through-plane flow was reformatted in five parallel planes with a slice gap of 5 mm. Subsequently, contours were drawn outlining the flow of the valve of interest (Fig. 1-e&f) for each phase. Through-plane motion correction using the velocity of myocardium was taken into account by a indicating a region of interest in the myocardium. Finally, forward and backward flow, regurgitant fraction and effective flow were derived from 4D-flow CMR. To illustrate the impact of measurement plane reconstruction perpendicular to the flow direction in 4D-flow CMR, we performed flow analysis using a static tricuspid valvular plane in 15 random datasets (i.e. in essence comparable to 2D-flow across the TV).
To assess the accuracy of the 4D flow measurement across the TV, 4D-flow derived TV effective flow was compared to the current reference: 2D-flow derived pulmonary effective flow. Severity of TR was classified according to regurgitation fraction: 0-10% (absent/trace); 10-20% (mild); 20-40% (moderate); > 40% (severe) [18].

Echocardiography

Echocardiography was performed using a Toshiba Artida system (Toshiba, Tokyo, Japan) with a 5-MHz transducer. Analysis was performed offline in XCelera (version 4.1.1.1133 - 2013; Philips Healthcare). RV systolic pressure (RVSP) was calculated using the Bernoulli equation with maximum velocity of TR or by maximal pulmonary valve gradient (only in PS patients with valvular stenosis), plus estimated right atrial pressure. In systemic RV patients the systemic systolic blood pressure at rest was used as RVSP. Tricuspid annular plane systolic excursion (TAPSE) and systolic velocity using tissue (TDI S′) Doppler imaging were measured in 4-chamber view.
TR was visualized in a parasternal 2-chamber RV, parasternal short axis aorta orientation, subcostal and in the modified apical 4-chamber view – if possible an apical 2-chamber-RV view was also used. To quantify TR the following parameters were taken into account: vena contracta, early tricuspid inflow velocity, hepatic vein systolic flow reversal, color Doppler flow jet area and density of TR Doppler signal [19]. The severity of TR was graded none/trace, mild, moderate or severe based on these (semi-) quantitative and qualitative assessment - by an experienced imaging-cardiologist (F.M.) blinded to 4D-flow CMR results.

Reproducibility

To assess intra-observer reproducibility 15 patients were re-analyzed by the first observer (CMR - M.S.; echocardiography – F.M.). Inter-observer reproducibility was assessed in the same 15 patients by a second observer (CMR - M.D.; echocardiography – G.S.). Both observers were blinded for the previous results and the first and second analysis were at least 1 month apart.

Statistical analysis

For all continuous variables, the distribution was tested using the Shapiro-Wilk test and by plotting histograms. Continuous data were expressed as mean value ± standard deviation (SD) or median [range] as appropriate. Continuous data were compared between groups using ANOVA with posthoc Dunnet’s test or the Kruskal Wallis analysis of variance, depending on distribution of data and residuals. Categorical data was presented as absolute number followed by percentage, the agreement of TV regurgitation grade by echocardiography and 4D-flow CMR and reproducibility measurements for echocardiography, was assessed using linear weighted Kappa (< 0.2 slight, 0.2-0.4 fair, 0.4-0.6 moderate, 0.6-0.8 considerable and >0.80 almost perfect agreement).
Agreement between 2D-flow derived PV effective stroke volume and 4D-flow CMR derived TV effective SV as well as between repeated measures was assessed using intraclass correlation coefficients (ICC) and paired-samples T-test. Furthermore, Bland Altman plots were constructed. All data analyses were performed in SPSS statistics (version 20.0, International Business Machines, Inc., Chicago, Illinois, USA). P-values of <0.05 were considered statistically significant.

Results

Demographic data

All demographic and baseline data are listed in Table 1. In short, PH patients were older than the control group and CHD patients. Patients with systemic RVs had the highest RVSP. Basic volumetric measurements are also listed in Table 1; RV volumes were increased in systemic RV and PH patients compared to controls.
Table 1
Demographic data
 
Controls (n = 21)
CHD
(n = 37)
PH
(n = 30)
p-value
  
PS (n = 21)
SystRV (n = 16)
  
Age (yrs)
41.2 ± 10.5
30.6 ± 12.6#
36.6 ± 8.4
54.4 ± 15.6**
<0.001
BSA (m2)
1.93 ± 0.21
1.90 ± 0.15
1.94 ± 0.15
1.92 ± 0.26
0.97
RVSP (mmHg)
50 [40-111]
108 [89-127]
54 [23-100]
0.025
VO2/kg (ml/min)
29.7 ± 6.6
27.1 ± 6.6
17.0 ± 4.1
<0.001
%PredVO2/kg
83.8 ± 17.2
83.0 ± 18.5
62.9 ± 12.9
<0.001
QRS (msec)
93.1 ± 13.7
133.1 ± 34.4**
107.2 ± 16.2
97.5 ± 24.2
<0.001
Heart rate
61 ± 9
69 ± 9
59 ± 8
69 ± 12
0.013
RVEDV (ml/m2)
97 [60-134]
95 [71-170]
109 [73-222]
110 [52-343]
0.48
RVESV (ml/m2)
46 [20-59]
49 [26-122]
58 [26-170] *
60 [16-271]*
0.009
RVEF (%)
54.8 ± 4.6
49.0 ± 9.2
45.5 ± 10.7#
41.1 ± 11.4**
0.017
General demographic data for all groups. To test for differences between the different groups (last column) ANOVA with posthoc Dunnets (controls as reference) was used for normally distributed data and Kruskal Wallis analysis of variance with Mann Whitney U tests for non-normally distributed data. #p < 0.05, *p < 0.01, **p < 0.001. Abbreviations: BSA body surface area, RVSP right ventricular systolic pressure, VO 2 /kg peak oxygen uptake per kg, %PredVO 2 /kgg % of predicted peak oxygen uptake, RV right ventricular, EDV end-diastolic volume ESV end-systolic volume, EF ejection fraction
4D-flow and 2D-flow CMR measurements are depicted in Table 2. Acquisition time for the 4D-flow CMR dataset was 3.5-7 min; acquisition time of cine CMR images necessary for post-processing was approximately 7 min. Lastly, acquisition time for echocardiographic images related to assessment of TR was approximately 15 min. Analysis time for 4D-flow CMR across the TV was approximately 35 min per patient; analysis with a static plane (2D TV flow) was approximately 10 min. Analysis of TR grade on echocardiography took on average 6 min per patient.
Table 2
CMR measurements
 
Controls (n = 21)
CHD
(n = 37)
PH
(n = 30)
 
  
PS (n = 21)
Syst RV (n = 16)
 
p-value
4D-TV FW (ml)
111.5 ± 27.3
91.2 ± 15.2#
95.4 ± 19.8
87.2 ± 21.7**
0.23
4D-TV BW (ml)
8.3 [2.0-24.1]
8.4 [5.1-25.9]
10.7 [3.7-34.0]
7.3 [2.2-57.7]
0.61
4D-SV TV (ml/m2)
52.4 ± 9.4
42.5 ± 5.7**
41.7 ± 8.0**
38.7 ± 9.6**
0.13
4D-TV reg (%)
7.9 [1.9-17.6]
9.3[5.4-25.0]
12.5 [5.1-40.1]
9.2 [3.2-49.6]
0.307
2D-SV PA (ml/m2)
49.5 ± 7.7
42.1 ± 4.8*
42.8 ± 7.5#
38.0 ± 9.6**
<0.001
TVann 4CH (mm)
37.4 ± 4.1
38.8 ± 5.8
42.3 ± 5.0*
39.6 ± 4.4
0.032
TVann 2CH (mm)
37.5 ± 4.3
37.7 ± 5.3
38.5 ± 4.5
38.5 ± 3.6
0.84
Results of volumetric and 4D flow CMR
To test for differences between the different groups (last column) ANOVA with posthoc Dunnets (controls as reference) was used for normally distributed data and Kruskal Wallis analysis of variance with Mann Whitney U tests (controls as reference) for non-normally distributed data. #p < 0.05, *p < 0.01 and **p < 0.001. Abbreviations: 4D-TV FW 4D tricuspid valve forward flow, 4D-TV BW 4D tricuspid valve backward flow, 4D-SV TV 4D tricuspid valve effective flow, 4D-TV reg 4D flow tricuspid valve regurgitation, 2D-SV PA 2D pulmonary valve effective flow, TVann 4CH tricuspid annulus diameter in 4-chamber view, TVann 2CH tricuspid valve annulus diameter in 2-chamber view

Accuracy of 4D-SV TV compared to reference 2D-SV PV

TV 4D-flow CMR analysis was possible in 67/67 patients (100%). Effective flow measured across the TV by 4D-flow CMR could be compared to 2D-flow derived effective flow across the PV in 85/88 subjects, due to poor quality of 2D-flow images in three subjects (Fig. 2a-c). The intra-class correlation coefficient between both measurements was 0.90 (95% confidence interval 0.85-0.94; p < 0.001) and the R2 was 0.83. Mean difference in 4D-flow derived TV effective flow vs 2D-flow derived PV effective flow was −1.6 ml (p = 0.083) with limits of agreement: −20.0 to 16.8 ml.
Analysis of TV effective flow, using a static annular plane – similar to TV 2D flow method – was performed in 15 datasets. Intra-class correlation coefficients for TV 2D-effective flow vs. PV 2D-effective flow, TV 2D-effective flow vs. TV 4D-effective flow and TV regurgitant fraction using 2D flow vs. 4D-flow were respectively 0.666 (p < 0.001), 0.767 (p < 0.001) and 0.389 (p = 0.002). Effective flow was significantly overestimated by TV 2D-flow compared to both other methods (p < 0.001; Fig. 3), regurgitant fraction was significantly underestimated (p < 0.001; Fig. 3).

Reproducibility

Reproducibility measurements are listed in Table 3 and are shown in Fig. 4. Both intra- and interobserver measurements yielded good intra-class correlation coefficients (all > 0.91 and p < 0.001) for TV 4D-flow CMR. Mean intra- and interobserver differences in forward flow and effective flow were small with good limits of agreement (Table 3). The mean difference and limits of agreement for measurement of TR (%) were acceptable for both intra- and inter-observer measurements (1.08% [−7.90; 10.06] and −1.10% [−7.96; 5.76], respectively).
Table 3
Intra- and interobserver agreement
 
Mean Δ
p-value1
ICC
p-value2
Intraobserver
 Forward flow (ml)
1.08 ± 4.58
0.911
0.963
<0.001
 Stroke volume (ml)
−1.51 ± 5.80
0.329
0.981
<0.001
 Regurgitance (%)
−1.07 ± 4.58
0.378
0.910
<0.001
Interobserver
 Forward flow (ml)
1.44 ± 9.26
0.370
0.911
<0.001
 Stroke volume (ml)
2.12 ± 8.86
0.556
0.935
<0.001
 Regurgitance (%)
−1.1 ± 3.5
0.242
0.968
<0.001
Mean difference (Δ) between repeated measures and significance were tested with a paired Student T-test and agreement using intra-class correlation coefficient (ICC)
1p-value using paired Student's T test
2p-value for intra-class correlation coefficient (ICC)
Reproducibility of echocardiography showed a kappa value of 0.57 (95% CI 0.30-0.84) for intra-observer agreement and 0.66 (95% CI 0.39-0.92) for inter-observer agreement. During second observation TR grade was classified differently in 6/15 (= 40%) of patients by the same observer, and in 5/15 (= 33%) by a second observer.

TR grade by 4D-flow CMR vs echocardiography

Severity of TR could be graded by 4D-flow CMR in all 67 patients, and in 65/67 (97%) patients by echocardiography. Of these patients, 40/65 patients (61.5%) showed consistent results for echo and 4D-flow CMR, but 25/65 (38.5%) were classified differently by at least 1 grade using 4D-flow CMR compared to echocardiography (Table 4). Both methods showed only moderate agreement; with a linear weighted kappa of 0.52 (95%-confidence interval 0.37-0.67).
Table 4
Echocardiography vs 4D-flow CMR
https://static-content.springer.com/image/art%3A10.1186%2Fs12968-017-0426-7/MediaObjects/12968_2017_426_Tab4_HTML.gif
Contingency table depicting the results for TR grading by echocardiography versus 4D-flow CMR (clinically most relevant group, with either moderate or severe TR, highlighted). The linear weighted kappa for agreement between both methods was 0.52 (95%-confidence interval 0.37-0.67)
A trace to mild TR grade by echocardiography excludes moderate or severe TV regurgitation by 4D-flow CMR in 95% of patients (=negative predictive value). However, moderate or severe TR grade by echocardiography corresponded to a moderate or severe TR grade by 4D-flow CMR in only 60% of patients (=positive predictive value). Of the 14 patients with moderate or severe TR on echocardiography or 4D-flow CMR, 2 could not be classified by echocardiography and 9/12 (75%) were classified differently by both methods.

Discussion

In this study, we assessed the feasibility, accuracy and reproducibility of 4D-flow CMR derived TV flow in patients with RV heart disease and varying degrees of TV regurgitation. Four-dimensional-flow derived TV flow proved to be feasible in all patients and correlated well to our reference standard 2D-flow derived PV effective flow. Furthermore, reproducibility of flow volumes and regurgitation by 4D-flow CMR were good, even in this complex patient population. In 25/65 (38.5%) of the patients, 4D-flow CMR led to a different grading of TR compared to echocardiography.

4D-flow CMR of the tricuspid valve

In our patient cohort, effective flow across the TV measured with 4D-flow CMR showed excellent correlation to effective flow across the PV measured with 2D-flow CMR. This is true for both patient groups (ICC 0.870) as well as healthy controls (ICC 0.895). Conversely, TV flow measured without reconstruction of a measurement plane perpendicular to the flow (similar to 2D flow CMR), significantly overestimated effective flow volume compared to the PV effective flow. Our results are in line with previous reports on 4D-flow CMR derived TV flow in patients without RV heart disease, by Westenberg et al., and those with tetralogy of Fallot without TR, by van der Hulst et al. [14, 15]. The limits of agreement for effective flow (i.e. stroke volume) between TV 4D-flow CMR and PV 2D-flow CMR varied between −20.0 to +16.8 ml. These values are acceptable, as even for repeated 2D-flow measurements of semi-lunar valves there is considerable inter-observer and interscan variation [20, 21]. For example, Kondo et al. reported a relative difference of 7.0 ± 5.6% for repeated PV 2D-flow CMR measurements [21]. The difference between 4D-flow CMR derived TV flow and 2D-flow CMR derived PV flow can further be explained by several other factors: 1) 2D-flow suffers from some through plane movement; 2) 2D-flow across the PV was obtained during end-expiratory breath-hold while 4D-flow CMR was obtained during free-breathing and 3) interscan variability (although time between acquisitions was < 10 min).
Thus far, reproducibility measurements have been mostly obtained in patients with structurally normal hearts or focused on other applications of 4D-flow imaging (i.e. peak flow velocity and wall stress) [14, 22]. In patients with RV dilation and hypertrophy, TV geometry is distorted [4]. Hence, reproducibility of 4D-flow CMR derived TV flow in this population cannot be extrapolated from healthy subjects or patients with structurally normal hearts. The present study fills this gap and demonstrates good intra-observer and inter-observer agreement with acceptable limits of agreement and excellent ICC coefficients (all >0.90). The reproducibility in our cohort is comparable to limits of agreement reported in TV flow of healthy controls by Westenberg et al. and 2D-flow imaging of pulmonary or aortic valves [20, 21].

Echocardiography vs 4D-flow CMR

We demonstrate a discrepancy between 4D-flow CMR and echocardiographic TR grading in our patient cohort. Twenty-five out of 65 patients (38.5%) were classified differently by at least one grade using quantitative 4D-flow CMR TR measurements compared to echocardiographic assessment. Importantly, this number was even higher in patients with severe or moderate TR (namely 9/12 = 75% of patients). With the lack of a gold standard it is difficult to be sure which of these techniques provides the most accurate results. However, TV flow assessment by 4D-flow CMR has been validated both in vitro and in vivo [10, 14, 23] and TR grading by echocardiography has shown less consistent results [5, 7, 8], which may indicate 4D-flow CMR is more reliable. Adding to this, agreement between repeated measures was very good (ICC > 0.9) for repeated 4D-flow measurements, but only moderate to considerable (Kappa 0.57 and 0.66) for repeated TR grade by echocardiography. Importantly, a trace to mild TR grade by echocardiography still excludes moderate or severe TV regurgitation by 4D-flow CMR in 95% of patients.

Clinical implications

As is the case for many other measurements of RV size and function, echocardiography is an excellent screening tool. However, for assessment of degree of TV regurgitation, 4D-flow CMR seems of added value. If moderate or severe TR is seen on echocardiography, additional assessment of TR by means of 4D-flow CMR may help or guide clinical decision-making. In patients in whom surgery is considered, TR grading using 4D-flow CMR may improve selection of patients that potentially benefit from TV annuloplasty [2427]. Moreover, the detailed anatomical information obtained with 4D-flow CMR (Fig. 1) may be helpful in identifying the mechanism of regurgitation and planning of intervention.
In both pulmonary hypertension patients and in CHD the degree of TR is related to symptoms and mortality [13, 28]. Accurate determination of the degree of TR can help physicians better understand a patients’ physiology and ensure timely referral of patients for surgery or transplant.

Limitations

This study has limitations. First, 4D-flow CMR post processing and analysis remains time-consuming and labor-intensive (35 min), limiting its use in clinical practice for many institutions. Currently, validation of semi-automated software is underway – shortening post-processing times and making analysis less user-dependent [29]. Furthermore, in addition to observer variability, interscan variability will need to be evaluated in future studies.
The number of patients with moderate to severe TR was limited, which may limit its application in these patients.
We chose to use 2D-flow CMR derived PV flow as reference measurement for stroke volume, introducing interscan variability and through plane motion. Invasively measured stroke volumes across the pulmonary valve were not available. We did not use 4D-flow CMR for PV flow as many of our patients had severe PS with a large degree of aliasing or a homograft – for which 4D-flow CMR is not yet validated.

Conclusion

In patients with complex RV morphology, 4-D flow CMR is a reproducible method to measure TV flow and regurgitation and effective flows showed excellent correlation to 2D-flow CMR across the PV. Twenty-five out of 65 patients (38.5%) were classified differently by at least one grade using quantitative 4D-flow CMR TR grading compared to echocardiographic assessment. However, a trace to mild TR by echocardiography excludes moderate or severe TR by 4D-flow CMR in 95% of patients. As software developments accelerate 4D-flow CMR post-processing, it can provide a reproducible method of grading TR in clinical practice and future studies.

Acknowledgements

Not applicable

Funding

Not applicable (aforementioned grant was not directly used for this research).

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Authors’ information

Not applicable.
Dr. John Oshinski served as a Guest Editor for this manuscript.
The Ethical Review boards of all participating centers approved the study and written informed consent was obtained from all participants prior to inclusion. The primary ethical review committee was at University medical Center Utrecht (number METC-11-003). The ethical review boards of both Radboud University medical Center (number 2011/329) and Antonius Hospital Nieuwegein (number LTME/L-11.34/RV-def) also extended their approval.
In the current manuscript, data is not reducible to a patient. However, in all patients consent for publication was obtained in all patients upon prior to inclusion (part of informed consent).

Competing interests

The authors declare that they have no competing interests. M.P. has received lecture fees from Bayer, Actelion and Pfizer. M.D. has received a research grant from the ICIN-Netherlands heart house (Utrecht, the Netherlands).

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Bokma JP, Winter MM, Oosterhof T, Vliegen HW, van Dijk AP, Hazekamp MG, et al. Severe tricuspid regurgitation is predictive for adverse events in tetralogy of Fallot. Heart. 2015;101:794–9.CrossRefPubMed Bokma JP, Winter MM, Oosterhof T, Vliegen HW, van Dijk AP, Hazekamp MG, et al. Severe tricuspid regurgitation is predictive for adverse events in tetralogy of Fallot. Heart. 2015;101:794–9.CrossRefPubMed
2.
Zurück zum Zitat Nath J, Foster E, Heidenreich PA. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol. 2004;43:405–9.CrossRefPubMed Nath J, Foster E, Heidenreich PA. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol. 2004;43:405–9.CrossRefPubMed
3.
Zurück zum Zitat Dandel M, Knosalla C, Kemper D, Stein J, Hetzer R. Assessment of right ventricular adaptability to loading conditions can improve the timing of listing to transplantation in patients with pulmonary arterial hypertension. J Heart Lung Transplant. 2015;34:319–28.CrossRefPubMed Dandel M, Knosalla C, Kemper D, Stein J, Hetzer R. Assessment of right ventricular adaptability to loading conditions can improve the timing of listing to transplantation in patients with pulmonary arterial hypertension. J Heart Lung Transplant. 2015;34:319–28.CrossRefPubMed
4.
Zurück zum Zitat Di Mauro M, Bezante GP, Di Baldassarre A, Clemente D, Cardinali A, Acitelli A, et al. Functional tricuspid regurgitation: an underestimated issue. Int J Cardiol. 2013;168:707–15.CrossRefPubMed Di Mauro M, Bezante GP, Di Baldassarre A, Clemente D, Cardinali A, Acitelli A, et al. Functional tricuspid regurgitation: an underestimated issue. Int J Cardiol. 2013;168:707–15.CrossRefPubMed
5.
Zurück zum Zitat Valente AM, Cook S, Festa P, Ko HH, Krishnamurthy R, Taylor AM, et al. Multimodality imaging guidelines for patients with repaired tetralogy of fallot: a report from the AmericanSsociety of echocardiography: developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society for Pediatric Radiology. J Am Soc Echocardiogr. 2014;27:111–41.CrossRefPubMed Valente AM, Cook S, Festa P, Ko HH, Krishnamurthy R, Taylor AM, et al. Multimodality imaging guidelines for patients with repaired tetralogy of fallot: a report from the AmericanSsociety of echocardiography: developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society for Pediatric Radiology. J Am Soc Echocardiogr. 2014;27:111–41.CrossRefPubMed
6.
Zurück zum Zitat Lancellotti P, Moura L, Pierard LA, Agricola E, Popescu BA, Tribouilloy C, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr. 2010;11:307–32.CrossRefPubMed Lancellotti P, Moura L, Pierard LA, Agricola E, Popescu BA, Tribouilloy C, et al. European Association of Echocardiography recommendations for the assessment of valvular regurgitation. Part 2: mitral and tricuspid regurgitation (native valve disease). Eur J Echocardiogr. 2010;11:307–32.CrossRefPubMed
7.
Zurück zum Zitat Grant AD, Thavendiranathan P, Rodriguez LL, Kwon D, Marwick TH. Development of a consensus algorithm to improve interobserver agreement and accuracy in the determination of tricuspid regurgitation severity. J Am Soc Echocardiogr. 2014;27:277–84.CrossRefPubMed Grant AD, Thavendiranathan P, Rodriguez LL, Kwon D, Marwick TH. Development of a consensus algorithm to improve interobserver agreement and accuracy in the determination of tricuspid regurgitation severity. J Am Soc Echocardiogr. 2014;27:277–84.CrossRefPubMed
8.
Zurück zum Zitat Grossmann G, Stein M, Kochs M, Hoher M, Koenig W, Hombach V, et al. Comparison of the proximal flow convergence method and the jet area method for the assessment of the severity of tricuspid regurgitation. Eur Heart J. 1998;19:652–9.CrossRefPubMed Grossmann G, Stein M, Kochs M, Hoher M, Koenig W, Hombach V, et al. Comparison of the proximal flow convergence method and the jet area method for the assessment of the severity of tricuspid regurgitation. Eur Heart J. 1998;19:652–9.CrossRefPubMed
9.
Zurück zum Zitat Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER, et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson. 2013;15:51-429X-15-51.CrossRef Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER, et al. Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson. 2013;15:51-429X-15-51.CrossRef
10.
Zurück zum Zitat Westenberg JJ, Danilouchkine MG, Doornbos J, Bax JJ, van der Geest RJ, Labadie G, et al. Accurate and reproducible mitral valvular blood flow measurement with three-directional velocity-encoded magnetic resonance imaging. J Cardiovasc Magn Reson. 2004;6:767–76.CrossRefPubMed Westenberg JJ, Danilouchkine MG, Doornbos J, Bax JJ, van der Geest RJ, Labadie G, et al. Accurate and reproducible mitral valvular blood flow measurement with three-directional velocity-encoded magnetic resonance imaging. J Cardiovasc Magn Reson. 2004;6:767–76.CrossRefPubMed
11.
Zurück zum Zitat Owais K, Taylor CE, Jiang L, Khabbaz KR, Montealegre-Gallegos M, Matyal R, et al. Tricuspid annulus: a three-dimensional deconstruction and reconstruction. Ann Thorac Surg. 2014;98:1536–1543. Owais K, Taylor CE, Jiang L, Khabbaz KR, Montealegre-Gallegos M, Matyal R, et al. Tricuspid annulus: a three-dimensional deconstruction and reconstruction. Ann Thorac Surg. 2014;98:1536–1543.
12.
Zurück zum Zitat Myerson SG. Heart valve disease: investigation by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:7-429X-14-7.CrossRef Myerson SG. Heart valve disease: investigation by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:7-429X-14-7.CrossRef
13.
Zurück zum Zitat Kon MW, Myerson SG, Moat NE, Pennell DJ. Quantification of regurgitant fraction in mitral regurgitation by cardiovascular magnetic resonance: comparison of techniques. J Heart Valve Dis. 2004;13:600–7.PubMed Kon MW, Myerson SG, Moat NE, Pennell DJ. Quantification of regurgitant fraction in mitral regurgitation by cardiovascular magnetic resonance: comparison of techniques. J Heart Valve Dis. 2004;13:600–7.PubMed
14.
Zurück zum Zitat Westenberg JJ, Roes SD, Ajmone Marsan N, Binnendijk NM, Doornbos J, Bax JJ, et al. Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology. 2008;249:792–800.CrossRefPubMed Westenberg JJ, Roes SD, Ajmone Marsan N, Binnendijk NM, Doornbos J, Bax JJ, et al. Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology. 2008;249:792–800.CrossRefPubMed
15.
Zurück zum Zitat van der Hulst AE, Westenberg JJ, Kroft LJ, Bax JJ, Blom NA, de Roos A, et al. Tetralogy of fallot: 3D velocity-encoded MR imaging for evaluation of right ventricular valve flow and diastolic function in patients after correction. Radiology. 2010;256:724–34.CrossRefPubMed van der Hulst AE, Westenberg JJ, Kroft LJ, Bax JJ, Blom NA, de Roos A, et al. Tetralogy of fallot: 3D velocity-encoded MR imaging for evaluation of right ventricular valve flow and diastolic function in patients after correction. Radiology. 2010;256:724–34.CrossRefPubMed
16.
Zurück zum Zitat Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37:67–119.CrossRefPubMed Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J. 2016;37:67–119.CrossRefPubMed
17.
Zurück zum Zitat Driessen MM, Baggen VJ, Freling HG, Pieper PG, van Dijk AP, Doevendans PA, et al. Pressure overloaded right ventricles: a multicenter study on the importance of trabeculae in RV function measured by CMR. Int J Cardiovasc Imaging. 2014;30:599–608.CrossRefPubMed Driessen MM, Baggen VJ, Freling HG, Pieper PG, van Dijk AP, Doevendans PA, et al. Pressure overloaded right ventricles: a multicenter study on the importance of trabeculae in RV function measured by CMR. Int J Cardiovasc Imaging. 2014;30:599–608.CrossRefPubMed
18.
Zurück zum Zitat Renella P, Aboulhosn J, Lohan DG, Jonnala P, Finn JP, Satou GM, et al. Two-dimensional and Doppler echocardiography reliably predict severe pulmonary regurgitation as quantified by cardiac magnetic resonance. J Am Soc Echocardiogr. 2010;23:880–6.CrossRefPubMed Renella P, Aboulhosn J, Lohan DG, Jonnala P, Finn JP, Satou GM, et al. Two-dimensional and Doppler echocardiography reliably predict severe pulmonary regurgitation as quantified by cardiac magnetic resonance. J Am Soc Echocardiogr. 2010;23:880–6.CrossRefPubMed
19.
Zurück zum Zitat Lancellotti P, Tribouilloy C, Hagendorff A, Popescu BA, Edvardsen T, Pierard LA, et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2013;14:611–44.CrossRefPubMed Lancellotti P, Tribouilloy C, Hagendorff A, Popescu BA, Edvardsen T, Pierard LA, et al. Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2013;14:611–44.CrossRefPubMed
20.
Zurück zum Zitat Dulce MC, Mostbeck GH, O'Sullivan M, Cheitlin M, Caputo GR, Higgins CB. Severity of aortic regurgitation: interstudy reproducibility of measurements with velocity-encoded cine MR imaging. Radiology. 1992;185:235–40.CrossRefPubMed Dulce MC, Mostbeck GH, O'Sullivan M, Cheitlin M, Caputo GR, Higgins CB. Severity of aortic regurgitation: interstudy reproducibility of measurements with velocity-encoded cine MR imaging. Radiology. 1992;185:235–40.CrossRefPubMed
21.
Zurück zum Zitat Kondo C, Caputo GR, Semelka R, Foster E, Shimakawa A, Higgins CB. Right and left ventricular stroke volume measurements with velocity-encoded cine MR imaging: in vitro and in vivo validation. AJR Am J Roentgenol. 1991;157:9–16.CrossRefPubMed Kondo C, Caputo GR, Semelka R, Foster E, Shimakawa A, Higgins CB. Right and left ventricular stroke volume measurements with velocity-encoded cine MR imaging: in vitro and in vivo validation. AJR Am J Roentgenol. 1991;157:9–16.CrossRefPubMed
22.
Zurück zum Zitat van Ooij P, Powell AL, Potters WV, Carr JC, Markl M, Barker AJ. Reproducibility and interobserver variability of systolic blood flow velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta. J Magn Reson Imaging. 2016;43:236–48.CrossRefPubMed van Ooij P, Powell AL, Potters WV, Carr JC, Markl M, Barker AJ. Reproducibility and interobserver variability of systolic blood flow velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta. J Magn Reson Imaging. 2016;43:236–48.CrossRefPubMed
23.
Zurück zum Zitat Bollache E, van Ooij P, Powell A, Carr J, Markl M, Barker AJ. Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics. Int J Cardiovasc Imaging. 2016;32:1529–41.CrossRefPubMedPubMedCentral Bollache E, van Ooij P, Powell A, Carr J, Markl M, Barker AJ. Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics. Int J Cardiovasc Imaging. 2016;32:1529–41.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Baumgartner H, Bonhoeffer P, De Groot NM, de Haan F, Deanfield JE, Galie N, et al. ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J. 2010;31:2915–57.CrossRefPubMed Baumgartner H, Bonhoeffer P, De Groot NM, de Haan F, Deanfield JE, Galie N, et al. ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J. 2010;31:2915–57.CrossRefPubMed
25.
Zurück zum Zitat Dreyfus GD, Corbi PJ, Chan KM, Bahrami T. Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair? Ann Thorac Surg. 2005;79:127–32.CrossRefPubMed Dreyfus GD, Corbi PJ, Chan KM, Bahrami T. Secondary tricuspid regurgitation or dilatation: which should be the criteria for surgical repair? Ann Thorac Surg. 2005;79:127–32.CrossRefPubMed
26.
Zurück zum Zitat Cramer JW, Ginde S, Hill GD, Cohen SB, Bartz PJ, Tweddell JS, et al. Tricuspid repair at pulmonary valve replacement does not alter outcomes in tetralogy of Fallot. Ann Thorac Surg. 2015;99:899–904.CrossRefPubMed Cramer JW, Ginde S, Hill GD, Cohen SB, Bartz PJ, Tweddell JS, et al. Tricuspid repair at pulmonary valve replacement does not alter outcomes in tetralogy of Fallot. Ann Thorac Surg. 2015;99:899–904.CrossRefPubMed
27.
Zurück zum Zitat Kogon B, Patel M, Leong T, McConnell M, Book W. Management of moderate functional tricuspid valve regurgitation at the time of pulmonary valve replacement: is concomitant tricuspid valve repair necessary? Pediatr Cardiol. 2010;31:843–8.CrossRefPubMed Kogon B, Patel M, Leong T, McConnell M, Book W. Management of moderate functional tricuspid valve regurgitation at the time of pulmonary valve replacement: is concomitant tricuspid valve repair necessary? Pediatr Cardiol. 2010;31:843–8.CrossRefPubMed
28.
Zurück zum Zitat Bokma JP, Winter MM, Mulder BJ, Bouma BJ. Tricuspid regurgitation secondary to severe pulmonary regurgitation: when to operate on which valves? Ann Thorac Surg. 2015;100:2417–8.CrossRefPubMed Bokma JP, Winter MM, Mulder BJ, Bouma BJ. Tricuspid regurgitation secondary to severe pulmonary regurgitation: when to operate on which valves? Ann Thorac Surg. 2015;100:2417–8.CrossRefPubMed
29.
Zurück zum Zitat Contini E, Leiner T, Koehn DHJM, Aben JP, Viergever MA. Impact on pulmonary artery and aortic stroke volumes of a novel automatic valve tracking method using 4D flow MRI data. Abstract - 26th international magnetic resonance angiography working group. 2014. Contini E, Leiner T, Koehn DHJM, Aben JP, Viergever MA. Impact on pulmonary artery and aortic stroke volumes of a novel automatic valve tracking method using 4D flow MRI data. Abstract - 26th international magnetic resonance angiography working group. 2014.
Metadaten
Titel
Tricuspid flow and regurgitation in congenital heart disease and pulmonary hypertension: comparison of 4D flow cardiovascular magnetic resonance and echocardiography
verfasst von
Mieke M. P. Driessen
Marjolijn A. Schings
Gertjan Tj Sieswerda
Pieter A. Doevendans
Erik H. Hulzebos
Marco C. Post
Repke J. Snijder
Jos J. M. Westenberg
Arie P. J. van Dijk
Folkert J. Meijboom
Tim Leiner
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Journal of Cardiovascular Magnetic Resonance / Ausgabe 1/2018
Elektronische ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-017-0426-7

Weitere Artikel der Ausgabe 1/2018

Journal of Cardiovascular Magnetic Resonance 1/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.