Skip to main content
Erschienen in: CNS Drugs 9/2008

01.09.2008 | Review Article

Riluzole in the Treatment of Mood and Anxiety Disorders

verfasst von: Dr Christopher Pittenger, Vladimir Coric, Mounira Banasr, Michael Bloch, John H. Krystal, Gerard Sanacora

Erschienen in: CNS Drugs | Ausgabe 9/2008

Einloggen, um Zugang zu erhalten

Abstract

Recent advances implicate amino acid neurotransmission in the pathophysiology and treatment of mood and anxiety disorders. Riluzole, which is approved and marketed for the treatment of amyotrophic lateral sclerosis, is thought to be neuroprotective through its modulation of glutamatergic neurotransmission. Riluzole has multiple molecular actions in vitro; the two that have been documented to occur at physiologically realistic drug concentrations and are therefore most likely to be clinically relevant are inhibition of certain voltage-gated sodium channels, which can lead to reduced neurotransmitter release, and enhanced astrocytic uptake of extracellular glutamate.
Although double-blind, placebo-controlled trials are lacking, several open-label trials have suggested that riluzole, either as monotherapy or as augmentation of standard therapy, reduces symptoms of obsessive-compulsive disorder, unipolar and bipolar depression, and generalized anxiety disorder. In studies of psychiatrically ill patients conducted to date, the drug has been quite well tolerated; common adverse effects include nausea and sedation. Elevation of liver function tests is common and necessitates periodic monitoring, but has been without clinical consequence in studies conducted to date in psychiatric populations. Case reports suggest utility in other conditions, including trichotillomania and self-injurious behaviour associated with borderline personality disorder. Riluzole may hold promise for the treatment of several psychiatric conditions, possibly through its ability to modulate pathologically dysregulated glutamate levels, and merits further investigation.
Fußnoten
1
The use of trade names is for product identification purposes only and does not imply endorsement.
 
Literatur
1.
Zurück zum Zitat Heninger GR, Delgardo PL, Charney DS. The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 1996; 29: 2–11PubMedCrossRef Heninger GR, Delgardo PL, Charney DS. The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 1996; 29: 2–11PubMedCrossRef
2.
Zurück zum Zitat Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 2006; 163: 1905–17PubMedCrossRef Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 2006; 163: 1905–17PubMedCrossRef
3.
Zurück zum Zitat Berman RM, Krystal JH, Charney DS. Mechanisms of action of antidepressants: monoamine hypotheses and beyond. In: Watson SJ, editor. Biology of schizophrenia and affective disease. Washington, DC: American Psychiatric Press, 1996: 295–368 Berman RM, Krystal JH, Charney DS. Mechanisms of action of antidepressants: monoamine hypotheses and beyond. In: Watson SJ, editor. Biology of schizophrenia and affective disease. Washington, DC: American Psychiatric Press, 1996: 295–368
4.
Zurück zum Zitat Krystal JH, Sanacora G, Blumberg H, et al. Glutamate and GABA Systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 2002; 7: S71–80PubMedCrossRef Krystal JH, Sanacora G, Blumberg H, et al. Glutamate and GABA Systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 2002; 7: S71–80PubMedCrossRef
5.
Zurück zum Zitat Sanacora G, Rothman DL, Mason G, et al. Clinical studies implementing glutamate neurotransmission in mood disorders. Ann N Y Acad Sci 2003; 1003: 292–308PubMedCrossRef Sanacora G, Rothman DL, Mason G, et al. Clinical studies implementing glutamate neurotransmission in mood disorders. Ann N Y Acad Sci 2003; 1003: 292–308PubMedCrossRef
6.
Zurück zum Zitat Pittenger C, Krystal JH, Coric V. Glutamate-modulating drugs as novel pharmacotherapeutic agents in the treatment of obsessive-compulsive disorder. NeuroRx 2006; 3: 69–81PubMedCrossRef Pittenger C, Krystal JH, Coric V. Glutamate-modulating drugs as novel pharmacotherapeutic agents in the treatment of obsessive-compulsive disorder. NeuroRx 2006; 3: 69–81PubMedCrossRef
7.
Zurück zum Zitat Simon AB, Gorman JM. Advances in the treatment of anxiety: targeting glutamate. NeuroRx 2006; 3: 57–68PubMedCrossRef Simon AB, Gorman JM. Advances in the treatment of anxiety: targeting glutamate. NeuroRx 2006; 3: 57–68PubMedCrossRef
8.
Zurück zum Zitat Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis: ALS/Riluzole Study Group. N Engl J Med 1994; 330: 585–91PubMedCrossRef Bensimon G, Lacomblez L, Meininger V. A controlled trial of riluzole in amyotrophic lateral sclerosis: ALS/Riluzole Study Group. N Engl J Med 1994; 330: 585–91PubMedCrossRef
9.
Zurück zum Zitat Lacomblez L, Bensimon G, Leigh PN, et al. Dose-ranging study of riluzole in amyotrophic lateral sclerosis: Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 1996; 347: 1425–31PubMed Lacomblez L, Bensimon G, Leigh PN, et al. Dose-ranging study of riluzole in amyotrophic lateral sclerosis: Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 1996; 347: 1425–31PubMed
10.
Zurück zum Zitat Miller RG, Mitchell JD, Lyon M, et al. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Coch-rane Database Syst Rev 2007; (1): CD001447 Miller RG, Mitchell JD, Lyon M, et al. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Coch-rane Database Syst Rev 2007; (1): CD001447
11.
Zurück zum Zitat Zarate Jr CA, Payne JL, Quiroz J, et al. An open-label trial of riluzole in patients with treatment-resistant major depression. Am J Psychiatry 2004; 161: 171–4PubMedCrossRef Zarate Jr CA, Payne JL, Quiroz J, et al. An open-label trial of riluzole in patients with treatment-resistant major depression. Am J Psychiatry 2004; 161: 171–4PubMedCrossRef
12.
Zurück zum Zitat Sanacora G, Kendell SF, Fenton L, et al. Riluzole augmentation for treatment-resistant depression [letter]. Am J Psychiatry 2004; 161: 2132PubMedCrossRef Sanacora G, Kendell SF, Fenton L, et al. Riluzole augmentation for treatment-resistant depression [letter]. Am J Psychiatry 2004; 161: 2132PubMedCrossRef
13.
Zurück zum Zitat Sanacora G, Kendell SF, Levin Y, et al. Preliminary evidence of riluzole efficacy in antidepressant-treated patients with residual depressive symptoms. Biol Psychiatry 2007; 61: 822–5PubMedCrossRef Sanacora G, Kendell SF, Levin Y, et al. Preliminary evidence of riluzole efficacy in antidepressant-treated patients with residual depressive symptoms. Biol Psychiatry 2007; 61: 822–5PubMedCrossRef
14.
Zurück zum Zitat Zarate Jr CA, Quiroz JA, Singh JB, et al. An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression. Biol Psychiatry 2005; 57: 430–2PubMedCrossRef Zarate Jr CA, Quiroz JA, Singh JB, et al. An open-label trial of the glutamate-modulating agent riluzole in combination with lithium for the treatment of bipolar depression. Biol Psychiatry 2005; 57: 430–2PubMedCrossRef
15.
Zurück zum Zitat Coric V, Milanovic S, Wasylink S, et al. Beneficial effects of the antiglutamatergic agent riluzole in a patient diagnosed with obsessive compulsive disorder and major depressive disorder. Psychopharm (Berl) 2003; 167: 219–20 Coric V, Milanovic S, Wasylink S, et al. Beneficial effects of the antiglutamatergic agent riluzole in a patient diagnosed with obsessive compulsive disorder and major depressive disorder. Psychopharm (Berl) 2003; 167: 219–20
16.
Zurück zum Zitat Coric V, Taskiran S, Pittenger C, et al. Riluzole augmentation in treatment-resistant obsessive-compulsive disorder: an open-label trial. Biol Psychiatry 2005; 58: 424–8PubMedCrossRef Coric V, Taskiran S, Pittenger C, et al. Riluzole augmentation in treatment-resistant obsessive-compulsive disorder: an open-label trial. Biol Psychiatry 2005; 58: 424–8PubMedCrossRef
17.
Zurück zum Zitat Pittenger C, Kelmendi B, Wasylink S, et al. Riluzole augmentation in treatment-refractory obsessive-compulsive disorder: a series of 13 cases, with long-term follow-up. J Clin Psycho-pharmacol 2008; 28: 363–7CrossRef Pittenger C, Kelmendi B, Wasylink S, et al. Riluzole augmentation in treatment-refractory obsessive-compulsive disorder: a series of 13 cases, with long-term follow-up. J Clin Psycho-pharmacol 2008; 28: 363–7CrossRef
18.
Zurück zum Zitat Grant P, Lougee L, Hirschtritt M, et al. An open-label trial of riluzole, a glutamate antagonist, in children with treatment-resistant obsessive-compulsive disorder. J Child Adolesc Psychopharmacol 2007; 17: 761–7PubMedCrossRef Grant P, Lougee L, Hirschtritt M, et al. An open-label trial of riluzole, a glutamate antagonist, in children with treatment-resistant obsessive-compulsive disorder. J Child Adolesc Psychopharmacol 2007; 17: 761–7PubMedCrossRef
19.
Zurück zum Zitat Mathew SJ, Amiel JM, Coplan JD, et al. Open-label trial of riluzole in generalized anxiety disorder. Am J Psychiatry 2005; 162: 2379–81PubMedCrossRef Mathew SJ, Amiel JM, Coplan JD, et al. Open-label trial of riluzole in generalized anxiety disorder. Am J Psychiatry 2005; 162: 2379–81PubMedCrossRef
20.
Zurück zum Zitat Benavides J, Camelin JC, Mitrani N, et al. 2-Amino-6-trifluo-romethoxy benzothiazole, a possible antagonist of excitatory neurotransmission: II. Biochemical properties. Neuropharm 1985; 24: 1085–92CrossRef Benavides J, Camelin JC, Mitrani N, et al. 2-Amino-6-trifluo-romethoxy benzothiazole, a possible antagonist of excitatory neurotransmission: II. Biochemical properties. Neuropharm 1985; 24: 1085–92CrossRef
21.
Zurück zum Zitat Mizoule J, Meldrum B, Mazadier M, et al. 2-Amino-6-trifluoromethoxy benzothiazole, a possible antagonist of excitatory amino acid neurotransmission: I. Anticonvulsant properties. Neuropharm 1985; 24: 767–73CrossRef Mizoule J, Meldrum B, Mazadier M, et al. 2-Amino-6-trifluoromethoxy benzothiazole, a possible antagonist of excitatory amino acid neurotransmission: I. Anticonvulsant properties. Neuropharm 1985; 24: 767–73CrossRef
22.
Zurück zum Zitat Barneoud P, Mazadier M, Miquet JM, et al. Neuroprotective effects of riluzole on a model of Parkinson’s disease in the rat. Neurosci 1996; 74: 971–83 Barneoud P, Mazadier M, Miquet JM, et al. Neuroprotective effects of riluzole on a model of Parkinson’s disease in the rat. Neurosci 1996; 74: 971–83
23.
Zurück zum Zitat Bezard E, Stutzmann JM, Imbert C, et al. Riluzole delayed appearance of parkinsonian motor abnormalities in a chronic MPTP monkey model. Eur J Pharmacol 1998; 356: 101–4PubMedCrossRef Bezard E, Stutzmann JM, Imbert C, et al. Riluzole delayed appearance of parkinsonian motor abnormalities in a chronic MPTP monkey model. Eur J Pharmacol 1998; 356: 101–4PubMedCrossRef
24.
Zurück zum Zitat Storch A, Burkhardt K, Ludolph AC, et al. Protective effects of riluzole on dopamine neurons: involvement of oxidative stress and cellular energy metabolism. J Neurochem 2000; 75: 2259–69PubMedCrossRef Storch A, Burkhardt K, Ludolph AC, et al. Protective effects of riluzole on dopamine neurons: involvement of oxidative stress and cellular energy metabolism. J Neurochem 2000; 75: 2259–69PubMedCrossRef
25.
Zurück zum Zitat Obinu MC, Reibaud M, Blanchard V, et al. Neuroprotective effect of riluzole in a primate model of Parkinson’s disease: behavioral and histological evidence. Mov Disord 2002; 17: 13–9PubMedCrossRef Obinu MC, Reibaud M, Blanchard V, et al. Neuroprotective effect of riluzole in a primate model of Parkinson’s disease: behavioral and histological evidence. Mov Disord 2002; 17: 13–9PubMedCrossRef
26.
Zurück zum Zitat Schiefer J, Landwehrmeyer GB, Luesse HG, et al. Riluzole prolongs survival time and alters nuclear inclusion formation in a transgenic mouse model of Huntington’s disease. Mov Disord 2002; 17: 748–57PubMedCrossRef Schiefer J, Landwehrmeyer GB, Luesse HG, et al. Riluzole prolongs survival time and alters nuclear inclusion formation in a transgenic mouse model of Huntington’s disease. Mov Disord 2002; 17: 748–57PubMedCrossRef
27.
Zurück zum Zitat Wu J, Tang T, Bezprozvanny I. Evaluation of clinically relevant glutamate pathway inhibitors in in vitro model of Huntington’s disease. Neurosci Lett 2006; 407: 219–23PubMedCrossRef Wu J, Tang T, Bezprozvanny I. Evaluation of clinically relevant glutamate pathway inhibitors in in vitro model of Huntington’s disease. Neurosci Lett 2006; 407: 219–23PubMedCrossRef
28.
Zurück zum Zitat Gurney ME, Fleck ME, Himes CS, et al. Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis. Neurology 1998; 50: 62–6PubMedCrossRef Gurney ME, Fleck ME, Himes CS, et al. Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis. Neurology 1998; 50: 62–6PubMedCrossRef
29.
Zurück zum Zitat Stutzmann JM, Pratt J, Boraud T, et al. The effect of riluzole on post-traumatic spinal cord injury in the rat. Neuroreport 1996; 7: 387–92PubMedCrossRef Stutzmann JM, Pratt J, Boraud T, et al. The effect of riluzole on post-traumatic spinal cord injury in the rat. Neuroreport 1996; 7: 387–92PubMedCrossRef
30.
Zurück zum Zitat Mclntosh TK, Smith DH, Voddi M, et al. Riluzole, a novel neuroprotective agent, attenuates both neurologic motor and cognitive dysfunction following experimental brain injury in the rat. J Neurotrauma 1996; 13: 767–80CrossRef Mclntosh TK, Smith DH, Voddi M, et al. Riluzole, a novel neuroprotective agent, attenuates both neurologic motor and cognitive dysfunction following experimental brain injury in the rat. J Neurotrauma 1996; 13: 767–80CrossRef
31.
Zurück zum Zitat Bareyre F, Wahl F, Mclntosh TK, et al. Time course of cerebral edema after traumatic brain injury in rats: effects of rliuzole and mannitol. J Neurotrauma 1997; 14: 839–49PubMedCrossRef Bareyre F, Wahl F, Mclntosh TK, et al. Time course of cerebral edema after traumatic brain injury in rats: effects of rliuzole and mannitol. J Neurotrauma 1997; 14: 839–49PubMedCrossRef
32.
Zurück zum Zitat Wahl F, Renou E, Stutzmann JM. Riluzole reduces brain lesions and improves neurological function in rats after a traumatic brain injury. Brain Res 1997; 756: 247–53PubMedCrossRef Wahl F, Renou E, Stutzmann JM. Riluzole reduces brain lesions and improves neurological function in rats after a traumatic brain injury. Brain Res 1997; 756: 247–53PubMedCrossRef
33.
Zurück zum Zitat Zhang C, Raghupathi R, Saatman KE, et al. Riluzole attenuates cortical lesion size, but not hippocampal neuronal loss, following traumatic brain injury in the rat. J Neurosci Res 1998; 52: 342–9PubMedCrossRef Zhang C, Raghupathi R, Saatman KE, et al. Riluzole attenuates cortical lesion size, but not hippocampal neuronal loss, following traumatic brain injury in the rat. J Neurosci Res 1998; 52: 342–9PubMedCrossRef
34.
Zurück zum Zitat Wahl F, Stutzmann JM. Neuroprotective effects of riluzole in neurotrauma models: a review. Acta Neurochir Suppl 1999; 73: 103–10 Wahl F, Stutzmann JM. Neuroprotective effects of riluzole in neurotrauma models: a review. Acta Neurochir Suppl 1999; 73: 103–10
35.
Zurück zum Zitat Malgouris C, Bardot F, Daniel F, et al. Riluzole, a novel antiglutamate, prevents memory loss and hippocampal neuronal damage in ischemic gerbils. J Neurosci 1989; 9: 3720–7PubMed Malgouris C, Bardot F, Daniel F, et al. Riluzole, a novel antiglutamate, prevents memory loss and hippocampal neuronal damage in ischemic gerbils. J Neurosci 1989; 9: 3720–7PubMed
36.
Zurück zum Zitat Risterucci C, Coccurello R, Banasr M, et al. The metabotropic glutamate receptor subtype 5 antagonist MPEP and the Na(+) channel blocker riluzole show different neuroprotective profiles in reversing behavioral deficts induced by excitotoxic prefrontal cortex lesios. Neurosci 2006; 137: 211–20CrossRef Risterucci C, Coccurello R, Banasr M, et al. The metabotropic glutamate receptor subtype 5 antagonist MPEP and the Na(+) channel blocker riluzole show different neuroprotective profiles in reversing behavioral deficts induced by excitotoxic prefrontal cortex lesios. Neurosci 2006; 137: 211–20CrossRef
37.
Zurück zum Zitat Wahl F, Allix M, Plotkine M, et al. Effect of riluzole on focal cerebral ischemia in rats. Eur J Pharmacol 1993; 230: 209–14PubMedCrossRef Wahl F, Allix M, Plotkine M, et al. Effect of riluzole on focal cerebral ischemia in rats. Eur J Pharmacol 1993; 230: 209–14PubMedCrossRef
38.
Zurück zum Zitat Pratt J, Rataud J, Bardot F, et al. Neuroprotective actions of riluzole in rodent models of global and focal cerebral ischaemia. Neurosci Lett 1992; 140: 225–30PubMedCrossRef Pratt J, Rataud J, Bardot F, et al. Neuroprotective actions of riluzole in rodent models of global and focal cerebral ischaemia. Neurosci Lett 1992; 140: 225–30PubMedCrossRef
39.
Zurück zum Zitat Mottet I, Demeure R, Rataud J, et al. Effects of riluzole on the evolution of focal cerebral ischemia: a magnetic resonance imaging study. MAGMA 1997; 5: 185–91PubMedCrossRef Mottet I, Demeure R, Rataud J, et al. Effects of riluzole on the evolution of focal cerebral ischemia: a magnetic resonance imaging study. MAGMA 1997; 5: 185–91PubMedCrossRef
40.
Zurück zum Zitat Heurteaux C, Laigle C, Blondeau N, et al. Alpha-linolenic acid and riluzole treatment confer cerebral protection and improve survival after focal brain ischemia. Neuroscience 2006; 137: 241–51PubMedCrossRef Heurteaux C, Laigle C, Blondeau N, et al. Alpha-linolenic acid and riluzole treatment confer cerebral protection and improve survival after focal brain ischemia. Neuroscience 2006; 137: 241–51PubMedCrossRef
41.
Zurück zum Zitat Snyder SH, Ferris CD. Novel neurotransmitters and their neuropsychiatric relevance. Am J Psychiatry 2000; 157: 1738–51PubMedCrossRef Snyder SH, Ferris CD. Novel neurotransmitters and their neuropsychiatric relevance. Am J Psychiatry 2000; 157: 1738–51PubMedCrossRef
43.
Zurück zum Zitat Sanacora G, Gueorguieva R, Epperson CN, et al. Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 2004; 61: 705–13PubMedCrossRef Sanacora G, Gueorguieva R, Epperson CN, et al. Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 2004; 61: 705–13PubMedCrossRef
44.
Zurück zum Zitat Shepherd GM, editor. The synaptic organization of the brain. 5th ed. New York: Oxford University Press, 2003 Shepherd GM, editor. The synaptic organization of the brain. 5th ed. New York: Oxford University Press, 2003
45.
Zurück zum Zitat Hubert JP, Doble A. Ibotenic acid stimulates D-3H-aspartate release from cultured cerebellar granule cells. Neurosci Lett 1989; 96: 345–50PubMedCrossRef Hubert JP, Doble A. Ibotenic acid stimulates D-3H-aspartate release from cultured cerebellar granule cells. Neurosci Lett 1989; 96: 345–50PubMedCrossRef
46.
Zurück zum Zitat Chéramy A, Barbeito L, Godeheu G, et al. Riluzole inhibits the release of glutamate in the caudate nucleus of the cat in vivo. Neurosci Lett 1992; 147: 209–12PubMedCrossRef Chéramy A, Barbeito L, Godeheu G, et al. Riluzole inhibits the release of glutamate in the caudate nucleus of the cat in vivo. Neurosci Lett 1992; 147: 209–12PubMedCrossRef
47.
Zurück zum Zitat Martin D, Thompson MA, Nadler JV. The neuroprotective agent riluzole inhibits release of glutamate and aspartate from slices of hippocampal area CA 1. Eur J Pharmacol 1993; 250: 473–6PubMedCrossRef Martin D, Thompson MA, Nadler JV. The neuroprotective agent riluzole inhibits release of glutamate and aspartate from slices of hippocampal area CA 1. Eur J Pharmacol 1993; 250: 473–6PubMedCrossRef
48.
Zurück zum Zitat Jehle T, Bauer J, Blauth E, et al. Effects of riluzole on electrically evoked neurotransmitter release. Br J Pharmacol 2000; 130: 1227–34PubMedCrossRef Jehle T, Bauer J, Blauth E, et al. Effects of riluzole on electrically evoked neurotransmitter release. Br J Pharmacol 2000; 130: 1227–34PubMedCrossRef
49.
Zurück zum Zitat Prakriya M, Menerick S. Selective depression of low-release probability excitatory synapses by sodium channel blockers. Neuron 2000; 26: 671–82PubMedCrossRef Prakriya M, Menerick S. Selective depression of low-release probability excitatory synapses by sodium channel blockers. Neuron 2000; 26: 671–82PubMedCrossRef
50.
Zurück zum Zitat Benoit E, Escande D. Rliuzole specifically blocks inactivated Na chanels in myelinated nerve fibres. Pflügers Arch 1991; 419: 603–9PubMedCrossRef Benoit E, Escande D. Rliuzole specifically blocks inactivated Na chanels in myelinated nerve fibres. Pflügers Arch 1991; 419: 603–9PubMedCrossRef
51.
Zurück zum Zitat Hebert T, Drapeau P, Pradier L, et al. Block of the rate brain IIA sodium channel subunit by the neuroprotective drug riluzole. Mol Pharmacol 1994; 45: 1055–60PubMed Hebert T, Drapeau P, Pradier L, et al. Block of the rate brain IIA sodium channel subunit by the neuroprotective drug riluzole. Mol Pharmacol 1994; 45: 1055–60PubMed
52.
Zurück zum Zitat Stefani A, Spadoni F, Bernardi G. Differential inhibition by riluzole, lamotrigine, and phenytoin of sodium and calcium currents in cortical neurons: implications for neuroprotective strategies. Exp Neurol 1997; 147: 115–22PubMedCrossRef Stefani A, Spadoni F, Bernardi G. Differential inhibition by riluzole, lamotrigine, and phenytoin of sodium and calcium currents in cortical neurons: implications for neuroprotective strategies. Exp Neurol 1997; 147: 115–22PubMedCrossRef
53.
Zurück zum Zitat Song JH, Huang CS, Nagata K, et al. Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels. J Pharmacol Exp Ther 1997; 282: 707–14PubMed Song JH, Huang CS, Nagata K, et al. Differential action of riluzole on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels. J Pharmacol Exp Ther 1997; 282: 707–14PubMed
54.
Zurück zum Zitat Zona C, Siniscalchi A, Mercuri NB, et al. Riluzole interacts with voltage-activated sodium and potassium currents in cultured rat cortical neurons. Neurosci 1998; 85: 931–8CrossRef Zona C, Siniscalchi A, Mercuri NB, et al. Riluzole interacts with voltage-activated sodium and potassium currents in cultured rat cortical neurons. Neurosci 1998; 85: 931–8CrossRef
55.
Zurück zum Zitat Urbani A, Belluzzi O. Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci 2000; 12: 3567–74PubMedCrossRef Urbani A, Belluzzi O. Riluzole inhibits the persistent sodium current in mammalian CNS neurons. Eur J Neurosci 2000; 12: 3567–74PubMedCrossRef
56.
Zurück zum Zitat Huang CS, Song JH, Nagata K, et al. Effects of the neuroprotective agent riluzole on the high voltage-activated calcium channels of rat dorsal root ganglion neurons. J Pharmacol Exp Ther 1997; 282: 1280–90PubMed Huang CS, Song JH, Nagata K, et al. Effects of the neuroprotective agent riluzole on the high voltage-activated calcium channels of rat dorsal root ganglion neurons. J Pharmacol Exp Ther 1997; 282: 1280–90PubMed
57.
Zurück zum Zitat Wang SJ, Wang KY, Wang WC. Mechanisms underlying the riluzole inhibition of glutamate release form rat cerebral cortex nerve terminals (synaptosomes). Neuroscience 2004; 125: 191–201PubMedCrossRef Wang SJ, Wang KY, Wang WC. Mechanisms underlying the riluzole inhibition of glutamate release form rat cerebral cortex nerve terminals (synaptosomes). Neuroscience 2004; 125: 191–201PubMedCrossRef
58.
Zurück zum Zitat Doble A, Hubert JP, Blanchard JC. Pertussis toxin pretreatment abolishes the inhibitory effect of riluzole and carbachol on D-[3H]aspartate release from cultured cerebellar granule cells. Neurosci Lett 1992; 140: 251–4PubMedCrossRef Doble A, Hubert JP, Blanchard JC. Pertussis toxin pretreatment abolishes the inhibitory effect of riluzole and carbachol on D-[3H]aspartate release from cultured cerebellar granule cells. Neurosci Lett 1992; 140: 251–4PubMedCrossRef
59.
Zurück zum Zitat Hubert JP, Delumeau JC, Glowinski J, et al. Antagonism by riluzole of entry of calcium evoked by NMDA and veratridine in rat cultured granule cells: evidence for a dual mechanism of action. Br J Pharmacol 1994; 113: 261–7PubMedCrossRef Hubert JP, Delumeau JC, Glowinski J, et al. Antagonism by riluzole of entry of calcium evoked by NMDA and veratridine in rat cultured granule cells: evidence for a dual mechanism of action. Br J Pharmacol 1994; 113: 261–7PubMedCrossRef
60.
Zurück zum Zitat Huang CS, Song JH, Nagata K, et al. G-proteins are involved in riluzole inhibition of high voltage-activated calcium chanels in rat dorsal root gangion neurons. Brain Res 1997; 762: 235–9PubMedCrossRef Huang CS, Song JH, Nagata K, et al. G-proteins are involved in riluzole inhibition of high voltage-activated calcium chanels in rat dorsal root gangion neurons. Brain Res 1997; 762: 235–9PubMedCrossRef
61.
Zurück zum Zitat Duprat F, Lesage F, Patel AJ, et al. The neuroprotective agent riluzole activates the two P domain K(+) channels TREK-1 and TRAAK. Mol Pharmacol 2000; 57: 906–12PubMed Duprat F, Lesage F, Patel AJ, et al. The neuroprotective agent riluzole activates the two P domain K(+) channels TREK-1 and TRAAK. Mol Pharmacol 2000; 57: 906–12PubMed
62.
Zurück zum Zitat Xu L, Enyeart JA, Enyeart JJ. Neuroprotective agent riluzole dramatically slows inactivation of Kvl.4 potassium channels by a voltage-dependent oxidative mechanism. J Pharmacol Exp Ther 2001; 299: 227–37PubMed Xu L, Enyeart JA, Enyeart JJ. Neuroprotective agent riluzole dramatically slows inactivation of Kvl.4 potassium channels by a voltage-dependent oxidative mechanism. J Pharmacol Exp Ther 2001; 299: 227–37PubMed
63.
Zurück zum Zitat Ahn HS, Kim SE, Jang HJ, et al. Interaction of riluzole with the closed inactivated state of Kv4.3 channels. J Pharmacol Exp Ther 2006; 319: 323–31PubMedCrossRef Ahn HS, Kim SE, Jang HJ, et al. Interaction of riluzole with the closed inactivated state of Kv4.3 channels. J Pharmacol Exp Ther 2006; 319: 323–31PubMedCrossRef
64.
Zurück zum Zitat Debono MW, Le Guern J, Canton T, et al. Inhibition by riluzole of electrophysiological responses mediated by rat kainite and NMDA receptors expressed in Xenopus oocytes. Eur J Pharmacol 1993; 235: 283–9PubMedCrossRef Debono MW, Le Guern J, Canton T, et al. Inhibition by riluzole of electrophysiological responses mediated by rat kainite and NMDA receptors expressed in Xenopus oocytes. Eur J Pharmacol 1993; 235: 283–9PubMedCrossRef
65.
Zurück zum Zitat Zona C, Cavalcanti S, De Sarro G, et al. Kainate-induced currents in rat cortical neurons in culture are modulated by riluzole. Synapse 2002; 43: 244–51PubMedCrossRef Zona C, Cavalcanti S, De Sarro G, et al. Kainate-induced currents in rat cortical neurons in culture are modulated by riluzole. Synapse 2002; 43: 244–51PubMedCrossRef
66.
Zurück zum Zitat Albo F, Pieri M, Zona C. Modulation of AMPA receptors in spinal motor neurons by the neuroprotective agent riluzole. J Neurosci Res 2004; 78: 200–7PubMedCrossRef Albo F, Pieri M, Zona C. Modulation of AMPA receptors in spinal motor neurons by the neuroprotective agent riluzole. J Neurosci Res 2004; 78: 200–7PubMedCrossRef
67.
Zurück zum Zitat Mizuta I, Ohta M, Ohta K, et al. Riluzole stimulates nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor synthesis in cultured mouse astrocytes. Neurosci Lett 2001; 310: 117–20PubMedCrossRef Mizuta I, Ohta M, Ohta K, et al. Riluzole stimulates nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor synthesis in cultured mouse astrocytes. Neurosci Lett 2001; 310: 117–20PubMedCrossRef
68.
Zurück zum Zitat Katho-Semba R, Asano T, Ueda H, et al. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J 2002; 16: 1328–30 Katho-Semba R, Asano T, Ueda H, et al. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J 2002; 16: 1328–30
69.
Zurück zum Zitat Azbill RD, Mu X, Springer JE. Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes. Brain Res 2000; 871: 175–80PubMedCrossRef Azbill RD, Mu X, Springer JE. Riluzole increases high-affinity glutamate uptake in rat spinal cord synaptosomes. Brain Res 2000; 871: 175–80PubMedCrossRef
70.
Zurück zum Zitat Dunlop J, Beal Mcllvain H, She Y, et al. Impaired spinal cord glutamate transport capacity and reduced sensitivity to riluzole in a transgenic Superoxide dismutase mutant rat model of amyotrophic lateral sclerosis. J Neurosci 2003; 23: 168–96 Dunlop J, Beal Mcllvain H, She Y, et al. Impaired spinal cord glutamate transport capacity and reduced sensitivity to riluzole in a transgenic Superoxide dismutase mutant rat model of amyotrophic lateral sclerosis. J Neurosci 2003; 23: 168–96
71.
Zurück zum Zitat Frizzo ME, Dall’Onder LP, Dalcin KB, et al. Riluzole enhances glutamate uptake in rat astrocyte cultures. Cell Mol Neurobiol 2004; 24: 123–8PubMedCrossRef Frizzo ME, Dall’Onder LP, Dalcin KB, et al. Riluzole enhances glutamate uptake in rat astrocyte cultures. Cell Mol Neurobiol 2004; 24: 123–8PubMedCrossRef
72.
Zurück zum Zitat Sung B, Lim G, Mao J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J Neurosci 2003; 23: 2899–910PubMed Sung B, Lim G, Mao J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J Neurosci 2003; 23: 2899–910PubMed
73.
Zurück zum Zitat Chowdhury GMI, Banasr M, Sanacora G, et al. Chronic riluzole treatment increases glucose metabolism in rat prefrontal cortex and hippocampus. J Cereb Blood Flow Metab. In press Chowdhury GMI, Banasr M, Sanacora G, et al. Chronic riluzole treatment increases glucose metabolism in rat prefrontal cortex and hippocampus. J Cereb Blood Flow Metab. In press
74.
Zurück zum Zitat Mohammadi B, Lang N, Dengler R, et al. Interaction of high concentrations of riluzole with skeletal muscle sodium channels and adult-type nicotinic receptor channels. Muscle Nerve 2002; 26: 539–45PubMedCrossRef Mohammadi B, Lang N, Dengler R, et al. Interaction of high concentrations of riluzole with skeletal muscle sodium channels and adult-type nicotinic receptor channels. Muscle Nerve 2002; 26: 539–45PubMedCrossRef
75.
Zurück zum Zitat He Y, Benz A, Fu T, et al. Neuroprotective agent riluzole potentiates postsynaptic GABA-A receptor function. Neuro-pharmacol 2002; 42: 199–209 He Y, Benz A, Fu T, et al. Neuroprotective agent riluzole potentiates postsynaptic GABA-A receptor function. Neuro-pharmacol 2002; 42: 199–209
76.
Zurück zum Zitat Coderre TJ, Kumar N, Lefebvre CD, et al. A comparison of the glutamate relecase inhibition and anti-allodynic effects of gabapentin, lamotrigine, and riluzole in a model of neuropathic pain. J Neurochem 2007; 100: 1289–99PubMedCrossRef Coderre TJ, Kumar N, Lefebvre CD, et al. A comparison of the glutamate relecase inhibition and anti-allodynic effects of gabapentin, lamotrigine, and riluzole in a model of neuropathic pain. J Neurochem 2007; 100: 1289–99PubMedCrossRef
77.
Zurück zum Zitat Ahn HS, Choi JS, Choi BH, et al. Inhibition of the cloned delayed rectifier K+ channels, Kv1.5 and Kv3.1, by riluzole. Neuroscience 2005; 133: 1007–19PubMedCrossRef Ahn HS, Choi JS, Choi BH, et al. Inhibition of the cloned delayed rectifier K+ channels, Kv1.5 and Kv3.1, by riluzole. Neuroscience 2005; 133: 1007–19PubMedCrossRef
78.
Zurück zum Zitat Dietrich D, Kral T, Clusmann H, et al. Presynaptic group II metabotropic glutamate receptors reduce stimulated and spontaneous transmitter release in human dentate gyrus. Neuropharm 2002; 42: 297–305CrossRef Dietrich D, Kral T, Clusmann H, et al. Presynaptic group II metabotropic glutamate receptors reduce stimulated and spontaneous transmitter release in human dentate gyrus. Neuropharm 2002; 42: 297–305CrossRef
79.
Zurück zum Zitat Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharm 2008; 33: 18–41CrossRef Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharm 2008; 33: 18–41CrossRef
80.
81.
82.
Zurück zum Zitat Balazs R, Hack N, Jorgensen OS. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells. Neurosci Lett 1988; 87: 80–6PubMedCrossRef Balazs R, Hack N, Jorgensen OS. Stimulation of the N-methyl-D-aspartate receptor has a trophic effect on differentiating cerebellar granule cells. Neurosci Lett 1988; 87: 80–6PubMedCrossRef
83.
Zurück zum Zitat Bambrick LL, Yarowsky PJ, Krueger BK. Glutamate as a hippocampal neuron survival factor: an inherited defect in the trisomy 16 mouse. Proc Natl Acad Sci U S A 1995; 92: 9692–6PubMedCrossRef Bambrick LL, Yarowsky PJ, Krueger BK. Glutamate as a hippocampal neuron survival factor: an inherited defect in the trisomy 16 mouse. Proc Natl Acad Sci U S A 1995; 92: 9692–6PubMedCrossRef
84.
Zurück zum Zitat Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999; 283: 70–4PubMedCrossRef Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 1999; 283: 70–4PubMedCrossRef
85.
Zurück zum Zitat Monti B, Contestabile A. Blockade of the NMDA receptor increases developmental apoptotic elimination of granule neurons and activates caspases in the rat cerebelm. Eur J Neurosci 2000; 12: 3117–23PubMedCrossRef Monti B, Contestabile A. Blockade of the NMDA receptor increases developmental apoptotic elimination of granule neurons and activates caspases in the rat cerebelm. Eur J Neurosci 2000; 12: 3117–23PubMedCrossRef
87.
Zurück zum Zitat Cole AJ, Saffen DW, Baraban JM, et al. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 1989; 340: 474–6PubMedCrossRef Cole AJ, Saffen DW, Baraban JM, et al. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 1989; 340: 474–6PubMedCrossRef
88.
Zurück zum Zitat Carlezon Jr WA, Duman RS, Nestler EJ. The many faces of CREB. TINS 2005; 28: 436–45PubMed Carlezon Jr WA, Duman RS, Nestler EJ. The many faces of CREB. TINS 2005; 28: 436–45PubMed
89.
Zurück zum Zitat Meberg PJ, Kinney WR, Valcourt EG, et al. Gene expression of the transcription factor NF-kappa B in hippocampus: regulation by synaptic activity. Brain Res Mol Brain Res 1996; 38: 179–90PubMedCrossRef Meberg PJ, Kinney WR, Valcourt EG, et al. Gene expression of the transcription factor NF-kappa B in hippocampus: regulation by synaptic activity. Brain Res Mol Brain Res 1996; 38: 179–90PubMedCrossRef
90.
Zurück zum Zitat Marini AM, Jiamg X, Wu X, et al. Role of brain-derived neurotrophic factor and NF-kappaB in neuronal plasticity and survival: from genes to phenotype. Restor Neurol Neurosci 2004; 22: 121–30PubMed Marini AM, Jiamg X, Wu X, et al. Role of brain-derived neurotrophic factor and NF-kappaB in neuronal plasticity and survival: from genes to phenotype. Restor Neurol Neurosci 2004; 22: 121–30PubMed
91.
92.
Zurück zum Zitat Mattson MP, Culmsee C, Yu Z, et al. Roles of nuclear factor kappaB in neuronal survival and plasticity. J Neurochem 2000; 74: 443–56PubMedCrossRef Mattson MP, Culmsee C, Yu Z, et al. Roles of nuclear factor kappaB in neuronal survival and plasticity. J Neurochem 2000; 74: 443–56PubMedCrossRef
93.
Zurück zum Zitat Tao X, Finkbeiner DB, Arnold AJ, et al. Ca2+ influx regulates BDNF transcription by CREB family transcription factor dependent mechanism. Neuron 1998; 20: 709–26PubMedCrossRef Tao X, Finkbeiner DB, Arnold AJ, et al. Ca2+ influx regulates BDNF transcription by CREB family transcription factor dependent mechanism. Neuron 1998; 20: 709–26PubMedCrossRef
94.
Zurück zum Zitat Lucas DR, Newhouse JP. The toxic effect of sodium L-glutamate on the inner layer of the retina. Arch Ophthamol 1957; 58: 193–201CrossRef Lucas DR, Newhouse JP. The toxic effect of sodium L-glutamate on the inner layer of the retina. Arch Ophthamol 1957; 58: 193–201CrossRef
95.
Zurück zum Zitat Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor. Trends Neurosci 1987; 10: 299–302CrossRef Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor. Trends Neurosci 1987; 10: 299–302CrossRef
96.
Zurück zum Zitat Arundine M, Tymainski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 2003; 34: 325–37PubMedCrossRef Arundine M, Tymainski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 2003; 34: 325–37PubMedCrossRef
97.
Zurück zum Zitat Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999; 79: 1431–568PubMed Lipton P. Ischemic cell death in brain neurons. Physiol Rev 1999; 79: 1431–568PubMed
98.
Zurück zum Zitat Cluskey S, Ramsden DB. Mechanisms of neurodegeneration in amyotrophic lateral sclerosis. Mol Path 2001; 54: 386–92 Cluskey S, Ramsden DB. Mechanisms of neurodegeneration in amyotrophic lateral sclerosis. Mol Path 2001; 54: 386–92
99.
Zurück zum Zitat Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 2004; 45: 583–95PubMedCrossRef Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 2004; 45: 583–95PubMedCrossRef
100.
Zurück zum Zitat Sapolsky RM. The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol Psychiatry 2000; 48: 755–65PubMedCrossRef Sapolsky RM. The possibility of neurotoxicity in the hippocampus in major depression: a primer on neuron death. Biol Psychiatry 2000; 48: 755–65PubMedCrossRef
101.
Zurück zum Zitat McShane R, Aerosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev 2006; (2): CD003154 McShane R, Aerosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev 2006; (2): CD003154
102.
Zurück zum Zitat Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synapic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 2002; 5: 405–15PubMed Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synapic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 2002; 5: 405–15PubMed
103.
Zurück zum Zitat Hardingham GE, Bading H. The Yin and Yang of NMDA receptor signaling. Trends Neurosci 2003; 26: 81–9PubMedCrossRef Hardingham GE, Bading H. The Yin and Yang of NMDA receptor signaling. Trends Neurosci 2003; 26: 81–9PubMedCrossRef
104.
Zurück zum Zitat Hardingham GE. Pro-survival signaling from the NMDA receptor. Biochem Soc Trans 2006; 34: 936–8PubMedCrossRef Hardingham GE. Pro-survival signaling from the NMDA receptor. Biochem Soc Trans 2006; 34: 936–8PubMedCrossRef
105.
Zurück zum Zitat Zhang SJ, Steijaert MN, Lau D, et al. Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron 2007; 53: 549–62PubMedCrossRef Zhang SJ, Steijaert MN, Lau D, et al. Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death. Neuron 2007; 53: 549–62PubMedCrossRef
106.
Zurück zum Zitat Clements JD, Lester RA, Tong G, et al. The time course of glutamate in the synaptic cleft. Science 1992; 258: 1498–501PubMedCrossRef Clements JD, Lester RA, Tong G, et al. The time course of glutamate in the synaptic cleft. Science 1992; 258: 1498–501PubMedCrossRef
107.
Zurück zum Zitat Herman MA, Jahr CE. Extracellular glutamate concentration in hippocampal slice. J Neurosci 2007; 27: 9736–41PubMedCrossRef Herman MA, Jahr CE. Extracellular glutamate concentration in hippocampal slice. J Neurosci 2007; 27: 9736–41PubMedCrossRef
108.
Zurück zum Zitat O’Shea RD. Roles and regulation of glutamate transporters in the central nervous system. Clin Exper Pharm Physiol 2002; 29: 1018–23CrossRef O’Shea RD. Roles and regulation of glutamate transporters in the central nervous system. Clin Exper Pharm Physiol 2002; 29: 1018–23CrossRef
109.
Zurück zum Zitat Bergles DE, Jahr CE. Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J Neurosci 1998; 18: 7709–16PubMed Bergles DE, Jahr CE. Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus. J Neurosci 1998; 18: 7709–16PubMed
110.
Zurück zum Zitat Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996; 16: 675–86PubMedCrossRef Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996; 16: 675–86PubMedCrossRef
111.
Zurück zum Zitat Tanaka K, Watase K, Manabe T, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 1997; 276: 1699–702PubMedCrossRef Tanaka K, Watase K, Manabe T, et al. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 1997; 276: 1699–702PubMedCrossRef
112.
Zurück zum Zitat Oliet SHR, Piet R, Poulain DA. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 2001; 292: 923–6PubMedCrossRef Oliet SHR, Piet R, Poulain DA. Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 2001; 292: 923–6PubMedCrossRef
113.
Zurück zum Zitat Piet R, Vargova L, Sykova E, et al. Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci U S A 2004; 101: 2151–5PubMedCrossRef Piet R, Vargova L, Sykova E, et al. Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci U S A 2004; 101: 2151–5PubMedCrossRef
114.
Zurück zum Zitat Jabaudon D, Scanziani M, Gahwiler BH, et al. Acute decrease in net glutamate uptake during energy deprivation. Proc Natl Acad Sci U S A 2000; 97: 5610–5PubMedCrossRef Jabaudon D, Scanziani M, Gahwiler BH, et al. Acute decrease in net glutamate uptake during energy deprivation. Proc Natl Acad Sci U S A 2000; 97: 5610–5PubMedCrossRef
115.
Zurück zum Zitat Jabaudon D, Shimamoto K, Yasuda-Kamatani Y, et al. Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc Natl Acad Sci U S A 1999; 96: 8733–8PubMedCrossRef Jabaudon D, Shimamoto K, Yasuda-Kamatani Y, et al. Inhibition of uptake unmasks rapid extracellular turnover of glutamate of nonvesicular origin. Proc Natl Acad Sci U S A 1999; 96: 8733–8PubMedCrossRef
116.
Zurück zum Zitat Perego C, Vanoni C, Bosi M, et al. The GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. J Neurochem 2000; 75: 1076–84PubMedCrossRef Perego C, Vanoni C, Bosi M, et al. The GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. J Neurochem 2000; 75: 1076–84PubMedCrossRef
117.
Zurück zum Zitat Genoud C, Quairiaux C, Steiner P, et al. Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PloS Biology 2006; 4: e343PubMedCrossRef Genoud C, Quairiaux C, Steiner P, et al. Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PloS Biology 2006; 4: e343PubMedCrossRef
118.
Zurück zum Zitat Tian GL, Lai LC, Guo H, et al. Translational control of glial glutamate transporter EAAT2 expression. J Biol Chem 2007; 282: 1727–37PubMedCrossRef Tian GL, Lai LC, Guo H, et al. Translational control of glial glutamate transporter EAAT2 expression. J Biol Chem 2007; 282: 1727–37PubMedCrossRef
119.
Zurück zum Zitat Lin CI, Orlov I, Ruggiero AM, et al. Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Nature 2001; 410: 84–8PubMedCrossRef Lin CI, Orlov I, Ruggiero AM, et al. Modulation of the neuronal glutamate transporter EAAC1 by the interacting protein GTRAP3-18. Nature 2001; 410: 84–8PubMedCrossRef
120.
Zurück zum Zitat Jackson M, Song W, Liu MY, et al. Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature 2001; 410: 89–93PubMedCrossRef Jackson M, Song W, Liu MY, et al. Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature 2001; 410: 89–93PubMedCrossRef
121.
Zurück zum Zitat Marie H, Billups D, Bedford FK, et al. The amino terminus of the glial glutamate transporter GLT-1 interacts with the LIM protein Ajuba. Mol Cell Neurosci 2002; 19: 152–64PubMedCrossRef Marie H, Billups D, Bedford FK, et al. The amino terminus of the glial glutamate transporter GLT-1 interacts with the LIM protein Ajuba. Mol Cell Neurosci 2002; 19: 152–64PubMedCrossRef
122.
Zurück zum Zitat Beart PM, O’Shea RD. Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 2007; 150: 5–17PubMedCrossRef Beart PM, O’Shea RD. Transporters for L-glutamate: an update on their molecular pharmacology and pathological involvement. Br J Pharmacol 2007; 150: 5–17PubMedCrossRef
123.
Zurück zum Zitat Rothstein JD, Patel S, Regan MR, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005; 433: 73–7PubMedCrossRef Rothstein JD, Patel S, Regan MR, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005; 433: 73–7PubMedCrossRef
124.
Zurück zum Zitat Mineur YS, Picciotto MR, Sanacora G. Antidepressant-like effects of ceftriaxone in male C57B1/6J mice. Biol Psychiatry 2007; 61: 250–2PubMedCrossRef Mineur YS, Picciotto MR, Sanacora G. Antidepressant-like effects of ceftriaxone in male C57B1/6J mice. Biol Psychiatry 2007; 61: 250–2PubMedCrossRef
125.
Zurück zum Zitat Moran MM, McFarland K, Melendez RI, et al. Cystine/glutamate exchange regulates metabotropic glutamate receptor presynpatic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci 2005; 25: 6389–93PubMedCrossRef Moran MM, McFarland K, Melendez RI, et al. Cystine/glutamate exchange regulates metabotropic glutamate receptor presynpatic inhibition of excitatory transmission and vulnerability to cocaine seeking. J Neurosci 2005; 25: 6389–93PubMedCrossRef
126.
Zurück zum Zitat Magistretti PJ. Neuron-glia metabolic coupling and plasticity. J Exp Biol 2006; 209: 2304–11PubMedCrossRef Magistretti PJ. Neuron-glia metabolic coupling and plasticity. J Exp Biol 2006; 209: 2304–11PubMedCrossRef
127.
Zurück zum Zitat Mathew SJ, Price RB, Mao X, et al. Hippocampal N-acetylasparate concentration and response to riluzole in generalized anxiety disorder. Biol Psychiatry 2008; 63: 891–8PubMedCrossRef Mathew SJ, Price RB, Mao X, et al. Hippocampal N-acetylasparate concentration and response to riluzole in generalized anxiety disorder. Biol Psychiatry 2008; 63: 891–8PubMedCrossRef
128.
Zurück zum Zitat Groeeveld GJ, van Kan HJM, Sastre Toraño J, et al. Inter- and intra-individual variability of riluzole serum concentrations in patients with ALS. J Neurol Sci 2001; 191: 121–5CrossRef Groeeveld GJ, van Kan HJM, Sastre Toraño J, et al. Inter- and intra-individual variability of riluzole serum concentrations in patients with ALS. J Neurol Sci 2001; 191: 121–5CrossRef
129.
Zurück zum Zitat Mohammadi B, Krampfl K, Moschref H, et al. Interaction of the neuroprotective drug riluzole with GABA(A) and glycine receptor channels. Eur J Pharmacol 2001; 415: 135–40PubMedCrossRef Mohammadi B, Krampfl K, Moschref H, et al. Interaction of the neuroprotective drug riluzole with GABA(A) and glycine receptor channels. Eur J Pharmacol 2001; 415: 135–40PubMedCrossRef
130.
Zurück zum Zitat Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and TrkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neuosci 1995; 15: 7539–47 Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and TrkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neuosci 1995; 15: 7539–47
131.
Zurück zum Zitat Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59: 1116–27PubMedCrossRef Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry 2006; 59: 1116–27PubMedCrossRef
132.
Zurück zum Zitat Malberg JE, Eisch AJ, Nestler EJ, et al. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–10PubMed Malberg JE, Eisch AJ, Nestler EJ, et al. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104–10PubMed
133.
Zurück zum Zitat Warner-Schmidt JL, Duman RS. Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 2006; 16: 239–49PubMedCrossRef Warner-Schmidt JL, Duman RS. Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 2006; 16: 239–49PubMedCrossRef
134.
Zurück zum Zitat Svenningsson P, Tzavara ET, Witkin JM, et al. Involvement of striatal and extrastriatal DARP-32 in biochemical effects of fluoxetine (Prozac). Proc Natl Acad Sci U S A 2002; 99: 3182–7PubMedCrossRef Svenningsson P, Tzavara ET, Witkin JM, et al. Involvement of striatal and extrastriatal DARP-32 in biochemical effects of fluoxetine (Prozac). Proc Natl Acad Sci U S A 2002; 99: 3182–7PubMedCrossRef
135.
Zurück zum Zitat Witkin JM, Marek GJ, Johnson BG, et al. Metabotropic glutamate receptors in the control of mood disorders. CNS Neurol Disord Drug Targets 2007; 6: 87–100PubMedCrossRef Witkin JM, Marek GJ, Johnson BG, et al. Metabotropic glutamate receptors in the control of mood disorders. CNS Neurol Disord Drug Targets 2007; 6: 87–100PubMedCrossRef
136.
Zurück zum Zitat Du J, Suzuki K, Wei Y, et al. The anticonvulsants lamotrigine, riluzole, and valproate differentially regulate AMPA receptor membrane localization: relationship to clinical effects in mood disorders. Neuropsychopharm 2007; 32: 793–802CrossRef Du J, Suzuki K, Wei Y, et al. The anticonvulsants lamotrigine, riluzole, and valproate differentially regulate AMPA receptor membrane localization: relationship to clinical effects in mood disorders. Neuropsychopharm 2007; 32: 793–802CrossRef
137.
Zurück zum Zitat Bensimon G, Lacomblez L, Delumeau JC, et al. A study of riluozle in the treatment of advanced stage or elderly patients with amyotrophic lateral sclerosis. J Neurol 2002; 249: 609–15PubMedCrossRef Bensimon G, Lacomblez L, Delumeau JC, et al. A study of riluozle in the treatment of advanced stage or elderly patients with amyotrophic lateral sclerosis. J Neurol 2002; 249: 609–15PubMedCrossRef
138.
Zurück zum Zitat Yanagisawa N, Tashiro K, Tohgi H, et al. Efficacy and safety of riluzole in patients with amyotrophic lateral sclerosis: double-blind placebo-controlled study in Japan. Igakuno Ayumi 1997; 182: 851–66 Yanagisawa N, Tashiro K, Tohgi H, et al. Efficacy and safety of riluzole in patients with amyotrophic lateral sclerosis: double-blind placebo-controlled study in Japan. Igakuno Ayumi 1997; 182: 851–66
139.
Zurück zum Zitat Riviere M, Meininger V, Zeisser P, et al. An analysis of extended survival in patients with amyotrophic lateral sclerosis treated with riluzole. Arch Neurol 1998; 55: 526–8PubMedCrossRef Riviere M, Meininger V, Zeisser P, et al. An analysis of extended survival in patients with amyotrophic lateral sclerosis treated with riluzole. Arch Neurol 1998; 55: 526–8PubMedCrossRef
140.
Zurück zum Zitat Plaitakis A, Caroscio JT. Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann Neurol 1987; 22: 575–9PubMedCrossRef Plaitakis A, Caroscio JT. Abnormal glutamate metabolism in amyotrophic lateral sclerosis. Ann Neurol 1987; 22: 575–9PubMedCrossRef
141.
Zurück zum Zitat Rothstein JD, Martin LJ, Kunci RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 1992; 326: 1464–8PubMedCrossRef Rothstein JD, Martin LJ, Kunci RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 1992; 326: 1464–8PubMedCrossRef
142.
Zurück zum Zitat Doble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 1999; 81: 163–221PubMedCrossRef Doble A. The role of excitotoxicity in neurodegenerative disease: implications for therapy. Pharmacol Ther 1999; 81: 163–221PubMedCrossRef
143.
Zurück zum Zitat LeWitt PA. Clinical trials of neuroprotection for Parkinson’s disease. Neurology 2004; 63(S2): S23–31PubMedCrossRef LeWitt PA. Clinical trials of neuroprotection for Parkinson’s disease. Neurology 2004; 63(S2): S23–31PubMedCrossRef
144.
Zurück zum Zitat Jancovic J, Hunter C. A double-blind, placebo-controlled and longitudinal study of riluzole in early Parkinson’s disease. Parkinsonism Relat Disord 2002; 8: 271–6CrossRef Jancovic J, Hunter C. A double-blind, placebo-controlled and longitudinal study of riluzole in early Parkinson’s disease. Parkinsonism Relat Disord 2002; 8: 271–6CrossRef
145.
Zurück zum Zitat Braz CA, Borges V, Ferraz HB. Effect of riluzole on dyskinesia and duration of the on state in Parkinson disease: a double-blind, placebo-controlled pilot study. Clin Neuropharmacol 2004; 27: 25–9PubMedCrossRef Braz CA, Borges V, Ferraz HB. Effect of riluzole on dyskinesia and duration of the on state in Parkinson disease: a double-blind, placebo-controlled pilot study. Clin Neuropharmacol 2004; 27: 25–9PubMedCrossRef
146.
Zurück zum Zitat Bara-Jimenez W, Dimitrova TD, Sherzai A, et al. Glutamate release inhibition ineffective in levodopa-induced motor complications. Mov Disord 2006; 21: 1380–3PubMedCrossRef Bara-Jimenez W, Dimitrova TD, Sherzai A, et al. Glutamate release inhibition ineffective in levodopa-induced motor complications. Mov Disord 2006; 21: 1380–3PubMedCrossRef
147.
Zurück zum Zitat Seppi K, Peralta C, Diem-Zangerl A, et al. Placebo-controlled trial of riluzole in multiple system atrophy. Eur J Neurosci 2006; 13: 1146–8 Seppi K, Peralta C, Diem-Zangerl A, et al. Placebo-controlled trial of riluzole in multiple system atrophy. Eur J Neurosci 2006; 13: 1146–8
148.
Zurück zum Zitat Seppi K, Mueller J, Bodner T, et al. Riluzole in Hntington’s disease (HD): an open-label study with one year follow up. J Neurol 2001; 248: 866–9PubMedCrossRef Seppi K, Mueller J, Bodner T, et al. Riluzole in Hntington’s disease (HD): an open-label study with one year follow up. J Neurol 2001; 248: 866–9PubMedCrossRef
149.
Zurück zum Zitat Huntington Study Group. Dosage effects of riluzole in Huntington’s disease: a multicenter placebo-controlled study. Neurology 2003; 61: 1551–6CrossRef Huntington Study Group. Dosage effects of riluzole in Huntington’s disease: a multicenter placebo-controlled study. Neurology 2003; 61: 1551–6CrossRef
150.
Zurück zum Zitat Galer BS, Twilling LL, Harle J, et al. Lack of efficacy of riluzole in the treatment of peripheral neuropathic pain conditions. Neurology 2000; 55: 971–5PubMedCrossRef Galer BS, Twilling LL, Harle J, et al. Lack of efficacy of riluzole in the treatment of peripheral neuropathic pain conditions. Neurology 2000; 55: 971–5PubMedCrossRef
151.
Zurück zum Zitat Romettino S, Lazdunski M, Gottesmann C. Anticonvulsant and sleep-waking influences of riluzole in a rat model of absence epilepsy. Eur J Pharmacol 1991; 199: 371–3PubMedCrossRef Romettino S, Lazdunski M, Gottesmann C. Anticonvulsant and sleep-waking influences of riluzole in a rat model of absence epilepsy. Eur J Pharmacol 1991; 199: 371–3PubMedCrossRef
152.
Zurück zum Zitat De Sarro G, Siniscalchi A, Ferreri G, et al. NMDA and AMP A/ kainite receptors are involved in the anticonvulsant activity of riluzole in DBA/2 mice. Eur J Pharmacol 2000; 408: 25–34PubMedCrossRef De Sarro G, Siniscalchi A, Ferreri G, et al. NMDA and AMP A/ kainite receptors are involved in the anticonvulsant activity of riluzole in DBA/2 mice. Eur J Pharmacol 2000; 408: 25–34PubMedCrossRef
153.
Zurück zum Zitat Borowicz KK, Sekowski A, Drelewska E, et al. Riluzole enhances the anti-seizure action of conventional antiepileptic drugs against pentetrazole-induced convulsions in mice. Pol J Pharmacol 2004; 56: 187–93PubMed Borowicz KK, Sekowski A, Drelewska E, et al. Riluzole enhances the anti-seizure action of conventional antiepileptic drugs against pentetrazole-induced convulsions in mice. Pol J Pharmacol 2004; 56: 187–93PubMed
154.
Zurück zum Zitat Kim JE, Kim DS, Kwak SE, et al. Anti-glutamatergic effect of riluzole: comparison with valproic acid. Neuroscience 2007; 147: 136–45PubMedCrossRef Kim JE, Kim DS, Kwak SE, et al. Anti-glutamatergic effect of riluzole: comparison with valproic acid. Neuroscience 2007; 147: 136–45PubMedCrossRef
155.
Zurück zum Zitat Kugaya A, Sanacora G. Beyond momoamines: glutamatergic function in mood disorders. CNS Spectr 2005; 10: 808–19PubMed Kugaya A, Sanacora G. Beyond momoamines: glutamatergic function in mood disorders. CNS Spectr 2005; 10: 808–19PubMed
156.
Zurück zum Zitat Pittenger C, Sanacora G, Krystal J. The NMDA receptor as a therapeutic target in major depression. CNS Neurol Disord Drug Targets 2007; 6: 101–15PubMedCrossRef Pittenger C, Sanacora G, Krystal J. The NMDA receptor as a therapeutic target in major depression. CNS Neurol Disord Drug Targets 2007; 6: 101–15PubMedCrossRef
157.
Zurück zum Zitat Yildiz-Yesiloglu A, Ankerst DP. Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res 2006; 147: 1–25PubMedCrossRef Yildiz-Yesiloglu A, Ankerst DP. Review of 1H magnetic resonance spectroscopy findings in major depressive disorder: a meta-analysis. Psychiatry Res 2006; 147: 1–25PubMedCrossRef
158.
Zurück zum Zitat Hasler G, van der Veen JW, Tumonis T, et al. Reduced prefrontal glutamate/glutamine and γ-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2007; 64: 193–200PubMedCrossRef Hasler G, van der Veen JW, Tumonis T, et al. Reduced prefrontal glutamate/glutamine and γ-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2007; 64: 193–200PubMedCrossRef
159.
Zurück zum Zitat Bhagwagar Z, Wylezinska M, Jezzard P, et al. Reduction in occipital cortex gamma-aminobutyric acid concentrations in medication-free recovered unipolar depressed and bipolar subjects. Biol Psychiatry 2007; 61: 806–12PubMedCrossRef Bhagwagar Z, Wylezinska M, Jezzard P, et al. Reduction in occipital cortex gamma-aminobutyric acid concentrations in medication-free recovered unipolar depressed and bipolar subjects. Biol Psychiatry 2007; 61: 806–12PubMedCrossRef
160.
Zurück zum Zitat Ongur D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 1998; 95: 13290–5PubMedCrossRef Ongur D, Drevets WC, Price JL. Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci U S A 1998; 95: 13290–5PubMedCrossRef
161.
Zurück zum Zitat Rajkowska G, Miguel-Hidalgo JJ, Wei J, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45: 1085–98PubMedCrossRef Rajkowska G, Miguel-Hidalgo JJ, Wei J, et al. Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 1999; 45: 1085–98PubMedCrossRef
162.
Zurück zum Zitat Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 2007; 6: 219–33PubMedCrossRef Rajkowska G, Miguel-Hidalgo JJ. Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 2007; 6: 219–33PubMedCrossRef
163.
Zurück zum Zitat Cotter DR, Pariante CM, Everall IP. Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 2001; 55: 585–95PubMedCrossRef Cotter DR, Pariante CM, Everall IP. Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 2001; 55: 585–95PubMedCrossRef
164.
Zurück zum Zitat Cotter DR, Mackay D, Chana G, et al. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 2002; 12: 386–94PubMedCrossRef Cotter DR, Mackay D, Chana G, et al. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 2002; 12: 386–94PubMedCrossRef
165.
Zurück zum Zitat Banasr M, Valentine GW, Li XY. Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biol Psychiatry 2007; 62: 496–504PubMedCrossRef Banasr M, Valentine GW, Li XY. Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biol Psychiatry 2007; 62: 496–504PubMedCrossRef
166.
Zurück zum Zitat Bansar M, Duman RS. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry. In press Bansar M, Duman RS. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry. In press
167.
Zurück zum Zitat Zarate Jr CA, Quiroz J, Payne J, et al. Modulators of the glutamatergic system: implications for the development of improved therapeutics in mood disorders. Translational Neurosci 2002; 36: 35–83 Zarate Jr CA, Quiroz J, Payne J, et al. Modulators of the glutamatergic system: implications for the development of improved therapeutics in mood disorders. Translational Neurosci 2002; 36: 35–83
168.
Zurück zum Zitat Manji HK, Quiroz JA, Sporn J, et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics in major depression. Biol Psychiatry 2003; 53: 707–42PubMedCrossRef Manji HK, Quiroz JA, Sporn J, et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics in major depression. Biol Psychiatry 2003; 53: 707–42PubMedCrossRef
169.
Zurück zum Zitat Banasr M, Chowdhury GMI, Terwilleger R, et al. Stress-induced glial pathology and depressive behaviors are prevented by riluzole. Mol Psychiatry. In press Banasr M, Chowdhury GMI, Terwilleger R, et al. Stress-induced glial pathology and depressive behaviors are prevented by riluzole. Mol Psychiatry. In press
170.
Zurück zum Zitat Montgomery SA. A new depression scale designed to be sensitive to change. Br J Psychiatry 1979; 134: 382–9PubMedCrossRef Montgomery SA. A new depression scale designed to be sensitive to change. Br J Psychiatry 1979; 134: 382–9PubMedCrossRef
171.
172.
Zurück zum Zitat Scahill L, Riddle MA, McSwiggin-Hardin M, et al. Children’s Yale-Brown Obsessive Compulsive Scale: reliability and validity. J Am Acad Child Adolesc Psychiatry 1997; 36: 844–52PubMedCrossRef Scahill L, Riddle MA, McSwiggin-Hardin M, et al. Children’s Yale-Brown Obsessive Compulsive Scale: reliability and validity. J Am Acad Child Adolesc Psychiatry 1997; 36: 844–52PubMedCrossRef
173.
174.
Zurück zum Zitat Goodman WK, Price LH, Rasmussen SA, et al. The Yale-Brown obsessive compulsive scale: I. Development, use, and reliability. Arch Gen Psychiatry 1989; 46: 1106–11 Goodman WK, Price LH, Rasmussen SA, et al. The Yale-Brown obsessive compulsive scale: I. Development, use, and reliability. Arch Gen Psychiatry 1989; 46: 1106–11
175.
Zurück zum Zitat Young RC, Biggs JT, Ziegler VE, et al. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry 1978; 133: 429–35.PubMedCrossRef Young RC, Biggs JT, Ziegler VE, et al. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry 1978; 133: 429–35.PubMedCrossRef
176.
Zurück zum Zitat Zarate Jr CA, Singh JB, Carlson PJ, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006; 63: 856–64PubMedCrossRef Zarate Jr CA, Singh JB, Carlson PJ, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 2006; 63: 856–64PubMedCrossRef
177.
Zurück zum Zitat Thase ME, Bhargava M, Sach GS. Treatment of bipolar depression: current status, continued challenges, and the STEP-BD approach. Psychiatr Clin North Am 2003; 26: 495–518PubMedCrossRef Thase ME, Bhargava M, Sach GS. Treatment of bipolar depression: current status, continued challenges, and the STEP-BD approach. Psychiatr Clin North Am 2003; 26: 495–518PubMedCrossRef
178.
Zurück zum Zitat Goldberg JF, Truman CJ. Antidepressant-induced mania: an overview of current controversies. Bipolar Disord 2003; 5: 407–20PubMedCrossRef Goldberg JF, Truman CJ. Antidepressant-induced mania: an overview of current controversies. Bipolar Disord 2003; 5: 407–20PubMedCrossRef
179.
Zurück zum Zitat Yildiz-Yesiloglu A, Ankerst DP. Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: a systematic review of the in vivo proton magnetic resonance spectroscopy findings. Prog Neuropharmacol Biol Psychiatry 2006; 30: 969–95CrossRef Yildiz-Yesiloglu A, Ankerst DP. Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: a systematic review of the in vivo proton magnetic resonance spectroscopy findings. Prog Neuropharmacol Biol Psychiatry 2006; 30: 969–95CrossRef
180.
Zurück zum Zitat Rosenberg DR, MacMillan SN, Moore GJ. Brain anatomy and chemistry may predict treatment response in paediatric obsessive-compulsive disorder. Int J Neuropsychopharm 2001; 4: 179–90CrossRef Rosenberg DR, MacMillan SN, Moore GJ. Brain anatomy and chemistry may predict treatment response in paediatric obsessive-compulsive disorder. Int J Neuropsychopharm 2001; 4: 179–90CrossRef
181.
Zurück zum Zitat Pittenger C, Naungayan C, Kendell SF, et al. Visual hallucinations from the addition of riluzole to memantine and bupropion. J Clin Psychopharmacol 2006; 26: 218–20PubMedCrossRef Pittenger C, Naungayan C, Kendell SF, et al. Visual hallucinations from the addition of riluzole to memantine and bupropion. J Clin Psychopharmacol 2006; 26: 218–20PubMedCrossRef
182.
Zurück zum Zitat Chakrabarty K, Bhattacharyya S, Christopher R, et al. Glutamatergic dysfunction in OCD. Neuropsychopharm 2005; 30: 1735–40CrossRef Chakrabarty K, Bhattacharyya S, Christopher R, et al. Glutamatergic dysfunction in OCD. Neuropsychopharm 2005; 30: 1735–40CrossRef
183.
Zurück zum Zitat Arnold PD, Sicard T, Burroughs E, et al. Glutamate transporter gene SLC1A1 associated with obsessive-compulsive disorder. Arch Gen Psychiatry 2006; 63: 769–76PubMedCrossRef Arnold PD, Sicard T, Burroughs E, et al. Glutamate transporter gene SLC1A1 associated with obsessive-compulsive disorder. Arch Gen Psychiatry 2006; 63: 769–76PubMedCrossRef
184.
Zurück zum Zitat Dickel DE, Veenstra-VanderWeele J, Cox NJ, et al. Association testing of the positional and functional candidate gene SLC1A1/EAAC1 in early-onset obsessive-compulsive disorder. Arch Gen Psychiatry 2006; 63: 778–85PubMedCrossRef Dickel DE, Veenstra-VanderWeele J, Cox NJ, et al. Association testing of the positional and functional candidate gene SLC1A1/EAAC1 in early-onset obsessive-compulsive disorder. Arch Gen Psychiatry 2006; 63: 778–85PubMedCrossRef
185.
Zurück zum Zitat Stewart SE, Fagerness JA, Platko J, et al. Association of the SLC1A1 glutamate transporter gene and obsessive-compulsive disorder. Am J Med Genet B Neuropsych Genet 2007; 144: 1028–33 Stewart SE, Fagerness JA, Platko J, et al. Association of the SLC1A1 glutamate transporter gene and obsessive-compulsive disorder. Am J Med Genet B Neuropsych Genet 2007; 144: 1028–33
186.
Zurück zum Zitat Mataix-Cols D, Rosario-Campos MC, Leckman JF. A multidimensional model of obsessive-compulsive disorder. Am J Psychiatry 2005; 162: 228–38PubMedCrossRef Mataix-Cols D, Rosario-Campos MC, Leckman JF. A multidimensional model of obsessive-compulsive disorder. Am J Psychiatry 2005; 162: 228–38PubMedCrossRef
187.
Zurück zum Zitat Samuels J, Shugart YY, Grados MA, et al. Significant linkage to compulsive hoarding on chromosome 14 in families with obsessive-compulsive disorder: results from the OCD Collaborative Genetics Study. Am J Psychiatry 2007; 164: 493–9PubMedCrossRef Samuels J, Shugart YY, Grados MA, et al. Significant linkage to compulsive hoarding on chromosome 14 in families with obsessive-compulsive disorder: results from the OCD Collaborative Genetics Study. Am J Psychiatry 2007; 164: 493–9PubMedCrossRef
188.
Zurück zum Zitat Saxena S. Is compulsive hoarding a genetically and neurobiologically discrete syndrome? Implications for diagnostic classification. Am J Psychiatry 2007; 164: 380–4PubMedCrossRef Saxena S. Is compulsive hoarding a genetically and neurobiologically discrete syndrome? Implications for diagnostic classification. Am J Psychiatry 2007; 164: 380–4PubMedCrossRef
189.
Zurück zum Zitat Sasso DA, Kalanithi PS, Trueblood KV, et al. Beneficial effects of the glutamate-modulating agent riluzole on disordered eating and pathological skin-picking behaviors. J Clin Psychopharmacol 2006; 26: 685–7PubMedCrossRef Sasso DA, Kalanithi PS, Trueblood KV, et al. Beneficial effects of the glutamate-modulating agent riluzole on disordered eating and pathological skin-picking behaviors. J Clin Psychopharmacol 2006; 26: 685–7PubMedCrossRef
190.
Zurück zum Zitat Hollander E. Obsessive compulsive related disorders. Washington, DC: American Psychiatric Press, 1993 Hollander E. Obsessive compulsive related disorders. Washington, DC: American Psychiatric Press, 1993
191.
Zurück zum Zitat Gunstad J, Phillips KA. Axis I comorbidity in body dysmorphic disorder. Compr Psychiatry 2003; 44: 270–6PubMedCrossRef Gunstad J, Phillips KA. Axis I comorbidity in body dysmorphic disorder. Compr Psychiatry 2003; 44: 270–6PubMedCrossRef
192.
Zurück zum Zitat Lieb K, Zanarini MC, Schmahl C, et al. Borderline personality disorder. Lancet 2004; 364: 453–61PubMedCrossRef Lieb K, Zanarini MC, Schmahl C, et al. Borderline personality disorder. Lancet 2004; 364: 453–61PubMedCrossRef
193.
Zurück zum Zitat Pittenger C, Krystal JH, Coric V. Initial evidence of the beneficial effects of glutamate-modulating agents in the treatment of self-injurious behavior associated with borderline personality disorder. J Clin Psychiatry 2005; 66: 1492–3PubMedCrossRef Pittenger C, Krystal JH, Coric V. Initial evidence of the beneficial effects of glutamate-modulating agents in the treatment of self-injurious behavior associated with borderline personality disorder. J Clin Psychiatry 2005; 66: 1492–3PubMedCrossRef
194.
Zurück zum Zitat Bloch MH, Landeros-Weisenberger A, Dombrowski P, et al. Systematic review: pharmacological and behavioral treatment for trichotillomania. Biol Psychiatry 2007; 62: 839–46PubMedCrossRef Bloch MH, Landeros-Weisenberger A, Dombrowski P, et al. Systematic review: pharmacological and behavioral treatment for trichotillomania. Biol Psychiatry 2007; 62: 839–46PubMedCrossRef
195.
Zurück zum Zitat Coric V, Kelmendi B, Pittenger C, et al. Beneficial effects of the antiglutamatergic agent riluzole in a patient diagnosed with trichotillomania. J Clin Psychiatry 2007; 68: 170–1PubMedCrossRef Coric V, Kelmendi B, Pittenger C, et al. Beneficial effects of the antiglutamatergic agent riluzole in a patient diagnosed with trichotillomania. J Clin Psychiatry 2007; 68: 170–1PubMedCrossRef
196.
Zurück zum Zitat O’Sullivan RL, Keuthen NJ, Hayday CF. The Massachusetts General Hospital (MGH) hairpulling scale: 2. Reliability and validity. Psychother Psychosom 1995; 64: 146–48PubMedCrossRef O’Sullivan RL, Keuthen NJ, Hayday CF. The Massachusetts General Hospital (MGH) hairpulling scale: 2. Reliability and validity. Psychother Psychosom 1995; 64: 146–48PubMedCrossRef
197.
Zurück zum Zitat Bensimon G, Doble A. The tolerability of riluzole in the treatment of patients with amyotrophic lateral sclerosis. Expert Opin Drug Saf 2004; 3: 525–34PubMedCrossRef Bensimon G, Doble A. The tolerability of riluzole in the treatment of patients with amyotrophic lateral sclerosis. Expert Opin Drug Saf 2004; 3: 525–34PubMedCrossRef
198.
Zurück zum Zitat Lacomblez L, Dibm M, Doppler V, et al. Tolerance of riluzole in a phase IIIb clinical trial. Therapie 2002; 57: 65–71PubMed Lacomblez L, Dibm M, Doppler V, et al. Tolerance of riluzole in a phase IIIb clinical trial. Therapie 2002; 57: 65–71PubMed
199.
Zurück zum Zitat Castells LI, Gamez J, Cervera C, et al. Icteric toxic hepatitis associated with riluzole [letter]. Lancet 1998; 351: 648PubMedCrossRef Castells LI, Gamez J, Cervera C, et al. Icteric toxic hepatitis associated with riluzole [letter]. Lancet 1998; 351: 648PubMedCrossRef
200.
Zurück zum Zitat Remy AJ, Acmu W, Ramos J, et al. Acute hepatitis after riluzole administration. J Hepatol 1999; 30: 527–30PubMedCrossRef Remy AJ, Acmu W, Ramos J, et al. Acute hepatitis after riluzole administration. J Hepatol 1999; 30: 527–30PubMedCrossRef
201.
Zurück zum Zitat Rilutek® package insert. Bridgewater (NJ). sanofi-aventis, 2006 Rilutek® package insert. Bridgewater (NJ). sanofi-aventis, 2006
202.
Zurück zum Zitat Viallon A, Page Y, Bertrand JC. Methemoglobinemia due to riluzole. N Engl J Med 2000; 343: 665–6PubMedCrossRef Viallon A, Page Y, Bertrand JC. Methemoglobinemia due to riluzole. N Engl J Med 2000; 343: 665–6PubMedCrossRef
203.
Zurück zum Zitat Bodner T, Jenner C, Benke T, et al. Intoxication with rilzole in Huntington’s disease. Neurology 2001; 57: 1141–3PubMedCrossRef Bodner T, Jenner C, Benke T, et al. Intoxication with rilzole in Huntington’s disease. Neurology 2001; 57: 1141–3PubMedCrossRef
204.
Zurück zum Zitat Haaxma CA, Kremer HP, van de Warrenburg BP. Delayed amnesic syndrome after riluzole autointoxication in Huntington disease. Neurology 2006; 66: 1123–4PubMedCrossRef Haaxma CA, Kremer HP, van de Warrenburg BP. Delayed amnesic syndrome after riluzole autointoxication in Huntington disease. Neurology 2006; 66: 1123–4PubMedCrossRef
Metadaten
Titel
Riluzole in the Treatment of Mood and Anxiety Disorders
verfasst von
Dr Christopher Pittenger
Vladimir Coric
Mounira Banasr
Michael Bloch
John H. Krystal
Gerard Sanacora
Publikationsdatum
01.09.2008
Verlag
Springer International Publishing
Erschienen in
CNS Drugs / Ausgabe 9/2008
Print ISSN: 1172-7047
Elektronische ISSN: 1179-1934
DOI
https://doi.org/10.2165/00023210-200822090-00004

Weitere Artikel der Ausgabe 9/2008

CNS Drugs 9/2008 Zur Ausgabe

Adis Drug Profile

Interferon-β-1b

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Nicht Creutzfeldt Jakob, sondern Abführtee-Vergiftung

29.05.2024 Hyponatriämie Nachrichten

Eine ältere Frau trinkt regelmäßig Sennesblättertee gegen ihre Verstopfung. Der scheint plötzlich gut zu wirken. Auf Durchfall und Erbrechen folgt allerdings eine Hyponatriämie. Nach deren Korrektur kommt es plötzlich zu progredienten Kognitions- und Verhaltensstörungen.

Schutz der Synapsen bei Alzheimer

29.05.2024 Morbus Alzheimer Nachrichten

Mit einem Neurotrophin-Rezeptor-Modulator lässt sich möglicherweise eine bestehende Alzheimerdemenz etwas abschwächen: Erste Phase-2-Daten deuten auf einen verbesserten Synapsenschutz.

Sozialer Aufstieg verringert Demenzgefahr

24.05.2024 Demenz Nachrichten

Ein hohes soziales Niveau ist mit die beste Versicherung gegen eine Demenz. Noch geringer ist das Demenzrisiko für Menschen, die sozial aufsteigen: Sie gewinnen fast zwei demenzfreie Lebensjahre. Umgekehrt steigt die Demenzgefahr beim sozialen Abstieg.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.