Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 6/2022

03.05.2022 | Original Article

LncRNA HDAC11-AS1 Suppresses Atherosclerosis by Inhibiting HDAC11-Mediated Adropin Histone Deacetylation

verfasst von: Liang Li, Wei Xie

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 6/2022

Einloggen, um Zugang zu erhalten

Abstract

LncRNA HDAC11-AS1 (HDAC11-AS1) is the natural antisense transcript of HDAC11, a key enzyme for DNA histone deacetylation. We evaluated the role of HDAC11-AS1 in atherosclerosis. In this research, we found that HDAC11-AS1 ameliorated blood lipid levels and atherosclerosis in high fat-dieted apoE−/− mice by regulating HDAC11 negatively. The change in blood lipid levels is related to the expression of LPL, which is enhanced by HDAC11-AS1 through regulating adropin histone deacetylation in vitro and in vivo. In conclusion, HDAC11-AS1 plays an anti-atherogenic role through adropin to induce LPL expressions, thereby enhancing TG metabolism. The results are valuable for the further development of HDAC11-AS1 and its clinical applications. It provides a new clinical therapeutic target for cardiovascular disease treatment.
Literatur
3.
Zurück zum Zitat Ayyappa, K. A., Shatwan, I., Bodhini, D., Bramwell, L. R., Ramya, K., Sudha, V., Anjana, R. M., Lovegrove, J. A., Mohan, V., Radha, V., & Vimaleswaran, K. S. (2017). High fat diet modifies the association of lipoprotein lipase gene polymorphism with high density lipoprotein cholesterol in an Asian Indian population. Nutrition & Metabolism (London), 14, 8. https://doi.org/10.1186/s12986-016-0155-1CrossRef Ayyappa, K. A., Shatwan, I., Bodhini, D., Bramwell, L. R., Ramya, K., Sudha, V., Anjana, R. M., Lovegrove, J. A., Mohan, V., Radha, V., & Vimaleswaran, K. S. (2017). High fat diet modifies the association of lipoprotein lipase gene polymorphism with high density lipoprotein cholesterol in an Asian Indian population. Nutrition & Metabolism (London), 14, 8. https://​doi.​org/​10.​1186/​s12986-016-0155-1CrossRef
4.
Zurück zum Zitat Nakajima, K., Tokita, Y., Sakamaki, K., Shimomura, Y., Kobayashi, J., Kamachi, K., Tanaka, A., Stanhope, K. L., Havel, P. J., Wang, T., Machida, T., & Murakami, M. (2017). Triglyceride content in remnant lipoproteins is significantly increased after food intake and is associated with plasma lipoprotein lipase. Clinica Chimica Acta, 465, 45–52. https://doi.org/10.1016/j.cca.2016.12.011CrossRef Nakajima, K., Tokita, Y., Sakamaki, K., Shimomura, Y., Kobayashi, J., Kamachi, K., Tanaka, A., Stanhope, K. L., Havel, P. J., Wang, T., Machida, T., & Murakami, M. (2017). Triglyceride content in remnant lipoproteins is significantly increased after food intake and is associated with plasma lipoprotein lipase. Clinica Chimica Acta, 465, 45–52. https://​doi.​org/​10.​1016/​j.​cca.​2016.​12.​011CrossRef
11.
Zurück zum Zitat Yosaee, S., Soltani, S., Sekhavati, E., & Jazayeri, S. (2016). Adropin- a novel biomarker of heart disease: A systematic review article. Iranian Journal of Public Health, 45, 1568–1576. Yosaee, S., Soltani, S., Sekhavati, E., & Jazayeri, S. (2016). Adropin- a novel biomarker of heart disease: A systematic review article. Iranian Journal of Public Health, 45, 1568–1576.
14.
15.
Zurück zum Zitat Sato, K., Yamashita, T., Shirai, R., Shibata, K., Okano, T., Yamaguchi M., Mori, Y. Hirano T., & Watanabe T. (2018). Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. International Journal of Molecular Sciences, 19(5). https://doi.org/10.3390/ijms19051293 Sato, K., Yamashita, T., Shirai, R., Shibata, K., Okano, T., Yamaguchi M., Mori, Y. Hirano T., & Watanabe T. (2018). Adropin contributes to anti-atherosclerosis by suppressing monocyte-endothelial cell adhesion and smooth muscle cell proliferation. International Journal of Molecular Sciences, 19(5). https://​doi.​org/​10.​3390/​ijms19051293
18.
Zurück zum Zitat Watts, B. R., Wittmann, S., Wery, M., Gautier, C., Kus, K., Birot, A., Heo, D. H., Kilchert, C., Morillon, A., & Vasiljeva, L. (2018). Histone deacetylation promotes transcriptional silencing at facultative heterochromatin. Nucleic Acids Research, 46, 5426–5440. https://doi.org/10.1093/nar/gky232CrossRef Watts, B. R., Wittmann, S., Wery, M., Gautier, C., Kus, K., Birot, A., Heo, D. H., Kilchert, C., Morillon, A., & Vasiljeva, L. (2018). Histone deacetylation promotes transcriptional silencing at facultative heterochromatin. Nucleic Acids Research, 46, 5426–5440. https://​doi.​org/​10.​1093/​nar/​gky232CrossRef
20.
22.
Zurück zum Zitat Sahakian, E., Powers, J. J., Chen, J., Deng, S. L., Cheng, F., Distler, A., Woods, D. M., Rock-Klotz, J., Sodre, A. L., Youn, J. I., Woan, K. V., Villagra, A., Gabrilovich, D., Sotomayor, E. M., & Pinilla-Ibarz, J. (2015). Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion and function. Molecular Immunology, 63, 579–585. https://doi.org/10.1016/j.molimm.2014.08.002CrossRef Sahakian, E., Powers, J. J., Chen, J., Deng, S. L., Cheng, F., Distler, A., Woods, D. M., Rock-Klotz, J., Sodre, A. L., Youn, J. I., Woan, K. V., Villagra, A., Gabrilovich, D., Sotomayor, E. M., & Pinilla-Ibarz, J. (2015). Histone deacetylase 11: A novel epigenetic regulator of myeloid derived suppressor cell expansion and function. Molecular Immunology, 63, 579–585. https://​doi.​org/​10.​1016/​j.​molimm.​2014.​08.​002CrossRef
23.
Zurück zum Zitat Stammler, D., Eigenbrod, T., Menz, S., Frick, J. S., Sweet, M. J., Shakespear, M. R., Jantsch, J., Siegert, I., Wolfle, S., Langer, J. D., Oehme, I., Schaefer, L., Fischer, A., Knievel, J., Heeg, K., Dalpke, A. H., & Bode, K. A. (2015). Inhibition of histone deacetylases permits lipopolysaccharide-mediated secretion of bioactive IL-1beta via a caspase-1-independent mechanism. The Journal of Immunology, 195, 5421–5431. https://doi.org/10.4049/jimmunol.1501195CrossRef Stammler, D., Eigenbrod, T., Menz, S., Frick, J. S., Sweet, M. J., Shakespear, M. R., Jantsch, J., Siegert, I., Wolfle, S., Langer, J. D., Oehme, I., Schaefer, L., Fischer, A., Knievel, J., Heeg, K., Dalpke, A. H., & Bode, K. A. (2015). Inhibition of histone deacetylases permits lipopolysaccharide-mediated secretion of bioactive IL-1beta via a caspase-1-independent mechanism. The Journal of Immunology, 195, 5421–5431. https://​doi.​org/​10.​4049/​jimmunol.​1501195CrossRef
28.
Zurück zum Zitat Cai, Y., Yang, Y., Chen, X., Wu, G., Zhang, X., Liu, Y., Yu, J., Wang, X., Fu, J., Li, C., Jose, P. A., Zeng, C., & Zhou, L. (2016). Circulating “lncRNA OTTHUMT00000387022” from monocytes as a novel biomarker for coronary artery disease. Cardiovascular Research, 112, 714–724. https://doi.org/10.1093/cvr/cvw022CrossRef Cai, Y., Yang, Y., Chen, X., Wu, G., Zhang, X., Liu, Y., Yu, J., Wang, X., Fu, J., Li, C., Jose, P. A., Zeng, C., & Zhou, L. (2016). Circulating “lncRNA OTTHUMT00000387022” from monocytes as a novel biomarker for coronary artery disease. Cardiovascular Research, 112, 714–724. https://​doi.​org/​10.​1093/​cvr/​cvw022CrossRef
30.
Zurück zum Zitat Shang, P., Chen, G., Zu, G., Song, X., Jiao, P., You, G., Zhao, J., Li, H., & Zhou, H. (2019). Long noncoding RNA expression analysis reveals the regulatory effects of nitinol-based nanotubular coatings on human coronary artery endothelial cells. International Journal of Nanomedicine, 14, 3297–3309. https://doi.org/10.2147/IJN.S204067CrossRef Shang, P., Chen, G., Zu, G., Song, X., Jiao, P., You, G., Zhao, J., Li, H., & Zhou, H. (2019). Long noncoding RNA expression analysis reveals the regulatory effects of nitinol-based nanotubular coatings on human coronary artery endothelial cells. International Journal of Nanomedicine, 14, 3297–3309. https://​doi.​org/​10.​2147/​IJN.​S204067CrossRef
33.
Zurück zum Zitat Jadaliha, M., Gholamalamdari, O., Tang, W., Zhang, Y., Petracovici, A., Hao, Q., Tariq, A., Kim, T. G., Holton, S. E., Singh, D. K., Li, X. L., Freier, S. M., Ambs, S., Bhargava, R., Lal, A., Prasanth, S. G., Ma, J., & Prasanth, K. V. (2018). A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genetics, 14, e1007802. https://doi.org/10.1371/journal.pgen.1007802CrossRef Jadaliha, M., Gholamalamdari, O., Tang, W., Zhang, Y., Petracovici, A., Hao, Q., Tariq, A., Kim, T. G., Holton, S. E., Singh, D. K., Li, X. L., Freier, S. M., Ambs, S., Bhargava, R., Lal, A., Prasanth, S. G., Ma, J., & Prasanth, K. V. (2018). A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genetics, 14, e1007802. https://​doi.​org/​10.​1371/​journal.​pgen.​1007802CrossRef
36.
Zurück zum Zitat Kim, D. Y., Kim, M. S., Sa, B. K., Kim, M. B., & Hwang, J. K. (2012). Boesenbergia pandurata attenuates diet-induced obesity by activating AMP-activated protein kinase and regulating lipid metabolism. International Journal of Molecular Sciences, 13, 994–1005. https://doi.org/10.3390/ijms13010994CrossRef Kim, D. Y., Kim, M. S., Sa, B. K., Kim, M. B., & Hwang, J. K. (2012). Boesenbergia pandurata attenuates diet-induced obesity by activating AMP-activated protein kinase and regulating lipid metabolism. International Journal of Molecular Sciences, 13, 994–1005. https://​doi.​org/​10.​3390/​ijms13010994CrossRef
38.
Zurück zum Zitat Rodrigues, S. C., Pantaleao, L. C., Nogueira, T. C., Gomes, P. R., Albuquerque, G. G., Nachbar, R. T., Torres-Leal, F. L., Caperuto, L. C., Lellis-Santos, C., Anhe, G. F., & Bordin, S. (2014). Selective regulation of hepatic lipid metabolism by the AMP-activated protein kinase pathway in late-pregnant rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 307, R1146–R1156. https://doi.org/10.1152/ajpregu.00513.2013CrossRef Rodrigues, S. C., Pantaleao, L. C., Nogueira, T. C., Gomes, P. R., Albuquerque, G. G., Nachbar, R. T., Torres-Leal, F. L., Caperuto, L. C., Lellis-Santos, C., Anhe, G. F., & Bordin, S. (2014). Selective regulation of hepatic lipid metabolism by the AMP-activated protein kinase pathway in late-pregnant rats. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 307, R1146–R1156. https://​doi.​org/​10.​1152/​ajpregu.​00513.​2013CrossRef
40.
Zurück zum Zitat He, W., Liang, B., Wang, C., Li, S., Zhao, Y., Huang, Q., Liu, Z., Yao, Z., Wu, Q., Liao, W., Zhang, S., Liu, Y., Xiang, Y., Liu, J., & Shi, M. (2019). MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene, 38, 4637–4654. https://doi.org/10.1038/s41388-019-0747-0CrossRef He, W., Liang, B., Wang, C., Li, S., Zhao, Y., Huang, Q., Liu, Z., Yao, Z., Wu, Q., Liao, W., Zhang, S., Liu, Y., Xiang, Y., Liu, J., & Shi, M. (2019). MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene, 38, 4637–4654. https://​doi.​org/​10.​1038/​s41388-019-0747-0CrossRef
44.
Zurück zum Zitat Wu, G., Cai, J., Han, Y., Chen, J., Huang, Z. P., Chen, C., Cai, Y., Huang, H., Yang, Y., Liu, Y., Xu, Z., He, D., Zhang, X., Hu, X., Pinello, L., Zhong, D., He, F., Yuan, G. C., Wang, D. Z., & Zeng, C. (2014). LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation, 130, 1452–1465. https://doi.org/10.1161/CIRCULATIONAHA.114.011675CrossRef Wu, G., Cai, J., Han, Y., Chen, J., Huang, Z. P., Chen, C., Cai, Y., Huang, H., Yang, Y., Liu, Y., Xu, Z., He, D., Zhang, X., Hu, X., Pinello, L., Zhong, D., He, F., Yuan, G. C., Wang, D. Z., & Zeng, C. (2014). LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation, 130, 1452–1465. https://​doi.​org/​10.​1161/​CIRCULATIONAHA.​114.​011675CrossRef
46.
Zurück zum Zitat Bagchi, R. A., Ferguson, B. S., Stratton, M. S., Hu, T., Cavasin, M. A., Sun, L., Lin, Y. H., Liu, D., Londono, P., Song, K., Pino, M. F. Sparks, L. M., Smith, S. R., Scherer, P. E., Collins, S., Seto, E., & McKinsey, T. A. (2018). HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI Insight, 3(15). https://doi.org/10.1172/jci.insight.120159 Bagchi, R. A., Ferguson, B. S., Stratton, M. S., Hu, T., Cavasin, M. A., Sun, L., Lin, Y. H., Liu, D., Londono, P., Song, K., Pino, M. F. Sparks, L. M., Smith, S. R., Scherer, P. E., Collins, S., Seto, E., & McKinsey, T. A. (2018). HDAC11 suppresses the thermogenic program of adipose tissue via BRD2. JCI Insight, 3(15). https://​doi.​org/​10.​1172/​jci.​insight.​120159
49.
Zurück zum Zitat Butler, A. A., Tam, C. S., Stanhope, K. L., Wolfe, B. M., Ali, M. R., O’Keeffe, M., St-Onge, M. P., Ravussin, E., & Havel, P. J. (2012). Low circulating adropin concentrations with obesity and aging correlate with risk factors for metabolic disease and increase after gastric bypass surgery in humans. Journal of Clinical Endocrinology and Metabolism, 97, 3783–3791. https://doi.org/10.1210/jc.2012-2194CrossRef Butler, A. A., Tam, C. S., Stanhope, K. L., Wolfe, B. M., Ali, M. R., O’Keeffe, M., St-Onge, M. P., Ravussin, E., & Havel, P. J. (2012). Low circulating adropin concentrations with obesity and aging correlate with risk factors for metabolic disease and increase after gastric bypass surgery in humans. Journal of Clinical Endocrinology and Metabolism, 97, 3783–3791. https://​doi.​org/​10.​1210/​jc.​2012-2194CrossRef
50.
Zurück zum Zitat Ganesh Kumar, K., Zhang, J., Gao, S., Rossi, J., McGuinness, O. P., Halem, H. H., Culler, M. D., Mynatt, R. L., & Butler, A. A. (2012). Adropin deficiency is associated with increased adiposity and insulin resistance. Obesity (Silver Spring), 20, 1394–1402. https://doi.org/10.1038/oby.2012.31CrossRef Ganesh Kumar, K., Zhang, J., Gao, S., Rossi, J., McGuinness, O. P., Halem, H. H., Culler, M. D., Mynatt, R. L., & Butler, A. A. (2012). Adropin deficiency is associated with increased adiposity and insulin resistance. Obesity (Silver Spring), 20, 1394–1402. https://​doi.​org/​10.​1038/​oby.​2012.​31CrossRef
Metadaten
Titel
LncRNA HDAC11-AS1 Suppresses Atherosclerosis by Inhibiting HDAC11-Mediated Adropin Histone Deacetylation
verfasst von
Liang Li
Wei Xie
Publikationsdatum
03.05.2022
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 6/2022
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-022-10248-7

Weitere Artikel der Ausgabe 6/2022

Journal of Cardiovascular Translational Research 6/2022 Zur Ausgabe

Schadet Ärger den Gefäßen?

14.05.2024 Arteriosklerose Nachrichten

In einer Studie aus New York wirkte sich Ärger kurzfristig deutlich negativ auf die Endothelfunktion gesunder Probanden aus. Möglicherweise hat dies Einfluss auf die kardiovaskuläre Gesundheit.

Intervallfasten zur Regeneration des Herzmuskels?

14.05.2024 Herzinfarkt Nachrichten

Die Nahrungsaufnahme auf wenige Stunden am Tag zu beschränken, hat möglicherweise einen günstigen Einfluss auf die Prognose nach akutem ST-Hebungsinfarkt. Darauf deutet eine Studie an der Uniklinik in Halle an der Saale hin.

Shunt-Therapie bei Herzinsuffizienz: Kein Anzug, der allen passt

13.05.2024 Chronische Herzinsuffizienz Nachrichten

Die Anlage eines interatrialen Shunts zur Reduktion des linksatrialen Drucks ist ein neuer Therapieansatz bei Herzinsuffizienz. Viele Patienten sprechen darauf an, andere jedoch nicht. 

Vorsicht, erhöhte Blutungsgefahr nach PCI!

10.05.2024 Koronare Herzerkrankung Nachrichten

Nach PCI besteht ein erhöhtes Blutungsrisiko, wenn die Behandelten eine verminderte linksventrikuläre Ejektionsfraktion aufweisen. Das Risiko ist umso höher, je stärker die Pumpfunktion eingeschränkt ist.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.