Skip to main content
Erschienen in: Neurological Sciences 10/2021

12.07.2021 | Review Article

LncRNAs as putative biomarkers and therapeutic targets for Parkinson’s disease

verfasst von: Eskandar Taghizadeh, Seyed Mohammad Gheibihayat, Forough Taheri, Seyed Mohammadreza Afshani, Najmeh Farahani, Alihossein Saberi

Erschienen in: Neurological Sciences | Ausgabe 10/2021

Einloggen, um Zugang zu erhalten

Abstract

Parkinson’s disease (PD) is known as one of the most common degenerative disorders related to the damage of the central nervous system (CNS). This brain disorder is also characterized by the formation of Lewy bodies in the cytoplasm of the dopaminergic neurons in the substantia nigra pars compacta (SNc), which consequently leads to motor and non-motor symptoms. With regard to the growing trend in the number of cases with PD and its effects on individuals, families, and communities, immediate treatments together with diagnostic methods are required. In this respect, long non-coding ribonucleic acids (lncRNAs) represent a large class of ncRNAs with more than 200 nucleotides in length, playing key roles in some important processes including gene expression, cell differentiation, genomic imprinting, apoptosis, and cell cycle. They are highly expressed in the CNS and previous studies have further reported that the expression profile of lncRNAs is disrupted in human diseases such as neurodegenerative disorders. Since the levels of some lncRNAs change over time in the brains of patients with PD, a number of previous studies have examined their potentials as biomarkers for this brain disorder. Therefore, the main purpose of this study was to review the advances in the related literature on lncRNAs as diagnostic, therapeutic, and prognostic biomarkers for PD.
Literatur
1.
Zurück zum Zitat Pringsheim T, Jette N, Frolkis A, Steeves T (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis Pringsheim T, Jette N, Frolkis A, Steeves T (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis
2.
Zurück zum Zitat Hauser DN, Hastings TG (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 51:35PubMedCrossRef Hauser DN, Hastings TG (2013) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis 51:35PubMedCrossRef
3.
Zurück zum Zitat Bonifati V (2014) Genetics of Parkinson’s disease–state of the art, 2013. Parkinsonism Relat Disord 20:S23PubMedCrossRef Bonifati V (2014) Genetics of Parkinson’s disease–state of the art, 2013. Parkinsonism Relat Disord 20:S23PubMedCrossRef
4.
Zurück zum Zitat Renani P, Taheri F, Rostami D, Farahani N, Abdolkarimi H, Abdollahi E et al (2019) Involvement of aberrant regulation of epigenetic mechanisms in the pathogenesis of Parkinson’s disease and epigenetic-based therapies. J Cell Physiol 234(11):19307PubMedCrossRef Renani P, Taheri F, Rostami D, Farahani N, Abdolkarimi H, Abdollahi E et al (2019) Involvement of aberrant regulation of epigenetic mechanisms in the pathogenesis of Parkinson’s disease and epigenetic-based therapies. J Cell Physiol 234(11):19307PubMedCrossRef
5.
Zurück zum Zitat Bradaric BD, Patel A, Schneider JA, Carvey PM, Hendey B (2012) Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm 119(1):59CrossRef Bradaric BD, Patel A, Schneider JA, Carvey PM, Hendey B (2012) Evidence for angiogenesis in Parkinson’s disease, incidental Lewy body disease, and progressive supranuclear palsy. J Neural Transm 119(1):59CrossRef
6.
Zurück zum Zitat Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368PubMedCrossRef Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79(4):368PubMedCrossRef
7.
Zurück zum Zitat Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199PubMedPubMedCentralCrossRef Iyer MK, Niknafs YS, Malik R, Singhal U, Sahu A, Hosono Y et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47(3):199PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Quinn J, Chang H (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47PubMedCrossRef Quinn J, Chang H (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47PubMedCrossRef
10.
Zurück zum Zitat Managadze D, Lobkovsky AE, Wolf YI, Shabalina SA, Rogozin IB, Koonin EV (2013) The vast, conserved mammalian lincRNome. PLoS Comput Bio. 9(2). Managadze D, Lobkovsky AE, Wolf YI, Shabalina SA, Rogozin IB, Koonin EV (2013) The vast, conserved mammalian lincRNome. PLoS Comput Bio. 9(2).
11.
Zurück zum Zitat Qureshi IA, Mehler MF (2013) Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics 10(4):632–646PubMedPubMedCentralCrossRef Qureshi IA, Mehler MF (2013) Long non-coding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics 10(4):632–646PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Kadakkuzha BM, Liu X-A, McCrate J, Shankar G, Rizzo V, Afinogenova A, et al. (2015) Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations. Front Cell Neurosci; 9 Kadakkuzha BM, Liu X-A, McCrate J, Shankar G, Rizzo V, Afinogenova A, et al. (2015) Transcriptome analyses of adult mouse brain reveal enrichment of lncRNAs in specific brain regions and neuronal populations. Front Cell Neurosci; 9
13.
Zurück zum Zitat Ponjavic J, Oliver PL, Lunter G, Ponting CP (2009) Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet;5(8):e1000617-e. Ponjavic J, Oliver PL, Lunter G, Ponting CP (2009) Genomic and transcriptional co-localization of protein-coding and long non-coding RNA pairs in the developing brain. PLoS Genet;5(8):e1000617-e.
14.
Zurück zum Zitat Zhou Y, Gu C, Li J, Zhu L, Huang G, Dai J et al (2018) Aberrantly expressed long noncoding RNAs and genes in Parkinson’s disease. Neuropsychiatr Dis Treat 14:3219PubMedPubMedCentralCrossRef Zhou Y, Gu C, Li J, Zhu L, Huang G, Dai J et al (2018) Aberrantly expressed long noncoding RNAs and genes in Parkinson’s disease. Neuropsychiatr Dis Treat 14:3219PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat rev Neurosci 13(8):528 Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat rev Neurosci 13(8):528
17.
Zurück zum Zitat Schapira AH, Tolosa E (2010) Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat Rev Neurol 6(6):309–317PubMedCrossRef Schapira AH, Tolosa E (2010) Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat Rev Neurol 6(6):309–317PubMedCrossRef
18.
Zurück zum Zitat Bonanni L, Thomas A, Onofrj M (2006) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 66(9):1455 (author reply) Bonanni L, Thomas A, Onofrj M (2006) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 66(9):1455 (author reply)
19.
Zurück zum Zitat Kraus T, Haider M, Spanner J, Steinmaurer M, Dietinger V, Kretzschmar H (2017) Altered long noncoding RNA expression precedes the course of Parkinson’s disease-a preliminary report. Mol Neurobiol 54(4):2869PubMedCrossRef Kraus T, Haider M, Spanner J, Steinmaurer M, Dietinger V, Kretzschmar H (2017) Altered long noncoding RNA expression precedes the course of Parkinson’s disease-a preliminary report. Mol Neurobiol 54(4):2869PubMedCrossRef
20.
Zurück zum Zitat Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H, et al. (2014) Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Bio 10(3) Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H, et al. (2014) Long non-coding RNA and alternative splicing modulations in Parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Bio 10(3)
21.
Zurück zum Zitat Lv Q, Wang Z, Zhong Z, Huang W (2020) Role of long noncoding RNAs in Parkinson’s disease: putative biomarkers and therapeutic targets. Parkinson’s Disease 2020 Lv Q, Wang Z, Zhong Z, Huang W (2020) Role of long noncoding RNAs in Parkinson’s disease: putative biomarkers and therapeutic targets. Parkinson’s Disease 2020
22.
Zurück zum Zitat You J, Fang N, Gu J, Zhang Y, Li X, Zu L et al (2014) Noncoding RNA small nucleolar RNA host gene 1 promote cell proliferation in nonsmall cell lung cancer. Indian Journal cancer. 51:e99 You J, Fang N, Gu J, Zhang Y, Li X, Zu L et al (2014) Noncoding RNA small nucleolar RNA host gene 1 promote cell proliferation in nonsmall cell lung cancer. Indian Journal cancer. 51:e99
23.
Zurück zum Zitat Hall J, Messenger Z, Tam H, Phillips S, Recio L, Smart R (2015) Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death & Dis. 6(3):e1700 Hall J, Messenger Z, Tam H, Phillips S, Recio L, Smart R (2015) Long noncoding RNA lincRNA-p21 is the major mediator of UVB-induced and p53-dependent apoptosis in keratinocytes. Cell Death & Dis. 6(3):e1700
24.
Zurück zum Zitat Zou J, Guo Y, Wei L, Yu F, Yu B, Xu A (2020) Long noncoding RNA POU3F3 and α-synuclein in plasma L1CAM exosomes combined with β-glucocerebrosidase activity: potential predictors of Parkinson’s disease. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics Zou J, Guo Y, Wei L, Yu F, Yu B, Xu A (2020) Long noncoding RNA POU3F3 and α-synuclein in plasma L1CAM exosomes combined with β-glucocerebrosidase activity: potential predictors of Parkinson’s disease. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics
25.
Zurück zum Zitat Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C et al (2014) Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 128(5):639PubMedPubMedCentralCrossRef Shi M, Liu C, Cook TJ, Bullock KM, Zhao Y, Ginghina C et al (2014) Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson’s disease. Acta Neuropathol 128(5):639PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Lv Q, Wang Z, Zhong Z, Huang W (2020) Role of long noncoding RNAs in Parkinson’s disease: putative biomarkers and therapeutic targets. Parkinson’s Disease 2020 Lv Q, Wang Z, Zhong Z, Huang W (2020) Role of long noncoding RNAs in Parkinson’s disease: putative biomarkers and therapeutic targets. Parkinson’s Disease 2020
27.
Zurück zum Zitat Jamebozorgi K, Taghizadeh E, Rostami D, Pormasoumi H, Barreto G, Hayat S et al (2019) Cellular and molecular aspects of Parkinson treatment: future therapeutic perspectives. Mol Neurobiol 56(7):4799PubMedCrossRef Jamebozorgi K, Taghizadeh E, Rostami D, Pormasoumi H, Barreto G, Hayat S et al (2019) Cellular and molecular aspects of Parkinson treatment: future therapeutic perspectives. Mol Neurobiol 56(7):4799PubMedCrossRef
28.
Zurück zum Zitat Fonseca-Ornelas L, Eisbach S, Paulat M, Giller K, Fernández C, Outeiro T et al (2014) Small molecule-mediated stabilization of vesicle-associated helical α-synuclein inhibits pathogenic misfolding and aggregation. Nat Commun 5:5857PubMedCrossRef Fonseca-Ornelas L, Eisbach S, Paulat M, Giller K, Fernández C, Outeiro T et al (2014) Small molecule-mediated stabilization of vesicle-associated helical α-synuclein inhibits pathogenic misfolding and aggregation. Nat Commun 5:5857PubMedCrossRef
29.
Zurück zum Zitat Chen Y, Lian Y, Ma Y, Wu C, Zheng Y, Xie N (2018) LncRNA SNHG1 promotes α-synuclein aggregation and toxicity by targeting miR-15b-5p to activate SIAH1 in human neuroblastoma SH-SY5Y cells. Neurotoxicology 68:212PubMedCrossRef Chen Y, Lian Y, Ma Y, Wu C, Zheng Y, Xie N (2018) LncRNA SNHG1 promotes α-synuclein aggregation and toxicity by targeting miR-15b-5p to activate SIAH1 in human neuroblastoma SH-SY5Y cells. Neurotoxicology 68:212PubMedCrossRef
30.
Zurück zum Zitat Chaturvedi RK, Flint BM (2013) Mitochondrial diseases of the brain. Free Radical Biol Med 63:1–29CrossRef Chaturvedi RK, Flint BM (2013) Mitochondrial diseases of the brain. Free Radical Biol Med 63:1–29CrossRef
31.
Zurück zum Zitat Ni Y, Huang H, Chen Y, Cao M, Zhou H, Zhang Y (2017) Investigation of long non-coding RNA expression profiles in the substantia nigra of Parkinson’s disease. Cell Mol Neurobiol 37(2):329–338PubMedCrossRef Ni Y, Huang H, Chen Y, Cao M, Zhou H, Zhang Y (2017) Investigation of long non-coding RNA expression profiles in the substantia nigra of Parkinson’s disease. Cell Mol Neurobiol 37(2):329–338PubMedCrossRef
32.
Zurück zum Zitat Ni Y, Huang H, Chen Y, Cao M, Zhou H, Zhang Y (2017) Investigation of long non-coding RNA expression profiles in the substantia nigra of Parkinson’s disease. Cell Mol Neurobiol 37(2):329PubMedCrossRef Ni Y, Huang H, Chen Y, Cao M, Zhou H, Zhang Y (2017) Investigation of long non-coding RNA expression profiles in the substantia nigra of Parkinson’s disease. Cell Mol Neurobiol 37(2):329PubMedCrossRef
33.
Zurück zum Zitat Wen J, Ma Y, Yang G, Wang G (2017) Analysis of circulating long non-coding RNA UCA1 as potential biomarkers for diagnosis and prognosis of osteosarcoma. Eur Rev Med Pharmacol Sci 21(3):498PubMed Wen J, Ma Y, Yang G, Wang G (2017) Analysis of circulating long non-coding RNA UCA1 as potential biomarkers for diagnosis and prognosis of osteosarcoma. Eur Rev Med Pharmacol Sci 21(3):498PubMed
34.
Zurück zum Zitat Wang Y, Chen W, Yang C, Wu W, Wu S, Qin X et al (2012) Long non-coding RNA UCA1a (CUDR) promotes proliferation and tumorigenesis of bladder cancer. Int J Oncol 41(1):276PubMed Wang Y, Chen W, Yang C, Wu W, Wu S, Qin X et al (2012) Long non-coding RNA UCA1a (CUDR) promotes proliferation and tumorigenesis of bladder cancer. Int J Oncol 41(1):276PubMed
35.
Zurück zum Zitat Lu M, Sun W, Shen J, Wei M, Chen B, Qi Y et al (2018) LncRNA-UCA1 promotes PD development by upregulating SNCA. Eur Rev Med Pharmacol Sci 22(22):7908PubMed Lu M, Sun W, Shen J, Wei M, Chen B, Qi Y et al (2018) LncRNA-UCA1 promotes PD development by upregulating SNCA. Eur Rev Med Pharmacol Sci 22(22):7908PubMed
36.
Zurück zum Zitat Cai L, Tu L, Li T, Yang X, Ren Y, Gu R et al (2019) Downregulation of lncRNA UCA1 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson’s disease through the inhibition of the PI3K/Akt signaling pathway. Int immunopharmacology. 75:105734 Cai L, Tu L, Li T, Yang X, Ren Y, Gu R et al (2019) Downregulation of lncRNA UCA1 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson’s disease through the inhibition of the PI3K/Akt signaling pathway. Int immunopharmacology. 75:105734
37.
Zurück zum Zitat Liu Z, Meray RK, Grammatopoulos TN, Fredenburg RA, Cookson MR, Liu Y et al (2009) Membrane-associated farnesylated UCH-L1 promotes α-synuclein neurotoxicity and is a therapeutic target for Parkinson’s disease. Proc Natl Acad Sci USA 106(12):4635PubMedPubMedCentralCrossRef Liu Z, Meray RK, Grammatopoulos TN, Fredenburg RA, Cookson MR, Liu Y et al (2009) Membrane-associated farnesylated UCH-L1 promotes α-synuclein neurotoxicity and is a therapeutic target for Parkinson’s disease. Proc Natl Acad Sci USA 106(12):4635PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Grimes D, Han F, Panisset M, Racacho L, Xiao F, Zou R et al (2006) Translated mutation in the Nurr1 gene as a cause for Parkinson’s disease. Mov dis: offic J Mov Dis Soc 21(7):906 Grimes D, Han F, Panisset M, Racacho L, Xiao F, Zou R et al (2006) Translated mutation in the Nurr1 gene as a cause for Parkinson’s disease. Mov dis: offic J Mov Dis Soc 21(7):906
39.
Zurück zum Zitat Gong B, Cao Z, Zheng P, Vitolo OV, Liu S, Staniszewski A et al (2006) Ubiquitin hydrolase Uch-L1 rescues β-amyloid-induced decreases in synaptic function and contextual memory. Cell 126(4):775–788PubMedCrossRef Gong B, Cao Z, Zheng P, Vitolo OV, Liu S, Staniszewski A et al (2006) Ubiquitin hydrolase Uch-L1 rescues β-amyloid-induced decreases in synaptic function and contextual memory. Cell 126(4):775–788PubMedCrossRef
40.
Zurück zum Zitat Gong B, Cao Z, Zheng P, Vitolo O, Liu S, Staniszewski A et al (2006) Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory. Cell 126(4):775PubMedCrossRef Gong B, Cao Z, Zheng P, Vitolo O, Liu S, Staniszewski A et al (2006) Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory. Cell 126(4):775PubMedCrossRef
41.
Zurück zum Zitat Carrieri C, Forrest AR, Santoro C, Persichetti F, Carninci P, Zucchelli S, et al (2015) Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells’ differentiation in vitro and in neurochemical models of Parkinson’s disease. Front Cell Neurosci 9 Carrieri C, Forrest AR, Santoro C, Persichetti F, Carninci P, Zucchelli S, et al (2015) Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells’ differentiation in vitro and in neurochemical models of Parkinson’s disease. Front Cell Neurosci 9
42.
Zurück zum Zitat Riva P, Ratti A, Venturin M (2016) The long non-coding RNAs in neurodegenerative diseases: novel mechanisms of pathogenesis. Curr Alzheimer Res 13(11):1219PubMedCrossRef Riva P, Ratti A, Venturin M (2016) The long non-coding RNAs in neurodegenerative diseases: novel mechanisms of pathogenesis. Curr Alzheimer Res 13(11):1219PubMedCrossRef
43.
Zurück zum Zitat Li Y, Fang J, Zhou Z, Zhou Q, Sun S, Jin Z, et al (2020) Downregulation of lncRNA BACE1-AS improves dopamine-dependent oxidative stress in rats with Parkinson’s disease by upregulating microRNA-34b-5p and downregulating BACE1. Cell Cycle (Georgetown, Tex) 1–14 Li Y, Fang J, Zhou Z, Zhou Q, Sun S, Jin Z, et al (2020) Downregulation of lncRNA BACE1-AS improves dopamine-dependent oxidative stress in rats with Parkinson’s disease by upregulating microRNA-34b-5p and downregulating BACE1. Cell Cycle (Georgetown, Tex) 1–14
44.
Zurück zum Zitat Scrivo A, Bourdenx M, Pampliega O, Cuervo AM (2018) Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol 17(9):802 Scrivo A, Bourdenx M, Pampliega O, Cuervo AM (2018) Selective autophagy as a potential therapeutic target for neurodegenerative disorders. Lancet Neurol 17(9):802
45.
Zurück zum Zitat Tanida I, Ueno T, Kominami E (2008) LC3 and Autophagy. Methods in molecular biology (Clifton, NJ) 445:77CrossRef Tanida I, Ueno T, Kominami E (2008) LC3 and Autophagy. Methods in molecular biology (Clifton, NJ) 445:77CrossRef
46.
Zurück zum Zitat Xie S, Zhou F, Li J, Duan S (2019) NEAT1 regulates MPP+-induced neuronal injury by targeting miR-124 in neuroblastoma cells. Neurosci lett. 708:134340 Xie S, Zhou F, Li J, Duan S (2019) NEAT1 regulates MPP+-induced neuronal injury by targeting miR-124 in neuroblastoma cells. Neurosci lett. 708:134340
47.
Zurück zum Zitat Simchovitz A, Hanan M, Niederhoffer N, Madrer N, Yayon N, Bennett ER et al (2019) NEAT1 is overexpressed in Parkinson’s disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress. FASEB J 33(10):11223–11234PubMedPubMedCentralCrossRef Simchovitz A, Hanan M, Niederhoffer N, Madrer N, Yayon N, Bennett ER et al (2019) NEAT1 is overexpressed in Parkinson’s disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress. FASEB J 33(10):11223–11234PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Yan W, Chen Z, Chen J, Chen H (2018) LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein. Biochem Biophys Res Commun 496(4):1019PubMedCrossRef Yan W, Chen Z, Chen J, Chen H (2018) LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein. Biochem Biophys Res Commun 496(4):1019PubMedCrossRef
49.
Zurück zum Zitat Kawajiri S, Saiki S, Sato S, Sato F, Hatano T, Eguchi H et al (2010) PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett 584(6):1073PubMedCrossRef Kawajiri S, Saiki S, Sato S, Sato F, Hatano T, Eguchi H et al (2010) PINK1 is recruited to mitochondria with parkin and associates with LC3 in mitophagy. FEBS Lett 584(6):1073PubMedCrossRef
50.
Zurück zum Zitat Li L, Xu J, Wu M, Hu J (2018) Protective role of microRNA-221 in Parkinson’s disease. Bratisl Lek Listy 119(1):22PubMed Li L, Xu J, Wu M, Hu J (2018) Protective role of microRNA-221 in Parkinson’s disease. Bratisl Lek Listy 119(1):22PubMed
51.
Zurück zum Zitat Geng L, Zhao J, Liu W, Chen Y (2019) Knockdown of NEAT1 ameliorated MPP+-induced neuronal damage by sponging miR-221 in SH-SY5Y cells. RSC Adv 9(43):25257–25265CrossRefPubMedPubMedCentral Geng L, Zhao J, Liu W, Chen Y (2019) Knockdown of NEAT1 ameliorated MPP+-induced neuronal damage by sponging miR-221 in SH-SY5Y cells. RSC Adv 9(43):25257–25265CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Xu X, Cui L, Zhong W, Cai Y (2020) Autophagy-associated lncRNAs: promising targets for neurological disease diagnosis and therapy. Neural Plast Xu X, Cui L, Zhong W, Cai Y (2020) Autophagy-associated lncRNAs: promising targets for neurological disease diagnosis and therapy. Neural Plast
53.
Zurück zum Zitat Boros F, Maszlag-Török R, Vécsei L, Klivényi P (2020) Increased level of NEAT1 long non-coding RNA is detectable in peripheral blood cells of patients with Parkinson’s disease. Brain res. 1730:146672 Boros F, Maszlag-Török R, Vécsei L, Klivényi P (2020) Increased level of NEAT1 long non-coding RNA is detectable in peripheral blood cells of patients with Parkinson’s disease. Brain res. 1730:146672
54.
Zurück zum Zitat Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ et al (2010) Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071PubMedPubMedCentralCrossRef Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ et al (2010) Long noncoding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Liu S, Cui B, Dai Z, Shi P, Wang Z, Guo Y (2016) Long non-coding RNA HOTAIR promotes Parkinson’s disease induced by MPTP through up-regulating the expression of LRRK2. Curr Neurovasc Res 13(2):115PubMedCrossRef Liu S, Cui B, Dai Z, Shi P, Wang Z, Guo Y (2016) Long non-coding RNA HOTAIR promotes Parkinson’s disease induced by MPTP through up-regulating the expression of LRRK2. Curr Neurovasc Res 13(2):115PubMedCrossRef
56.
Zurück zum Zitat Zhou F, Xie S, Li J, Duan S (2019) Long noncoding RNA HOTAIR promotes cell apoptosis by sponging miR-221 in Parkinson’s disease. RSC Adv 9(51):29502–29510CrossRefPubMedPubMedCentral Zhou F, Xie S, Li J, Duan S (2019) Long noncoding RNA HOTAIR promotes cell apoptosis by sponging miR-221 in Parkinson’s disease. RSC Adv 9(51):29502–29510CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Lang Y, Li Y, Yu H, Lin L, Chen X, Wang S et al (2020) HOTAIR drives autophagy in midbrain dopaminergic neurons in the substantia nigra compacta in a mouse model of Parkinson’s disease by elevating NPTX2 via miR-221-3p binding. Aging (Albany NY) 12(9):7660CrossRef Lang Y, Li Y, Yu H, Lin L, Chen X, Wang S et al (2020) HOTAIR drives autophagy in midbrain dopaminergic neurons in the substantia nigra compacta in a mouse model of Parkinson’s disease by elevating NPTX2 via miR-221-3p binding. Aging (Albany NY) 12(9):7660CrossRef
58.
Zurück zum Zitat Zhang Q, Huang X-M, Liao J-X, Dong Y-K, Zhu J-L, He C-C, et al. LncRNA HOTAIR promotes neuronal damage through facilitating NLRP3 mediated-pyroptosis activation in Parkinson’s disease via regulation of miR-326/ELAVL1 axis. Cell mol neurobiol. Zhang Q, Huang X-M, Liao J-X, Dong Y-K, Zhu J-L, He C-C, et al. LncRNA HOTAIR promotes neuronal damage through facilitating NLRP3 mediated-pyroptosis activation in Parkinson’s disease via regulation of miR-326/ELAVL1 axis. Cell mol neurobiol.
59.
Zurück zum Zitat Lin Q, Hou S, Dai Y, Jiang N, Lin Y (2019) LncRNA HOTAIR targets miR-126-5p to promote the progression of Parkinson’s disease through RAB3IP. Biol Chem 400(9):1217PubMedCrossRef Lin Q, Hou S, Dai Y, Jiang N, Lin Y (2019) LncRNA HOTAIR targets miR-126-5p to promote the progression of Parkinson’s disease through RAB3IP. Biol Chem 400(9):1217PubMedCrossRef
60.
Zurück zum Zitat Yang L, Zhang X, Li H, Liu J (2016) The long noncoding RNA HOTAIR activates autophagy by upregulating ATG3 and ATG7 in hepatocellular carcinoma. Mol BioSyst 12(8):2605PubMedCrossRef Yang L, Zhang X, Li H, Liu J (2016) The long noncoding RNA HOTAIR activates autophagy by upregulating ATG3 and ATG7 in hepatocellular carcinoma. Mol BioSyst 12(8):2605PubMedCrossRef
61.
Zurück zum Zitat Zhang Q, Huang X-M, Liao J-X, Dong Y-K, Zhu J-L, He C-C, et al. (2020) LncRNA HOTAIR promotes neuronal damage through facilitating NLRP3 mediated-pyroptosis activation in Parkinson’s disease via regulation of miR-326/ELAVL1 axis. Cellular and Molecular Neurobiology:1–14 Zhang Q, Huang X-M, Liao J-X, Dong Y-K, Zhu J-L, He C-C, et al. (2020) LncRNA HOTAIR promotes neuronal damage through facilitating NLRP3 mediated-pyroptosis activation in Parkinson’s disease via regulation of miR-326/ELAVL1 axis. Cellular and Molecular Neurobiology:1–14
62.
Zurück zum Zitat Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z et al (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29(18):3082PubMedPubMedCentralCrossRef Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z et al (2010) A long nuclear-retained non-coding RNA regulates synaptogenesis by modulating gene expression. EMBO J 29(18):3082PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Bennett M (2005) The role of alpha-synuclein in neurodegenerative diseases. Pharmacol Ther 105(3):311PubMedCrossRef Bennett M (2005) The role of alpha-synuclein in neurodegenerative diseases. Pharmacol Ther 105(3):311PubMedCrossRef
64.
Zurück zum Zitat Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S et al (2015) Targeting α-synuclein for treating Parkinson’s disease: mechanistic and therapeutic considerations. The Lancet Neurology 14(8):855PubMedPubMedCentralCrossRef Dehay B, Bourdenx M, Gorry P, Przedborski S, Vila M, Hunot S et al (2015) Targeting α-synuclein for treating Parkinson’s disease: mechanistic and therapeutic considerations. The Lancet Neurology 14(8):855PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Cai L-J, Tu L, Huang X-M, Huang J, Qiu N, Xie G-H et al (2020) LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Mol Brain 13(1):130PubMedPubMedCentralCrossRef Cai L-J, Tu L, Huang X-M, Huang J, Qiu N, Xie G-H et al (2020) LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Mol Brain 13(1):130PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Sarkar S, Malovic E, Harishchandra DS, Ghaisas S, Panicker N, Charli A, et al. (2017) Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease. NPJ Parkinson’s Disease 3 Sarkar S, Malovic E, Harishchandra DS, Ghaisas S, Panicker N, Charli A, et al. (2017) Mitochondrial impairment in microglia amplifies NLRP3 inflammasome proinflammatory signaling in cell culture and animal models of Parkinson’s disease. NPJ Parkinson’s Disease 3
67.
Zurück zum Zitat Gureev A, Popov V (2019) Nrf2/ARE pathway as a therapeutic target for the treatment of Parkinson diseases. Neurochem Res 44(10):2273PubMedCrossRef Gureev A, Popov V (2019) Nrf2/ARE pathway as a therapeutic target for the treatment of Parkinson diseases. Neurochem Res 44(10):2273PubMedCrossRef
68.
Zurück zum Zitat Okorji U, Velagapudi R, El-Bakoush A, Fiebich B, Olajide O (2016) Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms. Mol Neurobiol 53(9):6426PubMedCrossRef Okorji U, Velagapudi R, El-Bakoush A, Fiebich B, Olajide O (2016) Antimalarial drug artemether inhibits neuroinflammation in BV2 microglia through Nrf2-dependent mechanisms. Mol Neurobiol 53(9):6426PubMedCrossRef
69.
Zurück zum Zitat Chen Q, Huang X, Li R (2018) lncRNA MALAT1/miR-205-5p axis regulates MPP+-induced cell apoptosis in MN9D cells by directly targeting LRRK2. Am J Trans Res 10(2):563 Chen Q, Huang X, Li R (2018) lncRNA MALAT1/miR-205-5p axis regulates MPP+-induced cell apoptosis in MN9D cells by directly targeting LRRK2. Am J Trans Res 10(2):563
70.
Zurück zum Zitat Esteves AR, Swerdlow RH, Cardoso SM (2014) LRRK2, a puzzling protein: insights into Parkinson’s disease pathogenesis. Experimental neurology 206 Esteves AR, Swerdlow RH, Cardoso SM (2014) LRRK2, a puzzling protein: insights into Parkinson’s disease pathogenesis. Experimental neurology 206
71.
Zurück zum Zitat Imai Y, Gehrke S, Wang H-Q, Takahashi R, Hasegawa K, Oota E et al (2008) Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 27(18):2432PubMedPubMedCentralCrossRef Imai Y, Gehrke S, Wang H-Q, Takahashi R, Hasegawa K, Oota E et al (2008) Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 27(18):2432PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Lee B, Shin J, VanKampen J, Petrucelli L, West A, Ko H et al (2010) Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med 16(9):998PubMedPubMedCentralCrossRef Lee B, Shin J, VanKampen J, Petrucelli L, West A, Ko H et al (2010) Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med 16(9):998PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Liu W, Zhang Q, Zhang J, Pan W, Zhao J, Xu Y (2017) Long non-coding RNA MALAT1 contributes to cell apoptosis by sponging miR-124 in Parkinson disease. Cell & Bioscience 7 Liu W, Zhang Q, Zhang J, Pan W, Zhao J, Xu Y (2017) Long non-coding RNA MALAT1 contributes to cell apoptosis by sponging miR-124 in Parkinson disease. Cell & Bioscience 7
74.
Zurück zum Zitat Majidinia M, Mihanfar A, Rahbarghazi R, Nourazarian A, Bagca B, Avci ÇB (2016) The roles of non-coding RNAs in Parkinson’s disease. Mol Biol Rep 43(11):1193–1204PubMedCrossRef Majidinia M, Mihanfar A, Rahbarghazi R, Nourazarian A, Bagca B, Avci ÇB (2016) The roles of non-coding RNAs in Parkinson’s disease. Mol Biol Rep 43(11):1193–1204PubMedCrossRef
Metadaten
Titel
LncRNAs as putative biomarkers and therapeutic targets for Parkinson’s disease
verfasst von
Eskandar Taghizadeh
Seyed Mohammad Gheibihayat
Forough Taheri
Seyed Mohammadreza Afshani
Najmeh Farahani
Alihossein Saberi
Publikationsdatum
12.07.2021
Verlag
Springer International Publishing
Erschienen in
Neurological Sciences / Ausgabe 10/2021
Print ISSN: 1590-1874
Elektronische ISSN: 1590-3478
DOI
https://doi.org/10.1007/s10072-021-05408-7

Weitere Artikel der Ausgabe 10/2021

Neurological Sciences 10/2021 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.