Skip to main content
Erschienen in: Angiogenesis 2/2012

01.06.2012 | Original Paper

Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials

verfasst von: Rameshwar R. Rao, Alexis W. Peterson, Jacob Ceccarelli, Andrew J. Putnam, Jan P. Stegemann

Erschienen in: Angiogenesis | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

Co-cultures of endothelial cells (EC) and mesenchymal stem cells (MSC) in three-dimensional (3D) protein hydrogels can be used to recapitulate aspects of vasculogenesis in vitro. MSC provide paracrine signals that stimulate EC to form vessel-like structures, which mature as the MSC transition to the role of mural cells. In this study, vessel-like network formation was studied using 3D collagen/fibrin (COL/FIB) matrices seeded with embedded EC and MSC and cultured for 7 days. The EC:MSC ratio was varied from 5:1, 3:2, 1:1, 2:3 and 1:5. The matrix composition was varied at COL/FIB compositions of 100/0 (pure COL), 60/40, 50/50, 40/60 and 0/100 (pure FIB). Vasculogenesis was markedly decreased in the highest EC:MSC ratio, relative to the other cell ratios. Network formation increased with increasing fibrin content in composite materials, although the 40/60 COL/FIB and pure fibrin materials exhibited the same degree of vasculogenesis. EC and MSC were co-localized in vessel-like structures after 7 days and total cell number increased by approximately 70%. Mechanical property measurements showed an inverse correlation between matrix stiffness and network formation. The effect of matrix stiffness was further investigated using gels made with varying total protein content and by crosslinking the matrix using the dialdehyde glyoxal. This systematic series of studies demonstrates that matrix composition regulates vasculogenesis in 3D protein hydrogels, and further suggests that this effect may be caused by matrix mechanical properties. These findings have relevance to the study of neovessel formation and the development of strategies to promote vascularization in transplanted tissues.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
3.
Zurück zum Zitat Mikos AG, Herring SW, Ochareon P, Elisseeff J, Lu HH, Kandel R, Schoen FJ, Toner M, Mooney D, Atala A, Van Dyke ME, Kaplan DL, Vunjak-Novakovic G (2006) Engineering complex tissues. Tissue Eng 12(12):3307–3339PubMedCrossRef Mikos AG, Herring SW, Ochareon P, Elisseeff J, Lu HH, Kandel R, Schoen FJ, Toner M, Mooney D, Atala A, Van Dyke ME, Kaplan DL, Vunjak-Novakovic G (2006) Engineering complex tissues. Tissue Eng 12(12):3307–3339PubMedCrossRef
4.
Zurück zum Zitat Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63(4–5):300–311PubMedCrossRef Novosel EC, Kleinhans C, Kluger PJ (2011) Vascularization is the key challenge in tissue engineering. Adv Drug Deliv Rev 63(4–5):300–311PubMedCrossRef
5.
Zurück zum Zitat Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10(1):12–27PubMedCrossRef Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10(1):12–27PubMedCrossRef
6.
Zurück zum Zitat Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng Part B 15(3):353–370CrossRef Lovett M, Lee K, Edwards A, Kaplan DL (2009) Vascularization strategies for tissue engineering. Tissue Eng Part B 15(3):353–370CrossRef
7.
Zurück zum Zitat Vailhe B, Vittet D, Feige JJ (2001) In vitro models of vasculogenesis and angiogenesis. Lab Invest 81(4):439–452PubMedCrossRef Vailhe B, Vittet D, Feige JJ (2001) In vitro models of vasculogenesis and angiogenesis. Lab Invest 81(4):439–452PubMedCrossRef
8.
Zurück zum Zitat Davis GE, Stratman AN, Sacharidou A, Koh W (2011) Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Biol 288:101–165PubMedCrossRef Davis GE, Stratman AN, Sacharidou A, Koh W (2011) Molecular basis for endothelial lumen formation and tubulogenesis during vasculogenesis and angiogenic sprouting. Int Rev Cell Mol Biol 288:101–165PubMedCrossRef
9.
Zurück zum Zitat Koh W, Stratman AN, Sacharidou A, Davis GE (2008) In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol 443:83–101PubMedCrossRef Koh W, Stratman AN, Sacharidou A, Davis GE (2008) In vitro three dimensional collagen matrix models of endothelial lumen formation during vasculogenesis and angiogenesis. Methods Enzymol 443:83–101PubMedCrossRef
10.
Zurück zum Zitat Shepherd B, Jay S, Saltzman W, Tellides G, Pober J (2009) Human aortic smooth muscle cells promote arteriole formation by coengrafted endothelial cells. Tissue Eng Part A 15:165–173PubMedCrossRef Shepherd B, Jay S, Saltzman W, Tellides G, Pober J (2009) Human aortic smooth muscle cells promote arteriole formation by coengrafted endothelial cells. Tissue Eng Part A 15:165–173PubMedCrossRef
11.
Zurück zum Zitat Au P, Tam J, Fukumura D, Jain R (2008) Bone marrow derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111:4551–4558PubMedCrossRef Au P, Tam J, Fukumura D, Jain R (2008) Bone marrow derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111:4551–4558PubMedCrossRef
12.
Zurück zum Zitat Ghanaati S, Fuchs S, Webber MJ, Orth C, Barbeck M, Gomes ME, Reis RL, Kirkpatrick CJ (2011) Rapid vascularization of starch-poly(caprolactone) in vivo by outgrowth of endothelial cells in co-culture with primary osteoblasts. J Tissue Eng Regen Med 5(6):e136–e143PubMedCrossRef Ghanaati S, Fuchs S, Webber MJ, Orth C, Barbeck M, Gomes ME, Reis RL, Kirkpatrick CJ (2011) Rapid vascularization of starch-poly(caprolactone) in vivo by outgrowth of endothelial cells in co-culture with primary osteoblasts. J Tissue Eng Regen Med 5(6):e136–e143PubMedCrossRef
13.
Zurück zum Zitat Merfeld-Clauss S, Gollahalli N, March K, Traktuev D (2010) Adipose tissue progenitor cells directly interact with endothelial cells to induce vascular network formation. Tissue Eng Part A 16:2953–2966PubMedCrossRef Merfeld-Clauss S, Gollahalli N, March K, Traktuev D (2010) Adipose tissue progenitor cells directly interact with endothelial cells to induce vascular network formation. Tissue Eng Part A 16:2953–2966PubMedCrossRef
14.
Zurück zum Zitat Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114(24):5091–5101PubMedCrossRef Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE (2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114(24):5091–5101PubMedCrossRef
15.
Zurück zum Zitat Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes lead to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153(3):543–553PubMedCrossRef Hellstrom M, Gerhardt H, Kalen M, Li X, Eriksson U, Wolburg H, Betsholtz C (2001) Lack of pericytes lead to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol 153(3):543–553PubMedCrossRef
16.
Zurück zum Zitat Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15(1):102–111PubMedCrossRef Baluk P, Hashizume H, McDonald DM (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15(1):102–111PubMedCrossRef
17.
Zurück zum Zitat Ghajar CM, Kachgal S, Kniazeva E, Mori H, Costes SV, George SC, Putnam AJ (2010) Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp Cell Res 316(5):813–825PubMedCrossRef Ghajar CM, Kachgal S, Kniazeva E, Mori H, Costes SV, George SC, Putnam AJ (2010) Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp Cell Res 316(5):813–825PubMedCrossRef
18.
Zurück zum Zitat Sorrell JM, Baber MA, Caplan AI (2009) Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Eng Part A 15(7):1751–1761PubMedCrossRef Sorrell JM, Baber MA, Caplan AI (2009) Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Eng Part A 15(7):1751–1761PubMedCrossRef
19.
Zurück zum Zitat Duffy GP, Ahsan T, O’Brien T, Barry F, Nerem RM (2009) Bone marrow-derived mesenchymal stem cells promote angiogenic processes in a time- and dose-dependent manner in vitro. Tissue Eng Part A 15(9):2459–2470PubMedCrossRef Duffy GP, Ahsan T, O’Brien T, Barry F, Nerem RM (2009) Bone marrow-derived mesenchymal stem cells promote angiogenic processes in a time- and dose-dependent manner in vitro. Tissue Eng Part A 15(9):2459–2470PubMedCrossRef
20.
Zurück zum Zitat Ghajar CM, Blevins KS, Hughes CCW, George SC, Putnam AJ (2006) Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng 12(10):2875–2888PubMedCrossRef Ghajar CM, Blevins KS, Hughes CCW, George SC, Putnam AJ (2006) Mesenchymal stem cells enhance angiogenesis in mechanically viable prevascularized tissues via early matrix metalloproteinase upregulation. Tissue Eng 12(10):2875–2888PubMedCrossRef
21.
Zurück zum Zitat Gruber R, Kandler B, Holzmann P, Vogele-Kadletz M, Losert U, Fischer MB, Watzek G (2005) Bone marrow stromal cells provide a local environment that favors migration and formation of tubular structures of endothelial cells. Tissue Eng 11(5):896–903PubMedCrossRef Gruber R, Kandler B, Holzmann P, Vogele-Kadletz M, Losert U, Fischer MB, Watzek G (2005) Bone marrow stromal cells provide a local environment that favors migration and formation of tubular structures of endothelial cells. Tissue Eng 11(5):896–903PubMedCrossRef
22.
Zurück zum Zitat Pati S, Khakoo AY, Zhao J, Jimenez F, Gerber MH, Harting M, Redell JB, Grill R, Matsuo Y, Guha S, Cox CS, Retz MS, Holcomb JB, Dash PK (2011) Human mesenchymal stem cells inhibit vascular permeability by modulating vascular endothelial cadherin/β-catenin signaling. Stem Cells Dev 20(1):89–101PubMedCrossRef Pati S, Khakoo AY, Zhao J, Jimenez F, Gerber MH, Harting M, Redell JB, Grill R, Matsuo Y, Guha S, Cox CS, Retz MS, Holcomb JB, Dash PK (2011) Human mesenchymal stem cells inhibit vascular permeability by modulating vascular endothelial cadherin/β-catenin signaling. Stem Cells Dev 20(1):89–101PubMedCrossRef
24.
Zurück zum Zitat Ma J, van den Beucken JJJP, Yang F, Both SK, Cui F-Z, Pan J, Jansen JA (2011) Coculture of osteoblasts and endothelial cells: optimization of culture medium and cell ratio. Tissue Eng Part C Methods 17(3):349–357PubMedCrossRef Ma J, van den Beucken JJJP, Yang F, Both SK, Cui F-Z, Pan J, Jansen JA (2011) Coculture of osteoblasts and endothelial cells: optimization of culture medium and cell ratio. Tissue Eng Part C Methods 17(3):349–357PubMedCrossRef
25.
Zurück zum Zitat Melero-Martin JM, De Obaldia ME, Kang S-Y, Khan ZA, Yuan L, Oettgen P, Bischoff J (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103(2):194–202PubMedCrossRef Melero-Martin JM, De Obaldia ME, Kang S-Y, Khan ZA, Yuan L, Oettgen P, Bischoff J (2008) Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res 103(2):194–202PubMedCrossRef
26.
Zurück zum Zitat Rouwkema J, De Boer J, Van Blitterswijk CA (2006) Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng 12(9):2685–2693PubMedCrossRef Rouwkema J, De Boer J, Van Blitterswijk CA (2006) Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng 12(9):2685–2693PubMedCrossRef
27.
Zurück zum Zitat Dietrich F, Lelkes PI (2006) Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial-mesenchymal cell co-cultures in fibrin and collagen gels. Angiogenesis 9(3):111–125PubMedCrossRef Dietrich F, Lelkes PI (2006) Fine-tuning of a three-dimensional microcarrier-based angiogenesis assay for the analysis of endothelial-mesenchymal cell co-cultures in fibrin and collagen gels. Angiogenesis 9(3):111–125PubMedCrossRef
28.
Zurück zum Zitat Martineau L, Doillon CJ (2007) Angiogenic response of endothelial cells seeded dispersed versus on beads in fibrin gels. Angiogenesis 10:269–277PubMedCrossRef Martineau L, Doillon CJ (2007) Angiogenic response of endothelial cells seeded dispersed versus on beads in fibrin gels. Angiogenesis 10:269–277PubMedCrossRef
29.
Zurück zum Zitat Kroon ME, van Schie MLJ, van der Vecht B, van Hinsbergh VWM, Koolwijk P (2002) Collagen type I retards tube formation by human microvascular endothelial cells in a fibrin matrix. Angiogenesis 5:257–265PubMedCrossRef Kroon ME, van Schie MLJ, van der Vecht B, van Hinsbergh VWM, Koolwijk P (2002) Collagen type I retards tube formation by human microvascular endothelial cells in a fibrin matrix. Angiogenesis 5:257–265PubMedCrossRef
30.
Zurück zum Zitat Rowe SL, Stegemann J (2006) Interpenetrating collagen–fibrin composite matrices with varying protein contents and ratios. Biomacromolecules 7:2942–2948PubMedCrossRef Rowe SL, Stegemann J (2006) Interpenetrating collagen–fibrin composite matrices with varying protein contents and ratios. Biomacromolecules 7:2942–2948PubMedCrossRef
31.
Zurück zum Zitat Rowe SL, Stegemann JP (2009) Microstructure and mechanics of collagen–fibrin matrices polymerized using ancrod snake venom enzyme. J Biomech Eng 131(6):061012PubMedCrossRef Rowe SL, Stegemann JP (2009) Microstructure and mechanics of collagen–fibrin matrices polymerized using ancrod snake venom enzyme. J Biomech Eng 131(6):061012PubMedCrossRef
32.
Zurück zum Zitat Critser PJ, Kreger ST, Voytik-Harbin SL, Yoder MC (2010) Collagen matrix physical properties modulate endothelial colony forming cell-derived vessels in vivo. Microvasc Res 80(1):23–30PubMedCrossRef Critser PJ, Kreger ST, Voytik-Harbin SL, Yoder MC (2010) Collagen matrix physical properties modulate endothelial colony forming cell-derived vessels in vivo. Microvasc Res 80(1):23–30PubMedCrossRef
33.
Zurück zum Zitat Kniazeva E, Kachgal S, Putnam AJ (2011) Effects of extracellular matrix density and mesenchymal stem cells on neovascularization in vivo. Tissue Eng Part A 17(7–8):905–914PubMedCrossRef Kniazeva E, Kachgal S, Putnam AJ (2011) Effects of extracellular matrix density and mesenchymal stem cells on neovascularization in vivo. Tissue Eng Part A 17(7–8):905–914PubMedCrossRef
34.
Zurück zum Zitat Allen P, Melero-Martin J, Bischoff J (2011) Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. J Tissue Eng Regen Med 5(4):e74–e86PubMedCrossRef Allen P, Melero-Martin J, Bischoff J (2011) Type I collagen, fibrin and PuraMatrix matrices provide permissive environments for human endothelial and mesenchymal progenitor cells to form neovascular networks. J Tissue Eng Regen Med 5(4):e74–e86PubMedCrossRef
35.
Zurück zum Zitat Wang L, Stegemann JP (2011) Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration. Acta Biomater 7(6):2410–2417PubMedCrossRef Wang L, Stegemann JP (2011) Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration. Acta Biomater 7(6):2410–2417PubMedCrossRef
36.
Zurück zum Zitat Kotlarchyk MA, Shreim SG, Alvarez-Elizondo MB, Estrada LC, Singh R, Valdevit L, Kniazeva E, Gratton E, Putnam AJ, Botvinick EL (2011) Concentration independent modulation of local micromechanics in a fibrin gel. PLoS ONE 6(5):e20201PubMedCrossRef Kotlarchyk MA, Shreim SG, Alvarez-Elizondo MB, Estrada LC, Singh R, Valdevit L, Kniazeva E, Gratton E, Putnam AJ, Botvinick EL (2011) Concentration independent modulation of local micromechanics in a fibrin gel. PLoS ONE 6(5):e20201PubMedCrossRef
37.
Zurück zum Zitat Collen A, Koolwijk P, Kroon ME, Van Hinsbergh VWM (1998) Influence of fibrin structure on the formation and maintenance of capillary-like tubules by human microvascular endothelial cells. Angiogenesis 2:153–165PubMed Collen A, Koolwijk P, Kroon ME, Van Hinsbergh VWM (1998) Influence of fibrin structure on the formation and maintenance of capillary-like tubules by human microvascular endothelial cells. Angiogenesis 2:153–165PubMed
38.
Zurück zum Zitat Seidlits SK, Drinnan CT, Petersen RR, Shear JB, Suggs LJ, Schmidt CE (2011) Fibronectin-hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture. Acta Biomater 7(6):2401–2409PubMedCrossRef Seidlits SK, Drinnan CT, Petersen RR, Shear JB, Suggs LJ, Schmidt CE (2011) Fibronectin-hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture. Acta Biomater 7(6):2401–2409PubMedCrossRef
39.
Zurück zum Zitat Bala K, Ambwani K, Gohil NK (2011) Effect of different mitogens and serum concentration on HUVEC morphology and characteristics: Implication on use of higher passage cells. Tissue Cell 43(4):216–222PubMedCrossRef Bala K, Ambwani K, Gohil NK (2011) Effect of different mitogens and serum concentration on HUVEC morphology and characteristics: Implication on use of higher passage cells. Tissue Cell 43(4):216–222PubMedCrossRef
40.
Zurück zum Zitat Rao RR, He J, Leach JK (2010) Biomineralized composite substrates increase gene expression with nonviral delivery. J Biomed Mater Res Part A 94(2):344–354 Rao RR, He J, Leach JK (2010) Biomineralized composite substrates increase gene expression with nonviral delivery. J Biomed Mater Res Part A 94(2):344–354
Metadaten
Titel
Matrix composition regulates three-dimensional network formation by endothelial cells and mesenchymal stem cells in collagen/fibrin materials
verfasst von
Rameshwar R. Rao
Alexis W. Peterson
Jacob Ceccarelli
Andrew J. Putnam
Jan P. Stegemann
Publikationsdatum
01.06.2012
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 2/2012
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-012-9257-1

Weitere Artikel der Ausgabe 2/2012

Angiogenesis 2/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Semaglutid bei Herzinsuffizienz: Wie erklärt sich die Wirksamkeit?

17.05.2024 Herzinsuffizienz Nachrichten

Bei adipösen Patienten mit Herzinsuffizienz des HFpEF-Phänotyps ist Semaglutid von symptomatischem Nutzen. Resultiert dieser Benefit allein aus der Gewichtsreduktion oder auch aus spezifischen Effekten auf die Herzinsuffizienz-Pathogenese? Eine neue Analyse gibt Aufschluss.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.