Skip to main content
Erschienen in: Molecular Imaging and Biology 6/2018

17.08.2018 | Review Article

Metabolic and Molecular Imaging with Hyperpolarised Tracers

verfasst von: Jason Graham Skinner, Luca Menichetti, Alessandra Flori, Anna Dost, Andreas Benjamin Schmidt, Markus Plaumann, Ferdia Aiden Gallagher, Jan-Bernd Hövener

Erschienen in: Molecular Imaging and Biology | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Since reaching the clinic, magnetic resonance imaging (MRI) has become an irreplaceable radiological tool because of the macroscopic information it provides across almost all organs and soft tissues within the human body, all without the need for ionising radiation. The sensitivity of MR, however, is too low to take full advantage of the rich chemical information contained in the MR signal. Hyperpolarisation techniques have recently emerged as methods to overcome the sensitivity limitations by enhancing the MR signal by many orders of magnitude compared to the thermal equilibrium, enabling a new class of metabolic and molecular X-nuclei based MR tracers capable of reporting on metabolic processes at the cellular level. These hyperpolarised (HP) tracers have the potential to elucidate the complex metabolic processes of many organs and pathologies, with studies so far focusing on the fields of oncology and cardiology. This review presents an overview of hyperpolarisation techniques that appear most promising for clinical use today, such as dissolution dynamic nuclear polarisation (d-DNP), parahydrogen-induced hyperpolarisation (PHIP), Brute force hyperpolarisation and spin-exchange optical pumping (SEOP), before discussing methods for tracer detection, emerging metabolic tracers and applications and progress in preclinical and clinical application.
Literatur
1.
Zurück zum Zitat Xu V, Chan H, Lin AP et al (2008) MR spectroscopy in diagnosis and neurological decision-making. Semin Neurol 28:407–422PubMed Xu V, Chan H, Lin AP et al (2008) MR spectroscopy in diagnosis and neurological decision-making. Semin Neurol 28:407–422PubMed
2.
Zurück zum Zitat Ardenkjær-Larsen JH, Fridlund B, Gram A et al (2003) Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci 100:10158–10163PubMed Ardenkjær-Larsen JH, Fridlund B, Gram A et al (2003) Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci 100:10158–10163PubMed
3.
Zurück zum Zitat Walker TG, Happer W (1997) Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys 69:629–642 Walker TG, Happer W (1997) Spin-exchange optical pumping of noble-gas nuclei. Rev Mod Phys 69:629–642
4.
Zurück zum Zitat Bowers CR, Weitekamp DP (1987) Parahydrogen and synthesis allow dramatically enhanced nuclear alignment. J Am Chem Soc 109:5541–5542 Bowers CR, Weitekamp DP (1987) Parahydrogen and synthesis allow dramatically enhanced nuclear alignment. J Am Chem Soc 109:5541–5542
5.
Zurück zum Zitat Kurhanewicz J, Vigneron DB, Brindle K et al (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13:81–97PubMedPubMedCentral Kurhanewicz J, Vigneron DB, Brindle K et al (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13:81–97PubMedPubMedCentral
6.
Zurück zum Zitat Comment A, Merritt ME (2014) Hyperpolarized magnetic resonance as a sensitive detector of metabolic function. Biochemistry (Mosc) 53:7333–7357 Comment A, Merritt ME (2014) Hyperpolarized magnetic resonance as a sensitive detector of metabolic function. Biochemistry (Mosc) 53:7333–7357
7.
Zurück zum Zitat Keshari KR, Wilson DM (2014) Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem Soc Rev 43:1627–1659PubMed Keshari KR, Wilson DM (2014) Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem Soc Rev 43:1627–1659PubMed
8.
Zurück zum Zitat Schroeter A, Rudin M, Gianolio E et al (2017) MRI. In: Small animal imaging. Springer, Heidelberg, Dordrecht, London, New York, Berlin, pp 227–324 Schroeter A, Rudin M, Gianolio E et al (2017) MRI. In: Small animal imaging. Springer, Heidelberg, Dordrecht, London, New York, Berlin, pp 227–324
9.
Zurück zum Zitat Hövener J-B, Lange T, Leibfritz D (2016) Metabolic magnetic resonance. In: Samii A, Nabavi A, Fahlbusch R (eds) Visualization of the brain and its pathologies—technical and neurosurgical aspects. Uelvesbüll, Der Andere Verlag, pp 3–32 Hövener J-B, Lange T, Leibfritz D (2016) Metabolic magnetic resonance. In: Samii A, Nabavi A, Fahlbusch R (eds) Visualization of the brain and its pathologies—technical and neurosurgical aspects. Uelvesbüll, Der Andere Verlag, pp 3–32
10.
Zurück zum Zitat Bastiaansen JAM, Cheng T, Mishkovsky M et al (2013) In vivo enzymatic activity of acetylCoA synthetase in skeletal muscle revealed by 13C turnover from hyperpolarized [1-13C]acetate to [1-13C]acetylcarnitine. Biochim Biophys Acta BBA - Gen Subj 1830:4171–4178 Bastiaansen JAM, Cheng T, Mishkovsky M et al (2013) In vivo enzymatic activity of acetylCoA synthetase in skeletal muscle revealed by 13C turnover from hyperpolarized [1-13C]acetate to [1-13C]acetylcarnitine. Biochim Biophys Acta BBA - Gen Subj 1830:4171–4178
11.
Zurück zum Zitat Chattergoon N, Martínez-Santiesteban F, Handler WB et al (2013) Field dependence of T 1 for hyperpolarized [1-13C]pyruvate. Contrast Media Mol Imaging 8:57–62PubMed Chattergoon N, Martínez-Santiesteban F, Handler WB et al (2013) Field dependence of T 1 for hyperpolarized [1-13C]pyruvate. Contrast Media Mol Imaging 8:57–62PubMed
12.
Zurück zum Zitat Cheng T, Mishkovsky M, Bastiaansen JAM et al (2013) Automated transfer and injection of hyperpolarized molecules with polarization measurement prior to in vivo NMR. NMR Biomed 26:1582–1588PubMed Cheng T, Mishkovsky M, Bastiaansen JAM et al (2013) Automated transfer and injection of hyperpolarized molecules with polarization measurement prior to in vivo NMR. NMR Biomed 26:1582–1588PubMed
13.
Zurück zum Zitat Bowen S, Hilty C (2010) Rapid sample injection for hyperpolarized NMR spectroscopy. Phys Chem Chem Phys 12:5766–5770PubMed Bowen S, Hilty C (2010) Rapid sample injection for hyperpolarized NMR spectroscopy. Phys Chem Chem Phys 12:5766–5770PubMed
14.
Zurück zum Zitat Shang H, Skloss T, von Morze C et al (2016) Handheld electromagnet carrier for transfer of hyperpolarized carbon-13 samples: electromagnet carrier for hyperpolarized 13 C samples. Magn Reson Med 75:917–922PubMed Shang H, Skloss T, von Morze C et al (2016) Handheld electromagnet carrier for transfer of hyperpolarized carbon-13 samples: electromagnet carrier for hyperpolarized 13 C samples. Magn Reson Med 75:917–922PubMed
15.
Zurück zum Zitat Adams RW, Aguilar JA, Atkinson KD et al (2009) Reversible interactions with Para-hydrogen enhance NMR sensitivity by polarization transfer. Science 323:1708–1711PubMed Adams RW, Aguilar JA, Atkinson KD et al (2009) Reversible interactions with Para-hydrogen enhance NMR sensitivity by polarization transfer. Science 323:1708–1711PubMed
16.
Zurück zum Zitat Hirsch ML, Smith BA, Mattingly M et al (2015) Transport and imaging of brute-force 13C hyperpolarization. J Magn Reson 261:87–94PubMed Hirsch ML, Smith BA, Mattingly M et al (2015) Transport and imaging of brute-force 13C  hyperpolarization. J Magn Reson 261:87–94PubMed
17.
Zurück zum Zitat Driehuys B, Cates GD, Miron E et al (1996) High-volume production of laser-polarized 129 Xe. Appl Phys Lett 69:1668–1670 Driehuys B, Cates GD, Miron E et al (1996) High-volume production of laser-polarized 129 Xe. Appl Phys Lett 69:1668–1670
18.
Zurück zum Zitat Nikolaou P, Coffey AM, Walkup LL et al (2013) Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI. Proc Natl Acad Sci 110:14150–14155PubMed Nikolaou P, Coffey AM, Walkup LL et al (2013) Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI. Proc Natl Acad Sci 110:14150–14155PubMed
19.
Zurück zum Zitat Atsarkin VA, Kessenikh AV (2012) Dynamic nuclear polarization in solids: the birth and development of the many-particle concept. Appl Magn Reson 43:7–19 Atsarkin VA, Kessenikh AV (2012) Dynamic nuclear polarization in solids: the birth and development of the many-particle concept. Appl Magn Reson 43:7–19
20.
Zurück zum Zitat Pinto LF, Marín-Montesinos I, Lloveras V et al (2017) NMR signal enhancement of >50000 times in fast dissolution dynamic nuclear polarization. Chem Commun 53:3757–3760 Pinto LF, Marín-Montesinos I, Lloveras V et al (2017) NMR signal enhancement of >50000 times in fast dissolution dynamic nuclear polarization. Chem Commun 53:3757–3760
21.
Zurück zum Zitat Hall DA, Maus DC, Gerfen GJ et al (1997) Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science 276:930–932PubMed Hall DA, Maus DC, Gerfen GJ et al (1997) Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. Science 276:930–932PubMed
22.
Zurück zum Zitat Jähnig F, Kwiatkowski G, Ernst M (2016) Conceptual and instrumental progress in dissolution DNP. J Magn Reson 264:22–29PubMed Jähnig F, Kwiatkowski G, Ernst M (2016) Conceptual and instrumental progress in dissolution DNP. J Magn Reson 264:22–29PubMed
23.
Zurück zum Zitat Macholl S, Jóhannesson H, Henrik Ardenkjaer-Larsen J (2010) Trityl biradicals and 13C dynamic nuclear polarization. Phys Chem Chem Phys 12:5804–5817PubMed Macholl S, Jóhannesson H, Henrik Ardenkjaer-Larsen J (2010) Trityl biradicals and 13C dynamic nuclear polarization. Phys Chem Chem Phys 12:5804–5817PubMed
24.
Zurück zum Zitat Guarin D, Marhabaie S, Rosso A et al (2017) Characterizing thermal mixing dynamic nuclear polarization via cross-talk between spin reservoirs. J Phys Chem Lett 8:5531–5536PubMed Guarin D, Marhabaie S, Rosso A et al (2017) Characterizing thermal mixing dynamic nuclear polarization via cross-talk between spin reservoirs. J Phys Chem Lett 8:5531–5536PubMed
25.
Zurück zum Zitat Wenckebach WT (2017) Dynamic nuclear polarization via thermal mixing: beyond the high temperature approximation. J Magn Reson 277:68–78PubMed Wenckebach WT (2017) Dynamic nuclear polarization via thermal mixing: beyond the high temperature approximation. J Magn Reson 277:68–78PubMed
26.
Zurück zum Zitat Hovav Y, Feintuch A, Vega S (2013) Theoretical aspects of dynamic nuclear polarization in the solid state—spin temperature and thermal mixing. Phys Chem Chem Phys 15:188–203PubMed Hovav Y, Feintuch A, Vega S (2013) Theoretical aspects of dynamic nuclear polarization in the solid state—spin temperature and thermal mixing. Phys Chem Chem Phys 15:188–203PubMed
27.
Zurück zum Zitat Colombo Serra S, Rosso A, Tedoldi F (2012) Electron and nuclear spin dynamics in the thermal mixing model of dynamic nuclear polarization. Phys Chem Chem Phys 14:13299–13308 Colombo Serra S, Rosso A, Tedoldi F (2012) Electron and nuclear spin dynamics in the thermal mixing model of dynamic nuclear polarization. Phys Chem Chem Phys 14:13299–13308
28.
Zurück zum Zitat Ardenkjaer-Larsen JH, Macholl S, Jóhannesson H (2008) Dynamic nuclear polarization with Trityls at 1.2 K. Appl Magn Reson 34:509–522 Ardenkjaer-Larsen JH, Macholl S, Jóhannesson H (2008) Dynamic nuclear polarization with Trityls at 1.2 K. Appl Magn Reson 34:509–522
29.
Zurück zum Zitat Vuichoud B, Bornet A, de Nanteuil F et al (2016) Filterable agents for hyperpolarization of water, metabolites, and proteins. Chem – Eur J 22:14696–14700PubMed Vuichoud B, Bornet A, de Nanteuil F et al (2016) Filterable agents for hyperpolarization of water, metabolites, and proteins. Chem – Eur J 22:14696–14700PubMed
30.
Zurück zum Zitat Ardenkjaer-Larsen JH, Leach AM, Clarke N et al (2011) Dynamic nuclear polarization polarizer for sterile use intent. NMR Biomed 24:927–932PubMed Ardenkjaer-Larsen JH, Leach AM, Clarke N et al (2011) Dynamic nuclear polarization polarizer for sterile use intent. NMR Biomed 24:927–932PubMed
31.
Zurück zum Zitat Lipsø KW, Bowen S, Rybalko O, Ardenkjær-Larsen JH (2017) Large dose hyperpolarized water with dissolution-DNP at high magnetic field. J Magn Reson 274:65–72PubMed Lipsø KW, Bowen S, Rybalko O, Ardenkjær-Larsen JH (2017) Large dose hyperpolarized water with dissolution-DNP at high magnetic field. J Magn Reson 274:65–72PubMed
32.
Zurück zum Zitat Cudalbu C, Comment A, Kurdzesau F et al (2010) Feasibility of in vivo 15N MRS detection of hyperpolarized 15N labeled choline in rats. Phys Chem Chem Phys 12:5818–5823PubMed Cudalbu C, Comment A, Kurdzesau F et al (2010) Feasibility of in vivo 15N MRS detection of hyperpolarized 15N labeled choline in rats. Phys Chem Chem Phys 12:5818–5823PubMed
33.
Zurück zum Zitat Cassidy MC, Chan HR, Ross BD et al (2013) In vivo magnetic resonance imaging of hyperpolarized silicon particles. Nat Nanotechnol 8:363–368PubMed Cassidy MC, Chan HR, Ross BD et al (2013) In vivo magnetic resonance imaging of hyperpolarized silicon particles. Nat Nanotechnol 8:363–368PubMed
34.
Zurück zum Zitat Lumata L, Merritt M, Malloy C et al (2012) Fast dissolution dynamic nuclear polarization NMR of 13C-enriched 89Y-DOTA complex: experimental and theoretical considerations. Appl Magn Reson 43:69–79 Lumata L, Merritt M, Malloy C et al (2012) Fast dissolution dynamic nuclear polarization NMR of 13C-enriched 89Y-DOTA complex: experimental and theoretical considerations. Appl Magn Reson 43:69–79
35.
Zurück zum Zitat Ardenkjaer-Larsen JH, Laustsen C, Bowen S, Rizi R (2014) Hyperpolarized H2O MR angiography: hyperpolarized 1H2O MR angiography. Magn Reson Med 71:50–56PubMed Ardenkjaer-Larsen JH, Laustsen C, Bowen S, Rizi R (2014) Hyperpolarized H2O MR angiography: hyperpolarized 1H2O MR angiography. Magn Reson Med 71:50–56PubMed
36.
Zurück zum Zitat Comment A, Jannin S, Hyacinthe J-N et al (2010) Hyperpolarizing gases via dynamic nuclear polarization and sublimation. Phys Rev Lett 105:018104PubMed Comment A, Jannin S, Hyacinthe J-N et al (2010) Hyperpolarizing gases via dynamic nuclear polarization and sublimation. Phys Rev Lett 105:018104PubMed
37.
Zurück zum Zitat Lee Y, Zeng H, Ruedisser S et al (2012) Nuclear magnetic resonance of hyperpolarized fluorine for characterization of protein–ligand interactions. J Am Chem Soc 134:17448–17451PubMed Lee Y, Zeng H, Ruedisser S et al (2012) Nuclear magnetic resonance of hyperpolarized fluorine for characterization of protein–ligand interactions. J Am Chem Soc 134:17448–17451PubMed
38.
Zurück zum Zitat van Heeswijk RB, Uffmann K, Comment A et al (2009) Hyperpolarized lithium-6 as a sensor of nanomolar contrast agents. Magn Reson Med 61:1489–1493PubMedPubMedCentral van Heeswijk RB, Uffmann K, Comment A et al (2009) Hyperpolarized lithium-6 as a sensor of nanomolar contrast agents. Magn Reson Med 61:1489–1493PubMedPubMedCentral
39.
Zurück zum Zitat Balzan R, Mishkovsky M, Simonenko Y et al (2016) Hyperpolarized 6Li as a probe for hemoglobin oxygenation level. Contrast Media Mol Imaging 11:41–46PubMed Balzan R, Mishkovsky M, Simonenko Y et al (2016) Hyperpolarized 6Li as a probe for hemoglobin oxygenation level. Contrast Media Mol Imaging 11:41–46PubMed
40.
Zurück zum Zitat Nardi-Schreiber A, Gamliel A, Harris T et al (2017) Biochemical phosphates observed using hyperpolarized 31P in physiological aqueous solutions. Nat Commun 8:341PubMedPubMedCentral Nardi-Schreiber A, Gamliel A, Harris T et al (2017) Biochemical phosphates observed using hyperpolarized 31P in physiological aqueous solutions. Nat Commun 8:341PubMedPubMedCentral
41.
Zurück zum Zitat Eichhorn TR, Takado Y, Salameh N et al (2013) Hyperpolarization without persistent radicals for in vivo real-time metabolic imaging. Proc Natl Acad Sci 110:18064–18069PubMed Eichhorn TR, Takado Y, Salameh N et al (2013) Hyperpolarization without persistent radicals for in vivo real-time metabolic imaging. Proc Natl Acad Sci 110:18064–18069PubMed
42.
Zurück zum Zitat Capozzi A, Hyacinthe J-N, Cheng T et al (2015) Photoinduced nonpersistent radicals as polarizing agents for X-nuclei dissolution dynamic nuclear polarization. J Phys Chem C 119:22632–22639 Capozzi A, Hyacinthe J-N, Cheng T et al (2015) Photoinduced nonpersistent radicals as polarizing agents for X-nuclei dissolution dynamic nuclear polarization. J Phys Chem C 119:22632–22639
43.
Zurück zum Zitat Capozzi A, Cheng T, Boero G et al (2017) Thermal annihilation of photo-induced radicals following dynamic nuclear polarization to produce transportable frozen hyperpolarized 13C-substrates. Nat Commun 8:15757PubMedPubMedCentral Capozzi A, Cheng T, Boero G et al (2017) Thermal annihilation of photo-induced radicals following dynamic nuclear polarization to produce transportable frozen hyperpolarized 13C-substrates. Nat Commun 8:15757PubMedPubMedCentral
44.
Zurück zum Zitat Batel M, Krajewski M, Weiss K et al (2012) A multi-sample 94GHz dissolution dynamic-nuclear-polarization system. J Magn Reson 214:166–174PubMed Batel M, Krajewski M, Weiss K et al (2012) A multi-sample 94GHz dissolution dynamic-nuclear-polarization system. J Magn Reson 214:166–174PubMed
45.
Zurück zum Zitat Aggarwal R, Vigneron DB, Kurhanewicz J (2017) Hyperpolarized 1-[13C]-pyruvate magnetic resonance imaging detects an early metabolic response to androgen ablation therapy in prostate cancer. Eur Urol 72:1028–1029PubMed Aggarwal R, Vigneron DB, Kurhanewicz J (2017) Hyperpolarized 1-[13C]-pyruvate magnetic resonance imaging detects an early metabolic response to androgen ablation therapy in prostate cancer. Eur Urol 72:1028–1029PubMed
46.
Zurück zum Zitat Nelson SJ, Kurhanewicz J, Vigneron DB et al (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci Transl Med 5:198ra108 198ra108PubMedPubMedCentral Nelson SJ, Kurhanewicz J, Vigneron DB et al (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci Transl Med 5:198ra108 198ra108PubMedPubMedCentral
47.
Zurück zum Zitat Park I, Larson PEZ, Gordon JW et al (2018) Development of methods and feasibility of using hyperpolarized carbon-13 imaging data for evaluating brain metabolism in patient studies. Magn Reson Med 80:864–873PubMed Park I, Larson PEZ, Gordon JW et al (2018) Development of methods and feasibility of using hyperpolarized carbon-13 imaging data for evaluating brain metabolism in patient studies. Magn Reson Med 80:864–873PubMed
48.
Zurück zum Zitat Cunningham CH, Lau JY, Chen AP, et al. (2016) Hyperpolarized 13C metabolic MRI of the human heart: initial experience. Circ Res 119:1177–1182PubMedPubMedCentral Cunningham CH, Lau JY, Chen AP, et al. (2016) Hyperpolarized 13C metabolic MRI of the human heart: initial experience. Circ Res 119:1177–1182PubMedPubMedCentral
49.
Zurück zum Zitat Plainchont B, Berruyer P, Dumez J-N et al (2018) Dynamic nuclear polarization opens new perspectives for NMR spectroscopy in analytical chemistry. Anal Chem 90:3639–3650PubMed Plainchont B, Berruyer P, Dumez J-N et al (2018) Dynamic nuclear polarization opens new perspectives for NMR spectroscopy in analytical chemistry. Anal Chem 90:3639–3650PubMed
50.
Zurück zum Zitat Yoshihara HAI, Can E, Karlsson M et al (2016) High-field dissolution dynamic nuclear polarization of [1-13C]pyruvic acid. Phys Chem Chem Phys 18:12409–12413PubMed Yoshihara HAI, Can E, Karlsson M et al (2016) High-field dissolution dynamic nuclear polarization of [1-13C]pyruvic acid. Phys Chem Chem Phys 18:12409–12413PubMed
51.
Zurück zum Zitat Yoon D, Dimitriadis AI, Soundararajan M et al (2018) High-field liquid-state dynamic nuclear polarization in microliter samples. Anal Chem 90:5620–5626PubMed Yoon D, Dimitriadis AI, Soundararajan M et al (2018) High-field liquid-state dynamic nuclear polarization in microliter samples. Anal Chem 90:5620–5626PubMed
52.
Zurück zum Zitat Capozzi A, Karlsson M, Petersen JR et al (2018) Liquid-state 13C polarization of 30% through photoinduced nonpersistent radicals. J Phys Chem C 122:7432–7443 Capozzi A, Karlsson M, Petersen JR et al (2018) Liquid-state 13C polarization of 30% through photoinduced nonpersistent radicals. J Phys Chem C 122:7432–7443
53.
Zurück zum Zitat Wang X, McKay JE, Lama B et al (2018) Gadolinium based endohedral metallofullerene Gd2@C79N as a relaxation boosting agent for dissolution DNP at high fields. Chem Commun 54:2425–2428 Wang X, McKay JE, Lama B et al (2018) Gadolinium based endohedral metallofullerene Gd2@C79N as a relaxation boosting agent for dissolution DNP at high fields. Chem Commun 54:2425–2428
54.
Zurück zum Zitat Wagner S (2014) Conversion rate of Para-hydrogen to ortho-hydrogen by oxygen: implications for PHIP gas storage and utilization. Magn Reson Mater Phys Biol Med 27:195–199 Wagner S (2014) Conversion rate of Para-hydrogen to ortho-hydrogen by oxygen: implications for PHIP gas storage and utilization. Magn Reson Mater Phys Biol Med 27:195–199
55.
Zurück zum Zitat Natterer J, Bargon J (1997) Parahydrogen induced polarization. Prog Nucl Magn Reson Spectrosc 31:293–315 Natterer J, Bargon J (1997) Parahydrogen induced polarization. Prog Nucl Magn Reson Spectrosc 31:293–315
56.
Zurück zum Zitat Kuhn LT (2013) Hyperpolarization methods in NMR spectroscopy. Springer, Berlin, Heidelberg Kuhn LT (2013) Hyperpolarization methods in NMR spectroscopy. Springer, Berlin, Heidelberg
57.
Zurück zum Zitat Pravica MG, Weitekamp DP (1988) Net NMR alignment by adiabatic transport of parahydrogen addition products to high magnetic field. Chem Phys Lett 145:255–258 Pravica MG, Weitekamp DP (1988) Net NMR alignment by adiabatic transport of parahydrogen addition products to high magnetic field. Chem Phys Lett 145:255–258
58.
Zurück zum Zitat Hövener J-B, Schwaderlapp N, Borowiak R et al (2014) Toward biocompatible nuclear hyperpolarization using signal amplification by reversible exchange: quantitative in situ spectroscopy and high-field imaging. Anal Chem 86:1767–1774PubMedPubMedCentral Hövener J-B, Schwaderlapp N, Borowiak R et al (2014) Toward biocompatible nuclear hyperpolarization using signal amplification by reversible exchange: quantitative in situ spectroscopy and high-field imaging. Anal Chem 86:1767–1774PubMedPubMedCentral
59.
Zurück zum Zitat Jóhannesson H, Axelsson O, Karlsson M (2004) Transfer of para-hydrogen spin order into polarization by diabatic field cycling. Comptes Rendus Phys 5:315–324 Jóhannesson H, Axelsson O, Karlsson M (2004) Transfer of para-hydrogen spin order into polarization by diabatic field cycling. Comptes Rendus Phys 5:315–324
60.
Zurück zum Zitat Bommerich U, Trantzschel T, Mulla-Osman S et al (2010) Hyperpolarized 19F-MRI: parahydrogen-induced polarization and field variation enable 19F-MRI at low spin density. Phys Chem Chem Phys 12:10309PubMed Bommerich U, Trantzschel T, Mulla-Osman S et al (2010) Hyperpolarized 19F-MRI: parahydrogen-induced polarization and field variation enable 19F-MRI at low spin density. Phys Chem Chem Phys 12:10309PubMed
61.
Zurück zum Zitat Goldman M, Jóhannesson H, Axelsson O, Karlsson M (2005) Hyperpolarization of 13C through order transfer from parahydrogen: a new contrast agent for MRI. Magn Reson Imaging 23:153–157PubMed Goldman M, Jóhannesson H, Axelsson O, Karlsson M (2005) Hyperpolarization of 13C through order transfer from parahydrogen: a new contrast agent for MRI. Magn Reson Imaging 23:153–157PubMed
62.
Zurück zum Zitat Bär S, Lange T, Leibfritz D et al (2012) On the spin order transfer from parahydrogen to another nucleus. J Magn Reson 225:25–35PubMed Bär S, Lange T, Leibfritz D et al (2012) On the spin order transfer from parahydrogen to another nucleus. J Magn Reson 225:25–35PubMed
63.
Zurück zum Zitat Bhattacharya P, Chekmenev EY, Reynolds WF et al (2011) PHIP hyperpolarized MR receptor imaging in vivo: a pilot study of 13C imaging of atheroma in mice. NMR Biomed 24:1023–1028PubMedPubMedCentral Bhattacharya P, Chekmenev EY, Reynolds WF et al (2011) PHIP hyperpolarized MR receptor imaging in vivo: a pilot study of 13C imaging of atheroma in mice. NMR Biomed 24:1023–1028PubMedPubMedCentral
64.
Zurück zum Zitat Waddell KW, Coffey AM, Chekmenev EY (2011) In situ detection of PHIP at 48 mT: demonstration using a centrally controlled polarizer. J Am Chem Soc 133:97–101PubMed Waddell KW, Coffey AM, Chekmenev EY (2011) In situ detection of PHIP at 48 mT: demonstration using a centrally controlled polarizer. J Am Chem Soc 133:97–101PubMed
65.
Zurück zum Zitat Coffey AM, Shchepin RV, Truong ML et al (2016) Open-source automated parahydrogen hyperpolarizer for molecular imaging using 13 C metabolic contrast agents. Anal Chem 88:8279–8288PubMedPubMedCentral Coffey AM, Shchepin RV, Truong ML et al (2016) Open-source automated parahydrogen hyperpolarizer for molecular imaging using 13 C metabolic contrast agents. Anal Chem 88:8279–8288PubMedPubMedCentral
66.
Zurück zum Zitat Coffey AM, Shchepin RV, Feng B et al (2017) A pulse programmable parahydrogen polarizer using a tunable electromagnet and dual channel NMR spectrometer. J Magn Reson 284:115–124PubMedPubMedCentral Coffey AM, Shchepin RV, Feng B et al (2017) A pulse programmable parahydrogen polarizer using a tunable electromagnet and dual channel NMR spectrometer. J Magn Reson 284:115–124PubMedPubMedCentral
67.
Zurück zum Zitat Hövener J-B, Bär S, Leupold J et al (2013) A continuous-flow, high-throughput, high-pressure parahydrogen converter for hyperpolarization in a clinical setting: a high-throughput parahydrogen converter for hyperpolarization. NMR Biomed 26:124–131PubMed Hövener J-B, Bär S, Leupold J et al (2013) A continuous-flow, high-throughput, high-pressure parahydrogen converter for hyperpolarization in a clinical setting: a high-throughput parahydrogen converter for hyperpolarization. NMR Biomed 26:124–131PubMed
68.
Zurück zum Zitat Schmidt AB, Berner S, Schimpf W et al (2017) Liquid-state carbon-13 hyperpolarization generated in an MRI system for fast imaging. Nat Commun 8:14535PubMedPubMedCentral Schmidt AB, Berner S, Schimpf W et al (2017) Liquid-state carbon-13 hyperpolarization generated in an MRI system for fast imaging. Nat Commun 8:14535PubMedPubMedCentral
69.
Zurück zum Zitat Kovtunov KV, Kidd BE, Salnikov OG et al (2017) Imaging of biomolecular NMR signals amplified by reversible exchange with parahydrogen inside an MRI scanner. J Phys Chem C 121:25994–25999 Kovtunov KV, Kidd BE, Salnikov OG et al (2017) Imaging of biomolecular NMR signals amplified by reversible exchange with parahydrogen inside an MRI scanner. J Phys Chem C 121:25994–25999
70.
Zurück zum Zitat Buckenmaier K, Rudolph M, Back C et al (2017) SQUID-based detection of ultra-low-field multinuclear NMR of substances hyperpolarized using signal amplification by reversible exchange. Sci Rep 7:13431PubMedPubMedCentral Buckenmaier K, Rudolph M, Back C et al (2017) SQUID-based detection of ultra-low-field multinuclear NMR of substances hyperpolarized using signal amplification by reversible exchange. Sci Rep 7:13431PubMedPubMedCentral
71.
Zurück zum Zitat Barskiy DA, Kovtunov KV, Koptyug IV et al (2014) The feasibility of formation and kinetics of NMR signal amplification by reversible exchange (SABRE) at high magnetic field (9.4 T). J Am Chem Soc 136:3322–3325PubMedPubMedCentral Barskiy DA, Kovtunov KV, Koptyug IV et al (2014) The feasibility of formation and kinetics of NMR signal amplification by reversible exchange (SABRE) at high magnetic field (9.4 T). J Am Chem Soc 136:3322–3325PubMedPubMedCentral
72.
Zurück zum Zitat Knecht S, Kiryutin AS, Yurkovskaya AV, Ivanov KL (2018) Mechanism of spontaneous polarization transfer in high-field SABRE experiments. J Magn Reson 287:74–81PubMed Knecht S, Kiryutin AS, Yurkovskaya AV, Ivanov KL (2018) Mechanism of spontaneous polarization transfer in high-field SABRE experiments. J Magn Reson 287:74–81PubMed
73.
Zurück zum Zitat Mewis RE, Green RA, Cockett MCR et al (2015) Strategies for the hyperpolarization of acetonitrile and related ligands by SABRE. J Phys Chem B 119:1416–1424PubMed Mewis RE, Green RA, Cockett MCR et al (2015) Strategies for the hyperpolarization of acetonitrile and related ligands by SABRE. J Phys Chem B 119:1416–1424PubMed
74.
Zurück zum Zitat Moreno KX, Nasr K, Milne M et al (2015) Nuclear spin hyperpolarization of the solvent using signal amplification by reversible exchange (SABRE). J Magn Reson San Diego Calif 1997 257:15–23 Moreno KX, Nasr K, Milne M et al (2015) Nuclear spin hyperpolarization of the solvent using signal amplification by reversible exchange (SABRE). J Magn Reson San Diego Calif 1997 257:15–23
75.
Zurück zum Zitat Olaru AM, Roy SS, Lloyd LS et al (2016) Creating a hyperpolarised pseudo singlet state through polarisation transfer from parahydrogen under SABRE. Chem Commun 52:7842–7845 Olaru AM, Roy SS, Lloyd LS et al (2016) Creating a hyperpolarised pseudo singlet state through polarisation transfer from parahydrogen under SABRE. Chem Commun 52:7842–7845
76.
Zurück zum Zitat Olaru AM, Burt A, Rayner PJ et al (2016) Using signal amplification by reversible exchange (SABRE) to hyperpolarise 119Sn and 29Si NMR nuclei. Chem Commun 52:14482–14485 Olaru AM, Burt A, Rayner PJ et al (2016) Using signal amplification by reversible exchange (SABRE) to hyperpolarise 119Sn and 29Si NMR nuclei. Chem Commun 52:14482–14485
77.
Zurück zum Zitat Roy SS, Appleby KM, Fear EJ, Duckett SB (2018) SABRE-Relay: a versatile route to hyperpolarization. J Phys Chem Lett 9:1112–1117PubMedPubMedCentral Roy SS, Appleby KM, Fear EJ, Duckett SB (2018) SABRE-Relay: a versatile route to hyperpolarization. J Phys Chem Lett 9:1112–1117PubMedPubMedCentral
78.
Zurück zum Zitat Reineri F, Boi T, Aime S (2015) ParaHydrogen induced polarization of 13C carboxylate resonance in acetate and pyruvate. Nat Commun 6:5858PubMed Reineri F, Boi T, Aime S (2015) ParaHydrogen induced polarization of 13C carboxylate resonance in acetate and pyruvate. Nat Commun 6:5858PubMed
79.
Zurück zum Zitat Cavallari E, Carrera C, Aime S, Reineri F (2017) 13C MR hyperpolarization of lactate by using paraHydrogen and metabolic transformation in vitro. Chem Eur J 23:1200–1204PubMed Cavallari E, Carrera C, Aime S, Reineri F (2017) 13C MR hyperpolarization of lactate by using paraHydrogen and metabolic transformation in vitro. Chem Eur J 23:1200–1204PubMed
80.
Zurück zum Zitat Cavallari E, Carrera C, Aime S, Reineri F (2018) Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate. J Magn Reson 289:12–17PubMed Cavallari E, Carrera C, Aime S, Reineri F (2018) Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate. J Magn Reson 289:12–17PubMed
81.
Zurück zum Zitat Trantzschel T, Bernarding J, Plaumann M et al (2012) Parahydrogen induced polarization in face of keto–enol tautomerism: proof of concept with hyperpolarized ethanol. Phys Chem Chem Phys 14:5601PubMed Trantzschel T, Bernarding J, Plaumann M et al (2012) Parahydrogen induced polarization in face of keto–enol tautomerism: proof of concept with hyperpolarized ethanol. Phys Chem Chem Phys 14:5601PubMed
82.
Zurück zum Zitat Körner M, Sauer G, Heil A et al (2013) PHIP-label: parahydrogen-induced polarization in propargylglycine-containing synthetic oligopeptides. Chem Commun 49:7839 Körner M, Sauer G, Heil A et al (2013) PHIP-label: parahydrogen-induced polarization in propargylglycine-containing synthetic oligopeptides. Chem Commun 49:7839
83.
Zurück zum Zitat Cavallari E, Carrera C, Sorge M et al (2018) The 13C hyperpolarized pyruvate generated by parahydrogen detects the response of the heart to altered metabolism in real time. Sci Rep 8:8366PubMedPubMedCentral Cavallari E, Carrera C, Sorge M et al (2018) The 13C hyperpolarized pyruvate generated by parahydrogen detects the response of the heart to altered metabolism in real time. Sci Rep 8:8366PubMedPubMedCentral
84.
Zurück zum Zitat Koptyug IV, Kovtunov KV, Burt SR et al (2007) Para-hydrogen-induced polarization in heterogeneous hydrogenation reactions. J Am Chem Soc 129:5580–5586PubMed Koptyug IV, Kovtunov KV, Burt SR et al (2007) Para-hydrogen-induced polarization in heterogeneous hydrogenation reactions. J Am Chem Soc 129:5580–5586PubMed
85.
Zurück zum Zitat Stefan G, Grunfeld AM, Ertas YN et al (2015) A nanoparticle catalyst for heterogeneous phase para-hydrogen-induced polarization in water. Angew Chem Int Ed 54:2452–2456 Stefan G, Grunfeld AM, Ertas YN et al (2015) A nanoparticle catalyst for heterogeneous phase para-hydrogen-induced polarization in water. Angew Chem Int Ed 54:2452–2456
86.
Zurück zum Zitat Francesca R, Alessandra V, Silvano E et al (2011) Use of labile precursors for the generation of hyperpolarized molecules from hydrogenation with parahydrogen and aqueous-phase extraction. Angew Chem Int Ed 50:7350–7353 Francesca R, Alessandra V, Silvano E et al (2011) Use of labile precursors for the generation of hyperpolarized molecules from hydrogenation with parahydrogen and aqueous-phase extraction. Angew Chem Int Ed 50:7350–7353
87.
Zurück zum Zitat Hövener J-B, Chekmenev EY, Harris KC et al (2009) Quality assurance of PASADENA hyperpolarization for 13C biomolecules. Magn Reson Mater Phys Biol Med 22:123–134 Hövener J-B, Chekmenev EY, Harris KC et al (2009) Quality assurance of PASADENA hyperpolarization for 13C biomolecules. Magn Reson Mater Phys Biol Med 22:123–134
88.
Zurück zum Zitat Zacharias NM, Chan HR, Sailasuta N et al (2012) Real-time molecular imaging of tricarboxylic acid cycle metabolism in vivo by hyperpolarized 1-13C diethyl succinate. J Am Chem Soc 134:934–943PubMed Zacharias NM, Chan HR, Sailasuta N et al (2012) Real-time molecular imaging of tricarboxylic acid cycle metabolism in vivo by hyperpolarized 1-13C diethyl succinate. J Am Chem Soc 134:934–943PubMed
89.
Zurück zum Zitat Shchepin RV, Pham W, Chekmenev EY (2014) Dephosphorylation and biodistribution of 1-13C-phospholactate in vivo. J Label Compd Radiopharm 57:517–524 Shchepin RV, Pham W, Chekmenev EY (2014) Dephosphorylation and biodistribution of 1-13C-phospholactate in vivo. J Label Compd Radiopharm 57:517–524
91.
Zurück zum Zitat Zeng H, Xu J, Gillen J et al (2013) Optimization of SABRE for polarization of the tuberculosis drugs pyrazinamide and isoniazid. J Magn Reson 237:73–78PubMedPubMedCentral Zeng H, Xu J, Gillen J et al (2013) Optimization of SABRE for polarization of the tuberculosis drugs pyrazinamide and isoniazid. J Magn Reson 237:73–78PubMedPubMedCentral
92.
Zurück zum Zitat Hoevener J-B, Schwaderlapp N, Lickert T et al (2013) A hyperpolarized equilibrium for magnetic resonance. Nat Commun 4:2946 Hoevener J-B, Schwaderlapp N, Lickert T et al (2013) A hyperpolarized equilibrium for magnetic resonance. Nat Commun 4:2946
93.
Zurück zum Zitat Colell JFP, Emondts M, Logan AWJ et al (2017) Direct hyperpolarization of Nitrogen-15 in aqueous media with parahydrogen in reversible exchange. J Am Chem Soc 139:7761–7767PubMedPubMedCentral Colell JFP, Emondts M, Logan AWJ et al (2017) Direct hyperpolarization of Nitrogen-15 in aqueous media with parahydrogen in reversible exchange. J Am Chem Soc 139:7761–7767PubMedPubMedCentral
94.
Zurück zum Zitat Theis T, Truong ML, Coffey AM et al (2015) Microtesla SABRE enables 10% nitrogen-15 nuclear spin polarization. J Am Chem Soc 137:1404–1407PubMedPubMedCentral Theis T, Truong ML, Coffey AM et al (2015) Microtesla SABRE enables 10% nitrogen-15 nuclear spin polarization. J Am Chem Soc 137:1404–1407PubMedPubMedCentral
95.
Zurück zum Zitat Colell JFP, Logan AWJ, Zhou Z et al (2017) Generalizing, extending, and maximizing nitrogen-15 hyperpolarization induced by parahydrogen in reversible exchange. J Phys Chem C 121:6626–6634 Colell JFP, Logan AWJ, Zhou Z et al (2017) Generalizing, extending, and maximizing nitrogen-15 hyperpolarization induced by parahydrogen in reversible exchange. J Phys Chem C 121:6626–6634
96.
Zurück zum Zitat Rovedo P, Knecht S, Bäumlisberger T et al (2016) Molecular MRI in the Earth’s magnetic field using continuous hyperpolarization of a biomolecule in water. J Phys Chem B 120:5670–5677PubMed Rovedo P, Knecht S, Bäumlisberger T et al (2016) Molecular MRI in the Earth’s magnetic field using continuous hyperpolarization of a biomolecule in water. J Phys Chem B 120:5670–5677PubMed
97.
Zurück zum Zitat Hövener J-B, Knecht S, Schwaderlapp N et al (2014) Continuous re-hyperpolarization of nuclear spins using parahydrogen: theory and experiment. ChemPhysChem 15:2451–2457PubMed Hövener J-B, Knecht S, Schwaderlapp N et al (2014) Continuous re-hyperpolarization of nuclear spins using parahydrogen: theory and experiment. ChemPhysChem 15:2451–2457PubMed
98.
Zurück zum Zitat Frossati G (1998) Polarization of 3He, 2D and (eventually) 129Xe using low temperatures and high magnetic fields. J Low Temp Phys 111:521–532 Frossati G (1998) Polarization of 3He, 2D and (eventually) 129Xe using low temperatures and high magnetic fields. J Low Temp Phys 111:521–532
99.
Zurück zum Zitat Krjukov EV, O’Neill JD, Owers-Bradley JR (2005) Brute force polarization of 129Xe. J Low Temp Phys 140:397–408 Krjukov EV, O’Neill JD, Owers-Bradley JR (2005) Brute force polarization of 129Xe. J Low Temp Phys 140:397–408
100.
Zurück zum Zitat Hirsch ML, Kalechofsky N, Belzer A et al (2015) Brute-force hyperpolarization for NMR and MRI. J Am Chem Soc 137:8428–8434PubMed Hirsch ML, Kalechofsky N, Belzer A et al (2015) Brute-force hyperpolarization for NMR and MRI. J Am Chem Soc 137:8428–8434PubMed
101.
Zurück zum Zitat Cates GD, Benton DR, Gatzke M et al (1990) Laser production of large nuclear-spin polarization in frozen xenon. Phys Rev Lett 65:2591–2594PubMed Cates GD, Benton DR, Gatzke M et al (1990) Laser production of large nuclear-spin polarization in frozen xenon. Phys Rev Lett 65:2591–2594PubMed
102.
Zurück zum Zitat Gatzke M, Cates GD, Driehuys B et al (1993) Extraordinarily slow nuclear spin relaxation in frozen laser-polarized 129Xe. Phys Rev Lett 70:690–693PubMed Gatzke M, Cates GD, Driehuys B et al (1993) Extraordinarily slow nuclear spin relaxation in frozen laser-polarized 129Xe. Phys Rev Lett 70:690–693PubMed
103.
Zurück zum Zitat Chupp TE, Coulter KP (1985) Polarization of 21Ne by spin exchange with optically pumped Rb vapor. Phys Rev Lett 55:1074–1077PubMed Chupp TE, Coulter KP (1985) Polarization of 21Ne by spin exchange with optically pumped Rb vapor. Phys Rev Lett 55:1074–1077PubMed
104.
Zurück zum Zitat Pavlovskaya GE, Cleveland ZI, Stupic KF et al (2005) Hyperpolarized krypton-83 as a contrast agent for magnetic resonance imaging. Proc Natl Acad Sci U S A 102:18275–18279PubMedPubMedCentral Pavlovskaya GE, Cleveland ZI, Stupic KF et al (2005) Hyperpolarized krypton-83 as a contrast agent for magnetic resonance imaging. Proc Natl Acad Sci U S A 102:18275–18279PubMedPubMedCentral
105.
Zurück zum Zitat Stupic KF, Cleveland ZI, Pavlovskaya GE, Meersmann T (2011) Hyperpolarized 131Xe NMR spectroscopy. J Magn Reson 208:58–69PubMedPubMedCentral Stupic KF, Cleveland ZI, Pavlovskaya GE, Meersmann T (2011) Hyperpolarized 131Xe NMR spectroscopy. J Magn Reson 208:58–69PubMedPubMedCentral
106.
Zurück zum Zitat Chupp TE, Wagshul ME, Coulter KP et al (1987) Polarized, high-density, gaseous 3He targets. Phys Rev C 36:2244–2251 Chupp TE, Wagshul ME, Coulter KP et al (1987) Polarized, high-density, gaseous 3He targets. Phys Rev C 36:2244–2251
107.
Zurück zum Zitat Spence MM, Rubin SM, Dimitrov IE et al (2001) Functionalized xenon as a biosensor. Proc Natl Acad Sci 98:10654–10657PubMed Spence MM, Rubin SM, Dimitrov IE et al (2001) Functionalized xenon as a biosensor. Proc Natl Acad Sci 98:10654–10657PubMed
108.
Zurück zum Zitat Schröder L, Lowery TJ, Hilty C et al (2006) Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science 314:446–449PubMed Schröder L, Lowery TJ, Hilty C et al (2006) Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science 314:446–449PubMed
109.
Zurück zum Zitat Desvaux H, Gautier T, Le Goff G et al (2000) Direct evidence of a magnetization transfer between laser-polarized xenon and protons of a cage-molecule in water. Eur Phys J D 12:289–296 Desvaux H, Gautier T, Le Goff G et al (2000) Direct evidence of a magnetization transfer between laser-polarized xenon and protons of a cage-molecule in water. Eur Phys J D 12:289–296
110.
Zurück zum Zitat Bai Y, Wang Y, Goulian M et al (2014) Bacterial spore detection and analysis using hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST) NMR. Chem Sci 5:3197–3203PubMedPubMedCentral Bai Y, Wang Y, Goulian M et al (2014) Bacterial spore detection and analysis using hyperpolarized 129Xe chemical exchange saturation transfer (hyper-CEST) NMR. Chem Sci 5:3197–3203PubMedPubMedCentral
111.
Zurück zum Zitat Hoffmann HC, Brunner E (2015) Studies of metal–organic frameworks: xenon for probing framework porosity, breathing and gating behavior. In: Meersmann T, Brunner E (eds) Hyperpolarized xenon-129 magnetic resonance: concepts, production, techniques, and applications. Royal Society Of Chemistry, Cambridge, pp 234–248 Hoffmann HC, Brunner E (2015) Studies of metal–organic frameworks: xenon for probing framework porosity, breathing and gating behavior. In: Meersmann T, Brunner E (eds) Hyperpolarized xenon-129 magnetic resonance: concepts, production, techniques, and applications. Royal Society Of Chemistry, Cambridge, pp 234–248
112.
Zurück zum Zitat Dregely I, Mugler JP, Ruset IC et al (2011) Hyperpolarized Xenon-129 gas-exchange imaging of lung microstructure: first case studies in subjects with obstructive lung disease. J Magn Reson Imaging 33:1052–1062PubMedPubMedCentral Dregely I, Mugler JP, Ruset IC et al (2011) Hyperpolarized Xenon-129 gas-exchange imaging of lung microstructure: first case studies in subjects with obstructive lung disease. J Magn Reson Imaging 33:1052–1062PubMedPubMedCentral
113.
Zurück zum Zitat Rao M, Stewart NJ, Norquay G et al (2016) High resolution spectroscopy and chemical shift imaging of hyperpolarized 129Xe dissolved in the human brain in vivo at 1.5 tesla. Magn Reson Med 75:2227–2234PubMedPubMedCentral Rao M, Stewart NJ, Norquay G et al (2016) High resolution spectroscopy and chemical shift imaging of hyperpolarized 129Xe dissolved in the human brain in vivo at 1.5 tesla. Magn Reson Med 75:2227–2234PubMedPubMedCentral
114.
Zurück zum Zitat Branca RT, He T, Zhang L et al (2014) Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI. Proc Natl Acad Sci U S A 111:18001–18006PubMedPubMedCentral Branca RT, He T, Zhang L et al (2014) Detection of brown adipose tissue and thermogenic activity in mice by hyperpolarized xenon MRI. Proc Natl Acad Sci U S A 111:18001–18006PubMedPubMedCentral
115.
Zurück zum Zitat Shapiro MG, Ramirez RM, Sperling LJ et al (2014) Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nat Chem 6:629–634PubMed Shapiro MG, Ramirez RM, Sperling LJ et al (2014) Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nat Chem 6:629–634PubMed
116.
Zurück zum Zitat Nikolaou P, Coffey AM, Walkup LL et al (2014) XeNA: an automated ‘open-source’ 129Xe hyperpolarizer for clinical use. Magn Reson Imaging 32:541–550PubMedPubMedCentral Nikolaou P, Coffey AM, Walkup LL et al (2014) XeNA: an automated ‘open-source’ 129Xe hyperpolarizer for clinical use. Magn Reson Imaging 32:541–550PubMedPubMedCentral
117.
Zurück zum Zitat Ebner L, He M, Virgincar RS et al (2017) Hyperpolarized 129Xenon magnetic resonance imaging to quantify regional ventilation differences in mild to moderate asthma: a prospective comparison between semiautomated ventilation defect percentage calculation and pulmonary function tests. Investig Radiol 52:120 Ebner L, He M, Virgincar RS et al (2017) Hyperpolarized 129Xenon magnetic resonance imaging to quantify regional ventilation differences in mild to moderate asthma: a prospective comparison between semiautomated ventilation defect percentage calculation and pulmonary function tests. Investig Radiol 52:120
118.
Zurück zum Zitat Freeman MS, Emami K, Driehuys B (2014) Characterizing and modeling the efficiency limits in large-scale production of hyperpolarized 129Xe. Phys Rev A 90:023406PubMedPubMedCentral Freeman MS, Emami K, Driehuys B (2014) Characterizing and modeling the efficiency limits in large-scale production of hyperpolarized 129Xe. Phys Rev A 90:023406PubMedPubMedCentral
119.
Zurück zum Zitat Burant A, Branca RT (2016) Diffusion-mediated 129Xe gas depolarization in magnetic field gradients during continuous-flow optical pumping. J Magn Reson 273:124–129PubMedPubMedCentral Burant A, Branca RT (2016) Diffusion-mediated 129Xe gas depolarization in magnetic field gradients during continuous-flow optical pumping. J Magn Reson 273:124–129PubMedPubMedCentral
120.
Zurück zum Zitat Goodson BM, Whiting N, Newton H, et al. (2015) Chapter 6: Spin-exchange optical pumping at high xenon densities and laser fluxes: principles and practice. In: Hyperpolarized Xenon-129 magnetic resonance. 4:96–121 Goodson BM, Whiting N, Newton H, et al. (2015) Chapter 6: Spin-exchange optical pumping at high xenon densities and laser fluxes: principles and practice. In: Hyperpolarized Xenon-129 magnetic resonance. 4:96–121
121.
Zurück zum Zitat Jeong K, Netirojjanakul C, Munch HK et al (2016) Targeted molecular imaging of cancer cells using MS2-based 129Xe NMR. Bioconjug Chem 27:1796–1801PubMed Jeong K, Netirojjanakul C, Munch HK et al (2016) Targeted molecular imaging of cancer cells using MS2-based 129Xe NMR. Bioconjug Chem 27:1796–1801PubMed
122.
Zurück zum Zitat Hane FT, Li T, Smylie P et al (2017) In vivo detection of cucurbit [6] uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor. Sci Rep 7:41027PubMedPubMedCentral Hane FT, Li T, Smylie P et al (2017) In vivo detection of cucurbit [6] uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor. Sci Rep 7:41027PubMedPubMedCentral
123.
Zurück zum Zitat Leupold J, Månsson S, Petersson JS et al (2009) Fast multiecho balanced SSFP metabolite mapping of 1H and hyperpolarized 13C compounds. Magn Reson Mater Phys Biol Med 22:251–256 Leupold J, Månsson S, Petersson JS et al (2009) Fast multiecho balanced SSFP metabolite mapping of 1H and hyperpolarized 13C compounds. Magn Reson Mater Phys Biol Med 22:251–256
124.
Zurück zum Zitat Larson PEZ, Hu S, Lustig M et al (2011) Fast dynamic 3D MR spectroscopic imaging with compressed sensing and multiband excitation pulses for hyperpolarized 13C studies. Magn Reson Med 65:610–619PubMed Larson PEZ, Hu S, Lustig M et al (2011) Fast dynamic 3D MR spectroscopic imaging with compressed sensing and multiband excitation pulses for hyperpolarized 13C studies. Magn Reson Med 65:610–619PubMed
125.
Zurück zum Zitat Daniels CJ, McLean MA, Schulte RF et al (2016) A comparison of quantitative methods for clinical imaging with hyperpolarized 13C-pyruvate. NMR Biomed 29:387–399PubMedPubMedCentral Daniels CJ, McLean MA, Schulte RF et al (2016) A comparison of quantitative methods for clinical imaging with hyperpolarized 13C-pyruvate. NMR Biomed 29:387–399PubMedPubMedCentral
126.
Zurück zum Zitat Day SE, Kettunen MI, Cherukuri MK et al (2011) Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1-13C]pyruvate and 13C magnetic resonance spectroscopic imaging. Magn Reson Med 65:557–563PubMed Day SE, Kettunen MI, Cherukuri MK et al (2011) Detecting response of rat C6 glioma tumors to radiotherapy using hyperpolarized [1-13C]pyruvate and 13C magnetic resonance spectroscopic imaging. Magn Reson Med 65:557–563PubMed
127.
Zurück zum Zitat Gallagher FA, Kettunen MI, Day SE et al (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940–943PubMed Gallagher FA, Kettunen MI, Day SE et al (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940–943PubMed
128.
Zurück zum Zitat Bohndiek SE, Kettunen MI, Hu D et al (2011) Hyperpolarized [1-13C]-ascorbic and dehydroascorbic acid: vitamin C as a probe for imaging redox status in vivo. J Am Chem Soc 133:11795–11801PubMedPubMedCentral Bohndiek SE, Kettunen MI, Hu D et al (2011) Hyperpolarized [1-13C]-ascorbic and dehydroascorbic acid: vitamin C as a probe for imaging redox status in vivo. J Am Chem Soc 133:11795–11801PubMedPubMedCentral
129.
Zurück zum Zitat Larson PEZ, Hurd RE, Kerr AB et al (2013) Perfusion and diffusion sensitive 13C stimulated-echo MRSI for metabolic imaging of cancer. Magn Reson Imaging 31:635–642PubMed Larson PEZ, Hurd RE, Kerr AB et al (2013) Perfusion and diffusion sensitive 13C stimulated-echo MRSI for metabolic imaging of cancer. Magn Reson Imaging 31:635–642PubMed
130.
Zurück zum Zitat Swisher CL, Larson PEZ, Kruttwig K et al (2013) Quantitative measurement of cancer metabolism using stimulated echo hyperpolarized carbon-13 MRS. Magn Reson Med 71:1–11PubMed Swisher CL, Larson PEZ, Kruttwig K et al (2013) Quantitative measurement of cancer metabolism using stimulated echo hyperpolarized carbon-13 MRS. Magn Reson Med 71:1–11PubMed
131.
Zurück zum Zitat Lau AZ, Chen AP, Barry J et al (2013) Reproducibility study for free-breathing measurements of pyruvate metabolism using hyperpolarized 13C in the heart. Magn Reson Med 69:1063–1071PubMed Lau AZ, Chen AP, Barry J et al (2013) Reproducibility study for free-breathing measurements of pyruvate metabolism using hyperpolarized 13C in the heart. Magn Reson Med 69:1063–1071PubMed
132.
Zurück zum Zitat Hu S, Lustig M, Chen AP et al (2008) Compressed sensing for resolution enhancement of hyperpolarized 13C flyback 3D-MRSI. J Magn Reson 192:258–264PubMedPubMedCentral Hu S, Lustig M, Chen AP et al (2008) Compressed sensing for resolution enhancement of hyperpolarized 13C flyback 3D-MRSI. J Magn Reson 192:258–264PubMedPubMedCentral
133.
Zurück zum Zitat Flori A, Frijia F, Lionetti V et al (2012) DNP methods for cardiac metabolic imaging with hyperpolarized [1-13C]pyruvate large dose injection in pigs. Appl Magn Reson 43:299–310 Flori A, Frijia F, Lionetti V et al (2012) DNP methods for cardiac metabolic imaging with hyperpolarized [1-13C]pyruvate large dose injection in pigs. Appl Magn Reson 43:299–310
134.
Zurück zum Zitat Schulte RF, Sperl JI, Weidl E et al (2013) Saturation-recovery metabolic-exchange rate imaging with hyperpolarized [1-13C] pyruvate using spectral-spatial excitation. Magn Reson Med 69:1209–1216PubMed Schulte RF, Sperl JI, Weidl E et al (2013) Saturation-recovery metabolic-exchange rate imaging with hyperpolarized [1-13C] pyruvate using spectral-spatial excitation. Magn Reson Med 69:1209–1216PubMed
135.
Zurück zum Zitat von Morze C, Larson PEZ, Hu S et al (2011) Imaging of blood flow using hyperpolarized [13C]urea in preclinical cancer models. J Magn Reson Imaging 33:692–697 von Morze C, Larson PEZ, Hu S et al (2011) Imaging of blood flow using hyperpolarized [13C]urea in preclinical cancer models. J Magn Reson Imaging 33:692–697
136.
Zurück zum Zitat Månsson S, Petersson JS, Scheffler K (2012) Fast metabolite mapping in the pig heart after injection of hyperpolarized 13C-pyruvate with low-flip angle balanced steady-state free precession imaging. Magn Reson Med 68:1894–1899PubMed Månsson S, Petersson JS, Scheffler K (2012) Fast metabolite mapping in the pig heart after injection of hyperpolarized 13C-pyruvate with low-flip angle balanced steady-state free precession imaging. Magn Reson Med 68:1894–1899PubMed
137.
Zurück zum Zitat Hu S, Lustig M, Balakrishnan A et al (2010) 3D compressed sensing for highly accelerated hyperpolarized 13C MRSI with in vivo applications to transgenic mouse models of cancer. Magn Reson Med 63:312–321PubMedPubMedCentral Hu S, Lustig M, Balakrishnan A et al (2010) 3D compressed sensing for highly accelerated hyperpolarized 13C MRSI with in vivo applications to transgenic mouse models of cancer. Magn Reson Med 63:312–321PubMedPubMedCentral
138.
Zurück zum Zitat Shin PJ, Larson PEZ, Ohliger MA et al (2014) Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion. Magn Reson Med 72:959–970PubMed Shin PJ, Larson PEZ, Ohliger MA et al (2014) Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion. Magn Reson Med 72:959–970PubMed
139.
Zurück zum Zitat Schmidt R, Frydman L (2014) New spatiotemporal approaches for fully refocused, multislice ultrafast 2D MRI. Magn Reson Med 71:711–722PubMedPubMedCentral Schmidt R, Frydman L (2014) New spatiotemporal approaches for fully refocused, multislice ultrafast 2D MRI. Magn Reson Med 71:711–722PubMedPubMedCentral
140.
Zurück zum Zitat Zhou L, Cabrera ME, Okere IC et al (2006) Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies. Am J Physiol-Heart Circ Physiol 291:H1036–H1046PubMed Zhou L, Cabrera ME, Okere IC et al (2006) Regulation of myocardial substrate metabolism during increased energy expenditure: insights from computational studies. Am J Physiol-Heart Circ Physiol 291:H1036–H1046PubMed
141.
Zurück zum Zitat Gallagher FA, Bohndiek SE, Kettunen MI et al (2011) Hyperpolarized 13C MRI and PET: in vivo tumor biochemistry. J Nucl Med 52:1333–1336PubMed Gallagher FA, Bohndiek SE, Kettunen MI et al (2011) Hyperpolarized 13C MRI and PET: in vivo tumor biochemistry. J Nucl Med 52:1333–1336PubMed
142.
Zurück zum Zitat Albers MJ, Bok R, Chen AP et al (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 68:8607–8615PubMedPubMedCentral Albers MJ, Bok R, Chen AP et al (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 68:8607–8615PubMedPubMedCentral
143.
Zurück zum Zitat Day SE, Kettunen MI, Gallagher FA et al (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13:1382–1387PubMed Day SE, Kettunen MI, Gallagher FA et al (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13:1382–1387PubMed
144.
Zurück zum Zitat Yoshihara HAI, Bastiaansen JAM, Berthonneche C et al (2015) An intact small animal model of myocardial ischemia-reperfusion: characterization of metabolic changes by hyperpolarized 13C MR spectroscopy. Am J Physiol Heart Circ Physiol 309:H2058–H2066PubMed Yoshihara HAI, Bastiaansen JAM, Berthonneche C et al (2015) An intact small animal model of myocardial ischemia-reperfusion: characterization of metabolic changes by hyperpolarized 13C MR spectroscopy. Am J Physiol Heart Circ Physiol 309:H2058–H2066PubMed
145.
Zurück zum Zitat Klaes G, Stefan PJ, Peter M et al (2008) Cardiac metabolism measured noninvasively by hyperpolarized 13C MRI. Magn Reson Med 59:1005–1013 Klaes G, Stefan PJ, Peter M et al (2008) Cardiac metabolism measured noninvasively by hyperpolarized 13C MRI. Magn Reson Med 59:1005–1013
146.
Zurück zum Zitat Luca M, Francesca F, Alessandra F et al (2012) Assessment of real-time myocardial uptake and enzymatic conversion of hyperpolarized [1-13C]pyruvate in pigs using slice selective magnetic resonance spectroscopy. Contrast Media Mol Imaging 7:85–94 Luca M, Francesca F, Alessandra F et al (2012) Assessment of real-time myocardial uptake and enzymatic conversion of hyperpolarized [1-13C]pyruvate in pigs using slice selective magnetic resonance spectroscopy. Contrast Media Mol Imaging 7:85–94
147.
Zurück zum Zitat Schroeder MA, Lau AZ, Chen AP et al (2013) Hyperpolarized 13C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart. Eur J Heart Fail 15:130–140PubMed Schroeder MA, Lau AZ, Chen AP et al (2013) Hyperpolarized 13C magnetic resonance reveals early- and late-onset changes to in vivo pyruvate metabolism in the failing heart. Eur J Heart Fail 15:130–140PubMed
148.
Zurück zum Zitat Kennedy BWC, Kettunen MI, Hu D-E, Brindle KM (2012) Probing lactate dehydrogenase activity in tumors by measuring hydrogen/deuterium exchange in hyperpolarized l-[1-13C,U-2H]lactate. J Am Chem Soc 134:4969–4977PubMedPubMedCentral Kennedy BWC, Kettunen MI, Hu D-E, Brindle KM (2012) Probing lactate dehydrogenase activity in tumors by measuring hydrogen/deuterium exchange in hyperpolarized l-[1-13C,U-2H]lactate. J Am Chem Soc 134:4969–4977PubMedPubMedCentral
149.
Zurück zum Zitat Shchepin RV, Coffey AM, Waddell KW, Chekmenev EY (2014) Parahydrogen induced polarization of 1-13C-phospholactate-d2 for biomedical imaging with >30,000,000-fold NMR signal enhancement in water. Anal Chem 86:5601–5605PubMedPubMedCentral Shchepin RV, Coffey AM, Waddell KW, Chekmenev EY (2014) Parahydrogen induced polarization of 1-13C-phospholactate-d2 for biomedical imaging with >30,000,000-fold NMR signal enhancement in water. Anal Chem 86:5601–5605PubMedPubMedCentral
150.
Zurück zum Zitat Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129PubMed Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129PubMed
151.
Zurück zum Zitat Merritt ME, Harrison C, Storey C et al (2007) Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR. Proc Natl Acad Sci 104:19773–19777PubMed Merritt ME, Harrison C, Storey C et al (2007) Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR. Proc Natl Acad Sci 104:19773–19777PubMed
152.
Zurück zum Zitat Schroeder MA, Cochlin LE, Heather LC et al (2008) In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance. Proc Natl Acad Sci 105:12051–12056PubMed Schroeder MA, Cochlin LE, Heather LC et al (2008) In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance. Proc Natl Acad Sci 105:12051–12056PubMed
153.
Zurück zum Zitat Atherton HJ, Dodd MS, Heather LC et al (2011) The role of PDH inhibition in the development of hypertrophy in the hyperthyroid rat heart: a combined MRI and hyperpolarized MRS study. Circulation 123:2552–2561PubMedPubMedCentral Atherton HJ, Dodd MS, Heather LC et al (2011) The role of PDH inhibition in the development of hypertrophy in the hyperthyroid rat heart: a combined MRI and hyperpolarized MRS study. Circulation 123:2552–2561PubMedPubMedCentral
154.
Zurück zum Zitat Chen AP, Lau JYC, Alvares RDA, Cunningham H (2014) Using [1-13C]lactic acid for hyperpolarized 13C MR cardiac studies. Magn Reson Med 73:2087–2093PubMed Chen AP, Lau JYC, Alvares RDA, Cunningham H (2014) Using [1-13C]lactic acid for hyperpolarized 13C MR cardiac studies. Magn Reson Med 73:2087–2093PubMed
155.
Zurück zum Zitat Gallagher FA, Kettunen MI, Brindle KM (2011) Imaging pH with hyperpolarized 13C. NMR Biomed 24:1006–1015PubMed Gallagher FA, Kettunen MI, Brindle KM (2011) Imaging pH with hyperpolarized 13C. NMR Biomed 24:1006–1015PubMed
156.
Zurück zum Zitat Gallagher FA, Sladen H, Kettunen MI et al (2015) Carbonic anhydrase activity monitored in vivo by hyperpolarized 13C-magnetic resonance spectroscopy demonstrates its importance for pH regulation in tumors. Cancer Res 75:4109–4118PubMedPubMedCentral Gallagher FA, Sladen H, Kettunen MI et al (2015) Carbonic anhydrase activity monitored in vivo by hyperpolarized 13C-magnetic resonance spectroscopy demonstrates its importance for pH regulation in tumors. Cancer Res 75:4109–4118PubMedPubMedCentral
157.
Zurück zum Zitat Rider OJ, Tyler DJ (2013) Clinical implications of cardiac hyperpolarized magnetic resonance imaging. J Cardiovasc Magn Reson 15:93PubMedPubMedCentral Rider OJ, Tyler DJ (2013) Clinical implications of cardiac hyperpolarized magnetic resonance imaging. J Cardiovasc Magn Reson 15:93PubMedPubMedCentral
158.
Zurück zum Zitat Düwel S, Hundshammer C, Gersch M et al (2017) Imaging of pH in vivo using hyperpolarized 13C-labelled zymonic acid. Nat Commun 8:15126PubMedPubMedCentral Düwel S, Hundshammer C, Gersch M et al (2017) Imaging of pH in vivo using hyperpolarized 13C-labelled zymonic acid. Nat Commun 8:15126PubMedPubMedCentral
159.
Zurück zum Zitat Hu S, Chen AP, Zierhut ML et al (2009) In vivo Carbon-13 dynamic MRS and MRSI of normal and fasted rat liver with hyperpolarized 13C-pyruvate. Mol Imaging Biol 11:399–407PubMedPubMedCentral Hu S, Chen AP, Zierhut ML et al (2009) In vivo Carbon-13 dynamic MRS and MRSI of normal and fasted rat liver with hyperpolarized 13C-pyruvate. Mol Imaging Biol 11:399–407PubMedPubMedCentral
160.
Zurück zum Zitat Hu S, Zhu M, Yoshihara HAI et al (2011) In vivo measurement of normal rat intracellular pyruvate and lactate levels after injection of hyperpolarized [1-13C]alanine. Magn Reson Imaging 29:1035–1040PubMedPubMedCentral Hu S, Zhu M, Yoshihara HAI et al (2011) In vivo measurement of normal rat intracellular pyruvate and lactate levels after injection of hyperpolarized [1-13C]alanine. Magn Reson Imaging 29:1035–1040PubMedPubMedCentral
161.
Zurück zum Zitat Atherton HJ, Dodd MS, Heather LC et al (2011) Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat HeartClinical perspective: a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study. Circulation 123:2552–2561PubMedPubMedCentral Atherton HJ, Dodd MS, Heather LC et al (2011) Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat HeartClinical perspective: a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study. Circulation 123:2552–2561PubMedPubMedCentral
162.
Zurück zum Zitat Josan S, Park JM, Hurd R et al. (2013) In vivo investigation of cardiac metabolism in the rat using MRS of hyperpolarized [1-13C] and [2-13C]pyruvate. NMR Biomed 26:1680–1687.PubMed Josan S, Park JM, Hurd R et al. (2013) In vivo investigation of cardiac metabolism in the rat using MRS of hyperpolarized [1-13C] and [2-13C]pyruvate. NMR Biomed 26:1680–1687.PubMed
163.
Zurück zum Zitat Chen AP, Hurd RE, Schroeder MA et al (2011) Simultaneous investigation of cardiac pyruvate dehydrogenase flux, Krebs cycle metabolism and pH, using hyperpolarized [1,2-13C2]pyruvate in vivo. NMR Biomed 25:305–311PubMedPubMedCentral Chen AP, Hurd RE, Schroeder MA et al (2011) Simultaneous investigation of cardiac pyruvate dehydrogenase flux, Krebs cycle metabolism and pH, using hyperpolarized [1,2-13C2]pyruvate in vivo. NMR Biomed 25:305–311PubMedPubMedCentral
164.
Zurück zum Zitat Dodd MS, Ball DR, Schroeder MA et al (2012) In vivo alterations in cardiac metabolism and function in the spontaneously hypertensive rat heart. Cardiovasc Res 95:69–76PubMedPubMedCentral Dodd MS, Ball DR, Schroeder MA et al (2012) In vivo alterations in cardiac metabolism and function in the spontaneously hypertensive rat heart. Cardiovasc Res 95:69–76PubMedPubMedCentral
165.
Zurück zum Zitat Schroeder MA, Ali MA, Hulikova A et al (2013) Extramitochondrial domain rich in carbonic anhydrase activity improves myocardial energetics. Proc Natl Acad Sci 110:E958–E967PubMed Schroeder MA, Ali MA, Hulikova A et al (2013) Extramitochondrial domain rich in carbonic anhydrase activity improves myocardial energetics. Proc Natl Acad Sci 110:E958–E967PubMed
166.
Zurück zum Zitat Schroeder MA, Atherton HJ, Dodd MS et al (2012) The cycling of acetyl-coenzyme a through acetylcarnitine buffers cardiac substrate SupplyClinical perspective: a hyperpolarized 13C magnetic resonance study. Circ Cardiovasc Imaging 5:201–209PubMedPubMedCentral Schroeder MA, Atherton HJ, Dodd MS et al (2012) The cycling of acetyl-coenzyme a through acetylcarnitine buffers cardiac substrate SupplyClinical perspective: a hyperpolarized 13C magnetic resonance study. Circ Cardiovasc Imaging 5:201–209PubMedPubMedCentral
167.
Zurück zum Zitat Schroeder MA, Atherton HJ, Ball DR et al (2009) Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy. FASEB J 23:2529–2538PubMedPubMedCentral Schroeder MA, Atherton HJ, Ball DR et al (2009) Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy. FASEB J 23:2529–2538PubMedPubMedCentral
168.
Zurück zum Zitat Ulrich K, Gringeri CV, Giaime R et al (2014) Metabolic imaging of hyperpolarized [1-13C]acetate and [1-13C]acetylcarnitine—investigation of the influence of dobutamine induced stress. Magn Reson Med 74:1011–1018 Ulrich K, Gringeri CV, Giaime R et al (2014) Metabolic imaging of hyperpolarized [1-13C]acetate and [1-13C]acetylcarnitine—investigation of the influence of dobutamine induced stress. Magn Reson Med 74:1011–1018
169.
Zurück zum Zitat Alessandra F, Matteo L, Francesca F et al (2014) Real-time cardiac metabolism assessed with hyperpolarized [1-13C]acetate in a large-animal model. Contrast Media Mol Imaging 10:194–202 Alessandra F, Matteo L, Francesca F et al (2014) Real-time cardiac metabolism assessed with hyperpolarized [1-13C]acetate in a large-animal model. Contrast Media Mol Imaging 10:194–202
170.
Zurück zum Zitat Mishkovsky M, Comment A, Gruetter R (2012) In vivo detection of brain Krebs cycle intermediate by hyperpolarized magnetic resonance. J Cereb Blood Flow Metab 32:2108–2113PubMedPubMedCentral Mishkovsky M, Comment A, Gruetter R (2012) In vivo detection of brain Krebs cycle intermediate by hyperpolarized magnetic resonance. J Cereb Blood Flow Metab 32:2108–2113PubMedPubMedCentral
171.
Zurück zum Zitat Mikkelsen EFR, Mariager CØ, Nørlinger T et al (2017) Hyperpolarized [1-13C]-acetate renal metabolic clearance rate mapping. Sci Rep 7:16002PubMedPubMedCentral Mikkelsen EFR, Mariager CØ, Nørlinger T et al (2017) Hyperpolarized [1-13C]-acetate renal metabolic clearance rate mapping. Sci Rep 7:16002PubMedPubMedCentral
172.
Zurück zum Zitat Jensen PR, Peitersen T, Karlsson M et al (2009) Tissue-specific short chain fatty acid metabolism and slow metabolic recovery after ischemia from hyperpolarized NMR in vivo. J Biol Chem 284:36077–36082PubMedPubMedCentral Jensen PR, Peitersen T, Karlsson M et al (2009) Tissue-specific short chain fatty acid metabolism and slow metabolic recovery after ischemia from hyperpolarized NMR in vivo. J Biol Chem 284:36077–36082PubMedPubMedCentral
173.
Zurück zum Zitat Bastiaansen JAM, Cheng T, Lei H et al (2015) Direct noninvasive estimation of myocardial tricarboxylic acid cycle flux in vivo using hyperpolarized 13C magnetic resonance. J Mol Cell Cardiol 87:129–137PubMed Bastiaansen JAM, Cheng T, Lei H et al (2015) Direct noninvasive estimation of myocardial tricarboxylic acid cycle flux in vivo using hyperpolarized 13C magnetic resonance. J Mol Cell Cardiol 87:129–137PubMed
174.
Zurück zum Zitat Jensen RP, Meier S, Ardenkjær-Larsen JH et al (2009) Detection of low-populated reaction intermediates with hyperpolarized NMR. Chem Commun 0:5168–5170 Jensen RP, Meier S, Ardenkjær-Larsen JH et al (2009) Detection of low-populated reaction intermediates with hyperpolarized NMR. Chem Commun 0:5168–5170
175.
Zurück zum Zitat Yoshihara H, Bastiaansen JA, Karlsson M et al (2015) Myocardial fatty acid metabolism probed with hyperpolarized [1-13C]octanoate. J Cardiovasc Magn Reson 17:O101PubMedCentral Yoshihara H, Bastiaansen JA, Karlsson M et al (2015) Myocardial fatty acid metabolism probed with hyperpolarized [1-13C]octanoate. J Cardiovasc Magn Reson 17:O101PubMedCentral
176.
Zurück zum Zitat Ball DR, Ben R, Dodd MS et al (2014) Hyperpolarized butyrate: a metabolic probe of short chain fatty acid metabolism in the heart. Magn Reson Med 71:1663–1669PubMed Ball DR, Ben R, Dodd MS et al (2014) Hyperpolarized butyrate: a metabolic probe of short chain fatty acid metabolism in the heart. Magn Reson Med 71:1663–1669PubMed
177.
Zurück zum Zitat Bastiaansen JA, Merritt ME, Comment A (2015) Real time measurement of myocardial substrate selection in vivo using hyperpolarized 13C magnetic resonance. J Cardiovasc Magn Reson 17:O15PubMedCentral Bastiaansen JA, Merritt ME, Comment A (2015) Real time measurement of myocardial substrate selection in vivo using hyperpolarized 13C magnetic resonance. J Cardiovasc Magn Reson 17:O15PubMedCentral
178.
Zurück zum Zitat Bastiaansen JAM, Merritt ME, Comment A (2016) Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-13C]butyrate and [1-13C]pyruvate. Sci Rep 6:25573.PubMedPubMedCentral Bastiaansen JAM, Merritt ME, Comment A (2016) Measuring changes in substrate utilization in the myocardium in response to fasting using hyperpolarized [1-13C]butyrate and [1-13C]pyruvate. Sci Rep 6:25573.PubMedPubMedCentral
179.
Zurück zum Zitat Billingsley KL, Josan S, Park JM et al (2014) Hyperpolarized [1,4-13C]-diethylsuccinate: a potential DNP substrate for in vivo metabolic imaging. NMR Biomed 27:356–362PubMedPubMedCentral Billingsley KL, Josan S, Park JM et al (2014) Hyperpolarized [1,4-13C]-diethylsuccinate: a potential DNP substrate for in vivo metabolic imaging. NMR Biomed 27:356–362PubMedPubMedCentral
180.
Zurück zum Zitat Jakob U, Reichmann D (2013) Oxidative stress and redox regulation. Springer, Dodrecht Heidelberg New York London Jakob U, Reichmann D (2013) Oxidative stress and redox regulation. Springer, Dodrecht Heidelberg New York London
181.
Zurück zum Zitat Maritim AC, Sanders RA, Watkins JB (2013) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–38 Maritim AC, Sanders RA, Watkins JB (2013) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–38
182.
Zurück zum Zitat Keshari KR, Sai V, Wang ZJ et al (2013) Hyperpolarized [1-13C]dehydroascorbate MR spectroscopy in a murine model of prostate cancer: comparison with 18F-FDG PET. J Nucl Med 54:922–928PubMedPubMedCentral Keshari KR, Sai V, Wang ZJ et al (2013) Hyperpolarized [1-13C]dehydroascorbate MR spectroscopy in a murine model of prostate cancer: comparison with 18F-FDG PET. J Nucl Med 54:922–928PubMedPubMedCentral
183.
Zurück zum Zitat Timm KN, Hu D-E, Williams M et al (2017) Assessing oxidative stress in tumors by measuring the rate of hyperpolarized [1-13C]dehydroascorbic acid reduction using 13C magnetic resonance spectroscopy. J Biol Chem 292:1737–1748PubMed Timm KN, Hu D-E, Williams M et al (2017) Assessing oxidative stress in tumors by measuring the rate of hyperpolarized [1-13C]dehydroascorbic acid reduction using 13C magnetic resonance spectroscopy. J Biol Chem 292:1737–1748PubMed
184.
Zurück zum Zitat Keshari KR, Wilson DM, Sai V et al (2015) Noninvasive in vivo imaging of diabetes-induced renal oxidative stress and response to therapy using hyperpolarized 13C dehydroascorbate magnetic resonance. Diabetes 64:344–352PubMed Keshari KR, Wilson DM, Sai V et al (2015) Noninvasive in vivo imaging of diabetes-induced renal oxidative stress and response to therapy using hyperpolarized 13C dehydroascorbate magnetic resonance. Diabetes 64:344–352PubMed
185.
Zurück zum Zitat Carroll VN, Truillet C, Shen B et al (2016) [ 11C]Ascorbic and [ 11C]dehydroascorbic acid, an endogenous redox pair for sensing reactive oxygen species using positron emission tomography. Chem Commun 52:4888–4890 Carroll VN, Truillet C, Shen B et al (2016) [ 11C]Ascorbic and [ 11C]dehydroascorbic acid, an endogenous redox pair for sensing reactive oxygen species using positron emission tomography. Chem Commun 52:4888–4890
186.
Zurück zum Zitat Schröder L (2013) Xenon for NMR biosensing–inert but alert. Phys Medica Eur J Med Phys 29:3–16 Schröder L (2013) Xenon for NMR biosensing–inert but alert. Phys Medica Eur J Med Phys 29:3–16
187.
Zurück zum Zitat Lowery TJ, Garcia S, Chavez L et al (2006) Optimization of xenon biosensors for detection of protein interactions. ChemBioChem 7:65–73PubMed Lowery TJ, Garcia S, Chavez L et al (2006) Optimization of xenon biosensors for detection of protein interactions. ChemBioChem 7:65–73PubMed
188.
Zurück zum Zitat Aaron JA, Chambers JM, Jude KM et al (2008) Structure of a 129Xe-cryptophane biosensor complexed with human carbonic anhydrase II. J Am Chem Soc 130:6942–6943PubMedPubMedCentral Aaron JA, Chambers JM, Jude KM et al (2008) Structure of a 129Xe-cryptophane biosensor complexed with human carbonic anhydrase II. J Am Chem Soc 130:6942–6943PubMedPubMedCentral
189.
Zurück zum Zitat Chambers JM, Hill PA, Aaron JA et al (2008) Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase. J Am Chem Soc 131:563–569 Chambers JM, Hill PA, Aaron JA et al (2008) Cryptophane xenon-129 nuclear magnetic resonance biosensors targeting human carbonic anhydrase. J Am Chem Soc 131:563–569
190.
Zurück zum Zitat Witte C, Martos V, Rose HM et al (2015) Live-cell MRI with xenon hyper-CEST biosensors targeted to metabolically labeled cell-surface Glycans. Angew Chem Int Ed 54:2806–2810 Witte C, Martos V, Rose HM et al (2015) Live-cell MRI with xenon hyper-CEST biosensors targeted to metabolically labeled cell-surface Glycans. Angew Chem Int Ed 54:2806–2810
191.
Zurück zum Zitat Seward GK, Bai Y, Khan NS, Dmochowski IJ (2011) Cell-compatible, integrin-targeted cryptophane-129Xe NMR biosensors. Chem Sci 2:1103–1110PubMedPubMedCentral Seward GK, Bai Y, Khan NS, Dmochowski IJ (2011) Cell-compatible, integrin-targeted cryptophane-129Xe NMR biosensors. Chem Sci 2:1103–1110PubMedPubMedCentral
192.
Zurück zum Zitat Palaniappan KK, Ramirez RM, Bajaj VS et al (2013) Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor. Angew Chem 125:4949–4953 Palaniappan KK, Ramirez RM, Bajaj VS et al (2013) Molecular imaging of cancer cells using a bacteriophage-based 129Xe NMR biosensor. Angew Chem 125:4949–4953
193.
Zurück zum Zitat Boutin C, Stopin A, Lenda F et al (2011) Cell uptake of a biosensor detected by hyperpolarized 129Xe NMR: the transferrin case. Bioorg Med Chem 19:4135–4143PubMed Boutin C, Stopin A, Lenda F et al (2011) Cell uptake of a biosensor detected by hyperpolarized 129Xe NMR: the transferrin case. Bioorg Med Chem 19:4135–4143PubMed
194.
Zurück zum Zitat Zeng Q, Guo Q, Yuan Y et al (2017) Mitochondria targeted and intracellular biothiol triggered hyperpolarized 129Xe Magnetofluorescent biosensor. Anal Chem 89:2288–2295PubMed Zeng Q, Guo Q, Yuan Y et al (2017) Mitochondria targeted and intracellular biothiol triggered hyperpolarized 129Xe Magnetofluorescent biosensor. Anal Chem 89:2288–2295PubMed
195.
Zurück zum Zitat Klippel S, Freund C, Schröder L (2014) Multichannel MRI labeling of mammalian cells by switchable nanocarriers for hyperpolarized xenon. Nano Lett 14:5721–5726PubMed Klippel S, Freund C, Schröder L (2014) Multichannel MRI labeling of mammalian cells by switchable nanocarriers for hyperpolarized xenon. Nano Lett 14:5721–5726PubMed
196.
197.
Zurück zum Zitat Zaccagna F, Grist JT, Deen SS et al (2018) Hyperpolarized carbon-13 magnetic resonance spectroscopic imaging: a clinical tool for studying tumour metabolism. Br J Radiol 91:1085 Zaccagna F, Grist JT, Deen SS et al (2018) Hyperpolarized carbon-13 magnetic resonance spectroscopic imaging: a clinical tool for studying tumour metabolism. Br J Radiol 91:1085
198.
Zurück zum Zitat Stewart NJ, Chan H-F, Hughes PJC et al (2018) Comparison of 3He and 129Xe MRI for evaluation of lung microstructure and ventilation at 1.5T. J Magn Reson imaging Stewart NJ, Chan H-F, Hughes PJC et al (2018) Comparison of 3He and 129Xe MRI for evaluation of lung microstructure and ventilation at 1.5T. J Magn Reson imaging
199.
Zurück zum Zitat Kirby M, Ouriadov A, Svenningsen S et al (2014) Hyperpolarized 3He and 129Xe magnetic resonance imaging apparent diffusion coefficients: physiological relevance in older never- and ex-smokers. Physiol Rep 2(7):e12068PubMedPubMedCentral Kirby M, Ouriadov A, Svenningsen S et al (2014) Hyperpolarized 3He and 129Xe magnetic resonance imaging apparent diffusion coefficients: physiological relevance in older never- and ex-smokers. Physiol Rep 2(7):e12068PubMedPubMedCentral
200.
Zurück zum Zitat Kirby M, Svenningsen S, Kanhere N et al (2013) Pulmonary ventilation visualized using hyperpolarized helium-3 and xenon-129 magnetic resonance imaging: differences in COPD and relationship to emphysema. J Appl Physiol 114:707–715PubMed Kirby M, Svenningsen S, Kanhere N et al (2013) Pulmonary ventilation visualized using hyperpolarized helium-3 and xenon-129 magnetic resonance imaging: differences in COPD and relationship to emphysema. J Appl Physiol 114:707–715PubMed
201.
Zurück zum Zitat Svenningsen S, Miranda K, Danielle S et al (2013) Hyperpolarized 3He and 129Xe MRI: differences in asthma before bronchodilation. J Magn Reson Imaging 38:1521–1530PubMed Svenningsen S, Miranda K, Danielle S et al (2013) Hyperpolarized 3He and 129Xe MRI: differences in asthma before bronchodilation. J Magn Reson Imaging 38:1521–1530PubMed
202.
Zurück zum Zitat Horn FC, Marshall H, Collier GJ et al (2017) Regional ventilation changes in the lung: treatment response mapping by using hyperpolarized gas MR imaging as a quantitative biomarker. Radiology 284:854–861PubMed Horn FC, Marshall H, Collier GJ et al (2017) Regional ventilation changes in the lung: treatment response mapping by using hyperpolarized gas MR imaging as a quantitative biomarker. Radiology 284:854–861PubMed
Metadaten
Titel
Metabolic and Molecular Imaging with Hyperpolarised Tracers
verfasst von
Jason Graham Skinner
Luca Menichetti
Alessandra Flori
Anna Dost
Andreas Benjamin Schmidt
Markus Plaumann
Ferdia Aiden Gallagher
Jan-Bernd Hövener
Publikationsdatum
17.08.2018
Verlag
Springer International Publishing
Erschienen in
Molecular Imaging and Biology / Ausgabe 6/2018
Print ISSN: 1536-1632
Elektronische ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-018-1265-0

Weitere Artikel der Ausgabe 6/2018

Molecular Imaging and Biology 6/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.