Skip to main content
Erschienen in: Journal of Experimental & Clinical Cancer Research 1/2016

Open Access 01.12.2016 | Review

MicroRNAs in colorectal carcinoma - from pathogenesis to therapy

verfasst von: Yudan Chi, Dongming Zhou

Erschienen in: Journal of Experimental & Clinical Cancer Research | Ausgabe 1/2016

Abstract

Background

Acting as inflammatory mediators, tumor oncogenes or suppressors, microRNAs are involved in cell survival, death, epithelial–mesenchymal transition and metastasis, etc. Investigating the communication between microRNAs and tumorigenesis is critical to our understanding of the pathogenesis of multiple disease states.

Main body

Currently, colorectal carcinoma (CRC), one of the most common malignancies worldwide, has a poor prognosis due to lack of an effective therapeutic option. Increasing evidence has identified altered profiles and regulatory potential of microRNAs in conditions related to environmentally-caused colorectal inflammation and colitis-associated cancer. Many studies have shed light on a more thorough understanding of the function and distribution of microRNAs in CRC initiation and emergence. However, the molecular mechanisms by which microRNAs modulate cellular processes still need to be further elucidated and may offer a foundation for evaluating microRNA-based therapeutic potential for CRC in both animal models and clinical trials.

Conclusion

In this review, the roles and mechanisms of microRNAs involved in CRC from pathogenesis to therapy are summarized and discussed, which may provide more useful hints for CRC prevention and therapy.
Hinweise

Competing interest

The author declares that they have no competing interests.

Authors’ contributions

DZ and YC conceived the study. YC searched the literature and drafted the manuscript. DZ edited and approved the final manuscript. Both authors read and approved the final manuscript.

Introduction

MicroRNAs (miRNAs) are endogenously expressed non-coding RNAs, 18–25 nucleotides in length, which silence target mRNAs by mediating translational repression [14]. The miRNA biogenesis pathway includes multiple steps. Initially, pri-miRNAs (primary-miRNAs) containing a hairpin structure are transcribed by the RNA polymerase II which is responsible for mRNA expression. These pri-miRNAs are then cleaved into 60–70 base pairs long precursor miRNAs (pre-miRNAs) by the RNase III Drosha. Then, the pre-miRNAs are transported from the nucleus to the cytoplasm by Exportin-5/RanGTP and further processed by Dicer to form a short double-stranded miRNA duplex. Generally, only one strand of this miRNA duplex is degraded, while the other strand is released as a mature miRNA. Subsequently, this miRNA is integrated into RISC (RNA-induced Silencing Complex) to trigger degradation and translational repression of the target mRNA [5, 6].
MiRNAs play a key role in many crucial biological processes such as cell proliferation, cell differentiation and apoptosis [710]. In the past 20 years, more evidence has emerged showing that miRNAs are also involved in cancer development. Aberrant expression of miRNAs is detected in various types of cancer including breast cancer, lung cancer, pancreatic cancer, colorectal carcinoma and ovarian cancer [1114]. MiRNAs regulate expression of many known oncogenes and tumor suppressor genes in cancer pathogenesis [15, 16]. Studying the specific function of miRNAs in human carcinogenesis will help to identify new targets for cancer research, diagnosis and treatment.
CRC is the second most common malignancy in women, and the third in men, worldwide. More than 1 million new cancer-related cases and 600,000 deaths are expected to occur each year [17, 18]. Many risk factors associated with CRC include excessive alcohol use, obesity, older age, some genetic mutations and chronic intestinal inflammation. Generally, CRC consists of inflammatory colitis-associated cancer (CAC) and non-inflammatory adenomatous CRC. Inflammatory bowel disease (IBD) is always associated with CAC and about 20 % IBD patients develop CAC 30 years after the onset of disease [19]. Like other types of cancer, colorectal carcinogenesis is a multistep and complex process including tumor initiation, promotion and metastasis. Recent studies have revealed that the pathogenic mechanisms of CRC depend on several signaling pathways, including the p53, PI3K, RAS, MAPK, EMT transcription factors, and Wnt/β-catenin pathways. Furthermore, it has become increasingly clear that miRNAs regulate these pathways involved in the CRC pathogenesis (Table 1). For example, reduced expression of miR-143 contributes to CRC development through derepressing KRAS expression [20]. MiR-133a regulates CRC by inhibiting MAPK pathways [21].
Table 1
miRNA involvement in CRC development, diagnosis and therapy
miRNAs
Function
References
miR-324-5p,miR-21,miR-181b-1,miR-146,
Involved in regulation of NF-KB signaling in inflammation-related CRC
[3050]
miR-126,miR-122,miR-192,miR-495,miR-671,
miR-106b,miR-30c,miR-130a
miR-16,miR-218,miR-34a
Involved in the cell proliferation and survival in CRC development
[5159]
miR-34a,miR-148,miR-339-5p,miR-504,miR-23a,miR-129,miR-365,miR-345
Involved in the cell death in CRC development
[6274]
miR-29a,miR-29b,miR-29c,miR-200a,miR-200b,miR-200c,miR-141,miR-429,miR-132,miR-192,
Involved in the EMT in CRC development
[7995]
miR-335,miR-34a
miR-214,miR-155,miR-483,miR-133a,miR-145,
Involved in the tumor invasion and metastasis in CRC development
[96112]
miR-21,miR-92a,miR-17-5p,miR-221,miR-499-5p,miR-182
miR-92a-3p,miR-29a,miR-17-3p,miR-221,
Involved in the clinical diagnosis of CRC
[123129]
miR-19a-3p,miR-223-3p,miR-422a,miR-143,
miR-145,miR-21,miR-106a,miR-92a, miR-144
miR-135b,miR-27b,miR-4689,miR-483-5p,
Involved in the therapy of CRC
[131152]
miR-551a,miR-34a,miR-22,miR129,miR-365,
miR-143,miR-21,miR-23a,miR-124
To summarize the roles and mechanisms of miRNAs involved in CRC, it is important to be pointed out that CRC is a heterogeneous cancer including both colon cancer and rectal cancer while numerous literatures misused the term CRC in many cases [22]. From the clinical point of view, colon cancer and rectal cancer should be treated separately. Unfortunately, the majority of previous studies failed to separate these two entities. Here we distinguish the respective miRNAs in these two cancers based on the related references although very limited data about miRNAs in the rectal cancer are available [2329].

Role of miRNAs in CRC

Inflammation

Various environmental causes contribute to colorectal inflammation, including microbial infections, metabolic disorders, toxins and dietary factors [3032]. Growing evidence indicates that a plethora of miRNAs will target inflammatory signaling molecules to induce or inhibit chronic inflammation and inflammation-related cancer (Fig. 1) [19, 33].
The nuclear transcription factor, NF-κB and signal transducer and activator of transcription 3 (STAT3) maintain constitutive activation of pro-inflammatory pathways as essential components in the development of CAC tumors [3436]. Targeting negative regulators of NF-κB signaling through miRNAs, e.g., miR-324-5p-CUEDC2, miR-21-PTEN, miR-181b-1-CYLD, miR-146-TRAF and miR-126-IKBa, result in inflammation hyperresponsiveness and tumorigenesis. MiR-324-5p, a new CRC-associated miRNA, regulates CUEDC2 levels during monocyte to macrophage differentiation [37]. Elevation of miR-324-5p levels results in decreased expression of CUEDC2 in macrophages infiltrated in mouse colon tumors and isolated from fresh colon tumor samples, which produces excess tumor-promoting cytokines and promotes pathogenic progress of CRC. The function of STAT3 in cellular transformation involves the direct activation of miR-21 and miR-181b-1 transcription by binding multiple sites in the miRNA promoter [38]. Overexpression of miR-21 or miR-181b-1 is sufficient to induce a stable transformed state by directly targeting PTEN and CYLD expression, respectively, which in turn activates NF-κB pathway. MiRNAs targeting NOD2, such as miR-122, miR-192, miR-495, and miR-671 decrease the pro-inflammatory cytokines by regulating the activation of NF-κB pathway [39, 40]. However, miR-122 is significantly increased with the stimulation of TNF-α and induces an increase in the intestinal epithelial tight junction permeability in vitro and in vivo [41]. Thus, the controversial role of miR-122 in the development of IBD should be further explored.
In accordance with previous works, miR-21 levels were often higher in inflammation and CRC than that of normal tissue [4244]. MiR-21 is upregulated in IBD and acute intestinal obstruction (AIO) patients. In miR-21 knockout mice suffering from dextran sulfate sodium salt (DSS)-induced fatal colitis, the survival rate is improved and the ameliorative inflammatory response better protects against inflammation and tissue injury [45]. Also, miR-21 deletion exacerbates CD4+ T-cell-mediated models of acute and chronic DSS and TNBS colitis. In addition, some evidence indicates that miR-21 plays a pro-inflammatory role in IBD by impairing intestinal barrier function [46]. The increase in intestinal permeability and epithelial cells apoptosis induced by DSS are attenuated in miR-21 knockout mice.
Autophagy, involved in recycling cellular organelles for maintaining homeostasis, is considered to clear intracellular microorganisms [47]. The impairment of autophagy results in intestinal epithelial dysfunction and contributes to IBD pathogenesis [48]. Inflamed mucosae from subjects with active CD have higher miR-106b and lower ATG16L1 levels indicating an altered antibacterial activity that is mediated by miR-106b which subsequently affects the outcome of intestinal inflammation [49]. MiR-106b may target ATG16L1 and reduce the level of autophagy in HCT116 cells and inhibit autophagy–dependent clearance of CD-associated adherent-invasive Escherichia coli (AIEC) in epithelial cells. Another study showed the expression of miR-30c and miR-130a were inversely correlated with ATG5 and ATG16L1 in intestinal epithelial cells. The inhibition of the activity of autophagy by miRNAs promotes the persistence of AIEC and the production of pro-inflammatory cytokines [50].

Cell survival

Cellular proliferation and survival have crucial roles in the process of carcinogenesis. Abnormal expression of miRNAs regulates CRC development via targeting several cell cycle regulators, including survivin and cyclins. Survivin is a direct target of miR-16 [51]. MiR-16 represses CRC cell growth and induces cell apoptosis by regulating the p53/survivin signaling pathway. These observations suggest that survivin is mainly expressed during the G2/M phase of the cell cycle and therefore inhibiting survivin expression can lead to defective cytokinesis and cell cycle arrest at G2/M phase [52]. Among the other miRNAs that control cell cycle progression, miR-218 induces cell cycle arrest in the G2 phase of colon cancer cells by suppressing cyclin-dependent kinase4 (CDK4) and upregulating the level of p53 [53]. A recent study conducted by Cai et al. demonstrated that miR-144 inhibited cell proliferation in rectal cancer cell line SW137 and SW1463 by downregulating Rock-1. However, the aberrant expression of miR-144 is only present in the rectal cancer but not in the colon cancer [54].
The role of miR-34a to CRC development was already clarified with miR-34a inhibiting colon cancer cell proliferation by downregulating the E2F pathway and resulting in accumulation of p53 and p21 [55]. Recent studies have revealed that PAR2 promotes cancer cell proliferation through the activation of EGFR, MAPK and other survival signals and promotes the accumulation of Cyclin D1 which plays important roles in tumorigenesis [56, 57]. Further investigations show that miR-34a mediated PAR2-induced proliferation and inhibition of miR-34a partially restores the activation of Cyclin D1 induced by PAR2 deficiency. Colon cancer stem cells (CCSCs) retain the self-renewal capacity and less limiting proliferative potential while being substantially resistant to most conventional anticancer therapies [58]. Moreover, various conserved pathways, such as Notch and Wnt, as a complex crosstalk network between CCSCs and microenvironment, are regulated in CRC. MiR-34a in the regulation of CCSCs self renewal is involved in the suppression of Notch signaling, which contributes to asymmetric cell division of stem cells [59]. Altogether, this finding reveals a unique miR-34a-regulated mechanism of the toggle switch necessary for Notch bimodality that converts noisy signals into unambiguous states for robust cell-fate decisions in CCSCs.

Cell death

The p53 protein is a transcription factor that is activated in response to cellular stresses to inhibit cell proliferation and stimulate cell death [60]. Disruption of the p53 pathway can promote tumorigenesis [61]. MiR-34a mediated inhibition of SIRT1 expression leads to apoptosis due to the increase of acetylated p53 formed a positive feedback loop of miR-34a and p53 [62]. Moreover, transient introduction of miR-34a into SW480 cells contributes to a severe decrease in migration and invasion by upregulating acetylated p53 and p21 [63]. It also suggests that an overexpression of miR-34a induces cell growth arrest and senescence-like phenotypes through upregulating the p53 pathway [55]. The increase of p55PIK in CRC can accelerate cell cycle progression by interacting with retinoblastoma protein or proliferation cell nuclear antigen [64, 65]. The introduced miR-148b, by suppressing p55PIK abolishes cell proliferation and cell cycle progression in CRC [66]. Furthermore, p53 directly activates the transcription of miR-148 which negatively regulates p55PIK expression. A reduction of miR-339-5p expression has been reported in colorectal cancer and is associated with poor prognosis in cancer patients [67, 68]. MDM2, a key negative regulator of p53 is repressed by miR-339-5p [69]. After downregulation of MDM2 by miR-339-5p, the growth of colorectal xenograft tumors is inhibited in a p53-dependent manner. The function of miR-504, that is inhibiting p53 expression, reduces cell cycle arrest and promotes tumorigenicity in vivo [70].
Apoptosis is also controlled by various networks of miRNAs. Several researches have described that proapoptotic protein can be suppressed by the overexpression of miRNAs. For example, the human homolog of the Caenorhabditis elegans cell death protein CED-4, APAF-1, is controlled by miR-23a to repress the activity of caspases-3,-7 and-9 [71]. The increased miR-23a antisense can induce the apoptosis of HCT116 and HT29 cell lines, under the 5-FU treatment. It is also found that miR-23a is up-regulated in 5-FU-treated HC.21 and C22.20 cells [72]. Conversely, miR-129 can trigger apoptosis by suppressing Bcl2, an anti-apoptotic protein [73]. The Intrinsic apoptotic pathway is activated by cleavage of caspae-9 and-3. Besides, the transfection of miR-129 in RKO cells and HCT116 cells causes cell cycle arrest in G1 or G2 phase. In human CRC tissues, miR-129 is significantly decreased in patients with stage 3 and stage 4 tumors. The other miRNAs, such as miR-365 and miR-345, also affect the antitumor capability, respectively by targeting the anti-apoptosis protein of Bcl2 and Bcl2-associated athanogene 3 (BAG3) [74].

MiRNAs and EMT

Epithelial-to-mesenchymal transition (EMT) is involved in multiple biological processes including gastrulation, neural tube formation, tissue regeneration, and organ fibrosis [75]. EMT is an important factor in tumor metastasis undergoing a number of biochemical changes, including the decrease in epithelial cell-surface markers and cytoskeleton components, and the increase in mesenchymal markers and specific transcription factors [7678]. Given miRNAs-regulated EMT via targeting E-cadherin and other molecules, it is likely that miRNAs play a crucial role in colorectal carcinogenesis (Fig. 2). The highly conserved pathway of Wnt/β–catenin signaling is constitutively activated in CRC. Wnt signaling is regulated by abnormal β–catenin activation associated with E-cadherin expression [79]. Also, miR-101, miR-224 and miR-574-5p can affect CRC malignant features by regulating Wnt/β–catenin signaling [8082].
Recent studies have demonstrated that the members of the miR-29 family (miR-29a, miR-29b and miR-29c) are involved in the tumor progression by regulating EMT. MiR-29c is dramatically downregulated in CRC tissues and suppresses EMT in vitro, hence it has a role in cell migration and invasion by negatively regulating the Wnt/β-catenin signaling pathway [83]. Similarly, miR-29b suppresses EMT and plays an important role in cell migration and invasion by negatively regulating the MAPK/ERK and PI3K/AKT pathways [84]. However, overexpression of miR-29a promotes cell invasion by inhibiting E-cadherin expression [85].
The importance of the miR-200 family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) for EMT is not limited to colon carcinogenesis, because it has been widely demonstrated in various tumors [86, 87]. Indeed, restoration of miR-200c inhibits migration and invasion in various CRC cell lines via directly targeting ZEB1, the transcriptional repressor of E-cadherin [88, 89]. There is another evidence that miR-429 reverses TGF-β-induced EMT by interfering with Onecut2 in SW620 and SW480 cells [90]. In addition, ZEB2 as a direct target of miR-132, miR-192 and miR-335 has been shown to regulate metastasis [9193]. A significant decrease of these three miRNAs is associated with distant metastasis and advanced stage tumors. A few researches have indicated that miR-34a inhibits metastasis formation in CRC via EMT-regulating network in SNAIL/ZNF81 and IL6R/STAT3 [94, 95]. These studies implicate the components of miRNA-regulating networks in EMT with traits associated with metastasis formation in CRC.

Invasion and metastasis

Over 70 % of CRC patients harboring liver metastasis die due to the lack of effective therapeutics. Some miRNAs have been identified to suppress liver metastatic colonization in CRC patients. Nude mice in which ectopic miR-214 is expressed in CRC cells has a reduced amount of liver metastases, supporting the importance of intracellular dynamic regulation [96]. However, another crucial factor for metastasis is based on extracellular metabolic energetic [97]. Creatine kinase Brain (CKB) in liver metastatic cancer cells is released to the extracellular microenvironment converting ATP and creatine into phosphocreatine, which is imported into cancer cells to counteract hypoxic response. Both miR-155 and miR-483 targeting CKB, as endogenous suppressors of colon cancer metastasis decrease significantly the ATP levels, further to impair intracellular energetic requirements to establish a barrier to metastatic progression.
MiR-133a targets LASP1 and suppresses tumor growth and metastasis by inhibiting phosphorylation of the ERK/MEK signaling pathway [21]. Downregulation of miR-145 is detected in primary CRC tumors compared to normal tissues. MiR-145 inhibits proliferation, migration and invasion of SW620 and LoVo metastatic cell lines by targeting fascin-1 and results in a decrease in lung metastases in nude mice [98]. Conversely, another study reveals that increased miR-145 could improve migration and invasion of HCT-8 cells and is associated with lymph node metastasis of CRC while having no effect on proliferation [99]. In addition, miR-106b promotes colorectal cancer cell migration and invasion by directly targeting DLC1 [100].
PTEN, a tumor suppressor gene, is often lost in human cancers and a common target of miR-21, miR-92a and miR-17-5p in CRC [101104]. The levels of miR-21 and miR-92a significantly correlate with lymph node metastasis and advanced TNM stage promoting cell migration via mediating the PTEN-dependent PI3K/AKT signaling pathway. Overexpression of miR-17-5p is responsible for chemo-resistance in a cohort study of 295 patients. In addition, miR-221, miR-145, miR-499-5p and miR-182 as novel candidate prometastatic miRNAs are significantly increased in lymph node-positive CRC patients by regulating suppressor genes (cyclin dependent kinase inhibitor, RECK, FOXO4 and PDCD4) [105109].
The small GTPases Cdc42 is essential for intestinal stem cell division, survival and differentiation to maintain the homeostasis [110]. In addition, Cdc42 is required higher expression in human CRCs relating to poorly differentiated CRCs [111]. In the APC-mutant or β-catenin-mutant mice, Cdc42 reduction attenuates the tumorigenesis of mutant intestinal cells [112]. In the same way, human colorectal cancer with higher levels of Cdc42 activity was especially sensitive to Cdc42 blockade. Expression of miR-224 in CRC tissue specimens is significantly lower than in nontumor tissues and paired adjacent samples [113]. Ectopic expression of miR-224 inhibits the migratory ability of HCT116 cells, but the cell growth rate is less affected. Increased miR-224 suppresses CRC cell migration by diminishing Cdc42 and SMAD4 expressions and inhibiting the formation of actin filaments.

MiRNAs as clinical diagnosis

Given the invasive nature and expensive cost of current screening methods of CRC diagnosis including FOBT, CEA and colonoscopy, it is difficult to detect CRC early and efficiently [114116]. As well as the importance of miRNAs in the CRC development, miRNAs could serve as potential biomarkers in CRC diagnosis based on the high degree of stability, specificity and sensitivity of miRNAs in the blood and stool [117122].
Since the first study in 2008 reported cancer-specific miRNAs secreted in the blood among the different cancer types, a spectrum of miRNAs associated with CRC in the blood have been identified including miR-92a, miR-29a, miR-17-3p, miR-221, miR-19a-3p, miR-223-3p and miR-422a et al. [123126]. Although ribonuclease exists in serum, circulating extracellular miRNAs are found in the blood of healthy and cancer-related patients. Chen et al. systematically identified specific patterns of serum miRNAs expression in several diseases including lung cancer, CRC, and diabetes [123]. This study showed that 69 miRNAs were detected in the blood of CRC patients but not in the normal serum. Unsuprisingly, many circulating miRNAs such as miR-221 are also present in the blood of lung cancer. Ng et al. discovered that both miR-92a and miR-17-3p were significantly upregulated in the plasma of CRC patients compared to normal plasma [125]. Zheng et al. recently identified four miRNAs panels (miR-19a-3p, miR-223-3p, miR-92a-3p and miR-422a) with a high diagnostic accuracy of CRC [124].
MiRNAs disturbance in the stool of CRC patients can also offer a possibility for a stool-base miRNA test as a common used method for CRC diagnosis. A number of studies support this potential diagnostic method of CRC by finding that many miRNAs are downregulated (miR-143, miR-145) or overexpressed (miR-21, miR-106a, miR-92a, miR-144) in the fecal samples of CRC patients compared to healthy subjects [127130]. It is of interest to note that Wang et al. found that the expression level of miR-92a in the stool of CRC patients was significantly higher than control, which was very similar to the dysregulated expression of miR-92a in the blood [129]. Thus, miRNAs can be represented highly effective and accurate biomarkers for the future CRC diagnosis.

MiRNA-based therapies

Potential application of targeting miRNAs is increasing in gene therapy testing and preclinical studies. The development of mouse models generates key biological and molecular events based on human conditions. The efficacy of miRNA-mediated CRC therapy is following current technologies through various strategies.
Traditional preclinical mouse models of CRC induced by colitis - associated cancer (CAC) have been established with two drugs of azoxymethane (AOM) and DSS as the results of mutations containing PI3K, K-ras and catenin pathways. Another CDX2P-NLS Cre;Apc+/loxP (CPC; Apc) mouse model harbors a truncating mutation affecting one APC allele [131]. Compared to normal tissues, 57 miRNAs are aberrantly expressed in tumors in the AOM/DSS model while 35 miRNAs are aberrantly expressed in polyps from CPC; Apc mice [132]. Among the overexpressed miRNAs, miR-135b is consistently the highest expressed one in both models. High miR-135b expression is correlated with tumor stage and poor overall survival by analyzing 454 sporadic and 31 IBD-associated CRCs. The use of locked nucleic acid (LNA) anti-miR-135b induces apoptosis of SW480 cells while oligonucleotides specific silencing miR-135b effectively inhibited tumor proliferation in both mouse models. A study by Wu et al. indicated miR-135b mimics-transfected HCT-116 cells exhibited significantly increased migratory ability, while inverse effects were detected with the treatment of inhibitors [133]. Thus, miR-135b may be a promising therapeutic target in CRC treatment with improving specificity and limiting toxicity [134]. In addition to miR-135b, other oncogeic miRNAs are also potential candidates for CRC therapy. For example, successful knockdown of miR-21 by using LNA in SW480 cells and antisense oligonucleotide-based inhibition of miR-20a, miR-21,miR-31, miR-95, miR-675 in SW480, SW620, and HCT116 cells showed potential value for future translational treatment [135139]. Although LNA and antisense oligonucleotide are efficient in blocking oncogenic miRNA, some novel approaches like miRNA sponge, miRNA masking and small molecule inhibitors are emerging. Jung and colleagues recently reported the use of miRNA sponges in human breast cancer cell lines [140]. They demonstrated a multi-potent miRNA sponge that simultaneously inhibits four oncogenic miRNAs including miR-21, miR-155,miR-221, miR-222. The multi-potent miRNA sponge inhibit cancer cell migration partially through the upregulation of Foxo3a,PTEN. Moreover they found that the antitumor function of the multi-potent miRNA sponge is much stronger than single miRNA targeting sponge and the four miRNAs used in this study had oncogenic functions in CRC. Future utility of the multi-potent miRNA sponge in the CRC treatment will be a promising and effective strategy. Being different from miRNA sponge,miRNA masking technology is developed by Choi et al. [141]. It consists of single-stranded 2’-O-methyl-modified antisense oligonucleotides that can fully bind to the 3’UTR of the target mRNA. One of the advantage of this technology is off-target effect can be significantly reduced which attracts the researchers’ attention in the CRC treatment. The screen of small molecule inhibitors of miRNA is being rapidly developed. Tripp et al. discovered small molecule inhibitors of miR-122 could be applied in the HCV therapy [142]. This novel approach combining other conventional CRC cancer therapeutics will play important roles in the future.
Another strategy to provide preclinical tools is miRNA restoration. Several miRNAs acting as tumor suppressors are generally downregulated in tumors. It has been demonstrated that the inhibition of tumor growth and angiogenesis is detected in xenografts of miR-27b mimics [143]. The utility of miRNAs mimics will provide a great clinical value for targeted therapies that identifies the cancer-related regulators. PH sensitive systemic administration of carbonate apatite nanoparticle-formulated miR-4689 reveals dramatically the inhibition of tumor growth in mouse xenografts with decreasing MAPK/ERK and PI3K/AKT signaling pathways [144]. In vitro colon cancer cells and in vivo mice bearing hepatic metastases models have been employed to test the tumor suppressor activity of miR-483-5p and miR-551a delivered by adeno-associated viruses (AAV) [97]. MiR-34a−/− mice have displayed an increased incidence and size of tumor with AOM/DSS challenge [95]. The expression of miR-34a is inhibited by specific antagomirs, a single strand RNA complementary to the targeted miRNA, which enhances the invasion of CRC cancer cells. However, ectopic expression of miR-34a can prevent IL-6-indiced EMT and invasion in DLD-1 cells. Likewise, miR-143 was found to be dramatically downregulated in the human CRC tissues as a tumor suppressor miRNA. Ng et al. increased miR-143 expression by transfection with miR-143 precursor in colon cancer cells [145], and found that restoration of miR-143 not only inhibited tumor cell growth but also affected malignant transformation phenotypes. Nakagawa et al. reported the increased expression level of miR-143 by α-mangostin induced human colon cancer DLD-1 cell death [146]. Taken together, restoring miRNA-based delivery systems as viable paths clinically is able to control cancer progression in cell tests and mouse models without any adverse outcomes.
A major obstacle to successful treatment for cancer is resistance to chemotherapy and radiation. Recently, miRNAs are being investigated as a predictor or a therapeutic target to improve the efficacy of 5-FU chemotherapy in CRC treatment. Various studies have shown that treatment with miR-22, miR-129, miR-365 and miR-143 increase sensitivity to 5-FU treatment in vitro and in vivo [73, 74, 147, 148]. However, high expression of miR-21 significantly decreases G2/M arrest and apoptosis after 5-FU treatment [137]. Silencing miR-21 inhibits cell proliferation and restores sensitivity of chemotherapy in HT-29 cells [149]. Moreover, miR-23a increases the chemoresistance to 5-FU in CRC cells though targeting ABCF1 [150]. A miRNA array screening revealed that miR-203 was significantly accumulated in oxanliplatin-resistant CRC cell lines [151]. Oxaliplatin is known to induce cell cycle arrest and cell apoptosis with a combination of therapeutic regimen for patients with metastatic CRC. In addition, the greater sensitivity to radiation is found in the treatment of miR-124 mimics to CRC cells and in the miR-124-overexpressed cells among in vivo mouse xenografts [152]. Therefore, understanding the miRNA-regulating mechanisms of resistance to chemotherapeutic agents would ultimately help us in improving therapeutic outcomes and identifying new targets and drugs.

Conclusions

CRC is one of the most common malignancies in human. For patients with advanced CRC, the optimal treatment strategies currently depend on tumor staging and metastasis to reduce the risk of recurrence [153]. Resectable CRC is supported by combination with chemotherapy and non-resectable CRC, the systemic therapy options involve in palliative chemotherapy and monoclonal antibodies. However, more effective treatments with less cumulative toxicity and drug resistance are urgently needed.
The roles of miRNAs in tumor growth and the regulation of tumor progress summarized here suggest miRNAs could be a potential means for diagnosis and treatment of CRC as well as prognostic parameters for CRC. Future investigations will highlight the disease-specific or cell-specific expression patterns of miRNAs in CRC, which will be helpful to identify novel potential targets and improve our understanding of miRNA regulatory mechanisms. Moreover, extracellular miRNAs associated with cancer cells has recently emerged as new topic to explore and will expand the knowledge of tumor microenvironment modulation in CRC.

Acknowledgements

This work was supported by grants from “Knowledge Innovation Program” (No.Y014P31503) and “100 Talent Program” (No.Y316P11503) of Chinese Academy of Sciences and Shanghai Pasteur Foundation.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interest

The author declares that they have no competing interests.

Authors’ contributions

DZ and YC conceived the study. YC searched the literature and drafted the manuscript. DZ edited and approved the final manuscript. Both authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.PubMedCrossRef Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.PubMedCrossRef
2.
Zurück zum Zitat Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science (New York, NY). 2001;294:858–62.CrossRef Lau NC, Lim LP, Weinstein EG, Bartel DP. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science (New York, NY). 2001;294:858–62.CrossRef
4.
Zurück zum Zitat Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.PubMedCrossRef Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.PubMedCrossRef
5.
Zurück zum Zitat He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.PubMedCrossRef He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522–31.PubMedCrossRef
7.
Zurück zum Zitat Cheng LC, Tavazoie M, Doetsch F. Stem cells: from epigenetics to microRNAs. Neuron. 2005;46:363–7.PubMedCrossRef Cheng LC, Tavazoie M, Doetsch F. Stem cells: from epigenetics to microRNAs. Neuron. 2005;46:363–7.PubMedCrossRef
8.
Zurück zum Zitat Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–6. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–6.
9.
Zurück zum Zitat Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS. Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004;270:488–98. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS. Human embryonic stem cells express a unique set of microRNAs. Dev Biol. 2004;270:488–98.
10.
Zurück zum Zitat Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102:13944–9. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 2005;102:13944–9.
11.
Zurück zum Zitat Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–70. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Menard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065–70.
12.
Zurück zum Zitat Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005;65:9628–32. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005;65:9628–32.
13.
Zurück zum Zitat Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1:882–91.PubMed Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 2003;1:882–91.PubMed
14.
Zurück zum Zitat Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.PubMedCrossRef Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.PubMedCrossRef
15.
Zurück zum Zitat Lee YS, Dutta A. MicroRNAs: small but potent oncogenes or tumor suppressors. Curr Opin Investig Drugs. 2006;7:560–4.PubMed Lee YS, Dutta A. MicroRNAs: small but potent oncogenes or tumor suppressors. Curr Opin Investig Drugs. 2006;7:560–4.PubMed
16.
Zurück zum Zitat Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009;28:369–78.PubMedCrossRef Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009;28:369–78.PubMedCrossRef
17.
Zurück zum Zitat Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.PubMedCrossRef Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.PubMedCrossRef
18.
Zurück zum Zitat Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.PubMedCrossRef Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.PubMedCrossRef
20.
Zurück zum Zitat Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y, Zhu L, Wang J, Yang R, Zhang Y, Ren Z, Zen K, Zhang J, Zhang CY. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009;28:1385–92. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y, Zhu L, Wang J, Yang R, Zhang Y, Ren Z, Zen K, Zhang J, Zhang CY. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene. 2009;28:1385–92.
21.
Zurück zum Zitat Wang H, An H, Wang B, Liao Q, Li W, Jin X, Cui S, Zhang Y, Ding Y, Zhao L. miR-133a represses tumour growth and metastasis in colorectal cancer by targeting LIM and SH3 protein 1 and inhibiting the MAPK pathway. Eur J Cancer. 2013;49:3924–35. Wang H, An H, Wang B, Liao Q, Li W, Jin X, Cui S, Zhang Y, Ding Y, Zhao L. miR-133a represses tumour growth and metastasis in colorectal cancer by targeting LIM and SH3 protein 1 and inhibiting the MAPK pathway. Eur J Cancer. 2013;49:3924–35.
22.
Zurück zum Zitat Li X, Zhang G, Luo F, Ruan J, Huang D, Feng D, Xiao D, Zeng Z, Chen X, Wu W. Identification of aberrantly expressed miRNAs in rectal cancer. Oncol Rep. 2012;28:77–84. Li X, Zhang G, Luo F, Ruan J, Huang D, Feng D, Xiao D, Zeng Z, Chen X, Wu W. Identification of aberrantly expressed miRNAs in rectal cancer. Oncol Rep. 2012;28:77–84.
23.
Zurück zum Zitat Gaedcke J, Grade M, Camps J, Sokilde R, Kaczkowski B, Schetter AJ, Difilippantonio MJ, Harris CC, Ghadimi BM, Moller S, Beissbarth T, Ried T, Litman T. The rectal cancer microRNAome--microRNA expression in rectal cancer and matched normal mucosa. Clin Cancer Res. 2012;18:4919–30. Gaedcke J, Grade M, Camps J, Sokilde R, Kaczkowski B, Schetter AJ, Difilippantonio MJ, Harris CC, Ghadimi BM, Moller S, Beissbarth T, Ried T, Litman T. The rectal cancer microRNAome--microRNA expression in rectal cancer and matched normal mucosa. Clin Cancer Res. 2012;18:4919–30.
24.
Zurück zum Zitat Slattery ML, Wolff E, Hoffman MD, Pellatt DF, Milash B, Wolff RK. MicroRNAs and colon and rectal cancer: differential expression by tumor location and subtype. Genes Chromosomes Cancer. 2011;50:196–206.PubMedPubMedCentralCrossRef Slattery ML, Wolff E, Hoffman MD, Pellatt DF, Milash B, Wolff RK. MicroRNAs and colon and rectal cancer: differential expression by tumor location and subtype. Genes Chromosomes Cancer. 2011;50:196–206.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Svoboda M, Izakovicova Holla L, Sefr R, Vrtkova I, Kocakova I, Tichy B, Dvorak J. Micro-RNAs miR125b and miR137 are frequently upregulated in response to capecitabine chemoradiotherapy of rectal cancer. Int J Oncol. 2008;33:541–7. Svoboda M, Izakovicova Holla L, Sefr R, Vrtkova I, Kocakova I, Tichy B, Dvorak J. Micro-RNAs miR125b and miR137 are frequently upregulated in response to capecitabine chemoradiotherapy of rectal cancer. Int J Oncol. 2008;33:541–7.
26.
Zurück zum Zitat Svoboda M, Sana J, Fabian P, Kocakova I, Gombosova J, Nekvindova J, Radova L, Vyzula R, Slaby O. MicroRNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Radiat Oncol. 2012;7:195. Svoboda M, Sana J, Fabian P, Kocakova I, Gombosova J, Nekvindova J, Radova L, Vyzula R, Slaby O. MicroRNA expression profile associated with response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer patients. Radiat Oncol. 2012;7:195.
27.
Zurück zum Zitat Dai J, Wu W, Zhou J, Gao K, Hu G, Lin C, Zhang Y, Li X. Effect of antisense microRNA targeting survivin on rectal cancer HRC-9698 cells and its mechanism. Int J Clin Exp Pathol. 2015;8:6057–63. Dai J, Wu W, Zhou J, Gao K, Hu G, Lin C, Zhang Y, Li X. Effect of antisense microRNA targeting survivin on rectal cancer HRC-9698 cells and its mechanism. Int J Clin Exp Pathol. 2015;8:6057–63.
28.
Zurück zum Zitat Yang Y, Peng W, Tang T, Xia L, Wang XD, Duan BF, Shu Y. MicroRNAs as promising biomarkers for tumor-staging: evaluation of MiR21 MiR155 MiR29a and MiR92a in predicting tumor stage of rectal cancer. Asian Pac J Cancer Prev. 2014;15:5175–80. Yang Y, Peng W, Tang T, Xia L, Wang XD, Duan BF, Shu Y. MicroRNAs as promising biomarkers for tumor-staging: evaluation of MiR21 MiR155 MiR29a and MiR92a in predicting tumor stage of rectal cancer. Asian Pac J Cancer Prev. 2014;15:5175–80.
29.
Zurück zum Zitat Yang Y, Tang T, Peng W, Xia L, Wang X, Duan B, Shu Y. The comparison of miR-155 with computed tomography and computed tomography plus serum amyloid A protein in staging rectal cancer. J Surg Res. 2015;193:764–71. Yang Y, Tang T, Peng W, Xia L, Wang X, Duan B, Shu Y. The comparison of miR-155 with computed tomography and computed tomography plus serum amyloid A protein in staging rectal cancer. J Surg Res. 2015;193:764–71.
31.
Zurück zum Zitat Shivappa N, Prizment AE, Blair CK, Jacobs Jr DR, Steck SE, Hebert JR. Dietary inflammatory index and risk of colorectal cancer in the Iowa Women’s Health Study. Cancer Epidemiol Biomark Prev. 2014;23:2383–92.CrossRef Shivappa N, Prizment AE, Blair CK, Jacobs Jr DR, Steck SE, Hebert JR. Dietary inflammatory index and risk of colorectal cancer in the Iowa Women’s Health Study. Cancer Epidemiol Biomark Prev. 2014;23:2383–92.CrossRef
32.
Zurück zum Zitat Zamora-Ros R, Shivappa N, Steck SE, Canzian F, Landi S, Alonso MH, Hebert JR, Moreno V. Dietary inflammatory index and inflammatory gene interactions in relation to colorectal cancer risk in the Bellvitge colorectal cancer case–control study. Genes Nutr. 2015;10:447. Zamora-Ros R, Shivappa N, Steck SE, Canzian F, Landi S, Alonso MH, Hebert JR, Moreno V. Dietary inflammatory index and inflammatory gene interactions in relation to colorectal cancer risk in the Bellvitge colorectal cancer case–control study. Genes Nutr. 2015;10:447.
33.
Zurück zum Zitat Terzic J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–2114.e2105.PubMedCrossRef Terzic J, Grivennikov S, Karin E, Karin M. Inflammation and colon cancer. Gastroenterology. 2010;138:2101–2114.e2105.PubMedCrossRef
34.
Zurück zum Zitat Ullman TA, Itzkowitz SH. Intestinal inflammation and cancer. Gastroenterology. 2011;140:1807–16.PubMedCrossRef Ullman TA, Itzkowitz SH. Intestinal inflammation and cancer. Gastroenterology. 2011;140:1807–16.PubMedCrossRef
35.
Zurück zum Zitat Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9:798–809.PubMedCrossRef Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9:798–809.PubMedCrossRef
36.
Zurück zum Zitat Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, Forman S, Jove R, Pardoll DM, Yu H. Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell. 2009;15:283–93. Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, Forman S, Jove R, Pardoll DM, Yu H. Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell. 2009;15:283–93.
37.
Zurück zum Zitat Chen Y, Wang SX, Mu R, Luo X, Liu ZS, Liang B, Zhuo HL, Hao XP, Wang Q, Fang DF, Bai ZF, Wang QY, Wang HM, Jin BF, Gong WL, Zhou T, Zhang XM, Xia Q, Li T. Dysregulation of the miR-324-5p-CUEDC2 axis leads to macrophage dysfunction and is associated with colon cancer. Cell reports. 2014;7:1982–93. Chen Y, Wang SX, Mu R, Luo X, Liu ZS, Liang B, Zhuo HL, Hao XP, Wang Q, Fang DF, Bai ZF, Wang QY, Wang HM, Jin BF, Gong WL, Zhou T, Zhang XM, Xia Q, Li T. Dysregulation of the miR-324-5p-CUEDC2 axis leads to macrophage dysfunction and is associated with colon cancer. Cell reports. 2014;7:1982–93.
38.
Zurück zum Zitat Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010;39:493–506.PubMedPubMedCentralCrossRef Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010;39:493–506.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Chuang AY, Chuang JC, Zhai Z, Wu F, Kwon JH. NOD2 expression is regulated by microRNAs in colonic epithelial HCT116 cells. Inflamm Bowel Dis. 2014;20:126–35.PubMedCrossRef Chuang AY, Chuang JC, Zhai Z, Wu F, Kwon JH. NOD2 expression is regulated by microRNAs in colonic epithelial HCT116 cells. Inflamm Bowel Dis. 2014;20:126–35.PubMedCrossRef
40.
Zurück zum Zitat Chen Y, Wang C, Liu Y, Tang L, Zheng M, Xu C, Song J, Meng X. miR-122 targets NOD2 to decrease intestinal epithelial cell injury in Crohn’s disease. Biochem Biophys Res Commun. 2013;438:133–9. Chen Y, Wang C, Liu Y, Tang L, Zheng M, Xu C, Song J, Meng X. miR-122 targets NOD2 to decrease intestinal epithelial cell injury in Crohn’s disease. Biochem Biophys Res Commun. 2013;438:133–9.
41.
42.
Zurück zum Zitat Chapman CG, Pekow J. The emerging role of miRNAs in inflammatory bowel disease: a review. Ther Adv Gastroenterol. 2015;8:4–22.CrossRef Chapman CG, Pekow J. The emerging role of miRNAs in inflammatory bowel disease: a review. Ther Adv Gastroenterol. 2015;8:4–22.CrossRef
43.
Zurück zum Zitat Schetter AJ, Nguyen GH, Bowman ED, Mathe EA, Yuen ST, Hawkes JE, Croce CM, Leung SY, Harris CC. Association of inflammation-related and microRNA gene expression with cancer-specific mortality of colon adenocarcinoma. Clin Cancer Res. 2009;15:5878–87. Schetter AJ, Nguyen GH, Bowman ED, Mathe EA, Yuen ST, Hawkes JE, Croce CM, Leung SY, Harris CC. Association of inflammation-related and microRNA gene expression with cancer-specific mortality of colon adenocarcinoma. Clin Cancer Res. 2009;15:5878–87.
44.
Zurück zum Zitat Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM, Harris CC. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. Jama. 2008;299:425–36. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM, Harris CC. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. Jama. 2008;299:425–36.
45.
Zurück zum Zitat Shi C, Liang Y, Yang J, Xia Y, Chen H, Han H, et al. MicroRNA-21 knockout improve the survival rate in DSS induced fatal colitis through protecting against inflammation and tissue injury. PLoS One. 2013;8:e66814.PubMedPubMedCentralCrossRef Shi C, Liang Y, Yang J, Xia Y, Chen H, Han H, et al. MicroRNA-21 knockout improve the survival rate in DSS induced fatal colitis through protecting against inflammation and tissue injury. PLoS One. 2013;8:e66814.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Yang Y, Ma Y, Shi C, Chen H, Zhang H, Chen N, et al. Overexpression of miR-21 in patients with ulcerative colitis impairs intestinal epithelial barrier function through targeting the Rho GTPase RhoB. Biochem Biophys Res Commun. 2013;434:746–52.PubMedCrossRef Yang Y, Ma Y, Shi C, Chen H, Zhang H, Chen N, et al. Overexpression of miR-21 in patients with ulcerative colitis impairs intestinal epithelial barrier function through targeting the Rho GTPase RhoB. Biochem Biophys Res Commun. 2013;434:746–52.PubMedCrossRef
47.
49.
Zurück zum Zitat Zhai Z, Wu F, Chuang AY, Kwon JH. miR-106b fine tunes ATG16L1 expression and autophagic activity in intestinal epithelial HCT116 cells. Inflamm Bowel Dis. 2013;19:2295–301.PubMedCrossRef Zhai Z, Wu F, Chuang AY, Kwon JH. miR-106b fine tunes ATG16L1 expression and autophagic activity in intestinal epithelial HCT116 cells. Inflamm Bowel Dis. 2013;19:2295–301.PubMedCrossRef
50.
Zurück zum Zitat Nguyen HT, Dalmasso G, Muller S, Carriere J, Seibold F, Darfeuille-Michaud A. Crohn’s disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology. 2014;146:508–19.PubMedCrossRef Nguyen HT, Dalmasso G, Muller S, Carriere J, Seibold F, Darfeuille-Michaud A. Crohn’s disease-associated adherent invasive Escherichia coli modulate levels of microRNAs in intestinal epithelial cells to reduce autophagy. Gastroenterology. 2014;146:508–19.PubMedCrossRef
51.
Zurück zum Zitat Ma Q, Wang X, Li Z, Li B, Ma F, Peng L, et al. microRNA-16 represses colorectal cancer cell growth in vitro by regulating the p53/survivin signaling pathway. Oncol Rep. 2013;29:1652–8.PubMed Ma Q, Wang X, Li Z, Li B, Ma F, Peng L, et al. microRNA-16 represses colorectal cancer cell growth in vitro by regulating the p53/survivin signaling pathway. Oncol Rep. 2013;29:1652–8.PubMed
52.
Zurück zum Zitat Li F, Ackermann EJ, Bennett CF, Rothermel AL, Plescia J, Tognin S, et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol. 1999;1:461–6.PubMedCrossRef Li F, Ackermann EJ, Bennett CF, Rothermel AL, Plescia J, Tognin S, et al. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol. 1999;1:461–6.PubMedCrossRef
53.
Zurück zum Zitat He X, Dong Y, Wu CW, Zhao Z, Ng SS, Chan FK, et al. MicroRNA-218 inhibits cell cycle progression and promotes apoptosis in colon cancer by downregulating BMI1 polycomb ring finger oncogene. Mol Med. 2012;18:1491–8.PubMedCentral He X, Dong Y, Wu CW, Zhao Z, Ng SS, Chan FK, et al. MicroRNA-218 inhibits cell cycle progression and promotes apoptosis in colon cancer by downregulating BMI1 polycomb ring finger oncogene. Mol Med. 2012;18:1491–8.PubMedCentral
54.
Zurück zum Zitat Cai SD, Chen JS, Xi ZW, Zhang LJ, Niu ML, Gao ZY. MicroRNA144 inhibits migration and proliferation in rectal cancer by downregulating ROCK1. Mol Med Rep. 2015;12:7396–402.PubMedPubMedCentral Cai SD, Chen JS, Xi ZW, Zhang LJ, Niu ML, Gao ZY. MicroRNA144 inhibits migration and proliferation in rectal cancer by downregulating ROCK1. Mol Med Rep. 2015;12:7396–402.PubMedPubMedCentral
55.
Zurück zum Zitat Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. 2007;104:15472–7.PubMedPubMedCentralCrossRef Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA. 2007;104:15472–7.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Ohta T, Shimizu K, Yi S, Takamura H, Amaya K, Kitagawa H, et al. Protease-activated receptor-2 expression and the role of trypsin in cell proliferation in human pancreatic cancers. Int J Oncol. 2003;23:61–6.PubMed Ohta T, Shimizu K, Yi S, Takamura H, Amaya K, Kitagawa H, et al. Protease-activated receptor-2 expression and the role of trypsin in cell proliferation in human pancreatic cancers. Int J Oncol. 2003;23:61–6.PubMed
57.
Zurück zum Zitat Ma Y, Bao-Han W, Lv X, Su Y, Zhao X, Yin Y, et al. MicroRNA-34a mediates the autocrine signaling of PAR2-activating proteinase and its role in colonic cancer cell proliferation. PLoS One. 2013;8:e72383.PubMedPubMedCentralCrossRef Ma Y, Bao-Han W, Lv X, Su Y, Zhao X, Yin Y, et al. MicroRNA-34a mediates the autocrine signaling of PAR2-activating proteinase and its role in colonic cancer cell proliferation. PLoS One. 2013;8:e72383.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Bu P, Chen KY, Chen JH, Wang L, Walters J, Shin YJ, et al. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell. 2013;12:602–15.PubMedPubMedCentralCrossRef Bu P, Chen KY, Chen JH, Wang L, Walters J, Shin YJ, et al. A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell. 2013;12:602–15.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Carrier F, Jacks T, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992;71:587–97.PubMedCrossRef Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Carrier F, Jacks T, et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992;71:587–97.PubMedCrossRef
61.
Zurück zum Zitat Vousden KH, Prives C. Blinded by the Light: The Growing Complexity of p53. Cell. 2009;137:413–31.PubMedCrossRef Vousden KH, Prives C. Blinded by the Light: The Growing Complexity of p53. Cell. 2009;137:413–31.PubMedCrossRef
62.
63.
Zurück zum Zitat Lai M, Du G, Shi R, Yao J, Yang G, Wei Y, et al. MiR-34a inhibits migration and invasion by regulating the SIRT1/p53 pathway in human SW480 cells. Mol Med Rep. 2015;11:3301–7.PubMedPubMedCentral Lai M, Du G, Shi R, Yao J, Yang G, Wei Y, et al. MiR-34a inhibits migration and invasion by regulating the SIRT1/p53 pathway in human SW480 cells. Mol Med Rep. 2015;11:3301–7.PubMedPubMedCentral
64.
Zurück zum Zitat Hu J, Liu S, Wang J, Luo X, Gao X, Xia X, et al. Overexpression of the N-terminal end of the p55gamma regulatory subunit of phosphatidylinositol 3-kinase blocks cell cycle progression in gastric carcinoma cells. Int J Oncol. 2005;26:1321–7.PubMed Hu J, Liu S, Wang J, Luo X, Gao X, Xia X, et al. Overexpression of the N-terminal end of the p55gamma regulatory subunit of phosphatidylinositol 3-kinase blocks cell cycle progression in gastric carcinoma cells. Int J Oncol. 2005;26:1321–7.PubMed
65.
Zurück zum Zitat Xia X, Cheng A, Akinmade D, Hamburger AW. The N-terminal 24 amino acids of the p55 gamma regulatory subunit of phosphoinositide 3-kinase binds Rb and induces cell cycle arrest. Mol Cell Biol. 2003;23:1717–25.PubMedPubMedCentralCrossRef Xia X, Cheng A, Akinmade D, Hamburger AW. The N-terminal 24 amino acids of the p55 gamma regulatory subunit of phosphoinositide 3-kinase binds Rb and induces cell cycle arrest. Mol Cell Biol. 2003;23:1717–25.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Wang G, Cao X, Lai S, Luo X, Feng Y, Wu J, et al. Altered p53 regulation of miR-148b and p55PIK contributes to tumor progression in colorectal cancer. Oncogene. 2015;34:912–21.PubMedCrossRef Wang G, Cao X, Lai S, Luo X, Feng Y, Wu J, et al. Altered p53 regulation of miR-148b and p55PIK contributes to tumor progression in colorectal cancer. Oncogene. 2015;34:912–21.PubMedCrossRef
67.
Zurück zum Zitat Zhou C, Liu G, Wang L, Lu Y, Yuan L, Zheng L, et al. MiR-339-5p regulates the growth, colony formation and metastasis of colorectal cancer cells by targeting PRL-1. PLoS One. 2013;8:e63142.PubMedPubMedCentralCrossRef Zhou C, Liu G, Wang L, Lu Y, Yuan L, Zheng L, et al. MiR-339-5p regulates the growth, colony formation and metastasis of colorectal cancer cells by targeting PRL-1. PLoS One. 2013;8:e63142.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Li Y, Zhao W, Bao P, Li C, Ma XQ, Li Y, et al. miR-339-5p inhibits cell migration and invasion and may be associated with the tumor-node-metastasis staging and lymph node metastasis of non-small cell lung cancer. Oncol lett. 2014;8:719–25.PubMedPubMedCentral Li Y, Zhao W, Bao P, Li C, Ma XQ, Li Y, et al. miR-339-5p inhibits cell migration and invasion and may be associated with the tumor-node-metastasis staging and lymph node metastasis of non-small cell lung cancer. Oncol lett. 2014;8:719–25.PubMedPubMedCentral
69.
Zurück zum Zitat Zhang C, Liu J, Wang X, Wu R, Lin M, Laddha SV, et al. MicroRNA-339-5p inhibits colorectal tumorigenesis through regulation of the MDM2/p53 signaling. Oncotarget. 2014;5:9106–17.PubMedPubMedCentralCrossRef Zhang C, Liu J, Wang X, Wu R, Lin M, Laddha SV, et al. MicroRNA-339-5p inhibits colorectal tumorigenesis through regulation of the MDM2/p53 signaling. Oncotarget. 2014;5:9106–17.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Hu W, Chan CS, Wu R, Zhang C, Sun Y, Song JS, et al. Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell. 2010;38:689–99.PubMedPubMedCentralCrossRef Hu W, Chan CS, Wu R, Zhang C, Sun Y, Song JS, et al. Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell. 2010;38:689–99.PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Shang J, Yang F, Wang Y, Wang Y, Xue G, Mei Q, et al. MicroRNA-23a antisense enhances 5-fluorouracil chemosensitivity through APAF-1/caspase-9 apoptotic pathway in colorectal cancer cells. J Cell Biochem. 2014;115:772–84.PubMedCrossRef Shang J, Yang F, Wang Y, Wang Y, Xue G, Mei Q, et al. MicroRNA-23a antisense enhances 5-fluorouracil chemosensitivity through APAF-1/caspase-9 apoptotic pathway in colorectal cancer cells. J Cell Biochem. 2014;115:772–84.PubMedCrossRef
72.
Zurück zum Zitat Rossi L, Bonmassar E, Faraoni I. Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res. 2007;56:248–53.PubMedCrossRef Rossi L, Bonmassar E, Faraoni I. Modification of miR gene expression pattern in human colon cancer cells following exposure to 5-fluorouracil in vitro. Pharmacol Res. 2007;56:248–53.PubMedCrossRef
73.
Zurück zum Zitat Karaayvaz M, Zhai H, Ju J. miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis. 2013;4:e659.PubMedPubMedCentralCrossRef Karaayvaz M, Zhai H, Ju J. miR-129 promotes apoptosis and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cell Death Dis. 2013;4:e659.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Nie J, Liu L, Zheng W, Chen L, Wu X, Xu Y, et al. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2. Carcinogenesis. 2012;33:220–5.PubMedCrossRef Nie J, Liu L, Zheng W, Chen L, Wu X, Xu Y, et al. microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2. Carcinogenesis. 2012;33:220–5.PubMedCrossRef
75.
77.
Zurück zum Zitat Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.PubMedCrossRef Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol. 2006;7:131–42.PubMedCrossRef
78.
Zurück zum Zitat D’Eliseo D, Di Rocco G, Loria R, Soddu S, Santoni A, Velotti F. Epitelial-to-mesenchimal transition and invasion are upmodulated by tumor-expressed granzyme B and inhibited by docosahexaenoic acid in human colorectal cancer cells. J Exp Clin Cancer Res. 2016;35:24.PubMedPubMedCentralCrossRef D’Eliseo D, Di Rocco G, Loria R, Soddu S, Santoni A, Velotti F. Epitelial-to-mesenchimal transition and invasion are upmodulated by tumor-expressed granzyme B and inhibited by docosahexaenoic acid in human colorectal cancer cells. J Exp Clin Cancer Res. 2016;35:24.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A. 2001;98:10356–61.PubMedPubMedCentralCrossRef Brabletz T, Jung A, Reu S, Porzner M, Hlubek F, Kunz-Schughart LA, et al. Variable beta-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. Proc Natl Acad Sci U S A. 2001;98:10356–61.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Strillacci A, Valerii MC, Sansone P, Caggiano C, Sgromo A, Vittori L, et al. Loss of miR-101 expression promotes Wnt/beta-catenin signalling pathway activation and malignancy in colon cancer cells. J Pathol. 2013;229:379–89.PubMedCrossRef Strillacci A, Valerii MC, Sansone P, Caggiano C, Sgromo A, Vittori L, et al. Loss of miR-101 expression promotes Wnt/beta-catenin signalling pathway activation and malignancy in colon cancer cells. J Pathol. 2013;229:379–89.PubMedCrossRef
81.
Zurück zum Zitat Ji S, Ye G, Zhang J, Wang L, Wang T, Wang Z, et al. miR-574-5p negatively regulates Qki6/7 to impact beta-catenin/Wnt signalling and the development of colorectal cancer. Gut. 2013;62:716–26.PubMedPubMedCentralCrossRef Ji S, Ye G, Zhang J, Wang L, Wang T, Wang Z, et al. miR-574-5p negatively regulates Qki6/7 to impact beta-catenin/Wnt signalling and the development of colorectal cancer. Gut. 2013;62:716–26.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Li T, Lai Q, Wang S, Cai J, Xiao Z, Deng D, et al. MicroRNA-224 sustains Wnt/beta-catenin signaling and promotes aggressive phenotype of colorectal cancer. J Exp Clin Cancer Res. 2016;35:21.PubMedPubMedCentralCrossRef Li T, Lai Q, Wang S, Cai J, Xiao Z, Deng D, et al. MicroRNA-224 sustains Wnt/beta-catenin signaling and promotes aggressive phenotype of colorectal cancer. J Exp Clin Cancer Res. 2016;35:21.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Zhang JX, Mai SJ, Huang XX, Wang FW, Liao YJ, Lin MC, et al. MiR-29c mediates epithelial-to-mesenchymal transition in human colorectal carcinoma metastasis via PTP4A and GNA13 regulation of beta-catenin signaling. Ann Oncol. 2014;25:2196–204.PubMedCrossRef Zhang JX, Mai SJ, Huang XX, Wang FW, Liao YJ, Lin MC, et al. MiR-29c mediates epithelial-to-mesenchymal transition in human colorectal carcinoma metastasis via PTP4A and GNA13 regulation of beta-catenin signaling. Ann Oncol. 2014;25:2196–204.PubMedCrossRef
84.
Zurück zum Zitat Wang B, Li W, Liu H, Yang L, Liao Q, Cui S, et al. miR-29b suppresses tumor growth and metastasis in colorectal cancer via downregulating Tiam1 expression and inhibiting epithelial-mesenchymal transition. Cell Death Dis. 2014;5:e1335.PubMedPubMedCentralCrossRef Wang B, Li W, Liu H, Yang L, Liao Q, Cui S, et al. miR-29b suppresses tumor growth and metastasis in colorectal cancer via downregulating Tiam1 expression and inhibiting epithelial-mesenchymal transition. Cell Death Dis. 2014;5:e1335.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Tang W, Zhu Y, Gao J, Fu J, Liu C, Liu Y, et al. MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. Br J Cancer. 2014;110:450–8.PubMedPubMedCentralCrossRef Tang W, Zhu Y, Gao J, Fu J, Liu C, Liu Y, et al. MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. Br J Cancer. 2014;110:450–8.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283:14910–4.PubMedPubMedCentralCrossRef Korpal M, Lee ES, Hu G, Kang Y. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem. 2008;283:14910–4.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.PubMedPubMedCentralCrossRef Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Chen ML, Liang LS, Wang XK. miR-200c inhibits invasion and migration in human colon cancer cells SW480/620 by targeting ZEB1. Clin Exp Metastasis. 2012;29:457–69.PubMedCrossRef Chen ML, Liang LS, Wang XK. miR-200c inhibits invasion and migration in human colon cancer cells SW480/620 by targeting ZEB1. Clin Exp Metastasis. 2012;29:457–69.PubMedCrossRef
89.
Zurück zum Zitat Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J, et al. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut. 2013;62:1315–26.PubMedPubMedCentralCrossRef Hur K, Toiyama Y, Takahashi M, Balaguer F, Nagasaka T, Koike J, et al. MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT) in human colorectal cancer metastasis. Gut. 2013;62:1315–26.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Sun Y, Shen S, Liu X, Tang H, Wang Z, Yu Z, et al. MiR-429 inhibits cells growth and invasion and regulates EMT-related marker genes by targeting Onecut2 in colorectal carcinoma. Mol Cell Biochem. 2014;390:19–30.PubMedPubMedCentralCrossRef Sun Y, Shen S, Liu X, Tang H, Wang Z, Yu Z, et al. MiR-429 inhibits cells growth and invasion and regulates EMT-related marker genes by targeting Onecut2 in colorectal carcinoma. Mol Cell Biochem. 2014;390:19–30.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Zheng YB, Luo HP, Shi Q, Hao ZN, Ding Y, Wang QS, et al. miR-132 inhibits colorectal cancer invasion and metastasis via directly targeting ZEB2. World J Gastroenterol. 2014;20:6515–22.PubMedPubMedCentralCrossRef Zheng YB, Luo HP, Shi Q, Hao ZN, Ding Y, Wang QS, et al. miR-132 inhibits colorectal cancer invasion and metastasis via directly targeting ZEB2. World J Gastroenterol. 2014;20:6515–22.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Are C, Brattain M, et al. MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene. 2014;33:5332–40.PubMedPubMedCentralCrossRef Geng L, Chaudhuri A, Talmon G, Wisecarver JL, Are C, Brattain M, et al. MicroRNA-192 suppresses liver metastasis of colon cancer. Oncogene. 2014;33:5332–40.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Sun Z, Zhang Z, Liu Z, Qiu B, Liu K, Dong G. MicroRNA-335 inhibits invasion and metastasis of colorectal cancer by targeting ZEB2. Med Oncol. 2014;31:982.PubMedCrossRef Sun Z, Zhang Z, Liu Z, Qiu B, Liu K, Dong G. MicroRNA-335 inhibits invasion and metastasis of colorectal cancer by targeting ZEB2. Med Oncol. 2014;31:982.PubMedCrossRef
94.
Zurück zum Zitat Hahn S, Jackstadt R, Siemens H, Hunten S, Hermeking H. SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. EMBO J. 2013;32:3079–95.PubMedPubMedCentralCrossRef Hahn S, Jackstadt R, Siemens H, Hunten S, Hermeking H. SNAIL and miR-34a feed-forward regulation of ZNF281/ZBP99 promotes epithelial-mesenchymal transition. EMBO J. 2013;32:3079–95.PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Rokavec M, Oner MG, Li H, Jackstadt R, Jiang L, Lodygin D, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124:1853–67.PubMedPubMedCentralCrossRef Rokavec M, Oner MG, Li H, Jackstadt R, Jiang L, Lodygin D, et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest. 2014;124:1853–67.PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Chen DL, Wang ZQ, Zeng ZL, Wu WJ, Zhang DS, Luo HY, et al. Identification of microRNA-214 as a negative regulator of colorectal cancer liver metastasis by way of regulation of fibroblast growth factor receptor 1 expression. Hepatology. 2014;60:598–609.PubMedCrossRef Chen DL, Wang ZQ, Zeng ZL, Wu WJ, Zhang DS, Luo HY, et al. Identification of microRNA-214 as a negative regulator of colorectal cancer liver metastasis by way of regulation of fibroblast growth factor receptor 1 expression. Hepatology. 2014;60:598–609.PubMedCrossRef
97.
Zurück zum Zitat Loo JM, Scherl A, Nguyen A, Man FY, Weinberg E, Zeng Z, et al. Extracellular metabolic energetics can promote cancer progression. Cell. 2015;160:393–406.PubMedPubMedCentralCrossRef Loo JM, Scherl A, Nguyen A, Man FY, Weinberg E, Zeng Z, et al. Extracellular metabolic energetics can promote cancer progression. Cell. 2015;160:393–406.PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Feng Y, Zhu J, Ou C, Deng Z, Chen M, Huang W, et al. MicroRNA-145 inhibits tumour growth and metastasis in colorectal cancer by targeting fascin-1. Br J Cancer. 2014;110:2300–9.PubMedPubMedCentralCrossRef Feng Y, Zhu J, Ou C, Deng Z, Chen M, Huang W, et al. MicroRNA-145 inhibits tumour growth and metastasis in colorectal cancer by targeting fascin-1. Br J Cancer. 2014;110:2300–9.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Yuan W, Sui C, Liu Q, Tang W, An H, Ma J. Up-regulation of microRNA-145 associates with lymph node metastasis in colorectal cancer. PLoS One. 2014;9:e102017.PubMedPubMedCentralCrossRef Yuan W, Sui C, Liu Q, Tang W, An H, Ma J. Up-regulation of microRNA-145 associates with lymph node metastasis in colorectal cancer. PLoS One. 2014;9:e102017.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Zhang GJ, Li JS, Zhou H, Xiao HX, Li Y, Zhou T. MicroRNA-106b promotes colorectal cancer cell migration and invasion by directly targeting DLC1. J Exp Clin Cancer Res. 2015;34:73.PubMedPubMedCentralCrossRef Zhang GJ, Li JS, Zhou H, Xiao HX, Li Y, Zhou T. MicroRNA-106b promotes colorectal cancer cell migration and invasion by directly targeting DLC1. J Exp Clin Cancer Res. 2015;34:73.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Xiong B, Cheng Y, Ma L, Zhang C. MiR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol. 2013;42:219–28.PubMed Xiong B, Cheng Y, Ma L, Zhang C. MiR-21 regulates biological behavior through the PTEN/PI-3 K/Akt signaling pathway in human colorectal cancer cells. Int J Oncol. 2013;42:219–28.PubMed
102.
Zurück zum Zitat Ke TW, Wei PL, Yeh KT, Chen WT, Cheng YW. MiR-92a promotes cell metastasis of colorectal cancer through PTEN-mediated PI3K/AKT pathway. Ann Surg Oncol. 2015;22:2649–55.PubMedCrossRef Ke TW, Wei PL, Yeh KT, Chen WT, Cheng YW. MiR-92a promotes cell metastasis of colorectal cancer through PTEN-mediated PI3K/AKT pathway. Ann Surg Oncol. 2015;22:2649–55.PubMedCrossRef
103.
Zurück zum Zitat Zhang G, Zhou H, Xiao H, Liu Z, Tian H, Zhou T. MicroRNA-92a functions as an oncogene in colorectal cancer by targeting PTEN. Dig Dis Sci. 2014;59:98–107.PubMedCrossRef Zhang G, Zhou H, Xiao H, Liu Z, Tian H, Zhou T. MicroRNA-92a functions as an oncogene in colorectal cancer by targeting PTEN. Dig Dis Sci. 2014;59:98–107.PubMedCrossRef
104.
Zurück zum Zitat Fang L, Li H, Wang L, Hu J, Jin T, Wang J, et al. MicroRNA-17-5p promotes chemotherapeutic drug resistance and tumour metastasis of colorectal cancer by repressing PTEN expression. Oncotarget. 2014;5:2974–87.PubMedPubMedCentralCrossRef Fang L, Li H, Wang L, Hu J, Jin T, Wang J, et al. MicroRNA-17-5p promotes chemotherapeutic drug resistance and tumour metastasis of colorectal cancer by repressing PTEN expression. Oncotarget. 2014;5:2974–87.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Qin J, Luo M. MicroRNA-221 promotes colorectal cancer cell invasion and metastasis by targeting RECK. FEBS Lett. 2014;588:99–104.PubMedCrossRef Qin J, Luo M. MicroRNA-221 promotes colorectal cancer cell invasion and metastasis by targeting RECK. FEBS Lett. 2014;588:99–104.PubMedCrossRef
106.
Zurück zum Zitat Sun K, Wang W, Zeng JJ, Wu CT, Lei ST, Li GX. MicroRNA-221 inhibits CDKN1C/p57 expression in human colorectal carcinoma. Acta Pharmacol Sin. 2011;32:375–84.PubMedPubMedCentralCrossRef Sun K, Wang W, Zeng JJ, Wu CT, Lei ST, Li GX. MicroRNA-221 inhibits CDKN1C/p57 expression in human colorectal carcinoma. Acta Pharmacol Sin. 2011;32:375–84.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Liu X, Zhang Z, Sun L, Chai N, Tang S, Jin J, et al. MicroRNA-499-5p promotes cellular invasion and tumor metastasis in colorectal cancer by targeting FOXO4 and PDCD4. Carcinogenesis. 2011;32:1798–805.PubMedCrossRef Liu X, Zhang Z, Sun L, Chai N, Tang S, Jin J, et al. MicroRNA-499-5p promotes cellular invasion and tumor metastasis in colorectal cancer by targeting FOXO4 and PDCD4. Carcinogenesis. 2011;32:1798–805.PubMedCrossRef
108.
Zurück zum Zitat Yang MH, Yu J, Jiang DM, Li WL, Wang S, Ding YQ. microRNA-182 targets special AT-rich sequence-binding protein 2 to promote colorectal cancer proliferation and metastasis. J Transl Med. 2014;12:109.PubMedPubMedCentralCrossRef Yang MH, Yu J, Jiang DM, Li WL, Wang S, Ding YQ. microRNA-182 targets special AT-rich sequence-binding protein 2 to promote colorectal cancer proliferation and metastasis. J Transl Med. 2014;12:109.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Wang S, Yang MH, Wang XY, Lin J, Ding YQ. Increased expression of miRNA-182 in colorectal carcinoma: an independent and tissue-specific prognostic factor. Int J Clin Exp Pathol. 2014;7:3498–503.PubMedPubMedCentral Wang S, Yang MH, Wang XY, Lin J, Ding YQ. Increased expression of miRNA-182 in colorectal carcinoma: an independent and tissue-specific prognostic factor. Int J Clin Exp Pathol. 2014;7:3498–503.PubMedPubMedCentral
110.
Zurück zum Zitat Sakamori R, Das S, Yu S, Feng S, Stypulkowski E, Guan Y, et al. Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice. J Clin Invest. 2012;122:1052–65.PubMedPubMedCentralCrossRef Sakamori R, Das S, Yu S, Feng S, Stypulkowski E, Guan Y, et al. Cdc42 and Rab8a are critical for intestinal stem cell division, survival, and differentiation in mice. J Clin Invest. 2012;122:1052–65.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Gomez Del Pulgar T, Valdes-Mora F, Bandres E, Perez-Palacios R, Espina C, Cejas P, et al. Cdc42 is highly expressed in colorectal adenocarcinoma and downregulates ID4 through an epigenetic mechanism. Int J Oncol. 2008;33:185–93.PubMed Gomez Del Pulgar T, Valdes-Mora F, Bandres E, Perez-Palacios R, Espina C, Cejas P, et al. Cdc42 is highly expressed in colorectal adenocarcinoma and downregulates ID4 through an epigenetic mechanism. Int J Oncol. 2008;33:185–93.PubMed
112.
Zurück zum Zitat Sakamori R, Yu S, Zhang X, Hoffman A, Sun J, Das S, et al. CDC42 inhibition suppresses progression of incipient intestinal tumors. Cancer Res. 2014;74:5480–92.PubMedPubMedCentralCrossRef Sakamori R, Yu S, Zhang X, Hoffman A, Sun J, Das S, et al. CDC42 inhibition suppresses progression of incipient intestinal tumors. Cancer Res. 2014;74:5480–92.PubMedPubMedCentralCrossRef
113.
Zurück zum Zitat Ke TW, Hsu HL, Wu YH, Chen WT, Cheng YW, Cheng CW. MicroRNA-224 suppresses colorectal cancer cell migration by targeting Cdc42. Dis Markers. 2014;2014:617150.PubMedPubMedCentralCrossRef Ke TW, Hsu HL, Wu YH, Chen WT, Cheng YW, Cheng CW. MicroRNA-224 suppresses colorectal cancer cell migration by targeting Cdc42. Dis Markers. 2014;2014:617150.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Kim DH, Pickhardt PJ, Taylor AJ, Leung WK, Winter TC, Hinshaw JL, et al. CT colonography versus colonoscopy for the detection of advanced neoplasia. N Engl J Med. 2007;357:1403–12.PubMedCrossRef Kim DH, Pickhardt PJ, Taylor AJ, Leung WK, Winter TC, Hinshaw JL, et al. CT colonography versus colonoscopy for the detection of advanced neoplasia. N Engl J Med. 2007;357:1403–12.PubMedCrossRef
115.
Zurück zum Zitat Levin B, Lieberman DA, McFarland B, Andrews KS, Brooks D, Bond J, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US multi-society task force on colorectal cancer, and the American College of Radiology. Gastroenterology. 2008;134:1570–95.PubMedCrossRef Levin B, Lieberman DA, McFarland B, Andrews KS, Brooks D, Bond J, et al. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US multi-society task force on colorectal cancer, and the American College of Radiology. Gastroenterology. 2008;134:1570–95.PubMedCrossRef
116.
Zurück zum Zitat Lieberman DA. Clinical practice. Screening for colorectal cancer. N Engl J Med. 2009;361:1179–87.PubMedCrossRef Lieberman DA. Clinical practice. Screening for colorectal cancer. N Engl J Med. 2009;361:1179–87.PubMedCrossRef
117.
Zurück zum Zitat Bonfrate L, Altomare DF, Di Lena M, Travaglio E, Rotelli MT, De Luca A, et al. MicroRNA in colorectal cancer: new perspectives for diagnosis, prognosis and treatment. J Gastrointestin Liver Dis. 2013;22:311–20.PubMed Bonfrate L, Altomare DF, Di Lena M, Travaglio E, Rotelli MT, De Luca A, et al. MicroRNA in colorectal cancer: new perspectives for diagnosis, prognosis and treatment. J Gastrointestin Liver Dis. 2013;22:311–20.PubMed
118.
Zurück zum Zitat Fesler A, Jiang J, Zhai H, Ju J. Circulating microRNA testing for the early diagnosis and follow-up of colorectal cancer patients. Mol Diagn Ther. 2014;18:303–8.PubMedPubMedCentralCrossRef Fesler A, Jiang J, Zhai H, Ju J. Circulating microRNA testing for the early diagnosis and follow-up of colorectal cancer patients. Mol Diagn Ther. 2014;18:303–8.PubMedPubMedCentralCrossRef
119.
120.
Zurück zum Zitat Ahmed FE, Amed NC, Vos PW, Bonnerup C, Atkins JN, Casey M, et al. Diagnostic microRNA markers to screen for sporadic human colon cancer in blood. Cancer Genomics Proteomics. 2012;9:179–92.PubMed Ahmed FE, Amed NC, Vos PW, Bonnerup C, Atkins JN, Casey M, et al. Diagnostic microRNA markers to screen for sporadic human colon cancer in blood. Cancer Genomics Proteomics. 2012;9:179–92.PubMed
121.
Zurück zum Zitat Ahmed FE, Jeffries CD, Vos PW, Flake G, Nuovo GJ, Sinar DR, et al. Diagnostic microRNA markers for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue. Cancer Genomics Proteomics. 2009;6:281–95.PubMed Ahmed FE, Jeffries CD, Vos PW, Flake G, Nuovo GJ, Sinar DR, et al. Diagnostic microRNA markers for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue. Cancer Genomics Proteomics. 2009;6:281–95.PubMed
122.
Zurück zum Zitat Fang Z, Tang J, Bai Y, Lin H, You H, Jin H, et al. Plasma levels of microRNA-24, microRNA-320a, and microRNA-423-5p are potential biomarkers for colorectal carcinoma. J Exp Clin Cancer Res. 2015;34:86.PubMedPubMedCentralCrossRef Fang Z, Tang J, Bai Y, Lin H, You H, Jin H, et al. Plasma levels of microRNA-24, microRNA-320a, and microRNA-423-5p are potential biomarkers for colorectal carcinoma. J Exp Clin Cancer Res. 2015;34:86.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.PubMedCrossRef Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.PubMedCrossRef
124.
Zurück zum Zitat Zheng G, Du L, Yang X, Zhang X, Wang L, Yang Y, et al. Serum microRNA panel as biomarkers for early diagnosis of colorectal adenocarcinoma. Br J Cancer. 2014;111:1985–92.PubMedPubMedCentralCrossRef Zheng G, Du L, Yang X, Zhang X, Wang L, Yang Y, et al. Serum microRNA panel as biomarkers for early diagnosis of colorectal adenocarcinoma. Br J Cancer. 2014;111:1985–92.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58:1375–81.PubMedCrossRef Ng EK, Chong WW, Jin H, Lam EK, Shin VY, Yu J, et al. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut. 2009;58:1375–81.PubMedCrossRef
126.
Zurück zum Zitat Pu XX, Huang GL, Guo HQ, Guo CC, Li H, Ye S, et al. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol. 2010;25:1674–80.PubMedCrossRef Pu XX, Huang GL, Guo HQ, Guo CC, Li H, Ye S, et al. Circulating miR-221 directly amplified from plasma is a potential diagnostic and prognostic marker of colorectal cancer and is correlated with p53 expression. J Gastroenterol Hepatol. 2010;25:1674–80.PubMedCrossRef
127.
Zurück zum Zitat Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ, Boland CR, et al. Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomark Prev. 2010;19:1766–74.CrossRef Link A, Balaguer F, Shen Y, Nagasaka T, Lozano JJ, Boland CR, et al. Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomark Prev. 2010;19:1766–74.CrossRef
128.
Zurück zum Zitat Li JM, Zhao RH, Li ST, Xie CX, Jiang HH, Ding WJ, et al. Down-regulation of fecal miR-143 and miR-145 as potential markers for colorectal cancer. Saudi Med J. 2012;33:24–9.PubMed Li JM, Zhao RH, Li ST, Xie CX, Jiang HH, Ding WJ, et al. Down-regulation of fecal miR-143 and miR-145 as potential markers for colorectal cancer. Saudi Med J. 2012;33:24–9.PubMed
129.
Zurück zum Zitat Wu CW, Ng SS, Dong YJ, Ng SC, Leung WW, Lee CW, et al. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut. 2012;61:739–45.PubMedCrossRef Wu CW, Ng SS, Dong YJ, Ng SC, Leung WW, Lee CW, et al. Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut. 2012;61:739–45.PubMedCrossRef
130.
Zurück zum Zitat Koga Y, Yasunaga M, Takahashi A, Kuroda J, Moriya Y, Akasu T, et al. MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev Res (Phila). 2010;3:1435–42.CrossRef Koga Y, Yasunaga M, Takahashi A, Kuroda J, Moriya Y, Akasu T, et al. MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev Res (Phila). 2010;3:1435–42.CrossRef
131.
Zurück zum Zitat Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO, et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res. 2007;67:9721–30.PubMedCrossRef Hinoi T, Akyol A, Theisen BK, Ferguson DO, Greenson JK, Williams BO, et al. Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res. 2007;67:9721–30.PubMedCrossRef
132.
Zurück zum Zitat Valeri N, Braconi C, Gasparini P, Murgia C, Lampis A, Paulus-Hock V, et al. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell. 2014;25:469–83.PubMedPubMedCentralCrossRef Valeri N, Braconi C, Gasparini P, Murgia C, Lampis A, Paulus-Hock V, et al. MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell. 2014;25:469–83.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Wu W, Wang Z, Yang P, Yang J, Liang J, Chen Y, et al. MicroRNA-135b regulates metastasis suppressor 1 expression and promotes migration and invasion in colorectal cancer. Mol Cell Biochem. 2014;388:249–59.PubMedCrossRef Wu W, Wang Z, Yang P, Yang J, Liang J, Chen Y, et al. MicroRNA-135b regulates metastasis suppressor 1 expression and promotes migration and invasion in colorectal cancer. Mol Cell Biochem. 2014;388:249–59.PubMedCrossRef
134.
Zurück zum Zitat Oberg AL, French AJ, Sarver AL, Subramanian S, Morlan BW, Riska SM, et al. miRNA expression in colon polyps provides evidence for a multihit model of colon cancer. PLoS One. 2011;6:e20465.PubMedPubMedCentralCrossRef Oberg AL, French AJ, Sarver AL, Subramanian S, Morlan BW, Riska SM, et al. miRNA expression in colon polyps provides evidence for a multihit model of colon cancer. PLoS One. 2011;6:e20465.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Chai H, Liu M, Tian R, Li X, Tang H. miR-20a targets BNIP2 and contributes chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines. Acta Biochim Biophys Sin. 2011;43:217–25.PubMedCrossRef Chai H, Liu M, Tian R, Li X, Tang H. miR-20a targets BNIP2 and contributes chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines. Acta Biochim Biophys Sin. 2011;43:217–25.PubMedCrossRef
136.
Zurück zum Zitat Wang CJ, Stratmann J, Zhou ZG, Sun XF. Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. BMC Cancer. 2010;10:616.PubMedPubMedCentralCrossRef Wang CJ, Stratmann J, Zhou ZG, Sun XF. Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. BMC Cancer. 2010;10:616.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci U S A. 2010;107:21098–103.PubMedPubMedCentralCrossRef Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, et al. MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci U S A. 2010;107:21098–103.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Huang Z, Huang S, Wang Q, Liang L, Ni S, Wang L, et al. MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma. Cancer Res. 2011;71:2582–9.PubMedCrossRef Huang Z, Huang S, Wang Q, Liang L, Ni S, Wang L, et al. MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma. Cancer Res. 2011;71:2582–9.PubMedCrossRef
139.
Zurück zum Zitat Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ, et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis. 2010;31:350–8.PubMedCrossRef Tsang WP, Ng EK, Ng SS, Jin H, Yu J, Sung JJ, et al. Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis. 2010;31:350–8.PubMedCrossRef
140.
Zurück zum Zitat Jung J, Yeom C, Choi YS, Kim S, Lee E, Park MJ, et al. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge. Oncotarget. 2015;6:20370–87.PubMedPubMedCentralCrossRef Jung J, Yeom C, Choi YS, Kim S, Lee E, Park MJ, et al. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge. Oncotarget. 2015;6:20370–87.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Choi WY, Giraldez AJ, Schier AF. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science (New York, NY). 2007;318:271–4.CrossRef Choi WY, Giraldez AJ, Schier AF. Target protectors reveal dampening and balancing of Nodal agonist and antagonist by miR-430. Science (New York, NY). 2007;318:271–4.CrossRef
142.
Zurück zum Zitat Tripp VT, Young DD. Discovery of small molecule modifiers of microRNAs for the treatment of HCV infection. Methods Mol Biol. 2014;1103:153–63.PubMedCrossRef Tripp VT, Young DD. Discovery of small molecule modifiers of microRNAs for the treatment of HCV infection. Methods Mol Biol. 2014;1103:153–63.PubMedCrossRef
143.
Zurück zum Zitat Ye J, Wu X, Wu D, Wu P, Ni C, Zhang Z, et al. miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One. 2013;8:e60687.PubMedPubMedCentralCrossRef Ye J, Wu X, Wu D, Wu P, Ni C, Zhang Z, et al. miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One. 2013;8:e60687.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Hiraki M, Nishimura J, Takahashi H, Wu X, Takahashi Y, Miyo M, et al. Concurrent Targeting of KRAS and AKT by MiR-4689 Is a Novel Treatment Against Mutant KRAS Colorectal Cancer. Mol Ther–Nucleic Acids. 2015;4:e231.PubMedPubMedCentralCrossRef Hiraki M, Nishimura J, Takahashi H, Wu X, Takahashi Y, Miyo M, et al. Concurrent Targeting of KRAS and AKT by MiR-4689 Is a Novel Treatment Against Mutant KRAS Colorectal Cancer. Mol Ther–Nucleic Acids. 2015;4:e231.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Ng EK, Tsang WP, Ng SS, Jin HC, Yu J, Li JJ, et al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer. 2009;101:699–706.PubMedPubMedCentralCrossRef Ng EK, Tsang WP, Ng SS, Jin HC, Yu J, Li JJ, et al. MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer. 2009;101:699–706.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Nakagawa Y, Iinuma M, Naoe T, Nozawa Y, Akao Y. Characterized mechanism of alpha-mangostin-induced cell death: caspase-independent apoptosis with release of endonuclease-G from mitochondria and increased miR-143 expression in human colorectal cancer DLD-1 cells. Bioorg Med Chem. 2007;15:5620–8.PubMedCrossRef Nakagawa Y, Iinuma M, Naoe T, Nozawa Y, Akao Y. Characterized mechanism of alpha-mangostin-induced cell death: caspase-independent apoptosis with release of endonuclease-G from mitochondria and increased miR-143 expression in human colorectal cancer DLD-1 cells. Bioorg Med Chem. 2007;15:5620–8.PubMedCrossRef
147.
Zurück zum Zitat Zhang H, Tang J, Li C, Kong J, Wang J, Wu Y, et al. MiR-22 regulates 5-FU sensitivity by inhibiting autophagy and promoting apoptosis in colorectal cancer cells. Cancer Lett. 2015;356:781–90.PubMedCrossRef Zhang H, Tang J, Li C, Kong J, Wang J, Wu Y, et al. MiR-22 regulates 5-FU sensitivity by inhibiting autophagy and promoting apoptosis in colorectal cancer cells. Cancer Lett. 2015;356:781–90.PubMedCrossRef
148.
Zurück zum Zitat Borralho PM, Kren BT, Castro RE, da Silva IB, Steer CJ, Rodrigues CM. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J. 2009;276:6689–700.PubMedCrossRef Borralho PM, Kren BT, Castro RE, da Silva IB, Steer CJ, Rodrigues CM. MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J. 2009;276:6689–700.PubMedCrossRef
149.
Zurück zum Zitat Deng J, Lei W, Fu JC, Zhang L, Li JH, Xiong JP. Targeting miR-21 enhances the sensitivity of human colon cancer HT-29 cells to chemoradiotherapy in vitro. Biochem Biophys Res Commun. 2014;443:789–95.PubMedCrossRef Deng J, Lei W, Fu JC, Zhang L, Li JH, Xiong JP. Targeting miR-21 enhances the sensitivity of human colon cancer HT-29 cells to chemoradiotherapy in vitro. Biochem Biophys Res Commun. 2014;443:789–95.PubMedCrossRef
150.
Zurück zum Zitat Li X, Li X, Liao D, Wang X, Wu Z, Nie J, et al. Elevated microRNA-23a expression enhances the chemoresistance of colorectal cancer cells with microsatellite instability to 5-fluorouracil by directly targeting ABCF1. Curr Protein Pept Sci. 2015;16:301–9.PubMedCrossRef Li X, Li X, Liao D, Wang X, Wu Z, Nie J, et al. Elevated microRNA-23a expression enhances the chemoresistance of colorectal cancer cells with microsatellite instability to 5-fluorouracil by directly targeting ABCF1. Curr Protein Pept Sci. 2015;16:301–9.PubMedCrossRef
151.
Zurück zum Zitat Zhou Y, Wan G, Spizzo R, Ivan C, Mathur R, Hu X, et al. miR-203 induces oxaliplatin resistance in colorectal cancer cells by negatively regulating ATM kinase. Mol Oncol. 2014;8:83–92.PubMedPubMedCentralCrossRef Zhou Y, Wan G, Spizzo R, Ivan C, Mathur R, Hu X, et al. miR-203 induces oxaliplatin resistance in colorectal cancer cells by negatively regulating ATM kinase. Mol Oncol. 2014;8:83–92.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Zhang Y, Zheng L, Huang J, Gao F, Lin X, He L, et al. MiR-124 Radiosensitizes human colorectal cancer cells by targeting PRRX1. PLoS One. 2014;9:e93917.PubMedPubMedCentralCrossRef Zhang Y, Zheng L, Huang J, Gao F, Lin X, He L, et al. MiR-124 Radiosensitizes human colorectal cancer cells by targeting PRRX1. PLoS One. 2014;9:e93917.PubMedPubMedCentralCrossRef
153.
Zurück zum Zitat Van Cutsem E, Nordlinger B, Cervantes A. Advanced colorectal cancer: ESMO clinical practice guidelines for treatment. Ann Oncol. 2010;21 Suppl 5:v93–97.PubMedCrossRef Van Cutsem E, Nordlinger B, Cervantes A. Advanced colorectal cancer: ESMO clinical practice guidelines for treatment. Ann Oncol. 2010;21 Suppl 5:v93–97.PubMedCrossRef
Metadaten
Titel
MicroRNAs in colorectal carcinoma - from pathogenesis to therapy
verfasst von
Yudan Chi
Dongming Zhou
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Journal of Experimental & Clinical Cancer Research / Ausgabe 1/2016
Elektronische ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-016-0320-4

Weitere Artikel der Ausgabe 1/2016

Journal of Experimental & Clinical Cancer Research 1/2016 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.