Skip to main content
Erschienen in: NeuroMolecular Medicine 2/2020

04.01.2020 | Original Paper

Mitochondrial DNA Copy Number in Peripheral Blood as a Potential Non-invasive Biomarker for Multiple Sclerosis

verfasst von: Ghada Al-Kafaji, Halla F. Bakheit, Maram A. Alharbi, Ahmad A. Farahat, Mohamed Jailani, Bashayer H. Ebrahin, Moiz Bakhiet

Erschienen in: NeuroMolecular Medicine | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

The impaired mitochondrial function has been implicated in the pathogenicity of multiple sclerosis (MS), a chronic inflammatory, demyelinating, and neurodegenerative disease of the CNS. Circulating mtDNA copy number in body fluids has been proposed as an indicator for several neurodegenerative diseases, and the altered cerebrospinal fluid mtDNA has been shown as a promising marker for MS. The aim of this study was to determine changes and biomarker potential of circulating mtDNA in peripheral blood in MS. The mtDNA copy number was quantified by real-time PCR in blood samples from 60 patients with relapsing–remitting MS (RRMS) and 64 healthy controls. The RRMS patients had significantly lower circulating mtDNA copy number compared to controls. Subgroup analysis with stratification of RRMS patients based on disease duration under or over 10 years revealed that the mtDNA copy number was significantly lower in the group with longer disease duration. A negative correlation was observed between mtDNA copy number and disease duration. The ROC curve analysis indicated a significant ability of mtDNA copy number to separate RRMS patients from controls with an AUC of 0.859. This is the first study to measure peripheral blood mtDNA copy number in MS patients. Current data suggest that the reduction in peripheral blood mtDNA copy number may be an early event in MS and correlate with the disease progression. The findings of this study indicate that circulating blood-based mtDNA copy number may be a potential non-invasive candidate biomarker for mitochondria-mediated neurodegeneration and MS. This can put forward the clinical applicability over other invasive markers.
Literatur
Zurück zum Zitat Al-Kafaji, G., & Golbahar, J. (2013). High glucose-induced oxidative stress increases the copy number of mitochondrial DNA in human mesangial cells. BioMed Research International,2013, 754946.PubMedPubMedCentralCrossRef Al-Kafaji, G., & Golbahar, J. (2013). High glucose-induced oxidative stress increases the copy number of mitochondrial DNA in human mesangial cells. BioMed Research International,2013, 754946.PubMedPubMedCentralCrossRef
Zurück zum Zitat Al-Kafaji, G., Sabry, M. A., & Bakhiet, M. (2016a). Increased expression of mitochondrial DNA-encoded genes in human renal mesangial cells in response to high glucose-induced reactive oxygen species. Molecular Medicine Reports,13(2), 1774–1780.PubMedCrossRef Al-Kafaji, G., Sabry, M. A., & Bakhiet, M. (2016a). Increased expression of mitochondrial DNA-encoded genes in human renal mesangial cells in response to high glucose-induced reactive oxygen species. Molecular Medicine Reports,13(2), 1774–1780.PubMedCrossRef
Zurück zum Zitat Al-Kafaji, G., Sabry, M. A., & Skrypnyk, C. (2016b). Time-course effect of high glucose-induced reactive oxygen species on mitochondrial biogenesis and function in human renal mesangial cells. Cell Biology International,40(1), 36–48.PubMedCrossRef Al-Kafaji, G., Sabry, M. A., & Skrypnyk, C. (2016b). Time-course effect of high glucose-induced reactive oxygen species on mitochondrial biogenesis and function in human renal mesangial cells. Cell Biology International,40(1), 36–48.PubMedCrossRef
Zurück zum Zitat Al-Kafaji, G., AlJadaan, A., Kamal, A., & Bakhiet, M. (2018). Peripheral blood mitochondrial DNA copy number is a potential new biomarker for diabetic nephropathy in type 2 diabetes patients. Experimental and Therapeutic Medicine,16(2), 1483–1492.PubMedPubMedCentral Al-Kafaji, G., AlJadaan, A., Kamal, A., & Bakhiet, M. (2018). Peripheral blood mitochondrial DNA copy number is a potential new biomarker for diabetic nephropathy in type 2 diabetes patients. Experimental and Therapeutic Medicine,16(2), 1483–1492.PubMedPubMedCentral
Zurück zum Zitat Andalib, S., Talebi, M., Sakhinia, E., Farhiudi, M., Sadeghi-Bazargani, H., Motavallian, A., et al. (2013). Multiple sclerosis and mitochondrial gene variations: A review. Journal of the Neurological Sciences,330(1–2), 10–15.PubMedCrossRef Andalib, S., Talebi, M., Sakhinia, E., Farhiudi, M., Sadeghi-Bazargani, H., Motavallian, A., et al. (2013). Multiple sclerosis and mitochondrial gene variations: A review. Journal of the Neurological Sciences,330(1–2), 10–15.PubMedCrossRef
Zurück zum Zitat Blokhin, A., Vyshkina, T., Komoly, S., & Kalman, B. (2008). Variations in mitochondrial DNA copy numbers in MS brains. Journal of Molecular Neuroscience,35(3), 283–287.PubMedCrossRef Blokhin, A., Vyshkina, T., Komoly, S., & Kalman, B. (2008). Variations in mitochondrial DNA copy numbers in MS brains. Journal of Molecular Neuroscience,35(3), 283–287.PubMedCrossRef
Zurück zum Zitat Bohr, V. A. (2002). Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radical Biology and Medicine,32(9), 804–812.PubMedCrossRef Bohr, V. A. (2002). Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radical Biology and Medicine,32(9), 804–812.PubMedCrossRef
Zurück zum Zitat Campbell, G. R., Ziabreva, I., Reeve, A. K., Krishnan, K. J., Reynolds, R., Howell, O., et al. (2011). Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Annals of Neurology,69(3), 481–492.PubMedCrossRef Campbell, G. R., Ziabreva, I., Reeve, A. K., Krishnan, K. J., Reynolds, R., Howell, O., et al. (2011). Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Annals of Neurology,69(3), 481–492.PubMedCrossRef
Zurück zum Zitat Cerqueira, J. J., Compston, D. A. S., Geraldes, R., Rosa, M. M., Schmierer, K., Thompson, A., et al. (2018). Time matters in multiple sclerosis: Can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis? Journal of Neurology, Neurosurgery, and Psychiatry,89, 844–850.PubMedPubMedCentralCrossRef Cerqueira, J. J., Compston, D. A. S., Geraldes, R., Rosa, M. M., Schmierer, K., Thompson, A., et al. (2018). Time matters in multiple sclerosis: Can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis? Journal of Neurology, Neurosurgery, and Psychiatry,89, 844–850.PubMedPubMedCentralCrossRef
Zurück zum Zitat Chen, S., Li, Z., He, Y., Zhang, F., Li, H., Liao, Y., et al. (2015). Elevated mitochondrial DNA copy number in peripheral blood cells is associated with childhood autism. BMC Psychiatry,15, 50.PubMedPubMedCentralCrossRef Chen, S., Li, Z., He, Y., Zhang, F., Li, H., Liao, Y., et al. (2015). Elevated mitochondrial DNA copy number in peripheral blood cells is associated with childhood autism. BMC Psychiatry,15, 50.PubMedPubMedCentralCrossRef
Zurück zum Zitat Clay-Montier, L. L., Deng, J. J., Bai, Y., et al. (2009). Number matters: Control of mammalian mitochondrial DNA copy number. Journal of Genetics and Genomics,36, 125–131.PubMedPubMedCentralCrossRef Clay-Montier, L. L., Deng, J. J., Bai, Y., et al. (2009). Number matters: Control of mammalian mitochondrial DNA copy number. Journal of Genetics and Genomics,36, 125–131.PubMedPubMedCentralCrossRef
Zurück zum Zitat De Stefano, N., Stromillo, M. L., Giorgio, A., Bartolozzi, M. L., Battaglini, M., Baldini, M., et al. (2016). Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry,87, 93–99.PubMedCrossRef De Stefano, N., Stromillo, M. L., Giorgio, A., Bartolozzi, M. L., Battaglini, M., Baldini, M., et al. (2016). Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry,87, 93–99.PubMedCrossRef
Zurück zum Zitat Delbarba, A., Abate, G., Prandelli, C., Marziano, M., Buizza, L., Varas, N. A., et al. (2016). Mitochondrial Alterations in peripheral mononuclear blood cells from Alzheimer’s disease and mild cognitive impairment patients. Oxidative Medicine and Cellular Longevity,2016, 5923938.PubMedPubMedCentralCrossRef Delbarba, A., Abate, G., Prandelli, C., Marziano, M., Buizza, L., Varas, N. A., et al. (2016). Mitochondrial Alterations in peripheral mononuclear blood cells from Alzheimer’s disease and mild cognitive impairment patients. Oxidative Medicine and Cellular Longevity,2016, 5923938.PubMedPubMedCentralCrossRef
Zurück zum Zitat Dutta, R., McDonough, J., Yin, X., Peterson, J., Chang, A., Torres, T., et al. (2006). Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Annals of Neurology,59, 478–489.PubMedCrossRef Dutta, R., McDonough, J., Yin, X., Peterson, J., Chang, A., Torres, T., et al. (2006). Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Annals of Neurology,59, 478–489.PubMedCrossRef
Zurück zum Zitat Errea, O., Moreno, B., Conzalez-Franquesa, A., Garcia-Roves, P. M., & Villoslada, P. (2015). The disruption of mitochondrial axonal transport is an early event in neuroinflammation. J Neuroinflammation,12, 152.PubMedPubMedCentralCrossRef Errea, O., Moreno, B., Conzalez-Franquesa, A., Garcia-Roves, P. M., & Villoslada, P. (2015). The disruption of mitochondrial axonal transport is an early event in neuroinflammation. J Neuroinflammation,12, 152.PubMedPubMedCentralCrossRef
Zurück zum Zitat Franco-Iborra, S., Vila, M., & Perier, C. (2018). Mitochondrial quality control in neurodegenerative diseases: Focus on Parkinson's disease and Huntington's disease. Frontiers in Neuroscience,12, 342.PubMedPubMedCentralCrossRef Franco-Iborra, S., Vila, M., & Perier, C. (2018). Mitochondrial quality control in neurodegenerative diseases: Focus on Parkinson's disease and Huntington's disease. Frontiers in Neuroscience,12, 342.PubMedPubMedCentralCrossRef
Zurück zum Zitat Garcia, I., Jones, E., Ramos, M., Innis-Whitehouse, W., & Gilkerson, R. (2017). The little big genome: The organization of mitochondrial DNA. Frontiers in Bioscience,22, 710–721.CrossRef Garcia, I., Jones, E., Ramos, M., Innis-Whitehouse, W., & Gilkerson, R. (2017). The little big genome: The organization of mitochondrial DNA. Frontiers in Bioscience,22, 710–721.CrossRef
Zurück zum Zitat Grunewald, A., Rygiel, K. A., Hepplewhite, P. D., Morris, C. M., Picard, M., Hom, D., et al. (2016). Mitochondrial DNA depletion in respiratory chain–deficient Parkinson disease neurons. Annals of Neurology,79(3), 366–378.PubMedPubMedCentralCrossRef Grunewald, A., Rygiel, K. A., Hepplewhite, P. D., Morris, C. M., Picard, M., Hom, D., et al. (2016). Mitochondrial DNA depletion in respiratory chain–deficient Parkinson disease neurons. Annals of Neurology,79(3), 366–378.PubMedPubMedCentralCrossRef
Zurück zum Zitat Hampel, H., O’Bryant, S. E., Molinuevo, J. L., Zetterberg, H., Masters, C. L., Lista, S., et al. (2018). Blood-based biomarkers for Alzheimer disease: Mapping the road to the clinic. Nature Reviews Neurology,14(11), 639–652.PubMedPubMedCentralCrossRef Hampel, H., O’Bryant, S. E., Molinuevo, J. L., Zetterberg, H., Masters, C. L., Lista, S., et al. (2018). Blood-based biomarkers for Alzheimer disease: Mapping the road to the clinic. Nature Reviews Neurology,14(11), 639–652.PubMedPubMedCentralCrossRef
Zurück zum Zitat Harris, V. K., Tuddenham, J. F., & Sadiq, S. A. (2017). Biomarkers of multiple sclerosis: Current findings. Degenerative Neurological and Neuromuscular Disease,7, 19–29.PubMedPubMedCentralCrossRef Harris, V. K., Tuddenham, J. F., & Sadiq, S. A. (2017). Biomarkers of multiple sclerosis: Current findings. Degenerative Neurological and Neuromuscular Disease,7, 19–29.PubMedPubMedCentralCrossRef
Zurück zum Zitat Hernandez-Pedro, N. Y., Espinosa-Ramirez, G., de la Cruz, V. P., Pineda, B., & Sotelo, J. (2013). Initial immunopathogenesis of multiple sclerosis: Innate immune response. Clinical & Developmental Immunology,2013, 413465.CrossRef Hernandez-Pedro, N. Y., Espinosa-Ramirez, G., de la Cruz, V. P., Pineda, B., & Sotelo, J. (2013). Initial immunopathogenesis of multiple sclerosis: Innate immune response. Clinical & Developmental Immunology,2013, 413465.CrossRef
Zurück zum Zitat Hu, L., Yao, X., & Shen, Y. (2016). Altered mitochondrial DNA copy number contributes to human cancer risk: Evidence from an updated meta-analysis. Scientific Reports,6, 35859.PubMedPubMedCentralCrossRef Hu, L., Yao, X., & Shen, Y. (2016). Altered mitochondrial DNA copy number contributes to human cancer risk: Evidence from an updated meta-analysis. Scientific Reports,6, 35859.PubMedPubMedCentralCrossRef
Zurück zum Zitat Hulgan, T., Kallianpur, A. R., Guo, Y., Barnholtz, J. S., Gittleman, H., Brown, T. T., et al. (2019). Peripheral blood mitochondrial DNA copy number obtained from genome-wide genotype data is associated with neurocognitive impairment in persons with chronic HIV infection. Journal of Acquired Immune Deficiency Syndromes,80(4), e95–e102.PubMedCrossRef Hulgan, T., Kallianpur, A. R., Guo, Y., Barnholtz, J. S., Gittleman, H., Brown, T. T., et al. (2019). Peripheral blood mitochondrial DNA copy number obtained from genome-wide genotype data is associated with neurocognitive impairment in persons with chronic HIV infection. Journal of Acquired Immune Deficiency Syndromes,80(4), e95–e102.PubMedCrossRef
Zurück zum Zitat Hurtado-Roca, Y., Ledesma, M., Gonzalez-Lazaro, M., Moreno-Loshuertos, R., Fernandez-Silva, P., Enriquez, J. A., et al. (2016). Adjusting mtDNA quantification in whole blood for peripheral blood platelet and leukocyte counts. PLoS ONE,11(10), e0163770.PubMedPubMedCentralCrossRef Hurtado-Roca, Y., Ledesma, M., Gonzalez-Lazaro, M., Moreno-Loshuertos, R., Fernandez-Silva, P., Enriquez, J. A., et al. (2016). Adjusting mtDNA quantification in whole blood for peripheral blood platelet and leukocyte counts. PLoS ONE,11(10), e0163770.PubMedPubMedCentralCrossRef
Zurück zum Zitat Ide, T., Tsutsu, H., Hayashidani, S., Kang, D., Suematsu, N., Nakamura, K., et al. (2001). Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research,88, 529–535.PubMedCrossRef Ide, T., Tsutsu, H., Hayashidani, S., Kang, D., Suematsu, N., Nakamura, K., et al. (2001). Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation Research,88, 529–535.PubMedCrossRef
Zurück zum Zitat Johri, A., & Beal, M. F. (2012). Mitochondrial dysfunction in neurodegenerative diseases. Journal of Pharmacology and Experimental Therapeutics,342(3), 619–630.PubMedCrossRef Johri, A., & Beal, M. F. (2012). Mitochondrial dysfunction in neurodegenerative diseases. Journal of Pharmacology and Experimental Therapeutics,342(3), 619–630.PubMedCrossRef
Zurück zum Zitat Kilbaugh, T. J., Lvova, M., Karlsson, M., Zhang, Z., Leipzig, J., Wallace, D. C., et al. (2015). Peripheral blood mitochondrial DNA as a biomarker of cerebral mitochondrial dysfunction following traumatic brain injury in a porcine model. PLoS ONE,10(6), e0130927.PubMedPubMedCentralCrossRef Kilbaugh, T. J., Lvova, M., Karlsson, M., Zhang, Z., Leipzig, J., Wallace, D. C., et al. (2015). Peripheral blood mitochondrial DNA as a biomarker of cerebral mitochondrial dysfunction following traumatic brain injury in a porcine model. PLoS ONE,10(6), e0130927.PubMedPubMedCentralCrossRef
Zurück zum Zitat Lee, H. C., & Wei, Y. H. (2005). Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. The International Journal of Biochemistry & Cell Biology,37, 822–834.CrossRef Lee, H. C., & Wei, Y. H. (2005). Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. The International Journal of Biochemistry & Cell Biology,37, 822–834.CrossRef
Zurück zum Zitat Lee, H., Song, J. H., Shine, C. S., Park, D. J., Park, K. S., Lee, K. U., et al. (1998). Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Research and Clinical Practice,42, 161–167.PubMedCrossRef Lee, H., Song, J. H., Shine, C. S., Park, D. J., Park, K. S., Lee, K. U., et al. (1998). Decreased mitochondrial DNA content in peripheral blood precedes the development of non-insulin-dependent diabetes mellitus. Diabetes Research and Clinical Practice,42, 161–167.PubMedCrossRef
Zurück zum Zitat Leurs, C. E., Podlesniy, P., Trullas, R., Balk, L., Steenwijk, M. D., Malekzadeh, A., et al. (2018). Cerebrospinal fluid mtDNA concentration is elevated in multiple sclerosis disease and responds to treatment. Multiple Sclerosis Journal,24(4), 472–480.PubMedCrossRef Leurs, C. E., Podlesniy, P., Trullas, R., Balk, L., Steenwijk, M. D., Malekzadeh, A., et al. (2018). Cerebrospinal fluid mtDNA concentration is elevated in multiple sclerosis disease and responds to treatment. Multiple Sclerosis Journal,24(4), 472–480.PubMedCrossRef
Zurück zum Zitat Lowes, H., Pyle, A., Duddy, M., & Hudson, G. (2008). Cell-free mitochondrial DNA in progressive multiple sclerosis. Journal of Molecular Neuroscience,35(3), 283–287.CrossRef Lowes, H., Pyle, A., Duddy, M., & Hudson, G. (2008). Cell-free mitochondrial DNA in progressive multiple sclerosis. Journal of Molecular Neuroscience,35(3), 283–287.CrossRef
Zurück zum Zitat Mahad, D., Lassmann, H., & Turnbull, D. (2008). Review: Mitochondria and disease progression in multiple sclerosis. Neuropathology and Applied Neurobiology,34, 577–589.PubMedPubMedCentralCrossRef Mahad, D., Lassmann, H., & Turnbull, D. (2008). Review: Mitochondria and disease progression in multiple sclerosis. Neuropathology and Applied Neurobiology,34, 577–589.PubMedPubMedCentralCrossRef
Zurück zum Zitat Manuelidis, L. (2011). Nuclease resistant circular DNAs copurify with infectivity in scrapie and CJD. The Journal of NeuroVirology,17, 131–145.PubMedCrossRef Manuelidis, L. (2011). Nuclease resistant circular DNAs copurify with infectivity in scrapie and CJD. The Journal of NeuroVirology,17, 131–145.PubMedCrossRef
Zurück zum Zitat Mao, P., & Reddy, P. H. (2010). Is multiple sclerosis a mitochondrial disease? Biochimica et Biophysica Acta,1802, 66–79.PubMedCrossRef Mao, P., & Reddy, P. H. (2010). Is multiple sclerosis a mitochondrial disease? Biochimica et Biophysica Acta,1802, 66–79.PubMedCrossRef
Zurück zum Zitat Morais, V. A., & De Strooper, B. (2010). Mitochondria dysfunction and neurodegenerative disorders: Cause or consequence. Journal of Alzheimer's Disease,20, S255–S263.PubMedCrossRef Morais, V. A., & De Strooper, B. (2010). Mitochondria dysfunction and neurodegenerative disorders: Cause or consequence. Journal of Alzheimer's Disease,20, S255–S263.PubMedCrossRef
Zurück zum Zitat Noseworthy, J. H., Lucchinetti, C., Rodriguez, M., & Weinshenker, B. G. (2000). Multiple sclerosis. The New England Journal of Medicine,343, 938–952.PubMedCrossRef Noseworthy, J. H., Lucchinetti, C., Rodriguez, M., & Weinshenker, B. G. (2000). Multiple sclerosis. The New England Journal of Medicine,343, 938–952.PubMedCrossRef
Zurück zum Zitat O'Gorman, C., Lucas, R., & Taylor, B. (2012). Environmental risk factors for multiple sclerosis: A review with a focus on molecular mechanisms. International Journal of Molecular Sciences,13(9), 11718–11752.PubMedPubMedCentralCrossRef O'Gorman, C., Lucas, R., & Taylor, B. (2012). Environmental risk factors for multiple sclerosis: A review with a focus on molecular mechanisms. International Journal of Molecular Sciences,13(9), 11718–11752.PubMedPubMedCentralCrossRef
Zurück zum Zitat Petersen, M. H., Budtz-Jorgensen, E., Sorensen, S. A., Nielsen, J. E., Hjermind, L. E., Vinther-Jensen, T., et al. (2014). Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington's disease. Mitochondrion,17, 14–21.PubMedCrossRef Petersen, M. H., Budtz-Jorgensen, E., Sorensen, S. A., Nielsen, J. E., Hjermind, L. E., Vinther-Jensen, T., et al. (2014). Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington's disease. Mitochondrion,17, 14–21.PubMedCrossRef
Zurück zum Zitat Podlesniy, P., Figueiro-Silva, J., Llado, A., Sanchez-Valle, R., Alcolea, D., et al. (2013). Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Annals of Neurology,74(5), 655–668.PubMedCrossRef Podlesniy, P., Figueiro-Silva, J., Llado, A., Sanchez-Valle, R., Alcolea, D., et al. (2013). Low cerebrospinal fluid concentration of mitochondrial DNA in preclinical Alzheimer disease. Annals of Neurology,74(5), 655–668.PubMedCrossRef
Zurück zum Zitat Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M., et al. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology,69(2), 292–302.PubMedPubMedCentralCrossRef Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M., et al. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology,69(2), 292–302.PubMedPubMedCentralCrossRef
Zurück zum Zitat Pyle, A., Brennan, R., Kurzawa-Akanbi, M., Yarnall, A., Thouin, A., Mollenhauer, B., et al. (2015). Reduced cerebrospinal fluid mitochondrial DNA is a biomarker for early stage Parkinson's disease. Annals of Neurology,78(6), 1000–1004.PubMedPubMedCentralCrossRef Pyle, A., Brennan, R., Kurzawa-Akanbi, M., Yarnall, A., Thouin, A., Mollenhauer, B., et al. (2015). Reduced cerebrospinal fluid mitochondrial DNA is a biomarker for early stage Parkinson's disease. Annals of Neurology,78(6), 1000–1004.PubMedPubMedCentralCrossRef
Zurück zum Zitat Pyle, A., Anugrha, H., Kurzawa-Akanbi, M., Yarnall, A., Burn, D., & Hudson, G. (2016). Reduced mitochondrial DNA copy number is a biomarker of Parkinson's disease. Neurobiology Aging,38, 216.e7–216.e10.CrossRef Pyle, A., Anugrha, H., Kurzawa-Akanbi, M., Yarnall, A., Burn, D., & Hudson, G. (2016). Reduced mitochondrial DNA copy number is a biomarker of Parkinson's disease. Neurobiology Aging,38, 216.e7–216.e10.CrossRef
Zurück zum Zitat Rice, A. C., Keeney, P. M., Algarzae, N. K., Ladd, A. C., Thomas, R. R., & Bennett, J. P., Jr. (2014). Mitochondrial DNA copy numbers in pyramidal neurons are decreased and mitochondrial biogenesis transcriptome signaling is disrupted in Alzheimer's disease hippocampi. Journal of Alzheimer's Disease,40, 319–330.PubMedCrossRef Rice, A. C., Keeney, P. M., Algarzae, N. K., Ladd, A. C., Thomas, R. R., & Bennett, J. P., Jr. (2014). Mitochondrial DNA copy numbers in pyramidal neurons are decreased and mitochondrial biogenesis transcriptome signaling is disrupted in Alzheimer's disease hippocampi. Journal of Alzheimer's Disease,40, 319–330.PubMedCrossRef
Zurück zum Zitat Rodriguez-Santiago, B., Casademont, J., & Nunes, V. (2001). Is mitochondrial DNA depletion involved in Alzheimer's disease? European Journal of Human Genetics,9, 279–285.PubMedCrossRef Rodriguez-Santiago, B., Casademont, J., & Nunes, V. (2001). Is mitochondrial DNA depletion involved in Alzheimer's disease? European Journal of Human Genetics,9, 279–285.PubMedCrossRef
Zurück zum Zitat Satoh, M., & Kuroiwa, T. (1991). Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Experimental Cell Research,196, 137–140.PubMedCrossRef Satoh, M., & Kuroiwa, T. (1991). Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Experimental Cell Research,196, 137–140.PubMedCrossRef
Zurück zum Zitat Schwarzenbach, H., Hoon, D. S., & Pantel, K. (2011). Cell-free nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer,11, 426–437.PubMedCrossRef Schwarzenbach, H., Hoon, D. S., & Pantel, K. (2011). Cell-free nucleic acids as biomarkers in cancer patients. Nature Reviews Cancer,11, 426–437.PubMedCrossRef
Zurück zum Zitat Shen, J., Gopalakrishnan, V., Lee, J. E., Fang, S., & Zhao, H. (2015). Mitochondrial DNA copy number in peripheral blood and melanoma risk. PLoS ONE,10(6), e0131649.PubMedPubMedCentralCrossRef Shen, J., Gopalakrishnan, V., Lee, J. E., Fang, S., & Zhao, H. (2015). Mitochondrial DNA copy number in peripheral blood and melanoma risk. PLoS ONE,10(6), e0131649.PubMedPubMedCentralCrossRef
Zurück zum Zitat Silzer, T., Barber, R., Sun, J., Pathak, G., Johnson, L., O’Bryant, S., et al. (2019). Circulating mitochondrial DNA: New indices of type 2 diabetes-related cognitive impairment in Mexican Americans. PLoS ONE,14(3), e0213527.PubMedPubMedCentralCrossRef Silzer, T., Barber, R., Sun, J., Pathak, G., Johnson, L., O’Bryant, S., et al. (2019). Circulating mitochondrial DNA: New indices of type 2 diabetes-related cognitive impairment in Mexican Americans. PLoS ONE,14(3), e0213527.PubMedPubMedCentralCrossRef
Zurück zum Zitat Song, J., Oh, J. Y., Sung, Y.-A., Pak, Y. K., Park, K. S., & Lee, H. K. (2001). Peripheral blood mitochondrial DNA content is related to insulin sensitivity in offspring of type 2 diabetic patients. Diabetes Care,24(5), 865–869.PubMedCrossRef Song, J., Oh, J. Y., Sung, Y.-A., Pak, Y. K., Park, K. S., & Lee, H. K. (2001). Peripheral blood mitochondrial DNA content is related to insulin sensitivity in offspring of type 2 diabetic patients. Diabetes Care,24(5), 865–869.PubMedCrossRef
Zurück zum Zitat Trojano, M., Paolicelli, D., Bellacosa, A., & Cataldo, S. (2003). The transition from relapsing–remitting MS to irreversible disability: Clinical evaluation. Neurological Sciences,24(Suppl. 5), S268–S270.PubMedCrossRef Trojano, M., Paolicelli, D., Bellacosa, A., & Cataldo, S. (2003). The transition from relapsing–remitting MS to irreversible disability: Clinical evaluation. Neurological Sciences,24(Suppl. 5), S268–S270.PubMedCrossRef
Zurück zum Zitat Tsujii, N., Otsuka, I., Okazaki, S., Yanagi, M., Numata, S., Yamaki, N., et al. (2019). Mitochondrial DNA copy number raises the potential of left frontopolar hemodynamic response as a diagnostic marker for distinguishing bipolar disorder from major depressive disorder. Frontiers in Psychiatry,8(10), 312.CrossRef Tsujii, N., Otsuka, I., Okazaki, S., Yanagi, M., Numata, S., Yamaki, N., et al. (2019). Mitochondrial DNA copy number raises the potential of left frontopolar hemodynamic response as a diagnostic marker for distinguishing bipolar disorder from major depressive disorder. Frontiers in Psychiatry,8(10), 312.CrossRef
Zurück zum Zitat Weinshenker, B. G., Bass, B., Rice, G. P., Noseworthy, J., Carriere, W., Baskerville, J., et al. (1989). The natural history of multiple sclerosis: A geographically based study I. Clinical course and disability. Brain,112(Pt 1), 133–146.PubMedCrossRef Weinshenker, B. G., Bass, B., Rice, G. P., Noseworthy, J., Carriere, W., Baskerville, J., et al. (1989). The natural history of multiple sclerosis: A geographically based study I. Clinical course and disability. Brain,112(Pt 1), 133–146.PubMedCrossRef
Zurück zum Zitat Xia, P., An, H. X., Dang, C. X., Radpour, R., Kohler, C., Fokas, E., et al. (2009). Decreased mitochondrial DNA content in blood samples of patients with stage I breast cancer. BMC Cancer,9, 454.PubMedPubMedCentralCrossRef Xia, P., An, H. X., Dang, C. X., Radpour, R., Kohler, C., Fokas, E., et al. (2009). Decreased mitochondrial DNA content in blood samples of patients with stage I breast cancer. BMC Cancer,9, 454.PubMedPubMedCentralCrossRef
Zurück zum Zitat Xia, C.-Y., Liu, Y., Yang, H. R., Yang, H. Y., Liu, J. X., & Qi, Y. (2017). Reference intervals of mitochondrial DNA copy number in peripheral blood for Chinese minors and adults. Chinese Medical Journal,130(20), 2435–2440.PubMedPubMedCentralCrossRef Xia, C.-Y., Liu, Y., Yang, H. R., Yang, H. Y., Liu, J. X., & Qi, Y. (2017). Reference intervals of mitochondrial DNA copy number in peripheral blood for Chinese minors and adults. Chinese Medical Journal,130(20), 2435–2440.PubMedPubMedCentralCrossRef
Zurück zum Zitat Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., et al. (2010). Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature,464, 104–107.PubMedPubMedCentralCrossRef Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., et al. (2010). Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature,464, 104–107.PubMedPubMedCentralCrossRef
Zurück zum Zitat Zhao, H., Chang, D., Ye, Y., Shen, J., Chow, W., Wu, X., et al. (2018). Associations of blood mitochondrial DNA copy number with social-demographics and cancer risk: Results from the Mano-AMano Mexican American Cohort. Oncotarget,9(39), 2549–25502.CrossRef Zhao, H., Chang, D., Ye, Y., Shen, J., Chow, W., Wu, X., et al. (2018). Associations of blood mitochondrial DNA copy number with social-demographics and cancer risk: Results from the Mano-AMano Mexican American Cohort. Oncotarget,9(39), 2549–25502.CrossRef
Zurück zum Zitat Zuvich, R. L., McCauley, J. L., Pericak-Vance, M. A., & Haines, J. L. (2009). Genetics and pathogenesis of multiple sclerosis. Seminars in Immunology,21(6), 328–333.PubMedPubMedCentralCrossRef Zuvich, R. L., McCauley, J. L., Pericak-Vance, M. A., & Haines, J. L. (2009). Genetics and pathogenesis of multiple sclerosis. Seminars in Immunology,21(6), 328–333.PubMedPubMedCentralCrossRef
Metadaten
Titel
Mitochondrial DNA Copy Number in Peripheral Blood as a Potential Non-invasive Biomarker for Multiple Sclerosis
verfasst von
Ghada Al-Kafaji
Halla F. Bakheit
Maram A. Alharbi
Ahmad A. Farahat
Mohamed Jailani
Bashayer H. Ebrahin
Moiz Bakhiet
Publikationsdatum
04.01.2020
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 2/2020
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-019-08588-w

Weitere Artikel der Ausgabe 2/2020

NeuroMolecular Medicine 2/2020 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.