Skip to main content
Erschienen in: NeuroMolecular Medicine 2-3/2017

23.05.2017 | Review Paper

Models for Studying Myelination, Demyelination and Remyelination

verfasst von: I. Osorio-Querejeta, M. Sáenz-Cuesta, M. Muñoz-Culla, D. Otaegui

Erschienen in: NeuroMolecular Medicine | Ausgabe 2-3/2017

Einloggen, um Zugang zu erhalten

Abstract

One of the most widely studied demyelinating diseases is multiple sclerosis, which is characterised by the appearance of demyelinating plaques, followed by myelin regeneration. Nevertheless, with disease progression, remyelination tends to fail, increasing the characteristic neurodegeneration of the disease. It is essential to understand the mechanisms that operate in the processes of myelination, demyelination and remyelination to develop treatments that promote the production of new myelin, thereby protecting the central nervous system. A huge variety of models have been developed to help improve our understanding of these processes. Nevertheless, no single model allows us to study all the processes involved in remyelination and usually more than one is needed to provide a full picture of related mechanisms. In this review, we summarise the most commonly used models for studying myelination, demyelination and remyelination and we analyse them critically to outline the most suitable ways of using them.
Literatur
Zurück zum Zitat Babri, S., Mehrvash, F., Mohaddes, G., Hatami, H., & Mirzaie, F. (2015). Effect of intrahippocampal administration of vitamin C and progesterone on learning in a model of multiple sclerosis in rats, 5(1), 83–87. doi:10.5681/apb.2015.011. Babri, S., Mehrvash, F., Mohaddes, G., Hatami, H., & Mirzaie, F. (2015). Effect of intrahippocampal administration of vitamin C and progesterone on learning in a model of multiple sclerosis in rats, 5(1), 83–87. doi:10.​5681/​apb.​2015.​011.
Zurück zum Zitat Baker, D., & Amor, S. (2015). Mouse models of multiple sclerosis: Lost in translation? Current Pharmaceutical Design, 21, 2440–2452.CrossRefPubMed Baker, D., & Amor, S. (2015). Mouse models of multiple sclerosis: Lost in translation? Current Pharmaceutical Design, 21, 2440–2452.CrossRefPubMed
Zurück zum Zitat Birgbauer, E., Rao, T. S., & Webb, M. (2004). Lysolecithin induces demyelination in vitro in a cerebellar slice culture system. Journal of Neuroscience Research, 78(September), 157–166. doi:10.1002/jnr.20248.CrossRefPubMed Birgbauer, E., Rao, T. S., & Webb, M. (2004). Lysolecithin induces demyelination in vitro in a cerebellar slice culture system. Journal of Neuroscience Research, 78(September), 157–166. doi:10.​1002/​jnr.​20248.CrossRefPubMed
Zurück zum Zitat Buckley, C. E., Goldsmith, P., & Franklin, R. J. (2008). Zebrafish myelination: a transparent model for remyelination? Disease Model Mechanism, 1(4–5), 221–228. doi:10.1242/dmm.001248.CrossRef Buckley, C. E., Goldsmith, P., & Franklin, R. J. (2008). Zebrafish myelination: a transparent model for remyelination? Disease Model Mechanism, 1(4–5), 221–228. doi:10.​1242/​dmm.​001248.CrossRef
Zurück zum Zitat Chen, Y., Balasubramaniyan, V., Peng, J., Hurlock, E. C., Tallquist, M., Li, J., et al. (2007). Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nature Protocols, 2(5), 1044–1051. doi:10.1038/nprot.2007.149.CrossRefPubMed Chen, Y., Balasubramaniyan, V., Peng, J., Hurlock, E. C., Tallquist, M., Li, J., et al. (2007). Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nature Protocols, 2(5), 1044–1051. doi:10.​1038/​nprot.​2007.​149.CrossRefPubMed
Zurück zum Zitat Dousset, V., Brochet, B., Vital, A., Gross, C., Benazzouz, A., Boullerne, A., et al. (1995). Lysolecithin-induced demyelination in primates: Preliminary in vivo study with MR and magnetization transfer. American Journal of Neuroradiology, 16(2), 225–231.PubMed Dousset, V., Brochet, B., Vital, A., Gross, C., Benazzouz, A., Boullerne, A., et al. (1995). Lysolecithin-induced demyelination in primates: Preliminary in vivo study with MR and magnetization transfer. American Journal of Neuroradiology, 16(2), 225–231.PubMed
Zurück zum Zitat Dubois-Dalcq, M., Williams, A., Stadelmann, C., Stankoff, B., Zalc, B., & Lubetzki, C. (2008). From fish to man: understanding endogenous remyelination in central nervous system demyelinating diseases. Brain A Journal of Neurology, 131, 1686–1700. doi:10.1093/brain/awn076.CrossRefPubMedPubMedCentral Dubois-Dalcq, M., Williams, A., Stadelmann, C., Stankoff, B., Zalc, B., & Lubetzki, C. (2008). From fish to man: understanding endogenous remyelination in central nervous system demyelinating diseases. Brain A Journal of Neurology, 131, 1686–1700. doi:10.​1093/​brain/​awn076.CrossRefPubMedPubMedCentral
Zurück zum Zitat Goudarzvand, M., Javan, M., Mirnajafi-Zadeh, J., Mozafari, S., & Tiraihi, T. (2010). Vitamins E and D3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local injection of ethidium bromide. Cellular and Molecular Neurobiology, 30(2), 289–299. doi:10.1007/s10571-009-9451-x.CrossRefPubMed Goudarzvand, M., Javan, M., Mirnajafi-Zadeh, J., Mozafari, S., & Tiraihi, T. (2010). Vitamins E and D3 attenuate demyelination and potentiate remyelination processes of hippocampal formation of rats following local injection of ethidium bromide. Cellular and Molecular Neurobiology, 30(2), 289–299. doi:10.​1007/​s10571-009-9451-x.CrossRefPubMed
Zurück zum Zitat Hedvika, D., Gonzalez, M., Bhargava, N., Stancescu, M., Hickman, J. J., & Lambert, S. (2012). Rat costical oligodendrocyte-embryonic motoneuron co-culture: An in vitro axon-oilgodendrocyte interaction model. Journal of Biomaterials Tissue Engineering, 2(3), 206–214.CrossRef Hedvika, D., Gonzalez, M., Bhargava, N., Stancescu, M., Hickman, J. J., & Lambert, S. (2012). Rat costical oligodendrocyte-embryonic motoneuron co-culture: An in vitro axon-oilgodendrocyte interaction model. Journal of Biomaterials Tissue Engineering, 2(3), 206–214.CrossRef
Zurück zum Zitat Jung, S. H., Kim, S., Chung, A. Y., Kim, H. T., So, J. H., Ryu, J., et al. (2010). Visualization of myelination in GFP-transgenic zebrafish. Developmental Dynamics, 239(2), 592–597. doi:10.1002/dvdy.22166.CrossRefPubMed Jung, S. H., Kim, S., Chung, A. Y., Kim, H. T., So, J. H., Ryu, J., et al. (2010). Visualization of myelination in GFP-transgenic zebrafish. Developmental Dynamics, 239(2), 592–597. doi:10.​1002/​dvdy.​22166.CrossRefPubMed
Zurück zum Zitat Keough, M. B., Jensen, S. K., & Yong, V. W. (2015). Experimental demyelination and remyelination of murine spinal cord by focal injection of lysolecithin. Journal of Visualized Experiments, 97, 10–17. doi:10.3791/52679. Keough, M. B., Jensen, S. K., & Yong, V. W. (2015). Experimental demyelination and remyelination of murine spinal cord by focal injection of lysolecithin. Journal of Visualized Experiments, 97, 10–17. doi:10.​3791/​52679.
Zurück zum Zitat Kipp, M., van der Star, B., Vogel, D. Y. S., Puentes, F., van der Valk, P., Baker, D., et al. (2012). Experimental in vivo and in vitro models of multiple sclerosis: EAE and beyond. Multiple Sclerosis and Related Disorders, 1, 15–28. doi:10.1016/j.msard.2011.09.002.CrossRefPubMed Kipp, M., van der Star, B., Vogel, D. Y. S., Puentes, F., van der Valk, P., Baker, D., et al. (2012). Experimental in vivo and in vitro models of multiple sclerosis: EAE and beyond. Multiple Sclerosis and Related Disorders, 1, 15–28. doi:10.​1016/​j.​msard.​2011.​09.​002.CrossRefPubMed
Zurück zum Zitat Kirby, B. B., Takada, N., Latimer, A. J., Shin, J., Carney, T. J., Kelsh, R. N., et al. (2006). In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nature Neuroscience, 9(12), 1506–1511. doi:10.1038/nn1803.CrossRefPubMed Kirby, B. B., Takada, N., Latimer, A. J., Shin, J., Carney, T. J., Kelsh, R. N., et al. (2006). In vivo time-lapse imaging shows dynamic oligodendrocyte progenitor behavior during zebrafish development. Nature Neuroscience, 9(12), 1506–1511. doi:10.​1038/​nn1803.CrossRefPubMed
Zurück zum Zitat Lorentzen, J. C., Issazadeh, S., Storch, M., Mustafa, M. I., Lassman, H., Linington, C., et al. (1995). Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund’s adjuvant. Journal of Neuroimmunology, 63(2), 193–205. doi:10.1016/0165-5728(95)00153-0.CrossRefPubMed Lorentzen, J. C., Issazadeh, S., Storch, M., Mustafa, M. I., Lassman, H., Linington, C., et al. (1995). Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund’s adjuvant. Journal of Neuroimmunology, 63(2), 193–205. doi:10.​1016/​0165-5728(95)00153-0.CrossRefPubMed
Zurück zum Zitat Meffre, D., Shackleford, G., Hichor, M., Gorgievski, V., Tzavara, E. T., Trousson, A., et al. (2015). Liver X receptors alpha and beta promote myelination and remyelination in the cerebellum. Proceedings of the National Academy of Sciences, 8(3), 201424951. doi:10.1073/pnas.1424951112. Meffre, D., Shackleford, G., Hichor, M., Gorgievski, V., Tzavara, E. T., Trousson, A., et al. (2015). Liver X receptors alpha and beta promote myelination and remyelination in the cerebellum. Proceedings of the National Academy of Sciences, 8(3), 201424951. doi:10.​1073/​pnas.​1424951112.
Zurück zum Zitat Mei, F., Fancy, S. P. J., Shen, Y. A., Niu, J., Zhao, C., Presley, B., et al. (2014). Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nature Medicine, 20(8), 954–960. doi:10.1038/nm.3618.CrossRefPubMedPubMedCentral Mei, F., Fancy, S. P. J., Shen, Y. A., Niu, J., Zhao, C., Presley, B., et al. (2014). Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nature Medicine, 20(8), 954–960. doi:10.​1038/​nm.​3618.CrossRefPubMedPubMedCentral
Zurück zum Zitat Mendel, I., de Rosbo, N. K., & Ben-Nun, A. (1995). A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: Fine specificity and T cell receptor Vβ expression of encephalitogenic T cells. European Journal of Immunology, 25(7), 1951–1959. doi:10.1002/eji.1830250723.CrossRefPubMed Mendel, I., de Rosbo, N. K., & Ben-Nun, A. (1995). A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: Fine specificity and T cell receptor Vβ expression of encephalitogenic T cells. European Journal of Immunology, 25(7), 1951–1959. doi:10.​1002/​eji.​1830250723.CrossRefPubMed
Zurück zum Zitat Monaco, M. C. G., Maric, D., Bandeian, A., Leibovitch, E., Yang, W., & Major, E. O. (2012). Progenitor-derived oligodendrocyte culture system from human fetal brain. Journal of Visualized Experiments JoVE. doi:10.3791/4274.PubMedPubMedCentral Monaco, M. C. G., Maric, D., Bandeian, A., Leibovitch, E., Yang, W., & Major, E. O. (2012). Progenitor-derived oligodendrocyte culture system from human fetal brain. Journal of Visualized Experiments JoVE. doi:10.​3791/​4274.PubMedPubMedCentral
Zurück zum Zitat Nastasijevic, B., Wright, B. R., Smestad, J., Warrington, A. E., Rodriguez, M., & Maher, L. J. (2012). Remyelination induced by a DNA Aptamer in a mouse model of multiple sclerosis. PLoS ONE, 7(6), 1–8. doi:10.1371/journal.pone.0039595.CrossRef Nastasijevic, B., Wright, B. R., Smestad, J., Warrington, A. E., Rodriguez, M., & Maher, L. J. (2012). Remyelination induced by a DNA Aptamer in a mouse model of multiple sclerosis. PLoS ONE, 7(6), 1–8. doi:10.​1371/​journal.​pone.​0039595.CrossRef
Zurück zum Zitat Ogawa, S., Tokumoto, Y., Miyake, J., & Nagamune, T. (2011). Immunopanning selection of A2B5-positive cells increased the differentiation efficiency of induced pluripotent stem cells into oligodendrocytes. Neuroscience Letters. doi:10.1016/j.neulet.2010.11.070.PubMed Ogawa, S., Tokumoto, Y., Miyake, J., & Nagamune, T. (2011). Immunopanning selection of A2B5-positive cells increased the differentiation efficiency of induced pluripotent stem cells into oligodendrocytes. Neuroscience Letters. doi:10.​1016/​j.​neulet.​2010.​11.​070.PubMed
Zurück zum Zitat Oskari Virtanen, J., & Jacobson, S. (2012). Viruses and multiple sclerosis. Current Drug Targets: CNS & Neurological Disorders, 11(5), 528–544. Oskari Virtanen, J., & Jacobson, S. (2012). Viruses and multiple sclerosis. Current Drug Targets: CNS & Neurological Disorders, 11(5), 528–544.
Zurück zum Zitat Päiväläinen, S., Nissinen, M., Honkanen, H., Lahti, O., Kangas, S. M., Peltonen, J., et al. (2008). Myelination in mouse dorsal root ganglion/Schwann cell cocultures. Molecular and Cellular Neuroscience, 37(3), 568–578. doi:10.1016/j.mcn.2007.12.005.CrossRefPubMed Päiväläinen, S., Nissinen, M., Honkanen, H., Lahti, O., Kangas, S. M., Peltonen, J., et al. (2008). Myelination in mouse dorsal root ganglion/Schwann cell cocultures. Molecular and Cellular Neuroscience, 37(3), 568–578. doi:10.​1016/​j.​mcn.​2007.​12.​005.CrossRefPubMed
Zurück zum Zitat Pang, Y., Zheng, B., Kimberly, S. L., Cai, Z., Rhodes, P. G., & Lin, R. C. S. (2012). Neuron-oligodendrocyte myelination co-culture derived from embryonic rat spinal cord and cerebral cortex. Brain and Behavior, 2(1), 53–67. doi:10.1002/brb3.33.CrossRefPubMedPubMedCentral Pang, Y., Zheng, B., Kimberly, S. L., Cai, Z., Rhodes, P. G., & Lin, R. C. S. (2012). Neuron-oligodendrocyte myelination co-culture derived from embryonic rat spinal cord and cerebral cortex. Brain and Behavior, 2(1), 53–67. doi:10.​1002/​brb3.​33.CrossRefPubMedPubMedCentral
Zurück zum Zitat Rosenberg, S. S., Kelland, E. E., Tokar, E., De la Torre, A. R., & Chan, J. R. (2008). The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14662–14667. doi:10.1073/pnas.0805640105.CrossRefPubMedPubMedCentral Rosenberg, S. S., Kelland, E. E., Tokar, E., De la Torre, A. R., & Chan, J. R. (2008). The geometric and spatial constraints of the microenvironment induce oligodendrocyte differentiation. Proceedings of the National Academy of Sciences of the United States of America, 105(38), 14662–14667. doi:10.​1073/​pnas.​0805640105.CrossRefPubMedPubMedCentral
Zurück zum Zitat Schnädelbach, O., Ozen, I., Blaschuk, O. W., Meyer, R. L., & Fawcett, J. W. (2001). N-cadherin is involved in axon-oligodendrocyte contact and myelination. Molecular and cellular neurosciences, 17(6), 1084–1093. doi:10.1006/mcne.2001.0961.CrossRefPubMed Schnädelbach, O., Ozen, I., Blaschuk, O. W., Meyer, R. L., & Fawcett, J. W. (2001). N-cadherin is involved in axon-oligodendrocyte contact and myelination. Molecular and cellular neurosciences, 17(6), 1084–1093. doi:10.​1006/​mcne.​2001.​0961.CrossRefPubMed
Zurück zum Zitat Shi, J., Marinovich, A., & Barres, B. A. (1998). Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. The Journal of Nuroscience, 18(12), 4627–4636. Shi, J., Marinovich, A., & Barres, B. A. (1998). Purification and characterization of adult oligodendrocyte precursor cells from the rat optic nerve. The Journal of Nuroscience, 18(12), 4627–4636.
Zurück zum Zitat van der Star, B. J., Vogel, D. Y. S., Kipp, M., Puentes, F., Baker, D., Amor, S. (2012). In Vitro and In Vivo Models of Multiple Sclerosis. CNS & Neurological Disorders: Drug Targets. doi:10.2174/187152712801661284. van der Star, B. J., Vogel, D. Y. S., Kipp, M., Puentes, F., Baker, D., Amor, S. (2012). In Vitro and In Vivo Models of Multiple Sclerosis. CNS & Neurological Disorders: Drug Targets. doi:10.​2174/​1871527128016612​84.
Zurück zum Zitat Syed, Y. A., Baer, A., Hofer, M. P., González, G. A., Rundle, J., Myrta, S., et al. (2013). Inhibition of phosphodiesterase-4 promotes oligodendrocyte precursor cell differentiation and enhances CNS remyelination. EMBO Molecular Medicine, 5(12), 1918–1934. doi:10.1002/emmm.201303123.CrossRefPubMedPubMedCentral Syed, Y. A., Baer, A., Hofer, M. P., González, G. A., Rundle, J., Myrta, S., et al. (2013). Inhibition of phosphodiesterase-4 promotes oligodendrocyte precursor cell differentiation and enhances CNS remyelination. EMBO Molecular Medicine, 5(12), 1918–1934. doi:10.​1002/​emmm.​201303123.CrossRefPubMedPubMedCentral
Zurück zum Zitat Thomson, C. E., Hunter, A. M., Griffiths, I. R., Edgar, J. M., & McCulloch, M. C. (2006). Spinal AMPA receptor inhibition attenuates mechanical allodynia and neuronal hyperexcitability following spinal cord injury in rats. Journal of Neuroscience Research, 84(11), 1703–1715. doi:10.1002/jnr.CrossRefPubMed Thomson, C. E., Hunter, A. M., Griffiths, I. R., Edgar, J. M., & McCulloch, M. C. (2006). Spinal AMPA receptor inhibition attenuates mechanical allodynia and neuronal hyperexcitability following spinal cord injury in rats. Journal of Neuroscience Research, 84(11), 1703–1715. doi:10.​1002/​jnr.CrossRefPubMed
Zurück zum Zitat Vereyken, E. J. F., Fluitsma, D. M., Bolijn, M. J., Dijkstra, C. D., & Teunissen, C. E. (2009). An in vitro model for de- and remyelination using lysophosphatidyl choline in rodent whole brain spheroid cultures. Glia, 57(12), 1326–1340. doi:10.1002/glia.20852.CrossRefPubMed Vereyken, E. J. F., Fluitsma, D. M., Bolijn, M. J., Dijkstra, C. D., & Teunissen, C. E. (2009). An in vitro model for de- and remyelination using lysophosphatidyl choline in rodent whole brain spheroid cultures. Glia, 57(12), 1326–1340. doi:10.​1002/​glia.​20852.CrossRefPubMed
Zurück zum Zitat Watanabe, M., Toyama, Y., & Nishiyama, A. (2002). Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. Journal of Neuroscience Research, 69(6), 826–836. doi:10.1002/jnr.10338.CrossRefPubMed Watanabe, M., Toyama, Y., & Nishiyama, A. (2002). Differentiation of proliferated NG2-positive glial progenitor cells in a remyelinating lesion. Journal of Neuroscience Research, 69(6), 826–836. doi:10.​1002/​jnr.​10338.CrossRefPubMed
Zurück zum Zitat Wernig, M., Zhao, J.-P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., et al. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proceedings of the National Academy of Sciences, 105(15), 5856–5861. doi:10.1073/pnas.0801677105.CrossRef Wernig, M., Zhao, J.-P., Pruszak, J., Hedlund, E., Fu, D., Soldner, F., et al. (2008). Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proceedings of the National Academy of Sciences, 105(15), 5856–5861. doi:10.​1073/​pnas.​0801677105.CrossRef
Zurück zum Zitat Zamvil, S. S., Mitchell, D. J., Moore, A. C., Kitamura, K., Steinman, L., & Rothbard, J. B. (1986). T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature, 324(6094), 258–260. doi:10.1038/324258a0.CrossRefPubMed Zamvil, S. S., Mitchell, D. J., Moore, A. C., Kitamura, K., Steinman, L., & Rothbard, J. B. (1986). T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature, 324(6094), 258–260. doi:10.​1038/​324258a0.CrossRefPubMed
Metadaten
Titel
Models for Studying Myelination, Demyelination and Remyelination
verfasst von
I. Osorio-Querejeta
M. Sáenz-Cuesta
M. Muñoz-Culla
D. Otaegui
Publikationsdatum
23.05.2017
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 2-3/2017
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-017-8442-1

Weitere Artikel der Ausgabe 2-3/2017

NeuroMolecular Medicine 2-3/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.