Skip to main content
Erschienen in: NeuroMolecular Medicine 2-3/2017

26.07.2017 | Review Paper

Molecular Basis of Pediatric Brain Tumors

verfasst von: Alexia Klonou, Christina Piperi, Antonios N. Gargalionis, Athanasios G. Papavassiliou

Erschienen in: NeuroMolecular Medicine | Ausgabe 2-3/2017

Einloggen, um Zugang zu erhalten

Abstract

Brain tumors emerge as the second commonest type of pediatric solid tumors following hematologic malignancies. Genomic profiling of low- and high-grade gliomas, ependymomas and medulloblastomas has revealed chromosomal abnormalities and specific gene mutations which have been associated with aberrant activation of crucial signal transduction pathways, including mitogen-activated protein kinase, mammalian target of rapamycin and retinoblastoma tumor suppressor signaling. Furthermore, pediatric high-grade gliomas are associated with chromatin remodeling defects and somatic histone gene mutations that affect prognosis. This review provides an update of the molecular and genetic alterations that characterize pediatric brain tumors, and discusses novel therapeutic approaches targeting these abnormalities.
Literatur
Zurück zum Zitat Antonelli, M., Badiali, M., Moi, L., Buttarelli, F., Baldi, C., Massimino, M., et al. (2015). KIAA1549: BRAF fusion gene in pediatric brain tumors of various histogenesis. Pediatric Blood and Cancer, 62(4), 724–727.PubMedCrossRef Antonelli, M., Badiali, M., Moi, L., Buttarelli, F., Baldi, C., Massimino, M., et al. (2015). KIAA1549: BRAF fusion gene in pediatric brain tumors of various histogenesis. Pediatric Blood and Cancer, 62(4), 724–727.PubMedCrossRef
Zurück zum Zitat Bandopadhayay, P., Bergthold, G., Nguyen, B., Schubert, S., Gholamin, S., Tang, Y., et al. (2014). BET bromodomain inhibition of MYC-amplified medulloblastoma. Clinical Cancer Research, 20(4), 912–925.PubMedCrossRef Bandopadhayay, P., Bergthold, G., Nguyen, B., Schubert, S., Gholamin, S., Tang, Y., et al. (2014). BET bromodomain inhibition of MYC-amplified medulloblastoma. Clinical Cancer Research, 20(4), 912–925.PubMedCrossRef
Zurück zum Zitat Bautista, F., Paci, A., Minard-Colin, V., Dufour, C., Grill, J., Lacroix, L., et al. (2014). Vemurafenib in pediatric patients with BRAFV600E mutated high-grade gliomas. Pediatric Blood and Cancer, 61(6), 1101–1103.PubMedCrossRef Bautista, F., Paci, A., Minard-Colin, V., Dufour, C., Grill, J., Lacroix, L., et al. (2014). Vemurafenib in pediatric patients with BRAFV600E mutated high-grade gliomas. Pediatric Blood and Cancer, 61(6), 1101–1103.PubMedCrossRef
Zurück zum Zitat Bax, D. A., Mackay, A., Little, S. E., Carvalho, D., Viana-Pereira, M., Tamber, N., et al. (2010). A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clinical Cancer Research, 16(13), 3368–3377.PubMedPubMedCentralCrossRef Bax, D. A., Mackay, A., Little, S. E., Carvalho, D., Viana-Pereira, M., Tamber, N., et al. (2010). A distinct spectrum of copy number aberrations in pediatric high-grade gliomas. Clinical Cancer Research, 16(13), 3368–3377.PubMedPubMedCentralCrossRef
Zurück zum Zitat Becher, O. J., & Wechsler-Reya, R. J. (2014). Cancer. For pediatric glioma, leave no histone unturned. Science, 346(6216), 1458–1459.PubMedCrossRef Becher, O. J., & Wechsler-Reya, R. J. (2014). Cancer. For pediatric glioma, leave no histone unturned. Science, 346(6216), 1458–1459.PubMedCrossRef
Zurück zum Zitat Becker, A., Scapulatempo-Neto, C., Carloni, A., Paulino, A., Sheren, J., Aisner, D., et al. (2015). KIAA1549: BRAF gene fusion and FGFR1 hotspot mutations are prognostic factors in pilocytic astrocytomas. Journal of Neuropathology and Experimental Neurology, 74(7), 743–754.PubMedPubMedCentralCrossRef Becker, A., Scapulatempo-Neto, C., Carloni, A., Paulino, A., Sheren, J., Aisner, D., et al. (2015). KIAA1549: BRAF gene fusion and FGFR1 hotspot mutations are prognostic factors in pilocytic astrocytomas. Journal of Neuropathology and Experimental Neurology, 74(7), 743–754.PubMedPubMedCentralCrossRef
Zurück zum Zitat Bergthold, G., Bandopadhayay, P., Bi, W. L., Ramkissoon, L., Stiles, C., Segal, R. A., et al. (2014). Pediatric low-grade gliomas: How modern biology reshapes the clinical field. Biochimica et Biophysica Acta, 1845(2), 294–307.PubMedPubMedCentral Bergthold, G., Bandopadhayay, P., Bi, W. L., Ramkissoon, L., Stiles, C., Segal, R. A., et al. (2014). Pediatric low-grade gliomas: How modern biology reshapes the clinical field. Biochimica et Biophysica Acta, 1845(2), 294–307.PubMedPubMedCentral
Zurück zum Zitat Bergthold, G., Bandopadhayay, P., Hoshida, Y., Ramkissoon, S., Ramkissoon, L., Rich, B., et al. (2015). Expression profiles of 151 pediatric low-grade gliomas reveal molecular differences associated with location and histological subtype. Neuro Oncology, 17(11), 1486–1496.PubMedPubMedCentralCrossRef Bergthold, G., Bandopadhayay, P., Hoshida, Y., Ramkissoon, S., Ramkissoon, L., Rich, B., et al. (2015). Expression profiles of 151 pediatric low-grade gliomas reveal molecular differences associated with location and histological subtype. Neuro Oncology, 17(11), 1486–1496.PubMedPubMedCentralCrossRef
Zurück zum Zitat Bjerke, L., Mackay, A., Nandhabalan, M., Burford, A., Jury, A., Popov, S., et al. (2013). Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discovery, 3(5), 512–519.PubMedPubMedCentralCrossRef Bjerke, L., Mackay, A., Nandhabalan, M., Burford, A., Jury, A., Popov, S., et al. (2013). Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. Cancer Discovery, 3(5), 512–519.PubMedPubMedCentralCrossRef
Zurück zum Zitat Buccoliero, A. M., Castiglione, F., Degl’Innocenti, D. R., Gheri, C. F., Genitori, L., & Taddei, G. L. (2012). IDH1 mutation in pediatric gliomas: Has it a diagnostic and prognostic value? Fetal and Pediatric Pathology, 31(5), 278–282.PubMedCrossRef Buccoliero, A. M., Castiglione, F., Degl’Innocenti, D. R., Gheri, C. F., Genitori, L., & Taddei, G. L. (2012). IDH1 mutation in pediatric gliomas: Has it a diagnostic and prognostic value? Fetal and Pediatric Pathology, 31(5), 278–282.PubMedCrossRef
Zurück zum Zitat Buczkowicz, P., Hoeman, C., Rakopoulos, P., Pajovic, S., Letourneau, L., Dzamba, M., et al. (2014). Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nature Genetics, 46(5), 451–456.PubMedPubMedCentralCrossRef Buczkowicz, P., Hoeman, C., Rakopoulos, P., Pajovic, S., Letourneau, L., Dzamba, M., et al. (2014). Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nature Genetics, 46(5), 451–456.PubMedPubMedCentralCrossRef
Zurück zum Zitat Cin, H., Meyer, C., Herr, R., Janzarik, W. G., Lambert, S., Jones, D. T., et al. (2011). Oncogenic FAM131B–BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathologica, 121(6), 763–774.PubMedCrossRef Cin, H., Meyer, C., Herr, R., Janzarik, W. G., Lambert, S., Jones, D. T., et al. (2011). Oncogenic FAM131B–BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathologica, 121(6), 763–774.PubMedCrossRef
Zurück zum Zitat Costa, R. M., Federov, N. B., Kogan, J. H., Murphy, G. G., Stern, J., Ohno, M., et al. (2002). Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature, 415(6871), 526–530.PubMedCrossRef Costa, R. M., Federov, N. B., Kogan, J. H., Murphy, G. G., Stern, J., Ohno, M., et al. (2002). Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature, 415(6871), 526–530.PubMedCrossRef
Zurück zum Zitat Cruzeiro, G. A., Dos Reis, M. B., Silveira, V. S., Lira, R. C., Carlotti, C. G., Neder, L. et al. (2017). HIF1A is overexpressed in medulloblastoma and its inhibition reduces proliferation and increases EPAS1 and ATG16L1 methylation. Current Cancer Drug Targets. doi:10.2174/1568009617666170315162525.PubMed Cruzeiro, G. A., Dos Reis, M. B., Silveira, V. S., Lira, R. C., Carlotti, C. G., Neder, L. et al. (2017). HIF1A is overexpressed in medulloblastoma and its inhibition reduces proliferation and increases EPAS1 and ATG16L1 methylation. Current Cancer Drug Targets. doi:10.​2174/​1568009617666170​315162525.PubMed
Zurück zum Zitat Dasgupta, T., & Haas-Kogan, D. A. (2013). The combination of novel targeted molecular agents and radiation in the treatment of pediatric gliomas. Frontiers in Oncology, 3. Article 110. Dasgupta, T., & Haas-Kogan, D. A. (2013). The combination of novel targeted molecular agents and radiation in the treatment of pediatric gliomas. Frontiers in Oncology, 3. Article 110.
Zurück zum Zitat Downing, J. R., Wilson, R. K., Zhang, J., Mardis, E. R., Pui, C. H., Ding, L., et al. (2012). The pediatric cancer genome project. Nature Genetics, 44(6), 619–622.PubMedPubMedCentralCrossRef Downing, J. R., Wilson, R. K., Zhang, J., Mardis, E. R., Pui, C. H., Ding, L., et al. (2012). The pediatric cancer genome project. Nature Genetics, 44(6), 619–622.PubMedPubMedCentralCrossRef
Zurück zum Zitat Dubuc, A. M., Remke, M., Korshunov, A., Northcott, P. A., Zhan, S. H., Mendez-Lago, M., et al. (2013). Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathologica, 125(3), 373–384.PubMedCrossRef Dubuc, A. M., Remke, M., Korshunov, A., Northcott, P. A., Zhan, S. H., Mendez-Lago, M., et al. (2013). Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathologica, 125(3), 373–384.PubMedCrossRef
Zurück zum Zitat Fattet, S., Haberler, C., Legoix, P., Varlet, P., Lellouch-Tubiana, A., Lair, S., et al. (2009). Beta-catenin status in paediatric medulloblastomas: Correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. The Journal of Pathology, 218(1), 86–94.PubMedCrossRef Fattet, S., Haberler, C., Legoix, P., Varlet, P., Lellouch-Tubiana, A., Lair, S., et al. (2009). Beta-catenin status in paediatric medulloblastomas: Correlation of immunohistochemical expression with mutational status, genetic profiles, and clinical characteristics. The Journal of Pathology, 218(1), 86–94.PubMedCrossRef
Zurück zum Zitat Fontebasso, A. M., Gayden, T., Nikbakht, H., Neirinck, M., Papillon-Cavanagh, S., Majewski, J., et al. (2014a). Epigenetic dysregulation: A novel pathway of oncogenesis in pediatric brain tumors. Acta Neuropathologica, 128(5), 615–627.PubMedPubMedCentralCrossRef Fontebasso, A. M., Gayden, T., Nikbakht, H., Neirinck, M., Papillon-Cavanagh, S., Majewski, J., et al. (2014a). Epigenetic dysregulation: A novel pathway of oncogenesis in pediatric brain tumors. Acta Neuropathologica, 128(5), 615–627.PubMedPubMedCentralCrossRef
Zurück zum Zitat Fontebasso, A. M., Liu, X. Y., Sturm, D., & Jabado, N. (2013). Chromatin remodeling defects in pediatric and young adult glioblastoma: A tale of a variant histone 3 tail. Brain Pathology, 23(2), 210–216.PubMedCrossRef Fontebasso, A. M., Liu, X. Y., Sturm, D., & Jabado, N. (2013). Chromatin remodeling defects in pediatric and young adult glioblastoma: A tale of a variant histone 3 tail. Brain Pathology, 23(2), 210–216.PubMedCrossRef
Zurück zum Zitat Fontebasso, A. M., Papillon-Cavanagh, S., Schwartzentruber, J., Nikbakht, H., Gerges, N., Fiset, P. O., et al. (2014b). Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nature Genetics, 46(5), 462–466.PubMedPubMedCentralCrossRef Fontebasso, A. M., Papillon-Cavanagh, S., Schwartzentruber, J., Nikbakht, H., Gerges, N., Fiset, P. O., et al. (2014b). Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nature Genetics, 46(5), 462–466.PubMedPubMedCentralCrossRef
Zurück zum Zitat Forshew, T., Tatevossian, R. G., Lawson, A. R., Ma, J., Neale, G., Ogunkolade, B. W., et al. (2009). Activation of the ERK/MAPK pathway: A signature genetic defect in posterior fossa pilocytic astrocytomas. The Journal of Pathology, 218(2), 172–181.PubMedCrossRef Forshew, T., Tatevossian, R. G., Lawson, A. R., Ma, J., Neale, G., Ogunkolade, B. W., et al. (2009). Activation of the ERK/MAPK pathway: A signature genetic defect in posterior fossa pilocytic astrocytomas. The Journal of Pathology, 218(2), 172–181.PubMedCrossRef
Zurück zum Zitat Gajjar, A., Bowers, D. C., Karajannis, M. A., Leary, S., Witt, H., & Gottardo, N. G. (2015). Pediatric brain tumors: Innovative genomic information is transforming the diagnostic and clinical landscape. Journal of Clinical Oncology, 33(27), 2986–2998.PubMedPubMedCentralCrossRef Gajjar, A., Bowers, D. C., Karajannis, M. A., Leary, S., Witt, H., & Gottardo, N. G. (2015). Pediatric brain tumors: Innovative genomic information is transforming the diagnostic and clinical landscape. Journal of Clinical Oncology, 33(27), 2986–2998.PubMedPubMedCentralCrossRef
Zurück zum Zitat Gajjar, A., Pfister, S. M., Taylor, M. D., & Gilbertson, R. J. (2014). Molecular insights into pediatric brain tumors have the potential to transform therapy. Clinical Cancer Research, 20(22), 5630–5640.PubMedPubMedCentralCrossRef Gajjar, A., Pfister, S. M., Taylor, M. D., & Gilbertson, R. J. (2014). Molecular insights into pediatric brain tumors have the potential to transform therapy. Clinical Cancer Research, 20(22), 5630–5640.PubMedPubMedCentralCrossRef
Zurück zum Zitat Garcia, I., Crowther, A. J., Gama, V., Miller, C. R., Deshmukh, M., & Gershon, T. R. (2013). Bax deficiency prolongs cerebellar neurogenesis, accelerates medulloblastoma formation and paradoxically increases both malignancy and differentiation. Oncogene, 32(18), 2304–2314. doi:10.1038/onc.2012.248.PubMedCrossRef Garcia, I., Crowther, A. J., Gama, V., Miller, C. R., Deshmukh, M., & Gershon, T. R. (2013). Bax deficiency prolongs cerebellar neurogenesis, accelerates medulloblastoma formation and paradoxically increases both malignancy and differentiation. Oncogene, 32(18), 2304–2314. doi:10.​1038/​onc.​2012.​248.PubMedCrossRef
Zurück zum Zitat Gerges, N., Fontebasso, A. M., Albrecht, S., Faury, D., & Jabado, N. (2013). Pediatric high-grade astrocytomas: A distinct neuro-oncological paradigm. Genome Medicine, 5(7), 66.PubMedPubMedCentralCrossRef Gerges, N., Fontebasso, A. M., Albrecht, S., Faury, D., & Jabado, N. (2013). Pediatric high-grade astrocytomas: A distinct neuro-oncological paradigm. Genome Medicine, 5(7), 66.PubMedPubMedCentralCrossRef
Zurück zum Zitat Gielen, G. H., Gessi, M., Hammes, J., Kramm, C. M., Waha, A., & Pietsch, T. (2013). H3F3A K27M mutation in pediatric CNS tumors: A marker for diffuse high-grade astrocytomas. American Journal of Clinical Pathology, 139(3), 345–349.PubMedCrossRef Gielen, G. H., Gessi, M., Hammes, J., Kramm, C. M., Waha, A., & Pietsch, T. (2013). H3F3A K27M mutation in pediatric CNS tumors: A marker for diffuse high-grade astrocytomas. American Journal of Clinical Pathology, 139(3), 345–349.PubMedCrossRef
Zurück zum Zitat Gilheeney, S. W., & Kieran, M. W. (2012). Differences in molecular genetics between pediatric and adult malignant astrocytomas: Age matters. Future Oncology, 8(5), 549–558.PubMedCrossRef Gilheeney, S. W., & Kieran, M. W. (2012). Differences in molecular genetics between pediatric and adult malignant astrocytomas: Age matters. Future Oncology, 8(5), 549–558.PubMedCrossRef
Zurück zum Zitat Glod, J., Rahme, G., Kaur, H., Raabe, E. H., Hwang, E., & Israel, M. (2016). Pediatric brain tumors: Current knowledge and therapeutic opportunities. Journal of Pediatric Hematology/Oncology, 38(4), 249–260.PubMedPubMedCentralCrossRef Glod, J., Rahme, G., Kaur, H., Raabe, E. H., Hwang, E., & Israel, M. (2016). Pediatric brain tumors: Current knowledge and therapeutic opportunities. Journal of Pediatric Hematology/Oncology, 38(4), 249–260.PubMedPubMedCentralCrossRef
Zurück zum Zitat Goldberg, A. D., Banaszynski, L. A., et al. (2010). Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell, 140(5), 678–691.PubMedPubMedCentralCrossRef Goldberg, A. D., Banaszynski, L. A., et al. (2010). Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell, 140(5), 678–691.PubMedPubMedCentralCrossRef
Zurück zum Zitat Hargrave, D. (2009). Paediatric high and low grade glioma: The impact of tumour biology on current and future therapy. British Journal of Neurosurgery, 23(4), 351–363.PubMedCrossRef Hargrave, D. (2009). Paediatric high and low grade glioma: The impact of tumour biology on current and future therapy. British Journal of Neurosurgery, 23(4), 351–363.PubMedCrossRef
Zurück zum Zitat Hassan, B., Akcakanat, A., Holder, A. M., & Meric-Bernstam, F. (2013). Targeting the PI3-kinase/Akt/mTOR signaling pathway. Surgical Oncology Clinics of North America, 22(4), 641–664.PubMedCrossRef Hassan, B., Akcakanat, A., Holder, A. M., & Meric-Bernstam, F. (2013). Targeting the PI3-kinase/Akt/mTOR signaling pathway. Surgical Oncology Clinics of North America, 22(4), 641–664.PubMedCrossRef
Zurück zum Zitat Heaphy, C. M., de Wilde, R. F., Jiao, Y., Klein, A. P., Edil, B. H., Shi, C., et al. (2011). Altered telomeres in tumors with ATRX and DAXX mutations. Science, 333(6041), 425.PubMedPubMedCentralCrossRef Heaphy, C. M., de Wilde, R. F., Jiao, Y., Klein, A. P., Edil, B. H., Shi, C., et al. (2011). Altered telomeres in tumors with ATRX and DAXX mutations. Science, 333(6041), 425.PubMedPubMedCentralCrossRef
Zurück zum Zitat Hemmati, H. D., Nakano, I., Lazareff, J. A., Masterman-Smith, M., Geschwind, D. H., Bronner-Fraser, M., et al. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences USA, 100(25), 15178–15183.CrossRef Hemmati, H. D., Nakano, I., Lazareff, J. A., Masterman-Smith, M., Geschwind, D. H., Bronner-Fraser, M., et al. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences USA, 100(25), 15178–15183.CrossRef
Zurück zum Zitat Hernaiz Driever, P., von Hornstein, S., Pietsch, T., Kortmann, R., Warmuth-Metz, M., Emser, A., et al. (2010). Natural history and management of low-grade glioma in NF-1 children. Journal of Neuro-Oncology, 100(2), 199–207.PubMedCrossRef Hernaiz Driever, P., von Hornstein, S., Pietsch, T., Kortmann, R., Warmuth-Metz, M., Emser, A., et al. (2010). Natural history and management of low-grade glioma in NF-1 children. Journal of Neuro-Oncology, 100(2), 199–207.PubMedCrossRef
Zurück zum Zitat Hervey-Jumper, S. L., Garton, H. J., Lau, D., Altshuler, D., Quint, D. J., Robertson, P. L., et al. (2014). Differences in vascular endothelial growth factor receptor expression and correlation with the degree of enhancement in medulloblastoma. Journal of Neurosurgery: Pediatrics, 14(2), 121–128.PubMed Hervey-Jumper, S. L., Garton, H. J., Lau, D., Altshuler, D., Quint, D. J., Robertson, P. L., et al. (2014). Differences in vascular endothelial growth factor receptor expression and correlation with the degree of enhancement in medulloblastoma. Journal of Neurosurgery: Pediatrics, 14(2), 121–128.PubMed
Zurück zum Zitat Ho, C., Mobley, B., Gordish-Dressman, H., VandenBussche, C., Mason, G., Bornhorst, M., et al. (2015). A clinicopathologic study of diencephalic pediatric low-grade gliomas with BRAF V600 mutation. Acta Neuropathologica, 130(4), 575–585.PubMedCrossRef Ho, C., Mobley, B., Gordish-Dressman, H., VandenBussche, C., Mason, G., Bornhorst, M., et al. (2015). A clinicopathologic study of diencephalic pediatric low-grade gliomas with BRAF V600 mutation. Acta Neuropathologica, 130(4), 575–585.PubMedCrossRef
Zurück zum Zitat Hovestadt, V., Jones, D. T., Picelli, S., Wang, W., Kool, M., Northcott, P. A., et al. (2014). Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature, 510(7506), 537–541.PubMedCrossRef Hovestadt, V., Jones, D. T., Picelli, S., Wang, W., Kool, M., Northcott, P. A., et al. (2014). Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature, 510(7506), 537–541.PubMedCrossRef
Zurück zum Zitat Huillard, E., Hashizume, R., Phillips, J. J., Griveau, A., Ihrie, R. A., Aoki, Y., et al. (2012). Cooperative interactions of BRAFV600E kinase and CDKN2A locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy. Proceedings of the National Academy of Sciences USA, 109(22), 8710–8715.CrossRef Huillard, E., Hashizume, R., Phillips, J. J., Griveau, A., Ihrie, R. A., Aoki, Y., et al. (2012). Cooperative interactions of BRAFV600E kinase and CDKN2A locus deficiency in pediatric malignant astrocytoma as a basis for rational therapy. Proceedings of the National Academy of Sciences USA, 109(22), 8710–8715.CrossRef
Zurück zum Zitat Huse, J. T., & Rosenblum, M. K. (2015). The emerging molecular foundations of pediatric brain tumors. Journal of Child Neurology, 30(13), 1838–1850.PubMedCrossRef Huse, J. T., & Rosenblum, M. K. (2015). The emerging molecular foundations of pediatric brain tumors. Journal of Child Neurology, 30(13), 1838–1850.PubMedCrossRef
Zurück zum Zitat Jacob, K., Albrecht, S., Sollier, C., Faury, D., Sader, E., Montpetit, A., et al. (2009). Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours. British Journal of Cancer, 101(4), 722–733.PubMedPubMedCentralCrossRef Jacob, K., Albrecht, S., Sollier, C., Faury, D., Sader, E., Montpetit, A., et al. (2009). Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours. British Journal of Cancer, 101(4), 722–733.PubMedPubMedCentralCrossRef
Zurück zum Zitat Jacob, K., Quang-Khuong, D. A., Jones, D. T., Witt, H., Lambert, S., Albrecht, S., et al. (2011). Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas. Clinical Cancer Research, 17(14), 4650–4660.PubMedCrossRef Jacob, K., Quang-Khuong, D. A., Jones, D. T., Witt, H., Lambert, S., Albrecht, S., et al. (2011). Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas. Clinical Cancer Research, 17(14), 4650–4660.PubMedCrossRef
Zurück zum Zitat Jones, C., Perryman, L., & Hargrave, D. (2012a). Paediatric and adult malignant glioma: Close relatives or distant cousins? Nature Reviews Clinical Oncology, 9(7), 400–413.PubMedCrossRef Jones, C., Perryman, L., & Hargrave, D. (2012a). Paediatric and adult malignant glioma: Close relatives or distant cousins? Nature Reviews Clinical Oncology, 9(7), 400–413.PubMedCrossRef
Zurück zum Zitat Jones, D. T., Gronych, J., Lichter, P., Witt, O., & Pfister, S. M. (2012b). MAPK pathway activation in pilocytic astrocytoma. Cellular and Molecular Life Sciences, 69(11), 1799–1811.PubMedCrossRef Jones, D. T., Gronych, J., Lichter, P., Witt, O., & Pfister, S. M. (2012b). MAPK pathway activation in pilocytic astrocytoma. Cellular and Molecular Life Sciences, 69(11), 1799–1811.PubMedCrossRef
Zurück zum Zitat Jones, D. T., Hutter, B., Jager, N., Korshunov, A., Kool, M., Warnatz, H. J., et al. (2013). Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nature Genetics, 45(8), 927–932.PubMedPubMedCentralCrossRef Jones, D. T., Hutter, B., Jager, N., Korshunov, A., Kool, M., Warnatz, H. J., et al. (2013). Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nature Genetics, 45(8), 927–932.PubMedPubMedCentralCrossRef
Zurück zum Zitat Jones, D. T., Ichimura, K., Liu, L., Pearson, D. M., Plant, K., & Collins, V. P. (2006). Genomic analysis of pilocytic astrocytomas at 0.97 Mb resolution shows an increasing tendency toward chromosomal copy number change with age. Journal of Neuropathology and Experimental Neurology, 65(11), 1049–1058.PubMedPubMedCentralCrossRef Jones, D. T., Ichimura, K., Liu, L., Pearson, D. M., Plant, K., & Collins, V. P. (2006). Genomic analysis of pilocytic astrocytomas at 0.97 Mb resolution shows an increasing tendency toward chromosomal copy number change with age. Journal of Neuropathology and Experimental Neurology, 65(11), 1049–1058.PubMedPubMedCentralCrossRef
Zurück zum Zitat Jones, D. T., Jager, N., Kool, M., Zichner, T., Hutter, B., Sultan, M., et al. (2012c). Dissecting the genomic complexity underlying medulloblastoma. Nature, 488(7409), 100–105.PubMedPubMedCentralCrossRef Jones, D. T., Jager, N., Kool, M., Zichner, T., Hutter, B., Sultan, M., et al. (2012c). Dissecting the genomic complexity underlying medulloblastoma. Nature, 488(7409), 100–105.PubMedPubMedCentralCrossRef
Zurück zum Zitat Jones, D. T., Kocialkowski, S., Liu, L., Pearson, D. M., Backlund, L. M., Ichimura, K., et al. (2008). Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Research, 68(21), 8673–8677.PubMedPubMedCentralCrossRef Jones, D. T., Kocialkowski, S., Liu, L., Pearson, D. M., Backlund, L. M., Ichimura, K., et al. (2008). Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Research, 68(21), 8673–8677.PubMedPubMedCentralCrossRef
Zurück zum Zitat Jones, D. T., Kocialkowski, S., Liu, L., Pearson, D. M., Ichimura, K., & Collins, V. P. (2009). Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549: BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene, 28(20), 2119–2123.PubMedPubMedCentralCrossRef Jones, D. T., Kocialkowski, S., Liu, L., Pearson, D. M., Ichimura, K., & Collins, V. P. (2009). Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549: BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene, 28(20), 2119–2123.PubMedPubMedCentralCrossRef
Zurück zum Zitat Khuong-Quang, D. A., Buczkowicz, P., Rakopoulos, P., Liu, X. Y., Fontebasso, A. M., Bouffet, E., et al. (2012). K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathologica, 124(3), 439–447.PubMedPubMedCentralCrossRef Khuong-Quang, D. A., Buczkowicz, P., Rakopoulos, P., Liu, X. Y., Fontebasso, A. M., Bouffet, E., et al. (2012). K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathologica, 124(3), 439–447.PubMedPubMedCentralCrossRef
Zurück zum Zitat Kieran, M. W., Walker, D., Frappaz, D., & Prados, M. (2010). Brain tumors: From childhood through adolescence into adulthood. Journal of Clinical Oncology, 28(32), 4783–4789.PubMedCrossRef Kieran, M. W., Walker, D., Frappaz, D., & Prados, M. (2010). Brain tumors: From childhood through adolescence into adulthood. Journal of Clinical Oncology, 28(32), 4783–4789.PubMedCrossRef
Zurück zum Zitat Kleiblova, P., Shaltiel, I. A., Benada, J., Ševčík, J., Pecháčková, S., Pohlreich, P., et al. (2013). Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. Journal of Cell Biology, 201, 511–521.PubMedPubMedCentralCrossRef Kleiblova, P., Shaltiel, I. A., Benada, J., Ševčík, J., Pecháčková, S., Pohlreich, P., et al. (2013). Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint. Journal of Cell Biology, 201, 511–521.PubMedPubMedCentralCrossRef
Zurück zum Zitat Kleinschmidt-DeMasters, B. K., Aisner, D. L., Birks, D. K., & Foreman, N. K. (2013). Epithelioid GBMs show a high percentage of BRAF V600E mutation. The American Journal of Surgical Pathology, 37(5), 685–698.PubMedPubMedCentralCrossRef Kleinschmidt-DeMasters, B. K., Aisner, D. L., Birks, D. K., & Foreman, N. K. (2013). Epithelioid GBMs show a high percentage of BRAF V600E mutation. The American Journal of Surgical Pathology, 37(5), 685–698.PubMedPubMedCentralCrossRef
Zurück zum Zitat Knobbe, C. B., Reifenberger, J., & Reifenberger, G. (2004). Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathologica, 108(6), 467–470.PubMedCrossRef Knobbe, C. B., Reifenberger, J., & Reifenberger, G. (2004). Mutation analysis of the Ras pathway genes NRAS, HRAS, KRAS and BRAF in glioblastomas. Acta Neuropathologica, 108(6), 467–470.PubMedCrossRef
Zurück zum Zitat Krueger, D. A., Care, M. M., Agricola, K., Tudor, C., Mays, M., & Franz, D. N. (2013). Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology, 80(6), 574–580.PubMedPubMedCentralCrossRef Krueger, D. A., Care, M. M., Agricola, K., Tudor, C., Mays, M., & Franz, D. N. (2013). Everolimus long-term safety and efficacy in subependymal giant cell astrocytoma. Neurology, 80(6), 574–580.PubMedPubMedCentralCrossRef
Zurück zum Zitat Lassaletta, A., Zapotocky, M., Bouffet, E., Hawkins, C., & Tabori, U. (2016). An integrative molecular and genomic analysis of pediatric hemispheric low-grade gliomas: An update. Childs Nervous System, 32(10), 1789–1797.CrossRef Lassaletta, A., Zapotocky, M., Bouffet, E., Hawkins, C., & Tabori, U. (2016). An integrative molecular and genomic analysis of pediatric hemispheric low-grade gliomas: An update. Childs Nervous System, 32(10), 1789–1797.CrossRef
Zurück zum Zitat Lawrence, M. S., Stojanov, P., Mermel, C. H., Robinson, J. T., Garraway, L. A., Golub, T. R., et al. (2014). Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 505(7484), 495–501.PubMedPubMedCentralCrossRef Lawrence, M. S., Stojanov, P., Mermel, C. H., Robinson, J. T., Garraway, L. A., Golub, T. R., et al. (2014). Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 505(7484), 495–501.PubMedPubMedCentralCrossRef
Zurück zum Zitat Lin, A., Rodriguez, F. J., Karajannis, M. A., Williams, S. C., Legault, G., Zagzag, D., et al. (2012). BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549: BRAF fusion variants. Journal of Neuropathology and Experimental Neurology, 71(1), 66–72.PubMedPubMedCentralCrossRef Lin, A., Rodriguez, F. J., Karajannis, M. A., Williams, S. C., Legault, G., Zagzag, D., et al. (2012). BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549: BRAF fusion variants. Journal of Neuropathology and Experimental Neurology, 71(1), 66–72.PubMedPubMedCentralCrossRef
Zurück zum Zitat Liu, K., Pajtler, K., Worst, B., Pfister, S., & Wechsler-Reya, R. (2017). Molecular mechanisms and therapeutic targets in pediatric brain tumors. Science Signaling, 10(470), eaaf7593. doi:10.1126/scisignal.aaf7593.CrossRef Liu, K., Pajtler, K., Worst, B., Pfister, S., & Wechsler-Reya, R. (2017). Molecular mechanisms and therapeutic targets in pediatric brain tumors. Science Signaling, 10(470), eaaf7593. doi:10.​1126/​scisignal.​aaf7593.CrossRef
Zurück zum Zitat Liu, X. Y., Gerges, N., Korshunov, A., Sabha, N., Khuong-Quang, D. A., Fontebasso, A. M., et al. (2012). Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathologica, 124(5), 615–625.PubMedCrossRef Liu, X. Y., Gerges, N., Korshunov, A., Sabha, N., Khuong-Quang, D. A., Fontebasso, A. M., et al. (2012). Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathologica, 124(5), 615–625.PubMedCrossRef
Zurück zum Zitat Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., et al. (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica, 114(2), 97–109.PubMedPubMedCentralCrossRef Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., et al. (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica, 114(2), 97–109.PubMedPubMedCentralCrossRef
Zurück zum Zitat Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., et al. (2016). The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathologica, 131(6), 803–820.PubMedCrossRef Louis, D. N., Perry, A., Reifenberger, G., von Deimling, A., Figarella-Branger, D., Cavenee, W. K., et al. (2016). The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathologica, 131(6), 803–820.PubMedCrossRef
Zurück zum Zitat Mack, S. C., & Northcott, P. A. (2017). Genomic analysis of childhood brain tumors: Methods for genome-wide discovery and precision medicine become mainstream. Journal of Clinical Oncology, 35(21), 2346–2354.PubMedCrossRef Mack, S. C., & Northcott, P. A. (2017). Genomic analysis of childhood brain tumors: Methods for genome-wide discovery and precision medicine become mainstream. Journal of Clinical Oncology, 35(21), 2346–2354.PubMedCrossRef
Zurück zum Zitat Mack, S. C., Witt, H., Piro, R. M., Gu, L., Zuyderduyn, S., Stutz, A. M., et al. (2014). Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature, 506(7489), 445–450.PubMedPubMedCentralCrossRef Mack, S. C., Witt, H., Piro, R. M., Gu, L., Zuyderduyn, S., Stutz, A. M., et al. (2014). Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature, 506(7489), 445–450.PubMedPubMedCentralCrossRef
Zurück zum Zitat McLendon, et al. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068.CrossRef McLendon, et al. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068.CrossRef
Zurück zum Zitat Nicolaides, T. P., Li, H., Solomon, D. A., Hariono, S., Hashizume, R., Barkovich, K., et al. (2011). Targeted therapy for BRAFV600E malignant astrocytoma. Clinical Cancer Research, 17(24), 7595–7604.PubMedPubMedCentralCrossRef Nicolaides, T. P., Li, H., Solomon, D. A., Hariono, S., Hashizume, R., Barkovich, K., et al. (2011). Targeted therapy for BRAFV600E malignant astrocytoma. Clinical Cancer Research, 17(24), 7595–7604.PubMedPubMedCentralCrossRef
Zurück zum Zitat Northcott, P. A., Jones, D. T., Kool, M., Robinson, G. W., Gilbertson, R. J., Cho, Y. J., et al. (2012). Medulloblastomics: The end of the beginning. Nature Reviews Cancer, 12(12), 818–834.PubMedPubMedCentralCrossRef Northcott, P. A., Jones, D. T., Kool, M., Robinson, G. W., Gilbertson, R. J., Cho, Y. J., et al. (2012). Medulloblastomics: The end of the beginning. Nature Reviews Cancer, 12(12), 818–834.PubMedPubMedCentralCrossRef
Zurück zum Zitat Northcott, P. A., Lee, C., Zichner, T., Stutz, A. M., Erkek, S., Kawauchi, D., et al. (2014). Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature, 511(7510), 428–434.PubMedPubMedCentralCrossRef Northcott, P. A., Lee, C., Zichner, T., Stutz, A. M., Erkek, S., Kawauchi, D., et al. (2014). Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature, 511(7510), 428–434.PubMedPubMedCentralCrossRef
Zurück zum Zitat Northcott, P. A., Pfister, S. M., & Jones, D. T. (2015). Next-generation (epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies. The Lancet Oncology, 16(6), e293–e302.PubMedCrossRef Northcott, P. A., Pfister, S. M., & Jones, D. T. (2015). Next-generation (epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies. The Lancet Oncology, 16(6), e293–e302.PubMedCrossRef
Zurück zum Zitat Park, S., Won, J., Kim, S., Lee, Y., Park, C., Kim, S., et al. (2017). Molecular testing of brain tumor. Journal of Pathology and Translational Medicine, 51(3), 205–223.PubMedPubMedCentralCrossRef Park, S., Won, J., Kim, S., Lee, Y., Park, C., Kim, S., et al. (2017). Molecular testing of brain tumor. Journal of Pathology and Translational Medicine, 51(3), 205–223.PubMedPubMedCentralCrossRef
Zurück zum Zitat Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science, 321(5897), 1807–1812.PubMedPubMedCentralCrossRef Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., Angenendt, P., et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science, 321(5897), 1807–1812.PubMedPubMedCentralCrossRef
Zurück zum Zitat Paugh, B. S., Broniscer, A., Qu, C., Miller, C. P., Zhang, J., Tatevossian, R. G., et al. (2011). Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. Journal of Clinical Oncology, 29(30), 3999–4006.PubMedPubMedCentralCrossRef Paugh, B. S., Broniscer, A., Qu, C., Miller, C. P., Zhang, J., Tatevossian, R. G., et al. (2011). Genome-wide analyses identify recurrent amplifications of receptor tyrosine kinases and cell-cycle regulatory genes in diffuse intrinsic pontine glioma. Journal of Clinical Oncology, 29(30), 3999–4006.PubMedPubMedCentralCrossRef
Zurück zum Zitat Paugh, B. S., Qu, C., Jones, C., Liu, Z., Adamowicz-Brice, M., Zhang, J., et al. (2010). Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. Journal of Clinical Oncology, 28(18), 3061–3068.PubMedPubMedCentralCrossRef Paugh, B. S., Qu, C., Jones, C., Liu, Z., Adamowicz-Brice, M., Zhang, J., et al. (2010). Integrated molecular genetic profiling of pediatric high-grade gliomas reveals key differences with the adult disease. Journal of Clinical Oncology, 28(18), 3061–3068.PubMedPubMedCentralCrossRef
Zurück zum Zitat Paugh, B. S., Zhu, X., Qu, C., Endersby, R., Diaz, A. K., Zhang, J., et al. (2013). Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Research, 73(20), 6219–6229.PubMedPubMedCentralCrossRef Paugh, B. S., Zhu, X., Qu, C., Endersby, R., Diaz, A. K., Zhang, J., et al. (2013). Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Research, 73(20), 6219–6229.PubMedPubMedCentralCrossRef
Zurück zum Zitat Penman, C., Faulkner, C., Lowis, S., & Kurian, K. (2015). Current understanding of BRAF alterations in diagnosis, prognosis, and therapeutic targeting in pediatric low-grade gliomas. Frontiers in Oncology, eCollection 2015. Penman, C., Faulkner, C., Lowis, S., & Kurian, K. (2015). Current understanding of BRAF alterations in diagnosis, prognosis, and therapeutic targeting in pediatric low-grade gliomas. Frontiers in Oncology, eCollection 2015.
Zurück zum Zitat Populo, H., Lopes, J. M., & Soares, P. (2012). The mTOR signalling pathway in human cancer. International Journal of Molecular Sciences, 13(2), 1886–1918.PubMedPubMedCentralCrossRef Populo, H., Lopes, J. M., & Soares, P. (2012). The mTOR signalling pathway in human cancer. International Journal of Molecular Sciences, 13(2), 1886–1918.PubMedPubMedCentralCrossRef
Zurück zum Zitat Puget, S., Philippe, C., Bax, D. A., Job, B., Varlet, P., Junier, M. P., et al. (2012). Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS ONE, 7(2), e30313.PubMedPubMedCentralCrossRef Puget, S., Philippe, C., Bax, D. A., Job, B., Varlet, P., Junier, M. P., et al. (2012). Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas. PLoS ONE, 7(2), e30313.PubMedPubMedCentralCrossRef
Zurück zum Zitat Pugh, T. J., Weeraratne, S. D., Archer, T. C., Pomeranz Krummel, D. A., Auclair, D., Bochicchio, J., et al. (2012). Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 488(7409), 106–110.PubMedPubMedCentralCrossRef Pugh, T. J., Weeraratne, S. D., Archer, T. C., Pomeranz Krummel, D. A., Auclair, D., Bochicchio, J., et al. (2012). Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 488(7409), 106–110.PubMedPubMedCentralCrossRef
Zurück zum Zitat Qu, H. Q., Jacob, K., Fatet, S., Ge, B., Barnett, D., Delattre, O., et al. (2010). Genome-wide profiling using single-nucleotide polymorphism arrays identifies novel chromosomal imbalances in pediatric glioblastomas. Neuro Oncology, 12(2), 153–163.PubMedPubMedCentralCrossRef Qu, H. Q., Jacob, K., Fatet, S., Ge, B., Barnett, D., Delattre, O., et al. (2010). Genome-wide profiling using single-nucleotide polymorphism arrays identifies novel chromosomal imbalances in pediatric glioblastomas. Neuro Oncology, 12(2), 153–163.PubMedPubMedCentralCrossRef
Zurück zum Zitat Raabe, E. H., Lim, K. S., Kim, J. M., Meeker, A., Mao, X. G., Nikkhah, G., et al. (2011). BRAF activation induces transformation and then senescence in human neural stem cells: A pilocytic astrocytoma model. Clinical Cancer Research, 17(11), 3590–3599.PubMedPubMedCentralCrossRef Raabe, E. H., Lim, K. S., Kim, J. M., Meeker, A., Mao, X. G., Nikkhah, G., et al. (2011). BRAF activation induces transformation and then senescence in human neural stem cells: A pilocytic astrocytoma model. Clinical Cancer Research, 17(11), 3590–3599.PubMedPubMedCentralCrossRef
Zurück zum Zitat Ramkissoon, L. A., Horowitz, P. M., Craig, J. M., Ramkissoon, S. H., Rich, B. E., Schumacher, S. E., et al. (2013). Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proceedings of the National Academy of Sciences USA, 110(20), 8188–8193.CrossRef Ramkissoon, L. A., Horowitz, P. M., Craig, J. M., Ramkissoon, S. H., Rich, B. E., Schumacher, S. E., et al. (2013). Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proceedings of the National Academy of Sciences USA, 110(20), 8188–8193.CrossRef
Zurück zum Zitat Rausch, T., Jones, D. T., Zapatka, M., Stütz, A. M., Zichner, T., Weischenfeldt, J., et al. (2012). Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell, 148(1–2), 59–71.PubMedPubMedCentralCrossRef Rausch, T., Jones, D. T., Zapatka, M., Stütz, A. M., Zichner, T., Weischenfeldt, J., et al. (2012). Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell, 148(1–2), 59–71.PubMedPubMedCentralCrossRef
Zurück zum Zitat Reuss, D., & von Deimling, A. (2009). Hereditary tumor syndromes and gliomas. Recent Results in Cancer Research, 171, 83–102.PubMedCrossRef Reuss, D., & von Deimling, A. (2009). Hereditary tumor syndromes and gliomas. Recent Results in Cancer Research, 171, 83–102.PubMedCrossRef
Zurück zum Zitat Robinson, G., Parker, M., Kranenburg, T. A., Lu, C., Chen, X., Ding, L., et al. (2012). Novel mutations target distinct subgroups of medulloblastoma. Nature, 488(7409), 43–48.PubMedPubMedCentralCrossRef Robinson, G., Parker, M., Kranenburg, T. A., Lu, C., Chen, X., Ding, L., et al. (2012). Novel mutations target distinct subgroups of medulloblastoma. Nature, 488(7409), 43–48.PubMedPubMedCentralCrossRef
Zurück zum Zitat Rodriguez, E. F., Scheithauer, B. W., Giannini, C., Rynearson, A., Cen, L., Hoesley, B., et al. (2011). PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathologica, 121(3), 407–420.PubMedCrossRef Rodriguez, E. F., Scheithauer, B. W., Giannini, C., Rynearson, A., Cen, L., Hoesley, B., et al. (2011). PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathologica, 121(3), 407–420.PubMedCrossRef
Zurück zum Zitat Rosner, M., Hanneder, M., Siegel, N., Valli, A., & Hengstschlager, M. (2008). The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners. Mutation Research, 658(3), 234–246.PubMedCrossRef Rosner, M., Hanneder, M., Siegel, N., Valli, A., & Hengstschlager, M. (2008). The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners. Mutation Research, 658(3), 234–246.PubMedCrossRef
Zurück zum Zitat Roujeau, T., Machado, G., Garnett, M. R., Miquel, C., Puget, S., Geoerger, B., et al. (2007). Stereotactic biopsy of diffuse pontine lesions in children. Journal of Neurosurgery, 107(1 Suppl), 1–4.PubMed Roujeau, T., Machado, G., Garnett, M. R., Miquel, C., Puget, S., Geoerger, B., et al. (2007). Stereotactic biopsy of diffuse pontine lesions in children. Journal of Neurosurgery, 107(1 Suppl), 1–4.PubMed
Zurück zum Zitat Ryall, S., Krishnatry, R., Arnoldo, A., Buczkowicz, P., Mistry, M., Siddaway, R., et al. (2016). Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma. Acta Neuropathol Commun, 4(1), 93.PubMedPubMedCentralCrossRef Ryall, S., Krishnatry, R., Arnoldo, A., Buczkowicz, P., Mistry, M., Siddaway, R., et al. (2016). Targeted detection of genetic alterations reveal the prognostic impact of H3K27M and MAPK pathway aberrations in paediatric thalamic glioma. Acta Neuropathol Commun, 4(1), 93.PubMedPubMedCentralCrossRef
Zurück zum Zitat Schiffman, J. D., Hodgson, J. G., VandenBerg, S. R., Flaherty, P., Polley, M. Y., Yu, M., et al. (2010). Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Research, 70(2), 512–519.PubMedPubMedCentralCrossRef Schiffman, J. D., Hodgson, J. G., VandenBerg, S. R., Flaherty, P., Polley, M. Y., Yu, M., et al. (2010). Oncogenic BRAF mutation with CDKN2A inactivation is characteristic of a subset of pediatric malignant astrocytomas. Cancer Research, 70(2), 512–519.PubMedPubMedCentralCrossRef
Zurück zum Zitat Schindler, G., Capper, D., Meyer, J., Janzarik, W., Omran, H., Herold-Mende, C., et al. (2011). Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathologica, 121(3), 397–405.PubMedCrossRef Schindler, G., Capper, D., Meyer, J., Janzarik, W., Omran, H., Herold-Mende, C., et al. (2011). Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathologica, 121(3), 397–405.PubMedCrossRef
Zurück zum Zitat Schneider, K., Zelley, K., Nichols, K. E., & Garber, J. (2013). Li-Fraumeni Syndrome. In R. A. Pagon, M. P. Adam, H. H. Ardinger, S. E. Wallace, A. Amemiya, L. J. H. Bean, et al. (Eds.), GeneReviews ® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2017. Schneider, K., Zelley, K., Nichols, K. E., & Garber, J. (2013). Li-Fraumeni Syndrome. In R. A. Pagon, M. P. Adam, H. H. Ardinger, S. E. Wallace, A. Amemiya, L. J. H. Bean, et al. (Eds.), GeneReviews ® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2017.
Zurück zum Zitat Schwartzentruber, J., Korshunov, A., Liu, X. Y., Jones, D. T., Pfaff, E., Jacob, K., et al. (2012). Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 482(7384), 226–231.PubMedCrossRef Schwartzentruber, J., Korshunov, A., Liu, X. Y., Jones, D. T., Pfaff, E., Jacob, K., et al. (2012). Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature, 482(7384), 226–231.PubMedCrossRef
Zurück zum Zitat Segal, D., & Karajannis, M. A. (2016). Pediatric brain tumors: An update. Current Problems in Pediatric and Adolescent Health Care, 46(7), 242–250.PubMedCrossRef Segal, D., & Karajannis, M. A. (2016). Pediatric brain tumors: An update. Current Problems in Pediatric and Adolescent Health Care, 46(7), 242–250.PubMedCrossRef
Zurück zum Zitat Shih, D. J., Northcott, P. A., Remke, M., et al. (2014). Cytogenetic prognostication within medulloblastoma subgroups. Journal of Clinical Oncology, 32(9), 886–896.PubMedPubMedCentralCrossRef Shih, D. J., Northcott, P. A., Remke, M., et al. (2014). Cytogenetic prognostication within medulloblastoma subgroups. Journal of Clinical Oncology, 32(9), 886–896.PubMedPubMedCentralCrossRef
Zurück zum Zitat Sie, M., den Dunnen, W. F., Hoving, E. W., & de Bont, E. S. (2014). Anti-angiogenic therapy in pediatric brain tumors: An effective strategy? Critical Reviews in Oncology Hematology, 89(3), 418–432.CrossRef Sie, M., den Dunnen, W. F., Hoving, E. W., & de Bont, E. S. (2014). Anti-angiogenic therapy in pediatric brain tumors: An effective strategy? Critical Reviews in Oncology Hematology, 89(3), 418–432.CrossRef
Zurück zum Zitat Sobol-Milejska, G., Mizia-Malarz, A., Musiol, K., Chudek, J., Bożentowicz-Wikarek, M., Wos, H., et al. (2017). Serum levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in children with brain tumours. Advances in Clinical and Experimental Medicine. doi:10.17219/acem/62320.PubMed Sobol-Milejska, G., Mizia-Malarz, A., Musiol, K., Chudek, J., Bożentowicz-Wikarek, M., Wos, H., et al. (2017). Serum levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in children with brain tumours. Advances in Clinical and Experimental Medicine. doi:10.​17219/​acem/​62320.PubMed
Zurück zum Zitat Staedtke, V., A Dzaye, O. D., & Holdhoff, M. (2016). Actionable molecular biomarkers in primary brain tumors. Trends Cancer, 2(7), 338–349.PubMedCentralCrossRef Staedtke, V., A Dzaye, O. D., & Holdhoff, M. (2016). Actionable molecular biomarkers in primary brain tumors. Trends Cancer, 2(7), 338–349.PubMedCentralCrossRef
Zurück zum Zitat Sturm, D., Witt, H., Hovestadt, V., Khuong-Quang, D. A., Jones, D. T., Konermann, C., et al. (2012). Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 22(4), 425–437.PubMedCrossRef Sturm, D., Witt, H., Hovestadt, V., Khuong-Quang, D. A., Jones, D. T., Konermann, C., et al. (2012). Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell, 22(4), 425–437.PubMedCrossRef
Zurück zum Zitat Tang, Y., Gholamin, S., Schubert, S., Willardson, M. I., Lee, A., Bandopadhayay, P., et al. (2014). Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nature Medicine, 20(7), 732–740.PubMedPubMedCentralCrossRef Tang, Y., Gholamin, S., Schubert, S., Willardson, M. I., Lee, A., Bandopadhayay, P., et al. (2014). Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nature Medicine, 20(7), 732–740.PubMedPubMedCentralCrossRef
Zurück zum Zitat Tatevossian, R. G., Tang, B., Dalton, J., Forshew, T., Lawson, A. R., Ma, J., et al. (2010). MYB upregulation and genetic aberrations in a subset of pediatric low-grade gliomas. Acta Neuropathologica, 120(6), 731–743.PubMedPubMedCentralCrossRef Tatevossian, R. G., Tang, B., Dalton, J., Forshew, T., Lawson, A. R., Ma, J., et al. (2010). MYB upregulation and genetic aberrations in a subset of pediatric low-grade gliomas. Acta Neuropathologica, 120(6), 731–743.PubMedPubMedCentralCrossRef
Zurück zum Zitat Taylor, K. R., Mackay, A., Truffaux, N., Butterfield, Y. S., Morozova, O., Philippe, C., et al. (2014). Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nature Genetics, 46(5), 457–461.PubMedPubMedCentralCrossRef Taylor, K. R., Mackay, A., Truffaux, N., Butterfield, Y. S., Morozova, O., Philippe, C., et al. (2014). Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nature Genetics, 46(5), 457–461.PubMedPubMedCentralCrossRef
Zurück zum Zitat van Slegtenhorst, M., de Hoogt, R., Hermans, C., Nellist, M., Janssen, B., Verhoef, S., et al. (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science, 277(5327), 805–808.PubMedCrossRef van Slegtenhorst, M., de Hoogt, R., Hermans, C., Nellist, M., Janssen, B., Verhoef, S., et al. (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science, 277(5327), 805–808.PubMedCrossRef
Zurück zum Zitat Venneti, S., Garimella, M. T., Sullivan, L. M., Martinez, D., Huse, J. T., Heguy, A., et al. (2013). Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathology, 23(5), 558–564.PubMedCrossRef Venneti, S., Garimella, M. T., Sullivan, L. M., Martinez, D., Huse, J. T., Heguy, A., et al. (2013). Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathology, 23(5), 558–564.PubMedCrossRef
Zurück zum Zitat Venneti, S., Santi, M., Felicella, M. M., Yarilin, D., Phillips, J. J., Sullivan, L. M., et al. (2014). A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas. Acta Neuropathologica, 128(5), 743–753.PubMedPubMedCentralCrossRef Venneti, S., Santi, M., Felicella, M. M., Yarilin, D., Phillips, J. J., Sullivan, L. M., et al. (2014). A sensitive and specific histopathologic prognostic marker for H3F3A K27M mutant pediatric glioblastomas. Acta Neuropathologica, 128(5), 743–753.PubMedPubMedCentralCrossRef
Zurück zum Zitat Waldmann, T., & Schneider, R. (2013). Targeting histone modifications—Epigenetics in cancer. Current Opinion in Cell Biology, 25(2), 184–189.PubMedCrossRef Waldmann, T., & Schneider, R. (2013). Targeting histone modifications—Epigenetics in cancer. Current Opinion in Cell Biology, 25(2), 184–189.PubMedCrossRef
Zurück zum Zitat Wells, E. M., & Packer, R. J. (2015). Pediatric brain tumors. Continuum (Minneap Minn), 21(2 Neuro-oncology), 373–396. Wells, E. M., & Packer, R. J. (2015). Pediatric brain tumors. Continuum (Minneap Minn), 21(2 Neuro-oncology), 373–396.
Zurück zum Zitat Wu, G., Broniscer, A., McEachron, T. A., Lu, C., Paugh, B. S., Becksfort, J., et al. (2012). Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nature Genetics, 44(3), 251–253.PubMedPubMedCentralCrossRef Wu, G., Broniscer, A., McEachron, T. A., Lu, C., Paugh, B. S., Becksfort, J., et al. (2012). Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nature Genetics, 44(3), 251–253.PubMedPubMedCentralCrossRef
Zurück zum Zitat Wu, G., Diaz, A. K., Paugh, B. S., Rankin, S. L., Ju, B., Li, Y., et al. (2014). The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nature Genetics, 46(5), 444–450.PubMedPubMedCentralCrossRef Wu, G., Diaz, A. K., Paugh, B. S., Rankin, S. L., Ju, B., Li, Y., et al. (2014). The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nature Genetics, 46(5), 444–450.PubMedPubMedCentralCrossRef
Zurück zum Zitat Yuen, B. T., & Knoepfler, P. S. (2013). Histone H3.3 mutations: A variant path to cancer. Cancer Cell, 24(5), 567–574.PubMedCrossRef Yuen, B. T., & Knoepfler, P. S. (2013). Histone H3.3 mutations: A variant path to cancer. Cancer Cell, 24(5), 567–574.PubMedCrossRef
Zurück zum Zitat Zhang, J., Wu, G., Miller, C. P., Tatevossian, R. G., Dalton, J. D., Tang, B., et al. (2013). Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nature Genetics, 45(6), 602–612.PubMedPubMedCentralCrossRef Zhang, J., Wu, G., Miller, C. P., Tatevossian, R. G., Dalton, J. D., Tang, B., et al. (2013). Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nature Genetics, 45(6), 602–612.PubMedPubMedCentralCrossRef
Metadaten
Titel
Molecular Basis of Pediatric Brain Tumors
verfasst von
Alexia Klonou
Christina Piperi
Antonios N. Gargalionis
Athanasios G. Papavassiliou
Publikationsdatum
26.07.2017
Verlag
Springer US
Erschienen in
NeuroMolecular Medicine / Ausgabe 2-3/2017
Print ISSN: 1535-1084
Elektronische ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-017-8455-9

Weitere Artikel der Ausgabe 2-3/2017

NeuroMolecular Medicine 2-3/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.