Skip to main content
Erschienen in: Breast Cancer Research and Treatment 1/2018

Open Access 14.09.2017 | Review

Molecular profile of atypical hyperplasia of the breast

verfasst von: David N. Danforth

Erschienen in: Breast Cancer Research and Treatment | Ausgabe 1/2018

Abstract

Purpose

Atypical ductal and atypical lobular hyperplasia (AH) of the breast are important proliferative lesions which are associated with a significantly increased risk for breast cancer. The breast cancer which develops in association with AH may occur synchronously, representing local progression, or metachronously at a later date in either the ipsilateral or contralateral breast. These high-risk characteristics of AH suggest they contain significant genomic changes.

Methods

To define the genomic changes in AH, a comprehensive review of the literature was conducted to identify the numerical chromosomal and structural chromosomal changes, DNA methylation, and gene expression abnormalities in atypical ductal and atypical lobular hyperplasia.

Results

AHs are characterized by advanced genomic changes including aneuploidy, loss of heterozygosity, gross chromosomal rearrangements such as amplifications and large-scale deletions, DNA methylation of tumor suppressor and other genes, and gene expression differences between AH and surrounding normal breast tissue including significant estrogen receptor expression. Many of these changes are shared by an associated synchronous breast cancer, consistent with an important precursor role for AH. At the same time, many of the genomic changes of AHs are also shared by common sporadic breast cancer, consistent with a high risk for future development of metachronous breast cancer.

Conclusions

This molecular profile should help clarify the genomic characteristics and malignant predisposition of AH, and aid in the identification of new targets for the prevention of breast cancer
Abkürzungen
ALH
Atypical lobular hyperplasia
ADH
Atypical ductal hyperplasia
AH
Atypical hyperplasia
AI
Allelic imbalance
CGH
Comparative genomic hybridization
DIALH
Ductal involvement by cells of atypical lobular hyperplasia
DCIS
Ductal carcinoma in situ
ER
Estrogen receptor
FISH
Fluorescent in situ hybridization
IDC
Invasive ductal carcinoma
IHC
Immunohistochemistry
LCIS
Lobular carcinoma in situ
LOH
Loss of heterozygosity
MSI
Microsatellite instability
MSP
Methylation-specific PCR
NABT
Normal adjacent breast tissue
NSABP
National Surgical Adjuvant Breast and Bowel Project
PDWA
Poorly differentiated without atypia
UDH
Usual ductal hyperplasia

Background

Atypical lobular (ALH) and atypical ductal (ADH) hyperplasia are proliferative lesions of the breast which are associated with a significantly increased risk for breast cancer. The histologic characteristics of these lesions are well defined [1, 2], and ADH and ALH each contain early changes of, respectively, DCIS and LCIS, increasing the likelihood that they will contain at least the early genomic changes of malignancy. Estrogen is a major carcinogen for breast cancer, with the ability to cause single base substitutions, single and double DNA strand breaks, and chromosomal rearrangements [3]. ADH and ALH [collectively atypical hyperplasia (AH)] occur more commonly in women over the age of 55 [4, 5]. This allows for a significant (40 plus year) exposure to estrogens and the potential for widespread genomic damage. Individual reports have described the presence of aneuploidy [6], chromosomal gains and losses [7], DNA methylation [8], and gene expression changes [9] in AH lesions, consistent with this exposure. A comprehensive understanding of these genomic changes is needed to further define the nature and spectrum of these genomic alterations and the relationship of these changes to breast cancer.
Atypical ductal and atypical lobular hyperplasia may be associated with the development of synchronous or metachronous breast cancer. Synchronous breast cancer occurs concomitantly with AH and is considered to represent local progression of AH. The incidence of synchronous carcinoma with AH is, on average, 22.0% (Table 1). For this reason, AH lesions are frequently excised at the time of presentation to include these tumors, which provides an important opportunity to define the genomic characteristics of AH and its associated breast cancer. Interestingly, there appears to be a subset of ALH (lesions which are pure ALH, demonstrating radiographic–pathologic concordance and no associated high-risk lesions found on core needle biopsy) in which the incidence of synchronous carcinoma is low (≤3%; [10, 11]). Metachronous breast cancer develops subsequent to the initial AH, potentially out 25 years or more [5], and may occur in either breast (Table 2). Whereas synchronous breast cancer is more commonly DCIS (Table 1), metachronous breast cancers are more often invasive carcinoma (Table 2), suggesting a range of carcinogenic influences for the genomic changes in AH. Atypical hyperplasias are commonly estrogen receptor positive [12], and treatment with antiestrogens may prevent the development of metachronous breast cancer within the remaining normal breast tissue [13]. This indicates that at least one important molecular characteristic of AH (ER positivity) is an indicator of the responsiveness of the remaining normal tissue to systemic therapy. An understanding of the molecular characteristics of these high-risk lesions may therefore clarify the role of AH in breast carcinogenesis, as well as to promote identification of new targets for the development of drugs for breast cancer prevention.
Table 1
Incidence and characteristics of synchronous carcinoma with atypical hyperplasia
Primary atypical hyperplasia
Number of AH cases excised
Overall carcinoma
Invasive carcinoma
Ductal carcinoma in situ
Risk factors
References
ADH
62 cases
9 cases (14.5%)
2 cases (3.2%)
7 cases (11.3%)
Personal/family history breast cancer
[60]
ALH
73
13 (17.8%)
5 (6.8%)
8 (11.0%)
 
[61]
ADH
104
22 (21.2%)
3 (2.9%)
19 (18.3%)
 
[62]
ADH
76
21 (27.6%)
3 (3.9%)
18 (23.7%)
 
[63]
ADH
61
19 (31.2%)
5 (8.2%)
14 ((23.0%)
 
[64]
ALH
97
21 (21.6%)
6 (6.2%)
15 (15.5%)
 
[65]
ADH (9 gauge)
74
16 (21.6%)
2 (2.7%)
14 (18.9%)
 
[66]
ADH
101
20 (19.8%)
3 (3.0%)
17 (16.8%)
Number of ADH foci
[67]
ADH
65
11 (16.9%)
5 (7.7%)
6 (9.2%)
Increasing age
[68]
ALH
40
11 (27.5%)
4 (10.0%)
7 (17.5%)
 
[69]
Mean
 
21.97% ± 1.7
5.47% ± 0.84
16.52% ± 1.55
  
Table 2
Risk and incidence of metachronous breast carcinoma with atypical hyperplasia
Type of atypical hyperplasia
Number of cases
Follow-up
Overall carcinoma
Invasive carcinoma
DCIS
Relative risk
References
AH
331
Mean—13.7 years
18.4%
16.0%
2.4%
Overall—3.88
ALH—3.67
ADH—3.83
ALH + ADH—7.10
[4]
AH
668
Median—17 years
21.4%
17.4%
3.0%
All AH—4.34
ALH—4.76
ADH—3.93
ALH + ADH—4.36
[5]
ALH
ADH
126
150
Mean—17.5 years
12.0%
12.7%
12.0%
12.7%
 
ALH—4.2
ADH—4.3
[1]
ALH
316
Mean—17 years
ALH—12.8%
ALH + DIALH—21.3%
ALH/no DIALH-7.7%
DIALH—6.1%
ALH—12.8%
ALH + DIALH—21.3%
ALH/no DIALH-7.7%
DIALH—6.1%
 
ALH—4.3
ALH + DIALH-6.8
ALH/no DIALH-2.7 DIALH—2.1
[14]
ADH
82
Mean—12.4 years
9.8%
9.8%
  
[70]
ALH
ALH all—252
ALH alone—161
ALH + DIALH—76
ALH + ADH—15
 
ALH all—20%
ALH alone—16%
ALH + DIALH—24%
ALH + ADH—40%
ALH all—20%
ALH alone—16%
ALH + DIALH—24%
ALH + ADH—40%
 
Invasive carcinoma—3.1
[2]
To further define the genomic changes of AH, a comprehensive review of the literature was conducted to include all references describing numerical chromosomal changes, structural chromosomal changes, epigenetic changes, and changes in gene expression in atypical ductal and atypical lobular hyperplasia of the breast. The relationship of these genomic changes to those of associated synchronous breast cancer, and to the development of metachronous breast cancer, is discussed. A model summarizing the developmental pathways of AH is described.

Methods

Literature search and criteria for identification of tissue specimens

A literature search was conducted through PubMed and cross references to identify all reports of atypical ductal hyperplasia, atypical lobular hyperplasia, or simply atypical hyperplasia of the breast which described studies of molecular changes in four genomic categories: numerical chromosomal changes, structural chromosomal changes, DNA methylation, or gene expression studies (see respective Tables below for references describing methods of analyses). The criteria for diagnosis of ADH and ALH are as previously described [1, 14, 15]. Proliferative epithelium with atypia, such as that acquired through random periareolar fine needle aspirate, or through breast ductal lavage, was also included. The presence of an in situ or invasive carcinoma associated with the AH lesion (such as that removed with an initial excisional biopsy) is noted, and these are referred to as being “synchronous” to indicate they occur at the same time as the primary lesion. This is in contrast to “metachronous” carcinomas which occurred at a later date and in either the ipsilateral or contralateral breast. Molecular changes in an associated breast carcinoma, either in situ or invasive, are included when available; however molecular changes in associated benign lesions such as ductal hyperplasia without atypia, flat epithelial atypia (FEA), or lobular carcinoma in situ (LCIS) are not described, and lobular neoplasia is included only if specific molecular changes in an associated ALH are described.

Results and discussion

Numerical chromosomal changes in atypical hyperplasia

Studies examining chromosomal content by FISH, DNA content, or nuclear morphometry of ADH and ALH showed gains or losses of whole chromosomes compared to normal breast tissue, indicating aneuploidy is a prominent feature of atypical hyperplasia (Table 3). The chromosomal changes seen in atypical hyperplasias are similar to those present in breast cancer [1618], and are consistent with the proposal that AHs are preneoplastic lesions and part of a continuum in the steps toward breast cancer [19, 20]. Mariuzzi et al. [17] examined the nuclear chromatin pattern in AH and found drastic changes in karyometric features, with these changes similar to those seen in comedo DCIS. Others have noted a high incidence of monoclonality (51.3%) in ADH [21], and an abnormal DNA content [6], consistent with neoplastic transformation. Eriksson et al. [22] considered the DNA cytometric findings in atypical hyperplasias to strongly indicate that, already at this early stage, complex nuclear alterations have occurred. Further evidence for this relationship is found in the studies of Cummings et al. [23] who examined specimens containing both AH and DCIS and found concordance in chromosome 1 aneuploidy between these lesions. They considered these findings to support the concept that benign proliferative breast disease is a biological precursor of in situ and invasive ductal carcinoma, the early histological changes possibly indicating a field effect with further genetic changes required for the development of a malignant phenotype [23].
Table 3
Numerical chromosomal abnormalities in atypical hyperplasia
Chromosome
Alteration
Normal breast
Atypical hyperplasia
DCIS
Invasive carcinoma
References
1
Chromosome copy number—FISH
Normal compliment
ALH—no gain or loss
Gain 100%
Gain 100%
[20]
1
Ploidy, FISH
Normal content
ADH—aneusomy, 100.0%
Gain, 72.7%
Loss, 9.1%
Gain, 87.5%
[71]
1
Chromosome copy number, FISH
Signal number—1.14
ADH—increased copy number, signal number 1.50
Increased, copy number, signal number 1.95
Increased copy number, signal number 1.74
[23]
16
Chromosome copy number—FISH
Borderline loss
ALH—gain, 50%
Gain, 100%
Gain, 100%
[20]
17
Chromosome copy number—FISH
Normal compliment
ALH—borderline loss, 50%
True gain, 100%
True gain, 100%
[20]
17
Ploidy, FISH
Normal content
ADH—no loss or gain
Gain, 45.5%
Loss, 45.5%
Gain, 50.0%
[71]
18
Chromosome copy number—FISH
Borderline loss
ALH—borderline loss 50%
Gain, 100%
Borderline gain, 100%
[20]
Chromosomes 8,11
FISH
 
Nipple aspirate fluid mild atypia—20% aneusomy
  
[72]
Chromosomes 1,8,11 or 17.
FISH
Disomy—100%
Nipple aspirate fluid, marked atypia—100% aneusomy
 
Nipple aspirate fluid, malignant, 100% aneusomy
[72]
Chromosomes
7-12, 17, 18, X
Chromosomal aberrations, cytologic, FISH
40% of non-proliferative lesions
ADH—100%
 
100% (includes DCIS)
[16]
Chromosomes 1, 7, 8, 16, 17, X
Chromosome copy number—FISH
 
ADH—no gains or losses
ALH, chromosome 8, 3% triploid
70% aneuploidy
100% aneuploidy
[73]
Nucleus—nuclear morphometry
Area
Non-proliferative 25.5
AH—37.4
47.9
54.9
[74]
 
Perimeter
Non-proliferative 20.6
AH—24.3
27.2
29.4
[74]
 
Maximum diameter
Non-proliferative 7.3
AH—8.52
9.6
10.3
[74]
 
Minimum diameter
Non-proliferative 5.1
AH—6.0
6.9
7.4
[74]
 
Large dark areas
Non-proliferative 0.022
AH—0.084
0.103
0.099
[74]
 
Large light areas
Non-proliferative 0.009
AH—0.038
0.049
0.075
[74]
 
Total stain
Non-proliferative 12.52
AH—12.38
23.73
19.72
[74]
DNA content
 
Normal diploid
ADH—diploid, 33%
Type III histogram, 33.3%
Aneuploid, 33.3%
ALH—diploid, 100%
  
[75]
DNA content
Nuclear DNA histogram
Diploid
ADH—Type III/IV histogram, 38.1%
ALH—diploid
  
[76]
DNA content
 
Hyperplasia without atypia-diploid
Aneuploid, 33.3%
Aneuploid, 78.2%
 
[19]
DNA content
Aneuploidy
 
AH—aneuploid, 30.8%
Aneuploid, 33.3%
Aneuploid, 88.5%
[77]
DNA ploidy
Cytometric assessment
Intraductal proliferation without atypia—euploid
ADH—43% aneuploidy
71.4%—84.4% aneuploidy
54.1%—95.6% aneuploidy
[78]
DNA aneuploidy
DNA histogram
 
AH—aneuploidy, 71%
Aneuploidy, 71%
 
[6]
DNA aneuploidy
DNA Index
Non-proliferative—25% aneuploidy
Hyperplasia with atypia—aneuploidy 32%
  
[79]
Nuclear morphometry
Nuclear area
13.13
AH—24.25
Cribriform—16.16
Comedo—40.23
41.30
[17]
Nuclear morphometry
Nuclear abnormality
0.644
AH—2.261
Cribriform—0.918
Comedo—2.710
1.265
[17]
Monoclonality
X-chromosome inactivation assay
0% monoclonal
AH—51.3% monoclonal
100% monoclonal
 
[21]
Nucleolar organizer regions
Ag-NOR—IHC
6.0
ADH—8.8
ALH—8.6
9.0
17.7
[18]
DNA quantitation
Aneuploidy
Euploid (NABT)
AEH—aneuploidy 50%
 
Aneuploidy 50%
[80]
Mitotic figures
Mitoses/HPF
3.5 (proliferative disease without atypia)
ADH—6.7
DCIS—26.5
DCIS in infiltrating carcinoma—51.3
 
[81]
Chromosomal abnormalities
Cytogenic, FISH
 
AEH—diploid with structural aberrations
  
[82]
NABT normal breast tissue adjacent to cancer, IHC immunohistochemistry, FISH fluorescent in situ hybridization, AEH atypical epithelial hyperplasia
Aneuploidy is an important indicator of chromosomal instability [24], resulting in significant deregulation of the transcriptome [25], aneuploidy-induced stresses [26], and contributing to further progression in the carcinogenic pathway. The causes of aneuploidy in AH are not clear; however, alterations in multiple genes known to contribute to aneuploidy have been observed in AH (Tables 4, 5, 6). For example, mutations in the tumor suppressor gene APC lead to chromosome mis-segregation as a result of kinetochore–microtubule disconnection during anaphase [27]; p53 mutations result in centrosome hyperamplification leading to multiple spindle poles and mis-segregation of chromosomes [28]; loss of p16 generates supernumerary centrosomes through centriole pair splitting, resulting in aneuploidy [29]; and BRCA1 inactivation leads to microtubule instability or centrosome amplification [30]. While speculative, one might suggest these findings indicate multiple potential pathways to the aneuploidy which is an important advanced genomic change for these lesions. Aneuploidy is also a prominent feature of high-risk normal breast tissue [31], indicating that these chromosomal changes may be a marker in general for high risk for breast cancer.
Table 4
Structural chromosomal abnormalities in atypical hyperplasia
Chromosome
Gene
Alteration
Normal breast
Atypical hyperplasia
DCIS
Invasive carcinoma
References
1p32
MYC1
MSI/LOH
 
8.3%
  
[33]
1q
 
CGH
 
ADH—gain 11.1%
  
[35]
1q
 
Chromosome copy number, CGH
 
ADH—gain 33.3%
Gain, 60%
Gain, 80%
[83]
1q32-42/D1S549, D1S213
 
LOH (proportion)
2%
ADH with cancer, 29%
52%
44%
[32]
1q32-42/D1S549
 
MSI/LOH
 
AH—25.0%
  
[33]
1q32-qter
 
CGH
 
ADH—high-level amplification
  
[7]
2p11.2
 
CGH
 
ALH—gains, 50%
  
[84]
2q35/D2S362
 
LOH
 
ADH non-cancerous breast—none
ADH cancerous breast—6%
Non-comedo—6%
Comedo—9%
 
[85]
3p
rhoA, cdc25A
CGH
 
ADH—gains
  
[83]
3p24/D3S1298
 
MSI/LOH
 
AH—8.3%
  
[33]
3p22ter
 
CGH
 
ADH gain, 67%
 
Gain, 60%
[83]
3q11-q21
 
CGH
 
ADH loss, 11.1%
  
[35]
5p
 
CGH
 
Gain
Gain
Gain
[7]
5p14
 
CGH
 
ADH—high-level amplification
  
[7]
5q32-33.1
CSF1R
CGH
 
ALH—gain
  
[84]
6q
 
Chromosomal imbalance, CGH
 
ALH—gain, 36%
Gain, 22%
Gain, 2%
[86]
6qter/D6S417
 
LOH
 
ADH non-cancerous breast—6%
ADH cancerous breast—9%
Non-comedo—17%
Comedo—11%
 
[85]
6g21ter
 
CGH
 
ADH—gain, 33.3%
Gain, 40%
Gain, 60%
[83]
6q27-qter
SEN6
FISH, cytogenetic
 
ADH—large deletion present
  
[87]
7p11.2-p11.1
 
CGH
 
ALH—Loss, 83.3%
  
[84]
7p12-15
EGFR
Microsatellite analysis
30.0%
ADH of cancer subject—80%
100.0%
100.0%
[88]
7p22-qter
 
CGH
 
ADH—high-level amplification
  
[7]
7q35ter
 
CGH
 
ADH—gain, 33.3%
 
Gain, 40%
[83]
8p
NRG1 (just distal to region)
CGH
 
ADH—loss
Loss
Loss
[7]
8p/D8S339
 
LOH
 
ADH with cancer—≥ 25%
 
≥35%
[34]
8p12-pter
 
CGH
 
ADH—Loss, 11.1%
  
[35]
8q
 
CGH
 
ADH—high-level amplification
  
[7]
8q21-qter
 
CGH
 
ADH—gain, 11.1%
  
[35]
8q24
MYC
  
ADH—gain, 66.0%
Gain, 60%
Gain, 80%
[83]
8q24
MTSS1; MYC
AI
0.0%
ADH—35%
29%
13%—37%
[89]
9p/D9S157
 
LOH
 
ADH non-cancerous breast—8%
Non-comedo—10%
Comedo—11%
 
[85]
9p21
 
AI
5%
ADH—8%
16%
11%–28%
[89]
10q25ter
 
CGH
 
ADH—gain, 33.3%
Gain, 40%
Gain, 80%
[83]
10q26
 
CGH
 
ADH-high-level amplification
  
[7]
11p15/D11S988
 
LOH
 
ADH non-cancerous breast—15%
ADH cancerous breast—38%
Non-comedo—18%
Comedo—19%
 
[85]
11p15
THO1
LOH (proportion)
 
ADH with cancer—8%
37%
28%
[32]
11q12-13
 
CGH
 
ADH—gain, 11.1%
  
[35]
11q13(PYGM)
PYGM
LOH
None
ADH—8.5%
27.6%
 
[90]
11q13
INT-2 or PYGM
LOH
 
ALH—10.5%
 
33.3%
[91]
11q13
 
CGH
 
ADH—gain, 33.3%
Gain, 40%
Gain, 80%
[83]
11q13.1
 
AI
0.0%
ADH—8%
9%
21%–30%
[89]
11q13/11q22-23/D11s1818, D11s1819
PYGM
LOH (proportion)
 
ADH with cancer—11%
35%
57%
[32]
11q23.3
 
AI
4%
ADH—8%
21%
25%–50%
[89]
11q24ter
 
CGH
 
ADH—gain, 33.3%
Gain, 20%
Gain, 40%
[83]
12p13-pter
 
CGH
 
ADH—high-level amplification
  
[7]
12q24
 
CGH
 
ADH—gain, 33.3%
Gain, 20%
Gain, 80%
[83]
13q11-22
 
CGH
 
ADH—loss, 66%
Loss—100%
Loss—100%
[83]
13q13/D13S137
 
LOH
 
ADH non-cancerous breast—13%
ADH cancerous breast—9%
Non-comedo—17%
Comedo—13%
 
[85]
13q32-q34
 
CGH
 
ADH—high-level amplification
  
[7]
14q11.2-q12
 
CGH
 
ADH—high-level amplification
  
[7]
14q24/D14S62
 
LOH
 
ADH non-cancerous breast—none
ADH cancerous breast—12%
Non-comedo—16%
Comedo—18%
 
[85]
14q32
 
CGH
 
ADH—gain, 33.3%
Gain, 20%
Gain, 40%
[83]
14q32.33
ATK1
CGH
 
ALH- gain
  
[84]
15q23-25
c-src -1
CGH
 
ADH—gain, 67%
  
[83]
15q25-qter
 
CGH
 
ADH—high-level amplification
  
[7]
15q26
 
CGH
 
ADH—gain, 66.0%
Gain, 40%
Gain, 100%
[83]
16p
 
Chromosome copy number, CGH
 
ALH—loss, 57% loss
Loss, 6%
Loss, 1%–13%
[86]
16p
 
Chromosome copy number/CGH
 
ADH—gain, 33.3%
Gain, 80%
Gain, 100%
[83]
16q
 
LOH
 
Atypical hyperplasia—50%
 
71.4%
[92]
16q
CDH1
LOH
Mutation
 
ALH—7.7%
ALH—frameshift mutation, 7.7%
  
[93]
16q
Matrix metalloproteinase 2, NME3
CGH
 
ADH—loss, 33.3%
  
[83]
16q
 
CGH
 
ADH—loss, 55.5%
  
[35]
16q
 
CGH
 
ALH—loss, 36%
Loss, 17%
Loss, 25%–67%
[86]
16q
CDH1, E2F4, WWOX
CGH
 
ADH—loss
Loss
Loss
[7]
16q/D16S413
 
LOH
 
Atypical ductal hyperplasia—55.6%
  
[94]
16q/D16S422
CDH13
LOH
 
ADH with cancer—≥25%
 
≥35%
[34]
16q21-q23.1
CDH1
CGH
 
ALH—loss, 25%
  
[84]
16q21-24/D16s265, D16s402, D16s413, D16s512
 
LOH (proportion)
2%
ADH—52%
63%
78%
[32]
17p
 
CGH
 
ADH—loss 22.2%
  
[35]
17p
P53
CGH
 
ADH—loss
Loss
Loss
[7]
17p13/D17S796
Close to P53
LOH
 
ADH in normal adjacent to cancer—33.3%
100%
100%
[95]
17p13/D17S960
P53 candidate gene
LOH
 
ADH non-cancerous breast—11%
ADH cancerous breast—8%
Non-comedo—31%
Comedo—37%
 
[85]
17p13.1
TP53
Microsatellite alterations
 
AH—16.6%
  
[33]
17p13.1/D17s796, D17s525
TP53
LOH (proportion)
 
ADH with cancer—6%
42%
59%
[32]
P53
TP53
Mutations
 
ADH—mutations in 50%
  
[46]
17p13.2/D17S796
Within 2 cM of p53
LOH
 
ADH—25.0%
  
[94]
17q
HER-2/neu, GRB7, TBX2, STARD3, MLN64/
CAB1, and ESTIMAGE68400
CGH
 
ADH—gain
  
[7]
17q11/NF1
 
LOH
 
ADH non-cancerous breast—14%
ADH cancerous breast—10%
Non-comedo—27%
Comedo—15%
 
[85]
17q21
 
AI
0.0%
ADH—7%
30%
19%–27%
[89]
17q21/D17S579
Region of BRCA1
MSI/LOH
 
AH—8.3%
  
[33]
D17S8000
BRCA1
LOH
 
ADH ≥25%
  
[34]
20p11.2-p13
 
CGH
 
ADH—high-level amplification
  
[7]
20q
AIB1, TFAP2C, STK15
CGH
 
ADH—gain
Gain
Gain
[7]
20q
 
Chromosomal copy number alterations/CGH
None
ADH –amplified 100%
100% show amplification
100% show amplification
[96]
20q13
 
CGH
 
ADH—gain, 100%
Gain-100%
Gain, 100%
[83]
20q13 region
 
Chromosomal copy number
None
ADH—amplified 100%
Amplified- 100%
Amplified, 100%
[96]
22q
 
CGH
 
ADH—gain 67%
Gain- 60%
Gain, 80%
[83]
22q
 
Chromosomal imbalance/CGH
 
ALH—43%
Loss, 28%
13%–20%
[86]
22q11.1
 
CGH
 
ALH—loss, 50%
  
[84]
Xp
 
CGH
 
ADH—loss
Loss
Loss
[7]
Xq
 
CGH
 
ADH—gain
Gain
Gain
[7]
AI allelic imbalance, LOH loss of heterozygosity, CGH comparative genomic hybridization
Table 5
DNA methylation of genes in atypical hyperplasia
Gene
Analysis
Gene function
Novel capability towards carcinogenesis [40, 41]
Normal breast
Atypical hyperplasia
DCIS
Invasive carcinoma
References
APC
MSP
Regulates myc and cyclin D1 expression, cell cycle entry and progression
Tissue invasion and metastases
15%
65%
72%
84%
[8]
APC
MSP
 
Tissue invasion and metastases
7%
ADH—27%
34%
38%
[43]
β-catenin (CTNNB1)
MSP
Regulates coordination of cell–cell adhesion and gene transcription
 
10%
19%
34%
44%
[8]
BRCA1
Promoter methylation
Tumor suppressor gene, DNA repair, transcriptional regulation
Limitless replicative potential
18%
22%
 
29%
[97]
CDH1
Methylation
Epithelial cell–cell adhesion, suppresses invasion and metastasis
Tissue invasion and metastases
 
ALH—100.0%
 
92.9%
[42]
CDH1
MSP
 
Tissue invasion and metastases
15%
ADH—35%
50%
65%
[8]
Cyclin D2
Methylation
Cell cycle regulation
Limitless replicative potential
Unmethylated
ADH—endoscopy, 16.7%
ADH—ductal lavage, 30.0%
28.6%
50.0%
[98]
Cyclin D2
Methylation
  
Unmethylated normal breast
ADH—endoscopy, 16.7%
33.3%
42.1%
[98]
Cyclin D2
Methylation
  
Benign ductal lavage—6.7%
Atypia—ductal lavage, 30.0%
100%
 
[98]
DLEC1
Methylation
  
7%
ADH—33%
37%
40%
[43]
ESR1
MSP
Regulation of cell proliferation
Self-sufficiency in growth signals
40%
ADH—48%
34%
51%
[8]
14-3-3σ
MSP analysis
Cell cycle regulation
Limitless replicative potential
Unmethylated
38%
83%
96%
[99]
GRIN2B
Methylation
  
0%
3%
23%
32%
[43]
GSTPI
MSP
Drug metabolism
 
5%
ADH—10%
16%
19%
[8]
HIN-1
Methylation
Tumor suppressor function, regulates cell cycle progression and apoptosis
Insensitivity to antigrowth signals
3%
ADH—23%
34%
36%
[43]
HOXA1
Methylation
Regulates gene expression, morphogenesis, differentiation
 
13%
ADH—43%
80%
76%
[43]
MINT17
Methylation Index
  
16%
24%
26%
30%
[100]
MINT31
Methylation Index
  
5%
10%
21%
13%
[100]
MTIG
MSP
  
0%
ADH—7%
14%
32%
[43]
p16INK4A
Methylation
Cell cycle regulation
Limitless replicative potential
7.5% (UDH)
35.0%
Low grade, 50%
High grade, 66%
Low grade, 71.4%
High grade, 75.0%
[101]
p16INK4A (TSG)
Methylation (MethyLight)
  
Usual ductal hyperplasia, 7.5%
35.0%
Low grade, 50.0% High grade, 68.2%
 
[102]
p16INK4A (TSG)
Percentage methylated (MethyLight)
Tumor suppressor gene
 
Normal breast/UDH, 7.5%
35.0% %
Low grade, 50.0%
High grad, 66.7% %
75.0%
[101]
p16INK4A (TSG)
IHC protein expression
  
Normal breast/UDH, 80.0%
47.5%
Low grade, 33.3% High grade, 30.6%
18.8%
[101]
RASSF1A
Methylation
Regulates cell cycle, apoptosis
Self-sufficiency in growth signals
40%
77%
89%
76%
[43]
RASSF1A
Methylation Index
  
39%
67%
79%
76%
[100]
RARβ
MSP
Cell cycle arrest, growth inhibition, apoptosis
Limitless replicative potential
7%
ADH—7%
31%
26%
[43]
RARβ
Methylation Index
 
Limitless replicative potential
16%
29%
28%
22%
[100]
RARβ
Methylation
 
Limitless replicative potential
Unmethylated
ADH—endoscopy, 33.3%
ADH—ductal lavage, 30.0%
50%
34%
[98]
RARβ
Methylated
Tumor suppressor gene
 
Normal breast tissue, unmethylated
ADH—endoscopy, 33.3%
14.3%
60.0%
[98]
RARβ
Methylation
  
Benign breast—4.4%
Atypia—ductal lavage, 30.0%
100.0%
 
[98]
SFRP1
Methylation
  
13%
3%
26%
46%
[43]
SFRP4
Methylation
  
0%
ADH—7%
6%
18%
[43]
TIMP3
MSP
Inhibit metalloproteinases, tissue remodeling and tumor cell progression
Tissue invasion and metastases
45%
ADH—62%
44%
56%
[8]
TMEFF2
Methylation
  
40%
ADH—47%
86%
76%
[43]
Twist
Methylation
Modulates p53
Evading apoptosis
 
ADH endoscopy—20% methylated
ADH—ductal lavage, unmethylated
28.6%
42%
[98]
MSP methylation-specific PCR; values area percent methylated
Table 6
Gene expression abnormalities in atypical hyperplasia
Gene
Alteration/analysis
Function
Normal breast
Atypical hyperplasia
DCIS
Invasive carcinoma
References
Cox-2
IHC
  
ALH—61.4%
ADH—23.0%
ADH + ALH—53.9%
  
[103]
Cyclin A
ISH
Cell cycle regulation, binds and activates CDK2 and CDK1 kinases, and promotes both cell cycle G1/S and G2/M transitions
Benign breast tissue—35.3%
ADH—62.5%
42.1–46.4%
77.8%
[104]
Cyclin D1
IHC
 
Normal breast—11.7%
PDWA—25.0%
ADH—39.4%
43.6–47.9%
48.3%
[105]
Cyclin D1
Gene amplification
 
Normal breast—15%
27%
35%
25%
[106]
Cyclin D1
IHC
 
Normal breast—13%
57%
50%
64%
[106]
Cyclin D2
Methylation
A regulatory subunit of CDK4 or CDK6, whose activity is required for cell cycle G1/S transition; involved in the phosphorylation of tumor suppressor protein Rb
Unmethylated normal breast tissue
ADH—endoscopy, 16.7% methylated
33.3%
42.1%
[98]
Cyclin D2
Methylation
 
Benign ductal lavage—6.7%
Atypia—ductal lavage, 30.0% methylated
100.0%
 
[98]
EGFR (HER-1)
IHC
Regulate cell growth, differentiation, and survival
Non-proliferative—21%
Epithelial hyperplasia with atypia—60%
  
[79]
EZH2
IHC
Transcriptional repression
Normal breast—0.0%
ADH without DCIS—10%
ADH with DCIS—40.0%
45%
 
[52]
FHIT
IHC/H-score
Controls proliferation and apoptosis
Normal adjacent to cancer, strong and uniform, 100%; 2.95/3.0
Loss of FHIT protein vs normal
Marked loss of FHIT protein, 75%
Marked loss of FHIT protein, 54%; 0–1.0/3.0
[107]
FHIT
mRNA
 
Normal adjacent to ADH, 86%
71%
45%
29%
[108]
FHIT
Western blot
 
82%
Normal adjacent to AH
57%
45%
27%
[108]
HER-2/neu
Amplification FISH
 
Normal adjacent to ADH, no amplification
ADH—53.8% amplified
95.5% amplified
100% amplified
[109]
HER-2/neu (C-erbB-2)
IHC
 
Non-proliferative—15%
Epithelial hyperplasia with atypia—40%
  
[79]
HER-2/neu (C-erbB-2)
IHC
 
Ductal hyperplasia without atypia—13.3%
Atypia (mild—severe), 30–56.6%
31.9%
17.8%
[110]
Myc
IHC
 
Benign lesions, 31%
66.7%
45%
66.7%
[111]
P53
Sequencing, mutations
  
ADH—28.6%, insertion, deletion
 
34.1%
[45]
P53
Mutation-gel elect
  
ADH—1 case
31.5%
55.7%
[47]
P53
SSCP, sequencing; mutation
 
Normal adjacent to cancer, no mutations
ADH—50% (not adjacent to cancer)
50%
 
[46]
RB
IHC
 
Normal breast, weak staining
ADH, mod/strong—11%
Mod/strong—64%
Mod/strong—47%
[112]
Stat3
IHC
Regulates genes that are involved in cell growth and division, cell movement, and apoptosis
Normal breast, 12.8%
ADH, 30.0%
ADH adjacent to breast cancer, 31.15%
  
[113]
Stat5
IHC
 
Normal breast, 17.1%
ADH—31.65%
  
[113]
Telomere, anaphase bridges
FISH
  
ADH—16.7%
18.2%
 
[114]
Telomerase activity
TRAP signal
 
Benign breast disease, 14.0%
Atypical hyperplasia, 100%, focal high expression
92% strong
94% strong
[115]
Telomerase
Human telomerase gene (hTR)
 
Simple hyperplasia, 16.6%
ADH mild—22%
ADH moderate—33.3%
ADH severe—60.9%
85.7%
91.7%
[116]
Telomerase
Human reverse transcriptase gene (hTRT)
 
Simple hyperplasia, 0.0%
ADH mild—11.1%
ADH moderate—25.0%
ADH severe—52.1%
78.6%
83.3%
[116]
α-tubulin
mRNA expression-percent positive
Structural components of centrosomes
Normal breast, 33.3%
ADH—62.5%
82.5%
77.5%
[49]
α-tubulin
Protein expression
 
Normal breast, 31.7%
ADH—65%
86.3%
87.5%
[49]
α-tubulin
DNA copy number
 
Normal breast, 2.05
ADH—4.31
5.54
5.15
[49]
 
Centrosome abnormality-frequency
 
Normal breast, 0%
ADH—30%
52.5%
70.0%
[49]
γ-tubulin
mRNA expression-percent positive
 
Normal breast, 30.0%
ADH 57.5%
85.0%
82.5%
[49]
γ-tubulin
Protein expression
 
Normal breast 35.0%
ADH—58.8%
86.3%
85.0%
[49]
Ki67
IHC
 
Normal breast, 1.5%
PBBD without atypia, 3.5%
PBBD with atypia, 16%
Non-high-grade, 6.1%
High grade, 17.3%
 
[54]
Ki67
IHC
 
Normal breast, 0.1%
Usual hyperplasia, 3.3%
ADH—8.2%
8.7%
21.1%
[117]
PDWA proliferative benign breast disease without atypia, IHC immunohistochemistry, ISH In situ hybridization, PBBD Proliferative benign breast disease

Structural chromosomal changes in atypical hyperplasia

The genomic progression from normal breast tissue to atypical hyperplasia is accompanied by the development of multiple structural chromosomal abnormalities in the form of loss of heterozygosity [(LOH)/allelic imbalance (AI)] identified by microsatellite markers, and the development of large-scale chromosomal gains and losses identified by comparative genomic hybridization (CGH). These are summarized in Table 4, and it can be seen that these alterations involve multiple chromosomes and a wide range of chromosomal loci. The LOH/AI changes in AH have been shown to involve all informative markers on a chromosome arm, consistent with the pattern found in breast cancer, and in contrast to normal breast tissue and ductal hyperplasia where AI involved only single markers [32]. Atypical hyperplasia lesions are considered to be monoclonal microsatellite alterations involving both length variation and allele loss [33], and which may involve multiple genes such as Myc, EGFR, CDH13, BRCA1, p53 (Table 4). Amari et al. [34] studied 23 synchronous lesions of ADH, DCIS, and invasive carcinoma. ADH tumors with LOH were always accompanied by LOH in DCIS and IDC, consistent with ADH having a high risk of developing malignant transformation. LOH/AI is an important mechanism for loss of tumor suppressor and other genes and would contribute to the development and progression of AH.
AH has been studied by comparative genomic hybridization (CGH) to identify larger-scale structural chromosomal abnormalities. The majority of these studies utilized metaphase spreads with a resolution of ≥10 Mb. These studies identified multiple deletions and amplifications both within and between chromosomes of AH (Table 4). Chromosomes 1q, 6q, 8q, 11q, 14q were among the most frequently involved and often exhibited chromosomal gains. Gao et al. [7] reported high-level amplifications at multiple chromosomal sites, and many of these were gains, including those at 1q, 5p, 8q, 12q, 20q, and Xq, which were shared by ADH, DCIS, and invasive carcinoma. Gong et al. [35] on the other hand found five of the nine ADH lesions showing chromosome copy number alterations, with 16q loss and 17p loss being the most frequent changes. Candidate genes that might be associated with some of these losses included E-cadherin on 16q and p53 on 17p. The loss of material from chromosomes 16 and 17 was also consistent with the LOH analyses of AH (Table 4). Together, the presence of large-scale amplifications and deletions is consistent with gross chromosomal rearrangements in atypical hyperplasias. These genomically advanced changes also occur with the transition of normal adjacent breast tissue (a high-risk tissue) to breast cancer, and with the progression of HMEC’s to telomere-based crises, and are considered to be the types of chromosomal abnormalities seen in the earliest lesions of breast cancer [31, 36]. It is also noteworthy that DNA double-strand breaks (DSB) are considered to be an important etiologic mechanism in the development of both LOH [37] and GCR [38]. DSBs are an important consequence of estrogen exposure, and the average age of women with AH is over 55 years of age [4, 39], representing forty or more years (from menarche) of estrogen exposure, with the potential to induce these changes.

DNA methylation of genes in atypical hyperplasia

DNA methylation of CpG islands in the promoter region of a gene is an important mechanism for the silencing of tumor suppressor and other genes. Studies of atypical hyperplasia have identified multiple genes which may be methylated in these lesions, including tumor suppressor genes known to be important in breast carcinogenesis (Table 5; APC, BRCA1, CDH1, 14-3-3σ, HIN-1, P16, RASSF1A, RARβ). A number of cellular processes may be altered by inactivation of these genes, including cell cycle control, DNA repair, cell–cell adhesion, cell proliferation, apoptosis, cellular differentiation, and centrosome and mitotic events. Importantly, methylation in AH involves genes which are also instrumental in five of the six capabilities a cell has to acquire to become malignant (tissue invasion and metastases, limitless replicative potential, self-sufficiency in growth signals, insensitivity to antigrowth signals, and evading apoptosis) [40, 41], supporting an early and important role in breast carcinogenesis. A review of Table 5 indicates there is clearly heterogeneity in the incidence of methylation in these lesions, and in some cases methylation may also be monoallelic (CDH1) [42], further contributing to a range of gene inactivation. DNA methylation of tumor suppressor and other genes appears to play an important role in the progression of AH to breast cancer. Park et al. [43] examined methylation patterns in synchronous ADH, DCIS, and invasive ductal carcinoma. They found overall methylation levels and frequencies of APC, DLEC1, HOXA1, and RASSF1A promoter CpG islands were significantly higher in ADH than in normal breast tissue, while GRIN2B, GSTP1, HOXA1, RARβ, RUNX3, SFRP1, and TMEFF2 showed higher methylation levels and frequencies in DCIS than in ADH. This indicated that promoter methylation changed significantly in pre-invasive lesions and suggested that CpG island methylation of tumor-related genes is an early event in breast cancer progression. Hoque et al. [8] studied synchronous ADH, DCIS, and invasive ductal carcinoma. For the genes APC, CDH1, and CTNNB1 they found methylation at two or three gene loci in 25% of ADH, 28% of DCIS, and 37% in IDC. They noted atypical ductal hyperplasia and in situ carcinoma showed similar methylation patterns, suggesting that atypical hyperplasia should be considered as a well-differentiated or simply small in situ carcinoma. DNA methylation may also contribute to chromosomal abnormalities in AH. It was seen above that APC and p16INK4a regulate centrosome duplication and chromosome segregation, and loss of these genes through DNA methylation would be expected to contribute to chromosomal instability and aneuploidy [27, 29]. Together these findings indicate that DNA methylation is not only involved in the formation of AH and contributes significantly to its genomic instability, but also plays an important role in subsequent progression to malignancy.

Gene expression abnormalities

The development of ADH and progression to DCIS and invasive breast cancer is accompanied by the acquisition of multiple gene expression differences. This is demonstrated both by gene expression profiling studies and by multiple individual gene expression studies. Ma et al. [9] examined gene expression profiling in specimens containing invasive ductal carcinoma (IDC)/DCIS/ADH/adjacent normal tissue. They found that, as compared with the patient-matched adjacent normal epithelium, significant global alterations in gene expression occurred in ADH, and these alterations were maintained in the later stages of DCIS and IDC. All of the ADH samples demonstrated a grade I gene expression signature and clustered with the low-grade DCIS and IDC samples. These three distinct stages of breast cancer (ADH, DCIS, IDC) were thus highly similar to each other at the level of the transcriptome, supporting the idea that the distinct stages of progression are evolutionary products of the same clonal origin [9].
Studies of individual genes in atypical hyperplasia indicate altered expression in multiple genes effecting a wide range of signaling pathways and cellular functions (Table 6), further supporting the gene expression profiling differences between ADH and normal adjacent tissue described above. These genes include estrogen receptor and estrogen-related genes (ER, EZH2), cell cycle genes (cyclin A1, D1, D2), loss of tumor suppressor genes (FHIT, p16, p53, RARβ) increased mitogenic activity of growth factors and oncogenes (EGFR, Her-2/neu, myc), and increased expression of transcription factors (STAT 3,5). Together these alterations may contribute to increased estrogen responsiveness, increased cell cycle progression, development of aneuploidy, decreased apoptosis, and loss of cell–cell adhesion. Alterations in many of these genes may also be associated with increased proliferation which is confirmed by increased expression of Ki67 (Table 6), a measure of cellular proliferation. Interestingly, Ki67 has also been found to be a time-varying biomarker of risk of breast cancer in women with atypical hyperplasia [44]. There is evidence that p53 is mutated in ADH [4547]. The presence of a dysfunctional p53 could have widespread effects in these cells including loss of cell cycle arrest and apoptosis, altered DNA repair, and genomic instability [48]. Alterations in α-tubulin and γ-tubulin are also observed in AH [49], further disrupting chromosome segregation and contributing to the aneuploidy which is observed in atypical hyperplasia (see above, numerical chromosomal changes). Importantly, it can be seen in Table 6 that for virtually all of these genes (a) the expression in ADH is altered compared with that of normal and/or non-proliferative breast tissue, and (b) this expression difference is maintained or increased in DCIS and invasive breast cancer. This is further evidence that multiple genes regulating multiple cellular processes contribute to formation of ADH and its genomic instability and are instrumental in the progression of ADH to DCIS and invasive breast cancer.

Estrogen receptor in atypical hyperplasia

The expression of ERα in atypical hyperplasia is high [12, 50], and in some series all of the ADH lesion expressed ER [12, 51], consistent with both a prominent sensitivity to estrogens and a clonally expanded population of cells. Estradiol is an important mitogen, and the increased ER content promotes proliferation and clonal expansion, while at the same time increasing the accumulation of mutational changes. The gene EZH2 is also increased in AH and DCIS [52], and this gene transactivates genes that are commonly targeted by estrogen and WNT signaling pathways and promotes cell cycle progression in breast cancer cells [53]. The functional ER and its role in proliferation also makes it an excellent potential target for antiestrogen prevention therapy. Efficacy of tamoxifen in the prevention of breast cancer in women with AH was demonstrated in the NSABP-P1 trial [13]. Closely related to this point, the finding that antiestrogen therapy reduces breast cancer development in the ipsilateral and contralateral breast indicates that this characteristic of AH (ER positivity) is reflected in the genomic characteristics of the remaining normal breast tissue. If other genomic characteristics of AH are also reflected in these normal tissues, then the molecular profile of AH could be important for assessing future risk and responsiveness of these normal tissues. Lastly, the expression of ERβ is decreased in atypical hyperplasia [54]. ERβ is considered to play an oncosuppressive role in breast cancer [55]. Low ERβ2 expression, combined with increased ERα expression could further promote progression along the AH-DCIS/invasive carcinoma pathway.

Metachronous breast cancer associated with atypical hyperplasia

Women with AH are at significant risk for the development of metachronous breast cancer (MBC), and it is noteworthy that the characteristics of this event for AH are very similar to those of women with sporadic breast cancer for the development of contralateral breast cancer (CBC): (a) AH contains multiple advanced genomic changes including aneuploidy, gross chromosomal rearrangements, and DNA methylation of tumor suppressor genes, all of which are common in sporadic breast cancer. (b) Both MBC and CBC are more commonly invasive breast cancer, less commonly DCIS (Table 2) [56]. (c) The cumulative incidence of breast cancer appears to increase linearly over time in both MBC [5] and CBC [56, 57]. (d) The annual incidence of breast cancer development of MBC (estimated to be approx. 0.9%/year from Hartmann [5], Fig. 2) is very similar to 0.6–0.7%/year for CBC [56, 58]. (e) The incidence of both MBC and CBC are reduced by antiestrogens [13, 59]. Together, these findings indicate that many of the features of carcinogenesis of AH are shared by sporadic breast cancer, and have strong carcinogenic potential for the future development of metachronous breast cancer.

Summary and conclusions

Atypical ductal and atypical lobular hyperplasia possess a wide range of advanced genomic changes including aneuploidy, loss of heterozygosity, gross chromosomal rearrangement such as amplifications and large-scale deletions, DNA methylation of tumor suppressor and other genes, and gene expression differences which are associated with a significant risk for breast cancer. These genomic changes progress from associated normal breast tissue, indicating an important role in the development of ADH. Many of these genomic charges are also shared by synchronously associated DCIS and invasive carcinoma, suggesting they are an important part of the progression of atypical hyperplasia to breast cancer. At the same time many of these changes, including ER expression, are also shared by standard sporadic breast cancer and thus reflect the propensity of distant normal breast tissue to develop metachronous or contralateral breast cancer. These developmental patterns and relationship of AH to breast cancer are summarized in Fig. 1. Knowledge of a comprehensive profile of the genomic changes of AH should increase our understanding of high-risk lesions of the breast, promote identification of new targets for breast cancer prevention, and clarify progression in the carcinogenic pathway.

Funding

This research was supported by the Intramural Research Program, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD.

Compliance with ethical standards

Conflict of interest

The author is employed by the National Institutes of Health which funded this manuscript. The author has no conflicts of interest with the NIH.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Gynäkologie

Kombi-Abonnement

Mit e.Med Gynäkologie erhalten Sie Zugang zu CME-Fortbildungen der beiden Fachgebiete, den Premium-Inhalten der Fachzeitschriften, inklusive einer gedruckten gynäkologischen oder urologischen Zeitschrift Ihrer Wahl.

Literatur
1.
Zurück zum Zitat Page DL, Dupont WD, Rogers LW, Rados MS (1985) Atypical hyperplastic lesions of the female breast. A long-term follow-up study. Cancer 55(11):2698–2708PubMed Page DL, Dupont WD, Rogers LW, Rados MS (1985) Atypical hyperplastic lesions of the female breast. A long-term follow-up study. Cancer 55(11):2698–2708PubMed
2.
Zurück zum Zitat Page DL, Schuyler PA, Dupont WD, Jensen RA, Plummer WD Jr, Simpson JF (2003) Atypical lobular hyperplasia as a unilateral predictor of breast cancer risk: a retrospective cohort study. Lancet 361(9352):125–129PubMedCrossRef Page DL, Schuyler PA, Dupont WD, Jensen RA, Plummer WD Jr, Simpson JF (2003) Atypical lobular hyperplasia as a unilateral predictor of breast cancer risk: a retrospective cohort study. Lancet 361(9352):125–129PubMedCrossRef
3.
Zurück zum Zitat Roy D, Liehr JG (1999) Estrogen. DNA damage and mutations. Mutat Res 424(1–2):107–115PubMed Roy D, Liehr JG (1999) Estrogen. DNA damage and mutations. Mutat Res 424(1–2):107–115PubMed
4.
Zurück zum Zitat Degnim AC, Visscher DW, Berman HK, Frost MH, Sellers TA, Vierkant RA, Maloney SD, Pankratz VS, de Groen PC, Lingle WL, Ghosh K, Penheiter L, Tlsty T, Melton LJ III, Reynolds CA, Hartmann LC (2007) Stratification of breast cancer risk in women with atypia: a Mayo cohort study. J Clin Oncol 25(19):2671–2677PubMedCrossRef Degnim AC, Visscher DW, Berman HK, Frost MH, Sellers TA, Vierkant RA, Maloney SD, Pankratz VS, de Groen PC, Lingle WL, Ghosh K, Penheiter L, Tlsty T, Melton LJ III, Reynolds CA, Hartmann LC (2007) Stratification of breast cancer risk in women with atypia: a Mayo cohort study. J Clin Oncol 25(19):2671–2677PubMedCrossRef
5.
Zurück zum Zitat Hartmann LC, Degnim AC, Santen RJ, Dupont WD, Ghosh K (2015) Atypical hyperplasia of the breast–risk assessment and management options. N Engl J Med 372(1):78–89PubMedPubMedCentralCrossRef Hartmann LC, Degnim AC, Santen RJ, Dupont WD, Ghosh K (2015) Atypical hyperplasia of the breast–risk assessment and management options. N Engl J Med 372(1):78–89PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Crissman JD, Visscher DW, Kubus J (1990) Image cytophotometric DNA analysis of atypical hyperplasias and intraductal carcinomas of the breast. Arch Pathol Lab Med 114(12):1249–1253PubMed Crissman JD, Visscher DW, Kubus J (1990) Image cytophotometric DNA analysis of atypical hyperplasias and intraductal carcinomas of the breast. Arch Pathol Lab Med 114(12):1249–1253PubMed
7.
Zurück zum Zitat Gao Y, Niu Y, Wang X, Wei L, Lu S (2009) Genetic changes at specific stages of breast cancer progression detected by comparative genomic hybridization. J Mol Med 87(2):145–152PubMedCrossRef Gao Y, Niu Y, Wang X, Wei L, Lu S (2009) Genetic changes at specific stages of breast cancer progression detected by comparative genomic hybridization. J Mol Med 87(2):145–152PubMedCrossRef
8.
Zurück zum Zitat Hoque MO, Prencipe M, Poeta ML, Barbano R, Valori VM, Copetti M, Gallo AP, Brait M, Maiello E, Apicella A, Rossiello R, Zito F, Stefania T, Paradiso A, Carella M, Dallapiccola B, Murgo R, Carosi I, Bisceglia M, Fazio VM, Sidransky D, Parrella P (2009) Changes in CpG islands promoter methylation patterns during ductal breast carcinoma progression. Cancer Epidemiol Biomarkers Prev 18(10):2694–2700PubMedPubMedCentralCrossRef Hoque MO, Prencipe M, Poeta ML, Barbano R, Valori VM, Copetti M, Gallo AP, Brait M, Maiello E, Apicella A, Rossiello R, Zito F, Stefania T, Paradiso A, Carella M, Dallapiccola B, Murgo R, Carosi I, Bisceglia M, Fazio VM, Sidransky D, Parrella P (2009) Changes in CpG islands promoter methylation patterns during ductal breast carcinoma progression. Cancer Epidemiol Biomarkers Prev 18(10):2694–2700PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM, Zhou YX, Varnholt H, Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG, Sgroi DC (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100(10):5974–5979PubMedPubMedCentralCrossRef Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, Payette T, Pistone M, Stecker K, Zhang BM, Zhou YX, Varnholt H, Smith B, Gadd M, Chatfield E, Kessler J, Baer TM, Erlander MG, Sgroi DC (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100(10):5974–5979PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Murray MP, Luedtke C, Liberman L, Nehhozina T, Akram M, Brogi E (2013) Classic lobular carcinoma in situ and atypical lobular hyperplasia at percutaneous breast core biopsy: outcomes of prospective excision. Cancer 119(5):1073–1079. doi:10.1002/cncr.27841 PubMedCrossRef Murray MP, Luedtke C, Liberman L, Nehhozina T, Akram M, Brogi E (2013) Classic lobular carcinoma in situ and atypical lobular hyperplasia at percutaneous breast core biopsy: outcomes of prospective excision. Cancer 119(5):1073–1079. doi:10.​1002/​cncr.​27841 PubMedCrossRef
11.
Zurück zum Zitat Shah-Khan MG, Geiger XJ, Reynolds C, Jakub JW, Deperi ER, Glazebrook KN (2012) Long-term follow-up of lobular neoplasia (atypical lobular hyperplasia/lobular carcinoma in situ) diagnosed on core needle biopsy. Ann Surg Oncol 19(10):3131–3138. doi:10.1245/s10434-012-2534-9 PubMedCrossRef Shah-Khan MG, Geiger XJ, Reynolds C, Jakub JW, Deperi ER, Glazebrook KN (2012) Long-term follow-up of lobular neoplasia (atypical lobular hyperplasia/lobular carcinoma in situ) diagnosed on core needle biopsy. Ann Surg Oncol 19(10):3131–3138. doi:10.​1245/​s10434-012-2534-9 PubMedCrossRef
12.
Zurück zum Zitat Shoker BS, Jarvis C, Sibson DR, Walker C, Sloane JP (1999) Oestrogen receptor expression in the normal and pre-cancerous breast. J Pathol 188(3):237–244PubMedCrossRef Shoker BS, Jarvis C, Sibson DR, Walker C, Sloane JP (1999) Oestrogen receptor expression in the normal and pre-cancerous breast. J Pathol 188(3):237–244PubMedCrossRef
13.
Zurück zum Zitat Fisher B, Costantino JP, Wickerham DL, Cecchini RS, Cronin WM, Robidoux A, Bevers TB, Kavanah MT, Atkins JN, Margolese RG, Runowicz CD, James JM, Ford LG, Wolmark N (2005) Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 97(22):1652–1662. doi:10.1093/jnci/dji372 PubMedCrossRef Fisher B, Costantino JP, Wickerham DL, Cecchini RS, Cronin WM, Robidoux A, Bevers TB, Kavanah MT, Atkins JN, Margolese RG, Runowicz CD, James JM, Ford LG, Wolmark N (2005) Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 97(22):1652–1662. doi:10.​1093/​jnci/​dji372 PubMedCrossRef
14.
Zurück zum Zitat Page DL, Dupont WD, Rogers LW (1988) Ductal involvement by cells of atypical lobular hyperplasia in the breast: a long-term follow-up study of cancer risk. Hum Pathol 19(2):201–207PubMedCrossRef Page DL, Dupont WD, Rogers LW (1988) Ductal involvement by cells of atypical lobular hyperplasia in the breast: a long-term follow-up study of cancer risk. Hum Pathol 19(2):201–207PubMedCrossRef
15.
Zurück zum Zitat Schnitt SJ, Connolly JL, Tavassoli FA, Fechner RE, Kempson RL, Gelman R, Page DL (1992) Interobserver reproducibility in the diagnosis of ductal proliferative breast lesions using standardized criteria. Am J Surg Pathol 16(12):1133–1143PubMedCrossRef Schnitt SJ, Connolly JL, Tavassoli FA, Fechner RE, Kempson RL, Gelman R, Page DL (1992) Interobserver reproducibility in the diagnosis of ductal proliferative breast lesions using standardized criteria. Am J Surg Pathol 16(12):1133–1143PubMedCrossRef
16.
Zurück zum Zitat Sneige N, Sahin A, Dinh M, El Naggar A (1996) Interphase cytogenetics in mammographically detected breast lesions. Hum Pathol 27(4):330–335PubMedCrossRef Sneige N, Sahin A, Dinh M, El Naggar A (1996) Interphase cytogenetics in mammographically detected breast lesions. Hum Pathol 27(4):330–335PubMedCrossRef
17.
Zurück zum Zitat Mariuzzi L, Mombello A, Granchelli G, Rucco V, Tarocco E, Frank D, Davis J, Thompson D, Bartels H, Mariuzzi GM, Bartels PH (2002) Quantitative study of breast cancer progression: different pathways for various in situ cancers. Mod Pathol 15(1):18–25PubMedCrossRef Mariuzzi L, Mombello A, Granchelli G, Rucco V, Tarocco E, Frank D, Davis J, Thompson D, Bartels H, Mariuzzi GM, Bartels PH (2002) Quantitative study of breast cancer progression: different pathways for various in situ cancers. Mod Pathol 15(1):18–25PubMedCrossRef
18.
Zurück zum Zitat Di Stefano D, Scucchi L, Limiti MR, Mingazzini PL, Marinozzi V (1996) Modifications of interphasic NORs as a diagnostic parameter of atypical lesions of the female breast. Anticancer Res 16(4A):1953–1961PubMed Di Stefano D, Scucchi L, Limiti MR, Mingazzini PL, Marinozzi V (1996) Modifications of interphasic NORs as a diagnostic parameter of atypical lesions of the female breast. Anticancer Res 16(4A):1953–1961PubMed
19.
Zurück zum Zitat Schmitt FC, Leal C, Lopes C (1995) p53 protein expression and nuclear DNA content in breast intraductal proliferations. J Pathol 176(3):233–241PubMedCrossRef Schmitt FC, Leal C, Lopes C (1995) p53 protein expression and nuclear DNA content in breast intraductal proliferations. J Pathol 176(3):233–241PubMedCrossRef
20.
Zurück zum Zitat Micale MA, Visscher DW, Gulino SE, Wolman SR (1994) Chromosomal aneuploidy in proliferative breast disease. Hum Pathol 25(1):29–35PubMedCrossRef Micale MA, Visscher DW, Gulino SE, Wolman SR (1994) Chromosomal aneuploidy in proliferative breast disease. Hum Pathol 25(1):29–35PubMedCrossRef
21.
Zurück zum Zitat Yu Q, Niu Y, Yu Y, Ding X, Shi Y (2009) Analysis of the progression of intraductal proliferative lesions in the breast by PCR-based clonal assay. Breast Cancer Res Treat 114(3):433–440PubMedCrossRef Yu Q, Niu Y, Yu Y, Ding X, Shi Y (2009) Analysis of the progression of intraductal proliferative lesions in the breast by PCR-based clonal assay. Breast Cancer Res Treat 114(3):433–440PubMedCrossRef
22.
Zurück zum Zitat Eriksson E, Schimmelpenning H, Silfversward C, Auer G (1992) Immunoreactivity with monoclonal antibody A-80 and nuclear DNA content in benign and malignant human breast disease. Hum Pathol 23:1366–1372PubMedCrossRef Eriksson E, Schimmelpenning H, Silfversward C, Auer G (1992) Immunoreactivity with monoclonal antibody A-80 and nuclear DNA content in benign and malignant human breast disease. Hum Pathol 23:1366–1372PubMedCrossRef
23.
Zurück zum Zitat Cummings MC, Aubele M, Mattis A, Purdie D, Hutzler P, Hofler H, Werner M (2000) Increasing chromosome 1 copy number parallels histological progression in breast carcinogenesis. Br J Cancer 82(6):1204–1210PubMedPubMedCentralCrossRef Cummings MC, Aubele M, Mattis A, Purdie D, Hutzler P, Hofler H, Werner M (2000) Increasing chromosome 1 copy number parallels histological progression in breast carcinogenesis. Br J Cancer 82(6):1204–1210PubMedPubMedCentralCrossRef
24.
25.
Zurück zum Zitat Ried T, Hu Y, Difilippantonio MJ, Ghadimi BM, Grade M, Camps J (2012) The consequences of chromosomal aneuploidy on the transcriptome of cancer cells. Biochim Biophys Acta 1819(7):784–793PubMedPubMedCentralCrossRef Ried T, Hu Y, Difilippantonio MJ, Ghadimi BM, Grade M, Camps J (2012) The consequences of chromosomal aneuploidy on the transcriptome of cancer cells. Biochim Biophys Acta 1819(7):784–793PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, van Es JH, Breukel C, Wiegant J, Giles RH, Clevers H (2001) Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 3(4):433–438. doi:10.1038/35070129 PubMedCrossRef Fodde R, Kuipers J, Rosenberg C, Smits R, Kielman M, Gaspar C, van Es JH, Breukel C, Wiegant J, Giles RH, Clevers H (2001) Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol 3(4):433–438. doi:10.​1038/​35070129 PubMedCrossRef
28.
Zurück zum Zitat Liu G, Parant JM, Lang G, Chau P, Chavez-Reyes A, El-Naggar AK, Multani A, Chang S, Lozano G (2004) Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 36(1):63–68PubMedCrossRef Liu G, Parant JM, Lang G, Chau P, Chavez-Reyes A, El-Naggar AK, Multani A, Chang S, Lozano G (2004) Chromosome stability, in the absence of apoptosis, is critical for suppression of tumorigenesis in Trp53 mutant mice. Nat Genet 36(1):63–68PubMedCrossRef
29.
Zurück zum Zitat McDermott KM, Zhang J, Holst CR, Kozakiewicz BK, Singla V, Tlsty TD (2006) p16(INK4a) prevents centrosome dysfunction and genomic instability in primary cells. PLoS Biol 4(3):e51PubMedPubMedCentralCrossRef McDermott KM, Zhang J, Holst CR, Kozakiewicz BK, Singla V, Tlsty TD (2006) p16(INK4a) prevents centrosome dysfunction and genomic instability in primary cells. PLoS Biol 4(3):e51PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Kops GJ, Weaver BA, Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5(10):773–785PubMedCrossRef Kops GJ, Weaver BA, Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5(10):773–785PubMedCrossRef
32.
Zurück zum Zitat Larson PS, de las MA, Cerda SR, Bennett SR, Cupples LA, Rosenberg CL (2006) Quantitative analysis of allele imbalance supports atypical ductal hyperplasia lesions as direct breast cancer precursors. J Pathol 209(3):307–316PubMedCrossRef Larson PS, de las MA, Cerda SR, Bennett SR, Cupples LA, Rosenberg CL (2006) Quantitative analysis of allele imbalance supports atypical ductal hyperplasia lesions as direct breast cancer precursors. J Pathol 209(3):307–316PubMedCrossRef
33.
Zurück zum Zitat Rosenberg CL, de las MA, Huang K, Cupples LA, Faller DV, Larson PS (1996) Detection of monoclonal microsatellite alterations in atypical breast hyperplasia. J Clin Invest 98(5):1095–1100PubMedPubMedCentralCrossRef Rosenberg CL, de las MA, Huang K, Cupples LA, Faller DV, Larson PS (1996) Detection of monoclonal microsatellite alterations in atypical breast hyperplasia. J Clin Invest 98(5):1095–1100PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Amari M, Suzuki A, Moriya T, Yoshinaga K, Amano G, Sasano H, Ohuchi N, Satomi S, Horii A (1999) LOH analyses of premalignant and malignant lesions of human breast: frequent LOH in 8p, 16q, and 17q in atypical ductal hyperplasia. Oncol Rep 6(6):1277–1280PubMed Amari M, Suzuki A, Moriya T, Yoshinaga K, Amano G, Sasano H, Ohuchi N, Satomi S, Horii A (1999) LOH analyses of premalignant and malignant lesions of human breast: frequent LOH in 8p, 16q, and 17q in atypical ductal hyperplasia. Oncol Rep 6(6):1277–1280PubMed
35.
Zurück zum Zitat Gong G, DeVries S, Chew KL, Cha I, Ljung BM, Waldman FM (2001) Genetic changes in paired atypical and usual ductal hyperplasia of the breast by comparative genomic hybridization. Clin Cancer Res 7(8):2410–2414PubMed Gong G, DeVries S, Chew KL, Cha I, Ljung BM, Waldman FM (2001) Genetic changes in paired atypical and usual ductal hyperplasia of the breast by comparative genomic hybridization. Clin Cancer Res 7(8):2410–2414PubMed
36.
Zurück zum Zitat Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD (2001) Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409(6820):633–637PubMedCrossRef Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD (2001) Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409(6820):633–637PubMedCrossRef
37.
Zurück zum Zitat Thiagalingam S, Laken S, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B, Lengauer C (2001) Mechanisms underlying losses of heterozygosity in human colorectal cancers. Proc Natl Acad Sci USA 98(5):2698–2702PubMedPubMedCentralCrossRef Thiagalingam S, Laken S, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B, Lengauer C (2001) Mechanisms underlying losses of heterozygosity in human colorectal cancers. Proc Natl Acad Sci USA 98(5):2698–2702PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Kurahashi H, Bolor H, Kato T, Kogo H, Tsutsumi M, Inagaki H, Ohye T (2009) Recent advance in our understanding of the molecular nature of chromosomal abnormalities. J Hum Genet 54(5):253–260. doi:10.1038/jhg.2009.35 PubMedCrossRef Kurahashi H, Bolor H, Kato T, Kogo H, Tsutsumi M, Inagaki H, Ohye T (2009) Recent advance in our understanding of the molecular nature of chromosomal abnormalities. J Hum Genet 54(5):253–260. doi:10.​1038/​jhg.​2009.​35 PubMedCrossRef
39.
Zurück zum Zitat Hartmann LC, Schaid DJ, Woods JE, Crotty TP, Myers JL, Arnold PG, Petty PM, Sellers TA, Johnson JL, McDonnell SK, Frost MH, Jenkins RB (1999) Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med 340(2):77–84PubMedCrossRef Hartmann LC, Schaid DJ, Woods JE, Crotty TP, Myers JL, Arnold PG, Petty PM, Sellers TA, Johnson JL, McDonnell SK, Frost MH, Jenkins RB (1999) Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med 340(2):77–84PubMedCrossRef
41.
Zurück zum Zitat Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 21(35):5462–5482PubMedCrossRef Widschwendter M, Jones PA (2002) DNA methylation and breast carcinogenesis. Oncogene 21(35):5462–5482PubMedCrossRef
42.
Zurück zum Zitat Zou D, Yoon HS, Perez D, Weeks RJ, Guilford P, Humar B (2009) Epigenetic silencing in non-neoplastic epithelia identifies E-cadherin (CDH1) as a target for chemoprevention of lobular neoplasia. J Pathol 218:265–272PubMedCrossRef Zou D, Yoon HS, Perez D, Weeks RJ, Guilford P, Humar B (2009) Epigenetic silencing in non-neoplastic epithelia identifies E-cadherin (CDH1) as a target for chemoprevention of lobular neoplasia. J Pathol 218:265–272PubMedCrossRef
43.
Zurück zum Zitat Park SY, Kwon HJ, Lee HE, Ryu HS, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, Kang GH (2011) Promoter CpG island hypermethylation during breast cancer progression. Virchows Arch 458(1):73–84PubMedCrossRef Park SY, Kwon HJ, Lee HE, Ryu HS, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, Kang GH (2011) Promoter CpG island hypermethylation during breast cancer progression. Virchows Arch 458(1):73–84PubMedCrossRef
44.
Zurück zum Zitat Santisteban M, Reynolds C, Barr Fritcher EG, Frost MH, Vierkant RA, Anderson SS, Degnim AC, Visscher DW, Pankratz VS, Hartmann LC (2010) Ki67: a time-varying biomarker of risk of breast cancer in atypical hyperplasia. Breast Cancer Res Treat 121(2):431–437PubMedCrossRef Santisteban M, Reynolds C, Barr Fritcher EG, Frost MH, Vierkant RA, Anderson SS, Degnim AC, Visscher DW, Pankratz VS, Hartmann LC (2010) Ki67: a time-varying biomarker of risk of breast cancer in atypical hyperplasia. Breast Cancer Res Treat 121(2):431–437PubMedCrossRef
45.
Zurück zum Zitat Kang JH, Kim SJ, Noh DY, Choe KJ, Lee ES, Kang HS (2001) The timing and characterization of p53 mutations in progression from atypical ductal hyperplasia to invasive lesions in the breast cancer. J Mol Med (Berlin, Germany) 79(11):648–655. doi:10.1007/s001090100269 CrossRef Kang JH, Kim SJ, Noh DY, Choe KJ, Lee ES, Kang HS (2001) The timing and characterization of p53 mutations in progression from atypical ductal hyperplasia to invasive lesions in the breast cancer. J Mol Med (Berlin, Germany) 79(11):648–655. doi:10.​1007/​s001090100269 CrossRef
46.
Zurück zum Zitat Keohavong P, Gao WM, Mady HH, Kanbour-Shakir A, Melhem MF (2004) Analysis of p53 mutations in cells taken from paraffin-embedded tissue sections of ductal carcinoma in situ and atypical ductal hyperplasia of the breast. Cancer Lett 212(1):121–130PubMedCrossRef Keohavong P, Gao WM, Mady HH, Kanbour-Shakir A, Melhem MF (2004) Analysis of p53 mutations in cells taken from paraffin-embedded tissue sections of ductal carcinoma in situ and atypical ductal hyperplasia of the breast. Cancer Lett 212(1):121–130PubMedCrossRef
47.
Zurück zum Zitat Lisboa BW, Vogtlander S, Gilster T, Riethdorf L, Milde-Langosch K, Loning T (1997) Molecular and immunohistochemical analysis of p53 mutations in scrapings and tissue from preinvasive and invasive breast cancer. Virchows Arch 431(6):375–381PubMedCrossRef Lisboa BW, Vogtlander S, Gilster T, Riethdorf L, Milde-Langosch K, Loning T (1997) Molecular and immunohistochemical analysis of p53 mutations in scrapings and tissue from preinvasive and invasive breast cancer. Virchows Arch 431(6):375–381PubMedCrossRef
48.
49.
Zurück zum Zitat Niu Y, Liu T, Tse GM, Sun B, Niu R, Li HM, Wang H, Yang Y, Ye X, Wang Y, Yu Q, Zhang F (2009) Increased expression of centrosomal alpha, gamma-tubulin in atypical ductal hyperplasia and carcinoma of the breast. Cancer Sci 100(4):580–587PubMedCrossRef Niu Y, Liu T, Tse GM, Sun B, Niu R, Li HM, Wang H, Yang Y, Ye X, Wang Y, Yu Q, Zhang F (2009) Increased expression of centrosomal alpha, gamma-tubulin in atypical ductal hyperplasia and carcinoma of the breast. Cancer Sci 100(4):580–587PubMedCrossRef
50.
Zurück zum Zitat Mao XY, Fan CF, Zheng HC, Wei J, Yao F, Jin F (2010) p53 nuclear accumulation and ERalpha expression in ductal hyperplasia of breast in a cohort of 215 Chinese women. J Exp Clin Cancer Res 29(1):112PubMedPubMedCentralCrossRef Mao XY, Fan CF, Zheng HC, Wei J, Yao F, Jin F (2010) p53 nuclear accumulation and ERalpha expression in ductal hyperplasia of breast in a cohort of 215 Chinese women. J Exp Clin Cancer Res 29(1):112PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Barnes R, Masood S (1990) Potential value of hormone receptor assay in carcinoma in situ of breast. Am J Clin Pathol 94(5):533–537PubMedCrossRef Barnes R, Masood S (1990) Potential value of hormone receptor assay in carcinoma in situ of breast. Am J Clin Pathol 94(5):533–537PubMedCrossRef
52.
Zurück zum Zitat Ding L, Erdmann C, Chinnaiyan AM, Merajver SD, Kleer CG (2006) Identification of EZH2 as a molecular marker for a precancerous state in morphologically normal breast tissues. Cancer Res 66(8):4095–4099PubMedCrossRef Ding L, Erdmann C, Chinnaiyan AM, Merajver SD, Kleer CG (2006) Identification of EZH2 as a molecular marker for a precancerous state in morphologically normal breast tissues. Cancer Res 66(8):4095–4099PubMedCrossRef
53.
Zurück zum Zitat Shi B, Liang J, Yang X, Wang Y, Zhao Y, Wu H, Sun L, Zhang Y, Chen Y, Li R, Zhang Y, Hong M, Shang Y (2007) Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol Cell Biol 27(14):5105–5119PubMedPubMedCentralCrossRef Shi B, Liang J, Yang X, Wang Y, Zhao Y, Wu H, Sun L, Zhang Y, Chen Y, Li R, Zhang Y, Hong M, Shang Y (2007) Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol Cell Biol 27(14):5105–5119PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Roger P, Sahla ME, Makela S, Gustafsson JA, Baldet P, Rochefort H (2001) Decreased expression of estrogen receptor beta protein in proliferative preinvasive mammary tumors. Cancer Res 61(6):2537–2541PubMed Roger P, Sahla ME, Makela S, Gustafsson JA, Baldet P, Rochefort H (2001) Decreased expression of estrogen receptor beta protein in proliferative preinvasive mammary tumors. Cancer Res 61(6):2537–2541PubMed
55.
Zurück zum Zitat Chantzi NI, Palaiologou M, Stylianidou A, Goutas N, Vassilaros S, Kourea HP, Dhimolea E, Mitsiou DJ, Tiniakos DG, Alexis MN (2014) Estrogen receptor beta2 is inversely correlated with Ki-67 in hyperplastic and noninvasive neoplastic breast lesions. J Cancer Res Clin Oncol 140(6):1057–1066PubMedCrossRef Chantzi NI, Palaiologou M, Stylianidou A, Goutas N, Vassilaros S, Kourea HP, Dhimolea E, Mitsiou DJ, Tiniakos DG, Alexis MN (2014) Estrogen receptor beta2 is inversely correlated with Ki-67 in hyperplastic and noninvasive neoplastic breast lesions. J Cancer Res Clin Oncol 140(6):1057–1066PubMedCrossRef
56.
Zurück zum Zitat Gao X, Fisher SG, Emami B (2003) Risk of second primary cancer in the contralateral breast in women treated for early-stage breast cancer: a population-based study. Int J Radiat Oncol Biol Phys 56(4):1038–1045PubMedCrossRef Gao X, Fisher SG, Emami B (2003) Risk of second primary cancer in the contralateral breast in women treated for early-stage breast cancer: a population-based study. Int J Radiat Oncol Biol Phys 56(4):1038–1045PubMedCrossRef
57.
Zurück zum Zitat Robbins GF, Berg JW (1964) Bilateral primary breast cancer: a prospective clincopathological study. Cancer 17:1501–1527PubMedCrossRef Robbins GF, Berg JW (1964) Bilateral primary breast cancer: a prospective clincopathological study. Cancer 17:1501–1527PubMedCrossRef
58.
Zurück zum Zitat Samant RS, Olivotto IA, Jackson JS, Mates D (2001) Diagnosis of metachronous contralateral breast cancer. Breast J 7(6):405–410PubMedCrossRef Samant RS, Olivotto IA, Jackson JS, Mates D (2001) Diagnosis of metachronous contralateral breast cancer. Breast J 7(6):405–410PubMedCrossRef
59.
Zurück zum Zitat Dowsett M, Cuzick J, Ingle J, Coates A, Forbes J, Bliss J, Buyse M, Baum M, Buzdar A, Colleoni M, Coombes C, Snowdon C, Gnant M, Jakesz R, Kaufmann M, Boccardo F, Godwin J, Davies C, Peto R (2010) Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol 28(3):509–518. doi:10.1200/jco.2009.23.1274 PubMedCrossRef Dowsett M, Cuzick J, Ingle J, Coates A, Forbes J, Bliss J, Buyse M, Baum M, Buzdar A, Colleoni M, Coombes C, Snowdon C, Gnant M, Jakesz R, Kaufmann M, Boccardo F, Godwin J, Davies C, Peto R (2010) Meta-analysis of breast cancer outcomes in adjuvant trials of aromatase inhibitors versus tamoxifen. J Clin Oncol 28(3):509–518. doi:10.​1200/​jco.​2009.​23.​1274 PubMedCrossRef
60.
Zurück zum Zitat Adrales G, Turk P, Wallace T, Bird R, Norton HJ, Greene F (2000) Is surgical excision necessary for atypical ductal hyperplasia of the breast diagnosed by Mammotome? Am J Surg 180(4):313–315PubMedCrossRef Adrales G, Turk P, Wallace T, Bird R, Norton HJ, Greene F (2000) Is surgical excision necessary for atypical ductal hyperplasia of the breast diagnosed by Mammotome? Am J Surg 180(4):313–315PubMedCrossRef
61.
62.
Zurück zum Zitat Jackman RJ, Birdwell RL, Ikeda DM (2002) Atypical ductal hyperplasia: can some lesions be defined as probably benign after stereotactic 11-gauge vacuum-assisted biopsy, eliminating the recommendation for surgical excision? Radiology 224(2):548–554. doi:10.1148/radiol.2242011528 PubMedCrossRef Jackman RJ, Birdwell RL, Ikeda DM (2002) Atypical ductal hyperplasia: can some lesions be defined as probably benign after stereotactic 11-gauge vacuum-assisted biopsy, eliminating the recommendation for surgical excision? Radiology 224(2):548–554. doi:10.​1148/​radiol.​2242011528 PubMedCrossRef
63.
Zurück zum Zitat Lourenco AP, Mainiero MB, Lazarus E, Giri D, Schepps B (2007) Stereotactic breast biopsy: comparison of histologic underestimation rates with 11- and 9-gauge vacuum-assisted breast biopsy. Am J Roentgenol 189(5):W275–W279. doi:10.2214/ajr.07.2165 CrossRef Lourenco AP, Mainiero MB, Lazarus E, Giri D, Schepps B (2007) Stereotactic breast biopsy: comparison of histologic underestimation rates with 11- and 9-gauge vacuum-assisted breast biopsy. Am J Roentgenol 189(5):W275–W279. doi:10.​2214/​ajr.​07.​2165 CrossRef
65.
Zurück zum Zitat Brem RF, Lechner MC, Jackman RJ, Rapelyea JA, Evans WP, Philpotts LE, Hargreaves J, Wasden S (2008) Lobular neoplasia at percutaneous breast biopsy: variables associated with carcinoma at surgical excision. Am J Roentgenol 190(3):637–641. doi:10.2214/ajr.07.2768 CrossRef Brem RF, Lechner MC, Jackman RJ, Rapelyea JA, Evans WP, Philpotts LE, Hargreaves J, Wasden S (2008) Lobular neoplasia at percutaneous breast biopsy: variables associated with carcinoma at surgical excision. Am J Roentgenol 190(3):637–641. doi:10.​2214/​ajr.​07.​2768 CrossRef
66.
Zurück zum Zitat Eby PR, Ochsner JE, DeMartini WB, Allison KH, Peacock S, Lehman CD (2009) Frequency and upgrade rates of atypical ductal hyperplasia diagnosed at stereotactic vacuum-assisted breast biopsy: 9-versus 11-gauge. Am J Roentgenol 192(1):229–234. doi:10.2214/ajr.08.1342 CrossRef Eby PR, Ochsner JE, DeMartini WB, Allison KH, Peacock S, Lehman CD (2009) Frequency and upgrade rates of atypical ductal hyperplasia diagnosed at stereotactic vacuum-assisted breast biopsy: 9-versus 11-gauge. Am J Roentgenol 192(1):229–234. doi:10.​2214/​ajr.​08.​1342 CrossRef
67.
Zurück zum Zitat Kohr JR, Eby PR, Allison KH, DeMartini WB, Gutierrez RL, Peacock S, Lehman CD (2010) Risk of upgrade of atypical ductal hyperplasia after stereotactic breast biopsy: effects of number of foci and complete removal of calcifications. Radiology 255(3):723–730. doi:10.1148/radiol.09091406 PubMedCrossRef Kohr JR, Eby PR, Allison KH, DeMartini WB, Gutierrez RL, Peacock S, Lehman CD (2010) Risk of upgrade of atypical ductal hyperplasia after stereotactic breast biopsy: effects of number of foci and complete removal of calcifications. Radiology 255(3):723–730. doi:10.​1148/​radiol.​09091406 PubMedCrossRef
68.
Zurück zum Zitat Winchester DJ, Bernstein JR, Jeske JM, Nicholson MH, Hahn EA, Goldschmidt RA, Watkin WG, Sener SF, Bilimoria MB, Barrera E, Jr, Winchester DP (2003) Upstaging of atypical ductal hyperplasia after vacuum-assisted 11-gauge stereotactic core needle biopsy. Arch Surg 138(6):619–622. doi:10.1001/archsurg.138.6.619 PubMedCrossRef Winchester DJ, Bernstein JR, Jeske JM, Nicholson MH, Hahn EA, Goldschmidt RA, Watkin WG, Sener SF, Bilimoria MB, Barrera E, Jr, Winchester DP (2003) Upstaging of atypical ductal hyperplasia after vacuum-assisted 11-gauge stereotactic core needle biopsy. Arch Surg 138(6):619–622. doi:10.​1001/​archsurg.​138.​6.​619 PubMedCrossRef
69.
Zurück zum Zitat Ibrahim N, Bessissow A, Lalonde L, Mesurolle B, Trop I, Lisbona A, El-Khoury M (2012) Surgical outcome of biopsy-proven lobular neoplasia: is there any difference between lobular carcinoma in situ and atypical lobular hyperplasia? Am J Roentgenol 198(2):288–291. doi:10.2214/ajr.11.7212 CrossRef Ibrahim N, Bessissow A, Lalonde L, Mesurolle B, Trop I, Lisbona A, El-Khoury M (2012) Surgical outcome of biopsy-proven lobular neoplasia: is there any difference between lobular carcinoma in situ and atypical lobular hyperplasia? Am J Roentgenol 198(2):288–291. doi:10.​2214/​ajr.​11.​7212 CrossRef
70.
Zurück zum Zitat Tavassoli FA, Norris HJ (1990) A comparison of the results of long-term follow-up for atypical intraductal hyperplasia and intraductal hyperplasia of the breast. Cancer 65(3):518–529PubMedCrossRef Tavassoli FA, Norris HJ (1990) A comparison of the results of long-term follow-up for atypical intraductal hyperplasia and intraductal hyperplasia of the breast. Cancer 65(3):518–529PubMedCrossRef
71.
Zurück zum Zitat Marinho AF, Botelho M, Schmitt FC (2000) Evaluation of numerical abnormalities of chromosomes 1 and 17 in proliferative epithelial breast lesions using fluorescence in situ hybridization. Pathol Res Pract 196(4):227–233PubMedCrossRef Marinho AF, Botelho M, Schmitt FC (2000) Evaluation of numerical abnormalities of chromosomes 1 and 17 in proliferative epithelial breast lesions using fluorescence in situ hybridization. Pathol Res Pract 196(4):227–233PubMedCrossRef
72.
Zurück zum Zitat Krishnamurthy S, Zhao L, Hayes K, Glassman AB, Cristofanilli M, Singletary SE, Hunt KK, Kuerer HM, Sneige N (2004) Feasibility and utility of using chromosomal aneusomy to further define the cytologic categories in nipple aspirate fluid specimens: a preliminary study. Cancer 102(5):322–327PubMedCrossRef Krishnamurthy S, Zhao L, Hayes K, Glassman AB, Cristofanilli M, Singletary SE, Hunt KK, Kuerer HM, Sneige N (2004) Feasibility and utility of using chromosomal aneusomy to further define the cytologic categories in nipple aspirate fluid specimens: a preliminary study. Cancer 102(5):322–327PubMedCrossRef
73.
Zurück zum Zitat Visscher DW, Wallis TL, Crissman JD (1996) Evaluation of chromosome aneuploidy in tissue sections of preinvasive breast carcinomas using interphase cytogenetics. Cancer 77(2):315–320PubMedCrossRef Visscher DW, Wallis TL, Crissman JD (1996) Evaluation of chromosome aneuploidy in tissue sections of preinvasive breast carcinomas using interphase cytogenetics. Cancer 77(2):315–320PubMedCrossRef
74.
Zurück zum Zitat King EB, Chew KL, Hom JD, Duarte LA, Mayall B, Miller TR, Neuhaus JM, Wrensch MR, Petrakis NL (1991) Characterization by image cytometry of duct epithelial proliferative disease of the breast. Mod Pathol 4(3):291–296PubMed King EB, Chew KL, Hom JD, Duarte LA, Mayall B, Miller TR, Neuhaus JM, Wrensch MR, Petrakis NL (1991) Characterization by image cytometry of duct epithelial proliferative disease of the breast. Mod Pathol 4(3):291–296PubMed
75.
Zurück zum Zitat Schimmelpenning H, Eriksson ET, Falkmer UG, Azavedo E, Svane G, Auer GU (1992) Expression of the c-erbB-2 proto-oncogene product and nuclear DNA content in benign and malignant human breast parenchyma. Virchows Arch A 420(5):433–440CrossRef Schimmelpenning H, Eriksson ET, Falkmer UG, Azavedo E, Svane G, Auer GU (1992) Expression of the c-erbB-2 proto-oncogene product and nuclear DNA content in benign and malignant human breast parenchyma. Virchows Arch A 420(5):433–440CrossRef
76.
Zurück zum Zitat Eriksson ET, Schimmelpenning H, Aspenblad U, Zetterberg A, Auer GU (1994) Immunohistochemical expression of the mutant p53 protein and nuclear DNA content during the transition from benign to malignant breast disease. Hum Pathol 25(11):1228–1233PubMedCrossRef Eriksson ET, Schimmelpenning H, Aspenblad U, Zetterberg A, Auer GU (1994) Immunohistochemical expression of the mutant p53 protein and nuclear DNA content during the transition from benign to malignant breast disease. Hum Pathol 25(11):1228–1233PubMedCrossRef
77.
Zurück zum Zitat Carpenter R, Gibbs N, Matthews J, Cooke T (1987) Importance of cellular DNA content in pre-malignant breast disease and pre-invasive carcinoma of the female breast. Br J Surg 74(10):905–906PubMedCrossRef Carpenter R, Gibbs N, Matthews J, Cooke T (1987) Importance of cellular DNA content in pre-malignant breast disease and pre-invasive carcinoma of the female breast. Br J Surg 74(10):905–906PubMedCrossRef
78.
Zurück zum Zitat Schmitt FC, Figueiredo P, Lacerda M (1995) Expression of c-erb B-2 protein and DNA ploidy in breast carcinogenesis. Arch Pathol Lab Med 119(9):815–820PubMed Schmitt FC, Figueiredo P, Lacerda M (1995) Expression of c-erb B-2 protein and DNA ploidy in breast carcinogenesis. Arch Pathol Lab Med 119(9):815–820PubMed
79.
Zurück zum Zitat Fabian CJ, Kimler BF, Zalles CM, Klemp JR, Kamel S, Zeiger S, Mayo MS (2000) Short-term breast cancer prediction by random periareolar fine-needle aspiration cytology and the Gail risk model. J Natl Cancer Inst 92(15):1217–1227PubMedCrossRef Fabian CJ, Kimler BF, Zalles CM, Klemp JR, Kamel S, Zeiger S, Mayo MS (2000) Short-term breast cancer prediction by random periareolar fine-needle aspiration cytology and the Gail risk model. J Natl Cancer Inst 92(15):1217–1227PubMedCrossRef
80.
Zurück zum Zitat Teplitz RL, Butler BB, Tesluk H, Min BH, Russell LA, Jensen HM, Hill LR (1990) Quantitative DNA patterns in human preneoplastic breast lesions. Anal Quant Cytol Histol 12(2):98–102PubMed Teplitz RL, Butler BB, Tesluk H, Min BH, Russell LA, Jensen HM, Hill LR (1990) Quantitative DNA patterns in human preneoplastic breast lesions. Anal Quant Cytol Histol 12(2):98–102PubMed
81.
Zurück zum Zitat De Potter CR, Praet MM, Slavin RE, Verbeeck P, Roels HJ (1987) Feulgen DNA content and mitotic activity in proliferative breast disease. A comparison with ductal carcinoma in situ. Histopathology 11(12):1307–1319PubMedCrossRef De Potter CR, Praet MM, Slavin RE, Verbeeck P, Roels HJ (1987) Feulgen DNA content and mitotic activity in proliferative breast disease. A comparison with ductal carcinoma in situ. Histopathology 11(12):1307–1319PubMedCrossRef
82.
Zurück zum Zitat Dietrich CU, Pandis N, Teixeira MR, Bardi G, Gerdes AM, Andersen JA, Heim S (1995) Chromosome abnormalities in benign hyperproliferative disorders of epithelial and stromal breast tissue. Int J Cancer 60(1):49–53PubMedCrossRef Dietrich CU, Pandis N, Teixeira MR, Bardi G, Gerdes AM, Andersen JA, Heim S (1995) Chromosome abnormalities in benign hyperproliferative disorders of epithelial and stromal breast tissue. Int J Cancer 60(1):49–53PubMedCrossRef
83.
Zurück zum Zitat Aubele MM, Cummings MC, Mattis AE, Zitzelsberger HF, Walch AK, Kremer M, Hofler H, Werner M (2000) Accumulation of chromosomal imbalances from intraductal proliferative lesions to adjacent in situ and invasive ductal breast cancer. Diagn Mol Pathol 9(1):14–19PubMedCrossRef Aubele MM, Cummings MC, Mattis AE, Zitzelsberger HF, Walch AK, Kremer M, Hofler H, Werner M (2000) Accumulation of chromosomal imbalances from intraductal proliferative lesions to adjacent in situ and invasive ductal breast cancer. Diagn Mol Pathol 9(1):14–19PubMedCrossRef
84.
Zurück zum Zitat Mastracci TL, Shadeo A, Colby SM, Tuck AB, O’Malley FP, Bull SB, Lam WL, Andrulis IL (2006) Genomic alterations in lobular neoplasia: a microarray comparative genomic hybridization signature for early neoplastic proliferationin the breast. Genes Chromosomes Cancer 45(11):1007–1017PubMedCrossRef Mastracci TL, Shadeo A, Colby SM, Tuck AB, O’Malley FP, Bull SB, Lam WL, Andrulis IL (2006) Genomic alterations in lobular neoplasia: a microarray comparative genomic hybridization signature for early neoplastic proliferationin the breast. Genes Chromosomes Cancer 45(11):1007–1017PubMedCrossRef
85.
Zurück zum Zitat O’Connell P, Pekkel V, Fuqua SA, Osborne CK, Clark GM, Allred DC (1998) Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J Natl Cancer Inst 90(9):697–703PubMedCrossRef O’Connell P, Pekkel V, Fuqua SA, Osborne CK, Clark GM, Allred DC (1998) Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J Natl Cancer Inst 90(9):697–703PubMedCrossRef
86.
Zurück zum Zitat Lu YJ, Osin P, Lakhani SR, Di Palma S, Gusterson BA, Shipley JM (1998) Comparative genomic hybridization analysis of lobular carcinoma in situ and atypical lobular hyperplasia and potential roles for gains and losses of genetic material in breast neoplasia. Cancer Res 58(20):4721–4727PubMed Lu YJ, Osin P, Lakhani SR, Di Palma S, Gusterson BA, Shipley JM (1998) Comparative genomic hybridization analysis of lobular carcinoma in situ and atypical lobular hyperplasia and potential roles for gains and losses of genetic material in breast neoplasia. Cancer Res 58(20):4721–4727PubMed
87.
Zurück zum Zitat Tibiletti MG, Sessa F, Bernasconi B, Cerutti R, Broggi B, Furlan D, Acquati F, Bianchi M, Russo A, Capella C, Taramelli R (2000) A large 6q deletion is a common cytogenetic alteration in fibroadenomas, pre-malignant lesions, and carcinomas of the breast. Clin Cancer Res 6(4):1422–1431PubMed Tibiletti MG, Sessa F, Bernasconi B, Cerutti R, Broggi B, Furlan D, Acquati F, Bianchi M, Russo A, Capella C, Taramelli R (2000) A large 6q deletion is a common cytogenetic alteration in fibroadenomas, pre-malignant lesions, and carcinomas of the breast. Clin Cancer Res 6(4):1422–1431PubMed
88.
Zurück zum Zitat Tidow N, Boecker A, Schmidt H, Agelopoulos K, Boecker W, Buerger H, Brandt B (2003) Distinct amplification of an untranslated regulatory sequence in the egfr gene contributes to early steps in breast cancer development. Cancer Res 63(6):1172–1178PubMed Tidow N, Boecker A, Schmidt H, Agelopoulos K, Boecker W, Buerger H, Brandt B (2003) Distinct amplification of an untranslated regulatory sequence in the egfr gene contributes to early steps in breast cancer development. Cancer Res 63(6):1172–1178PubMed
89.
Zurück zum Zitat Ellsworth RE, Ellsworth DL, Deyarmin B, Hoffman LR, Love B, Hooke JA, Shriver CD (2005) Timing of critical genetic changes in human breast disease. Ann Surg Oncol 12(12):1054–1060PubMedCrossRef Ellsworth RE, Ellsworth DL, Deyarmin B, Hoffman LR, Love B, Hooke JA, Shriver CD (2005) Timing of critical genetic changes in human breast disease. Ann Surg Oncol 12(12):1054–1060PubMedCrossRef
90.
Zurück zum Zitat Chuaqui RF, Zhuang Z, Emmert-Buck MR, Liotta LA, Merino MJ (1997) Analysis of loss of heterozygosity on chromosome 11q13 in atypical ductal hyperplasia and in situ carcinoma of the breast. Am J Pathol 150(1):297–303PubMedPubMedCentral Chuaqui RF, Zhuang Z, Emmert-Buck MR, Liotta LA, Merino MJ (1997) Analysis of loss of heterozygosity on chromosome 11q13 in atypical ductal hyperplasia and in situ carcinoma of the breast. Am J Pathol 150(1):297–303PubMedPubMedCentral
91.
Zurück zum Zitat Nayar R, Zhuang Z, Merino MJ, Silverberg SG (1997) Loss of heterozygosity on chromosome 11q13 in lobular lesions of the breast using tissue microdissection and polymerase chain reaction. Hum Pathol 28(3):277–282PubMedCrossRef Nayar R, Zhuang Z, Merino MJ, Silverberg SG (1997) Loss of heterozygosity on chromosome 11q13 in lobular lesions of the breast using tissue microdissection and polymerase chain reaction. Hum Pathol 28(3):277–282PubMedCrossRef
92.
Zurück zum Zitat Tsuda H, Takarabe T, Akashi-Tanaka S, Fukutomi T, Hirohashi S (2001) Pattern of chromosome 16q loss differs between an atypical proliferative lesion and an intraductal or invasive ductal carcinoma occurring subsequently in the same area of the breast. Mod Pathol 14(5):382–388PubMedCrossRef Tsuda H, Takarabe T, Akashi-Tanaka S, Fukutomi T, Hirohashi S (2001) Pattern of chromosome 16q loss differs between an atypical proliferative lesion and an intraductal or invasive ductal carcinoma occurring subsequently in the same area of the breast. Mod Pathol 14(5):382–388PubMedCrossRef
93.
Zurück zum Zitat Mastracci TL, Tjan S, Bane AL, O’Malley FP, Andrulis IL (2005) E-cadherin alterations in atypical lobular hyperplasia and lobular carcinoma in situ of the breast. Mod Pathol 18(6):741–751PubMedCrossRef Mastracci TL, Tjan S, Bane AL, O’Malley FP, Andrulis IL (2005) E-cadherin alterations in atypical lobular hyperplasia and lobular carcinoma in situ of the breast. Mod Pathol 18(6):741–751PubMedCrossRef
94.
Zurück zum Zitat Lakhani SR, Collins N, Stratton MR, Sloane JP (1995) Atypical ductal hyperplasia of the breast: clonal proliferation with loss of heterozygosity on chromosomes 16q and 17p. J Clin Pathol 48(7):611–615PubMedPubMedCentralCrossRef Lakhani SR, Collins N, Stratton MR, Sloane JP (1995) Atypical ductal hyperplasia of the breast: clonal proliferation with loss of heterozygosity on chromosomes 16q and 17p. J Clin Pathol 48(7):611–615PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Kaneko M, Arihiro K, Takeshima Y, Fujii S, Inai K (2002) Loss of heterozygosity and microsatellite instability in epithelial hyperplasia of the breast. J Exp Ther Oncol 2(1):9–18PubMedCrossRef Kaneko M, Arihiro K, Takeshima Y, Fujii S, Inai K (2002) Loss of heterozygosity and microsatellite instability in epithelial hyperplasia of the breast. J Exp Ther Oncol 2(1):9–18PubMedCrossRef
96.
Zurück zum Zitat Werner M, Mattis A, Aubele M, Cummings M, Zitzelsberger H, Hutzler P, Hofler H (1999) 20q13.2 amplification in intraductal hyperplasia adjacent to in situ and invasive ductal carcinoma of the breast. Virchows Arch 435(5):469–472PubMedCrossRef Werner M, Mattis A, Aubele M, Cummings M, Zitzelsberger H, Hutzler P, Hofler H (1999) 20q13.2 amplification in intraductal hyperplasia adjacent to in situ and invasive ductal carcinoma of the breast. Virchows Arch 435(5):469–472PubMedCrossRef
97.
Zurück zum Zitat Bean GR, Ibarra DC, Goldenberg VK, Baker JC Jr, Troch MM, Paisie C, Wilke LG, Yee L, Marcom PK, Kimler BF, Fabian CJ, Zalles CM, Broadwater G, Scott V, Seewaldt VL (2007) Hypermethylation of the breast cancer-associated gene 1 promoter does not predict cytologic atypia or correlate with surrogate end points of breast cancer risk. Cancer Epidemiol Biomarkers Prev 16(1):50–56PubMedCrossRef Bean GR, Ibarra DC, Goldenberg VK, Baker JC Jr, Troch MM, Paisie C, Wilke LG, Yee L, Marcom PK, Kimler BF, Fabian CJ, Zalles CM, Broadwater G, Scott V, Seewaldt VL (2007) Hypermethylation of the breast cancer-associated gene 1 promoter does not predict cytologic atypia or correlate with surrogate end points of breast cancer risk. Cancer Epidemiol Biomarkers Prev 16(1):50–56PubMedCrossRef
98.
Zurück zum Zitat Evron E, Dooley WC, Umbricht CB, Rosenthal D, Sacchi N, Gabrielson E, Soito AB, Hung DT, Ljung B, Davidson NE, Sukumar S (2001) Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet 357(9265):1335–1336PubMedCrossRef Evron E, Dooley WC, Umbricht CB, Rosenthal D, Sacchi N, Gabrielson E, Soito AB, Hung DT, Ljung B, Davidson NE, Sukumar S (2001) Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet 357(9265):1335–1336PubMedCrossRef
99.
Zurück zum Zitat Umbricht CB, Evron E, Gabrielson E, Ferguson A, Marks J, Sukumar S (2001) Hypermethylation of 14-3-3 sigma (stratifin) is an early event in breast cancer. Oncogene 20(26):3348–3353PubMedCrossRef Umbricht CB, Evron E, Gabrielson E, Ferguson A, Marks J, Sukumar S (2001) Hypermethylation of 14-3-3 sigma (stratifin) is an early event in breast cancer. Oncogene 20(26):3348–3353PubMedCrossRef
100.
Zurück zum Zitat van Hoesel AQ, Sato Y, Elashoff DA, Turner RR, Giuliano AE, Shamonki JM, Kuppen PJ, van de Velde CJ, Hoon DS (2013) Assessment of DNA methylation status in early stages of breast cancer development. Br J Cancer 108(10):2033–2038PubMedPubMedCentralCrossRef van Hoesel AQ, Sato Y, Elashoff DA, Turner RR, Giuliano AE, Shamonki JM, Kuppen PJ, van de Velde CJ, Hoon DS (2013) Assessment of DNA methylation status in early stages of breast cancer development. Br J Cancer 108(10):2033–2038PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Liu T, Niu Y, Yu Y, Liu Y, Zhang F (2009) Increased gamma-tubulin expression and P16INK4A promoter methylation occur together in preinvasive lesions and carcinomas of the breast. Ann Oncol 20(3):441–448PubMedCrossRef Liu T, Niu Y, Yu Y, Liu Y, Zhang F (2009) Increased gamma-tubulin expression and P16INK4A promoter methylation occur together in preinvasive lesions and carcinomas of the breast. Ann Oncol 20(3):441–448PubMedCrossRef
102.
Zurück zum Zitat Liu T, Niu Y, Feng Y, Niu R, Yu Y, Lv A, Yang Y (2008) Methylation of CpG islands of p16(INK4a) and cyclinD1 overexpression associated with progression of intraductal proliferative lesions of the breast. Hum Pathol 39:1637–1646PubMedCrossRef Liu T, Niu Y, Feng Y, Niu R, Yu Y, Lv A, Yang Y (2008) Methylation of CpG islands of p16(INK4a) and cyclinD1 overexpression associated with progression of intraductal proliferative lesions of the breast. Hum Pathol 39:1637–1646PubMedCrossRef
103.
Zurück zum Zitat Visscher DW, Pankratz VS, Santisteban M, Reynolds C, Ristimaki A, Vierkant RA, Lingle WL, Frost MH, Hartmann LC (2008) Association between cyclooxygenase-2 expression in atypical hyperplasia and risk of breast cancer. J Natl Cancer Inst 100(6):421–427. doi:10.1093/jnci/djn036 PubMedCrossRef Visscher DW, Pankratz VS, Santisteban M, Reynolds C, Ristimaki A, Vierkant RA, Lingle WL, Frost MH, Hartmann LC (2008) Association between cyclooxygenase-2 expression in atypical hyperplasia and risk of breast cancer. J Natl Cancer Inst 100(6):421–427. doi:10.​1093/​jnci/​djn036 PubMedCrossRef
104.
Zurück zum Zitat Weinstat-Saslow D, Merino MJ, Manrow RE, Lawrence JA, Bluth RF, Wittenbel KD, Simpson JF, Page DL, Steeg PS (1995) Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nat Med 1(12):1257–1260PubMedCrossRef Weinstat-Saslow D, Merino MJ, Manrow RE, Lawrence JA, Bluth RF, Wittenbel KD, Simpson JF, Page DL, Steeg PS (1995) Overexpression of cyclin D mRNA distinguishes invasive and in situ breast carcinomas from non-malignant lesions. Nat Med 1(12):1257–1260PubMedCrossRef
105.
Zurück zum Zitat Alle KM, Henshall SM, Field AS, Sutherland RL (1998) Cyclin D1 protein is overexpressed in hyperplasia and intraductal carcinoma of the breast. Clin Cancer Res 4(4):847–854PubMed Alle KM, Henshall SM, Field AS, Sutherland RL (1998) Cyclin D1 protein is overexpressed in hyperplasia and intraductal carcinoma of the breast. Clin Cancer Res 4(4):847–854PubMed
106.
Zurück zum Zitat Zhu XL, Hartwick W, Rohan T, Kandel R (1998) Cyclin D1 gene amplification and protein expression in benign breast disease and breast carcinoma. Mod Pathol 11(11):1082–1088PubMed Zhu XL, Hartwick W, Rohan T, Kandel R (1998) Cyclin D1 gene amplification and protein expression in benign breast disease and breast carcinoma. Mod Pathol 11(11):1082–1088PubMed
107.
Zurück zum Zitat Gatalica Z, Lele SM, Rampy BA, Norris BA (2000) The expression of Fhit protein is related inversely to disease progression in patients with breast carcinoma. Cancer 88(6):1378–1383PubMedCrossRef Gatalica Z, Lele SM, Rampy BA, Norris BA (2000) The expression of Fhit protein is related inversely to disease progression in patients with breast carcinoma. Cancer 88(6):1378–1383PubMedCrossRef
108.
Zurück zum Zitat Wang TT, Frezza EE, Ma R, Hu SY, Liu CZ, Zhang GY, Wachtel MS, Lu XM, Feng JB, Lu CX (2008) Loss expression of active fragile sites genes associated with the severity of breast epithelial abnormalities. Chin Med J 121(20):1969–1974PubMed Wang TT, Frezza EE, Ma R, Hu SY, Liu CZ, Zhang GY, Wachtel MS, Lu XM, Feng JB, Lu CX (2008) Loss expression of active fragile sites genes associated with the severity of breast epithelial abnormalities. Chin Med J 121(20):1969–1974PubMed
109.
Zurück zum Zitat Xu R, Perle MA, Inghirami G, Chan W, Delgado Y, Feiner H (2002) Amplification of Her-2/neu gene in Her-2/neu-overexpressing and -nonexpressing breast carcinomas and their synchronous benign, premalignant, and metastatic lesions detected by FISH in archival material. Mod Pathol 15(2):116–124PubMedCrossRef Xu R, Perle MA, Inghirami G, Chan W, Delgado Y, Feiner H (2002) Amplification of Her-2/neu gene in Her-2/neu-overexpressing and -nonexpressing breast carcinomas and their synchronous benign, premalignant, and metastatic lesions detected by FISH in archival material. Mod Pathol 15(2):116–124PubMedCrossRef
110.
Zurück zum Zitat Eren F, Calay Z, Durak H, Eren B, Comunoglu N, Aydin O (2012) C-Erb-b2 oncogene expression in intraductal proliferative lesions of the breast. Bosnian J Basic Med Sci 12(1):41–50CrossRef Eren F, Calay Z, Durak H, Eren B, Comunoglu N, Aydin O (2012) C-Erb-b2 oncogene expression in intraductal proliferative lesions of the breast. Bosnian J Basic Med Sci 12(1):41–50CrossRef
111.
Zurück zum Zitat Mazzini RC, Elias S, Nazario AC, Kemp C, Logullo AF (2009) Prevalence of c-myc expression in breast lesions associated with microcalcifications detected by routine mammography. Sao Paulo Med J 127(2):66–70PubMedCrossRef Mazzini RC, Elias S, Nazario AC, Kemp C, Logullo AF (2009) Prevalence of c-myc expression in breast lesions associated with microcalcifications detected by routine mammography. Sao Paulo Med J 127(2):66–70PubMedCrossRef
112.
Zurück zum Zitat Gillett CE, Lee AH, Millis RR, Barnes DM (1998) Cyclin D1 and associated proteins in mammary ductal carcinoma in situ and atypical ductal hyperplasia. J Pathol 184(4):396–400PubMedCrossRef Gillett CE, Lee AH, Millis RR, Barnes DM (1998) Cyclin D1 and associated proteins in mammary ductal carcinoma in situ and atypical ductal hyperplasia. J Pathol 184(4):396–400PubMedCrossRef
113.
Zurück zum Zitat Shi A, Dong J, Hilsenbeck S, Bi L, Zhang H, Li Y (2015) The status of STAT3 and STAT5 in human breast atypical ductal hyperplasia. PLoS ONE 10(7):e0132214PubMedPubMedCentralCrossRef Shi A, Dong J, Hilsenbeck S, Bi L, Zhang H, Li Y (2015) The status of STAT3 and STAT5 in human breast atypical ductal hyperplasia. PLoS ONE 10(7):e0132214PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Chin K, de Solorzano CO, Knowles D, Jones A, Chou W, Rodriguez EG, Kuo WL, Ljung BM, Chew K, Myambo K, Miranda M, Krig S, Garbe J, Stampfer M, Yaswen P, Gray JW, Lockett SJ (2004) In situ analyses of genome instability in breast cancer. Nat Genet 36(9):984–988PubMedCrossRef Chin K, de Solorzano CO, Knowles D, Jones A, Chou W, Rodriguez EG, Kuo WL, Ljung BM, Chew K, Myambo K, Miranda M, Krig S, Garbe J, Stampfer M, Yaswen P, Gray JW, Lockett SJ (2004) In situ analyses of genome instability in breast cancer. Nat Genet 36(9):984–988PubMedCrossRef
115.
Zurück zum Zitat Yashima K, Milchgrub S, Gollahon LS, Maitra A, Saboorian MH, Shay JW, Gazdar AF (1998) Telomerase enzyme activity and RNA expression during the multistage pathogenesis of breast carcinoma. Clin Cancer Res 4(1):229–234PubMed Yashima K, Milchgrub S, Gollahon LS, Maitra A, Saboorian MH, Shay JW, Gazdar AF (1998) Telomerase enzyme activity and RNA expression during the multistage pathogenesis of breast carcinoma. Clin Cancer Res 4(1):229–234PubMed
116.
Zurück zum Zitat Song M, Mi X, Li B, Zhu J, Gao Y, Cui S, Song J (2002) Expression of telomerase genes in cancer development in atypical hyperplasia of the mammary duct. Chin Med J 115(8):1221–1225PubMed Song M, Mi X, Li B, Zhu J, Gao Y, Cui S, Song J (2002) Expression of telomerase genes in cancer development in atypical hyperplasia of the mammary duct. Chin Med J 115(8):1221–1225PubMed
117.
Zurück zum Zitat Guan H, Sun Y, Zan Q, Xu M, Li Y, Zhou J, He E, Eriksson S, Wen W, Skog S (2009) Thymidine kinase 1 expression in atypical ductal hyperplasia significantly differs from usual ductal hyperplasia and ductal carcinoma in situ: a useful tool in tumor therapy management. Mol Med Rep 2(6):923–929PubMed Guan H, Sun Y, Zan Q, Xu M, Li Y, Zhou J, He E, Eriksson S, Wen W, Skog S (2009) Thymidine kinase 1 expression in atypical ductal hyperplasia significantly differs from usual ductal hyperplasia and ductal carcinoma in situ: a useful tool in tumor therapy management. Mol Med Rep 2(6):923–929PubMed
118.
Zurück zum Zitat Rosenberg CL, Larson PS, Romo JD, de las MA, Faller DV (1997) Microsatellite alterations indicating monoclonality in atypical hyperplasias associated with breast cancer. Hum Pathol 28(2):214–219PubMedCrossRef Rosenberg CL, Larson PS, Romo JD, de las MA, Faller DV (1997) Microsatellite alterations indicating monoclonality in atypical hyperplasias associated with breast cancer. Hum Pathol 28(2):214–219PubMedCrossRef
Metadaten
Titel
Molecular profile of atypical hyperplasia of the breast
verfasst von
David N. Danforth
Publikationsdatum
14.09.2017
Verlag
Springer US
Erschienen in
Breast Cancer Research and Treatment / Ausgabe 1/2018
Print ISSN: 0167-6806
Elektronische ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-017-4488-x

Weitere Artikel der Ausgabe 1/2018

Breast Cancer Research and Treatment 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.